JP2011173184A - 研磨方法 - Google Patents

研磨方法 Download PDF

Info

Publication number
JP2011173184A
JP2011173184A JP2010037398A JP2010037398A JP2011173184A JP 2011173184 A JP2011173184 A JP 2011173184A JP 2010037398 A JP2010037398 A JP 2010037398A JP 2010037398 A JP2010037398 A JP 2010037398A JP 2011173184 A JP2011173184 A JP 2011173184A
Authority
JP
Japan
Prior art keywords
polishing
glass substrate
glass
buffer layer
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2010037398A
Other languages
English (en)
Inventor
Takeshi Moriya
剛 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2010037398A priority Critical patent/JP2011173184A/ja
Priority to KR1020110015307A priority patent/KR101267162B1/ko
Priority to US13/031,674 priority patent/US8419963B2/en
Publication of JP2011173184A publication Critical patent/JP2011173184A/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/7065Defects, e.g. optical inspection of patterned layer for defects

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Surface Treatment Of Glass (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

【課題】ガラスを研磨する際に傷の発生を抑制しながらも研磨に必要な時間の長大化を抑制することができる研磨方法を提供する。
【解決手段】研磨対象のガラス基板に対し、まず、陽電子消滅ガンマ線測定により、表面近傍の欠陥分布の検査を行う。次に、ガラス基板の表面に、ガスクラスタイオンを照射することによりガラスを劣化させた脆性層、又は柔軟な物質で表面を被覆した被覆層からなる緩衝層を生成する。次に、陽電子消滅ガンマ線測定により、生成した緩衝層の厚みを測定する。次に、ガラス基板の表面を洗浄する。次に、ガラス基板を研磨する研磨具上に、スラリーの砥粒を均一に散布し、更にスラリーの液体成分を加えてスラリーを生成する。次に、生成したスラリーを用いて緩衝層の上からガラス基板の化学機械研磨を行う。
【選択図】図1

Description

本発明は、化学機械研磨によるガラスの研磨方法に関する。
半導体素子等の電子部品の回路パターンは、露光技術により、フォトマスクに形成された回路パターン原版をシリコンウエハ等に縮小転写することにより、形成される。電子部品の微細化を促進するために、露光に用いる光の波長はより短くなる傾向にある。近年では、露光用の光としてEUV(Extreme Ultra Violet)光を用いたEUV露光の技術が開発されている。EUV露光用のフォトマスクは、基材であるマスクブランクス上に、EUV光を反射する金属及び半導体の多層膜を設け、多層膜上に光の吸収体で回路パターン原版を形成してある構造となっている。マスクブランクスは、ガラス基板に化学機械研磨(CMP;Chemical Mechanical Polishing )を施すことによって製造する。マスクブランクスの表面に欠陥が存在した場合、多層膜に欠陥が発生し、回路パターン原版の精度が悪化する。そこで、CMPによりマスクブランクスを製造する際には、欠陥の発生を可及的に防止することが必要である。特許文献1には、研磨処理の前に、ガラス基板の表面形状を測定し、測定結果に応じて、表面の平坦度を上げるための加工をガラス基板に施す技術が開示されている。
特開2004−310067号公報
CMPでは、ガラス基板を研磨するための砥粒を含む研磨液、所謂スラリーを用いて研磨を行う。マスクブランクス表面の欠陥の原因の一つは、スラリーに含まれる砥粒が研磨中にガラス基板の表面に傷を発生させることにある。傷の発生を抑制するためには、スラリー中の砥粒の粒径を小さくすることが考えられる。しかしながら、砥粒の粒径を小さくした場合は、研磨の速度が低下し、マスクブランクスの製造に必要な時間が長大になるという問題がある。
本発明は、斯かる事情に鑑みてなされたものであって、その目的とするところは、研磨前のガラスに対して適切な前処理を施すことにより、傷の発生を抑制しながらも研磨に必要な時間の長大化を抑制することができる研磨方法を提供することにある。
本発明に係る研磨方法は、ガラスを研磨するための砥粒及び液体成分を含有するスラリーを用いてガラスの化学機械研磨を行う研磨方法において、スラリーを用いた研磨がガラスよりも容易な緩衝層をガラス表面に生成し、生成した緩衝層の上からガラスの化学機械研磨を行うことを特徴とする。
本発明においては、ガラスの研磨を行うに際して、ガラスよりも研磨が容易な緩衝層をガラスの表面に生成し、緩衝層の上からガラスのCMPを実行する。
本発明に係る研磨方法は、ガラスの表面にガスクラスタイオンを照射することにより、ガラスの表面近傍を劣化させた脆性層を前記緩衝層として生成することを特徴とする。
本発明においては、緩衝層として、ガラスの表面にガスクラスタイオンを照射することによりガラスの表面近傍を劣化させた脆性層を、ガラスの表層に生成する。
本発明に係る研磨方法は、前記緩衝層として、ガラスよりも柔軟な物質で、スラリー中の砥粒の粒径以上の厚さにガラスの表面を被覆した被覆層を生成することを特徴とする。
本発明においては、緩衝層として、ガラスよりも柔軟な物質でガラスの表面を被覆した被覆層を生成する。
本発明に係る研磨方法は、前記緩衝層を生成する前に、陽電子消滅ガンマ線測定により、ガラス表面近傍に存在する欠陥の分布を検査することを特徴とする。
本発明においては、緩衝層を生成する前に、陽電子消滅ガンマ線測定により、ガラスの表面から表面近傍のある程度の深さにまで欠陥分布の検査を行う。
本発明に係る研磨方法は、前記緩衝層を生成した後に、陽電子消滅ガンマ線測定により、前記緩衝層の厚みを測定することを特徴とする。
本発明においては、陽電子消滅ガンマ線測定により、生成した緩衝層の厚みを測定する。
本発明に係る研磨方法は、前記緩衝層上、又はガラスを研磨するための研磨具上に、砥粒を均一に散布し、散布した状態の砥粒に液体成分を加えることにより、スラリーを生成することを特徴とする。
本発明においては、ガラスの緩衝層上又は研磨具上にスラリーの砥粒を均一に散布し、更に液体成分を加えることでスラリーを生成し、生成したスラリーを用いてガラスの研磨を行う。
本発明にあっては、ガラスよりも研磨が容易な緩衝層の上から緩衝層を削り取るまでガラスを研磨するので、容易にガラスを研磨することができる。スラリー中の砥粒によって緩衝層には傷が発生するものの、最終的に緩衝層は削り取られ、また緩衝層を研磨する過程で砥粒はより傷を発生し難くなるので、ガラスに傷が発生することが抑制される。従って、ガラスでの傷の発生を抑制しながらも、研磨に必要な時間の長大化を抑制することが可能となり、ガラス基板の研磨によって傷のない高品質なマスクブランクスを効率的に製造することが可能となる等、本発明は優れた効果を奏する。
研磨方法の工程例を簡略的に示す概念図である。 陽電子消滅ガンマ線測定装置の例を示す模式図である。 脆性層を生成するためのガスクラスタイオン照射装置の構成例を示す模式図である。 緩衝層を生成したガラス基板の例を示す模式的断面図である。 緩衝層の厚みを測定する工程における陽電子消滅ガンマ線測定結果の例を示す模式的特性図である。 研磨装置の構成例を示す模式的正面図である。
以下、本発明の実施の形態を、図面に基づき具体的に説明する。
図1は、研磨方法の工程例を簡略的に示す概念図である。研磨対象のガラス基板に対し、まず、陽電子消滅ガンマ線測定により、表面近傍の欠陥分布の検査を行う。次に、ガラス基板の表面に、ガラスよりも研磨が容易な緩衝層を生成し、陽電子消滅ガンマ線測定により、生成した緩衝層の厚みを測定する。次に、ガラス基板の表面を洗浄し、スラリーの砥粒を散布し、更にスラリーの液体成分を加えた上で緩衝層の上からCMPによるガラス基板の研磨を行う。以下、研磨方法の各工程の詳細を説明する。
まず、ガラス基板の表面近傍の欠陥分布を検査する工程を説明する。欠陥分布の検査の工程では、陽電子消滅ガンマ線測定により、ガラス基板の表面近傍にある空洞状の欠陥の分布を検査する。図2は、陽電子消滅ガンマ線測定装置の例を示す模式図である。陽電子消滅ガンマ線測定装置は、22Na等の陽電子線源21からの陽電子の軌道を複数のコイル24で制御し、ガラス基板1の表面に照射する構成となっている。図2中には、陽電子の照射方向を矢印で示している。陽電子消滅ガンマ線測定装置は、陽電子線源21に電圧を印加する電圧印加部22を備える。電圧印加部22は、陽電子線源21に電圧を印加することにより陽電子の照射エネルギーを制御する。なお、陽電子を発生させる機構として、ライナック等の加速器から放射した電子等の粒子線をタングステン等のターゲットに衝突させることによって陽電子を発生させる機構を用いてもよい。更に陽電子消滅ガンマ線測定装置は、ガンマ線を検出する検出部23を備える。検出部23は、照射した陽電子がガラス基板1の表面近傍で消滅する際に発生するガンマ線を検出する。
物質に照射された陽電子は、物質内の電子と対消滅し、ガンマ線が発生する。発生したガンマ線のエネルギー分布は、物質内の欠陥濃度によって変化する。ガンマ線のエネルギー分布は、エネルギー分布のピークを含む所定範囲の面積を全体の面積で割った値であるSパラメータで表現される。一般に、欠陥が大きい又は欠陥濃度が高いほどSパラメータは大きくなる。また、物質に照射された陽電子は、照射エネルギーが大きいほど、より深く物質内に浸入する。従って、照射エネルギーを制御しながら陽電子をガラス基板1へ照射し、検出部23でのガンマ線の検出結果から、各照射エネルギーに対応するSパラメータを計算することにより、ガラス基板1の表面から深さ方向への欠陥の分布を知ることができる。電子顕微鏡を用いた方法等、表面を検査する従来の方法に比べて、欠陥の分布に関するより詳細な情報を得ることができる。
欠陥分布の検査の工程では、陽電子消滅ガンマ線測定により、ガラス基板1の表面から特定の深さまで欠陥の有無を検査する。検査によりガラス基板1の表面近傍に存在することが判明した欠陥の大きさ、深さ又は濃度が許容範囲を超えている場合は、ガラス基板1を破棄する。また研磨により解消できる程度の欠陥がガラス基板1の表面近傍に存在する場合は、欠陥が存在する深さまでガラスを削り取れるように、後述の研磨の工程でガラス基板1を研磨する深さを決定する。陽電子消滅ガンマ線測定を利用することにより、ガラス基板の1表面にある欠陥だけでなく、表面近傍の陽電子が侵入できる深さまでの欠陥の分布を検査することができる。欠陥が許容範囲を超えたガラス基板1を廃棄することにより、研磨の工程を開始する前に不良品を排除することができる。また欠陥が存在する深さまでガラスを削り取れるように研磨の深さを決定することにより、効率良く欠陥のないマスクブランクスを製造することが可能となる。
次に、ガラス基板の表面に緩衝層を生成する工程を説明する。緩衝層は、ガラスよりも研磨が容易であり、スラリーを用いた最初の研磨の衝撃を吸収し、スラリーをガラス基板になじませるためのものである。緩衝層を生成する工程では、緩衝層として、ガスクラスタイオン照射によりガラス基板の表面近傍を劣化させた脆性層、又はガラスよりも柔軟な物質でガラス基板の表面を被覆した被覆層を生成する。
図3は、脆性層を生成するためのガスクラスタイオン照射装置の構成例を示す模式図である。ガスクラスタとは、アルゴン等のガス分子が1000個程度集合したクラスタである。ガスクラスタイオンは、ガスクラスタをイオン化したものである。ガスクラスタイオン照射装置は、高圧の材料ガスを真空中に噴出するノズル31を備えている。ノズル31から材料ガスを噴出することにより、ガス分子が集合したガスクラスタが生成される。またガスクラスタイオン照射装置は、ガスクラスタに電子を衝突させることによりイオン化するイオン化部32を備える。イオン化部32は、ガスクラスタをイオン化することにより、ガスクラスタイオンを精製する。更にガスクラスタイオン照射装置は、電場及び磁場を用いてガスクラスタイオンを加速する加速部33を備える。加速部33は、電場及び磁場を用いて、ガスクラスタイオンを加速し、ガスクラスタイオンの軌道を制御することにより、ガスクラスタイオンをガラス基板1へ照射する。図3中には、ガスクラスタイオンの軌道を矢印で示す。
ガラス基板1へ照射されたガスクラスタイオンは、ガラス基板1の表面から数十nmの深さまで浸入し、ガラスを損傷させる。このため、ガラス基板1の表面から数十nmの深さまでの表面近傍は、ガスクラスタイオン照射によって劣化した脆性層となる。ガスクラスタイオンの材料ガスとしては、アルゴン、酸素又は窒素等、全てのガスを使用することができる。材料ガスを希ガスとした場合は、希ガスとガラスとの反応性が低く、ガラスが脆性層よりも内側にまで化学反応により変質することを防止できるので、より好適である。
後述する研磨の行程では、脆性層の上からガラス基板1の研磨を行い、研磨により最終的に脆性層を削り取る。脆性層は、ガスクラスタイオン照射により強度が劣化しているので、研磨の行程でガラスよりも容易に研磨することができる。ガラス基板1の表面近傍に欠陥が存在する場合、欠陥を削り取れる深さまで研磨を行う必要があるので、欠陥が存在する部分を含む脆性層を生成することにより、研磨の行程に必要な時間を短縮することができる。また研磨の行程において、スラリー中の砥粒によって脆性層に傷が発生するものの、最終的に脆性層は削り取られるので、ガラス基板1を研磨して得られるマスクブランクスには傷が発生しない。脆性層を生成する工程は、ガスクラスタイオンの加速を制御することにより、欠陥分布の検査の工程で検出した欠陥の位置が脆性層に含まれるように、脆性層の厚みを調整する形態であってもよい。
なお、ガスクラスタイオンの材料ガスとして、フッ素等のガラスとの反応性が高いガスを使用することも可能である。フッ素をガスクラスタイオンの材料ガスとして用いた場合は、フッ素がガラス基板1内に残留し、研磨の行程において、スラリー中の水とフッ素とが反応してフッ酸が生成し、フッ酸がガラスと化学反応することにより、化学的に研磨が進行する。従って、効率的に研磨を行うことができる。ガラスとの反応性が高いガスを使用する場合は、95%のアルゴンと5%のフッ素とを混合したガスを用いる等、ガラスを変質させすぎないように、ガラスとの反応性が低いガスで希釈することが望ましい。
また、緩衝層を生成する行程は、緩衝層として、ガラスよりも柔軟な物質でガラス基板の表面を被覆した被覆層を生成する形態であってもよい。緩衝層として被覆層を生成する形態では、プラズマCVD(Chemical Vapor Deposition )、熱CVD又はスパッタリング等の真空プロセスを用いてガラス基板1の表面に被覆層を生成すればよい。また、液体材料を回転塗布又はスプレー塗布によりガラス基板1の表面に塗布し、その後液体材料を硬化させることにより、被覆層を生成してもよい。被覆層の材料としては、レジスト等の有機膜、フッ素樹脂等のポリマー又はアモルファスシリカ等、ガラスよりも柔軟で研磨が容易な物質を用いる。
後述する研磨の行程では、被覆層の上からガラス基板1の研磨を行い、研磨により最終的に被覆層を削り取る。研磨の初期には、スラリーに含まれる砥粒は粒径が大きく尖鋭であるので傷が発生しやすいものの、被覆層を研磨することによって、砥粒は粒径が小さくなって鈍化する。このため、被覆層が削り取られてガラス基板1の表面が研磨されるときには、スラリー中の砥粒はガラス基板1に傷を発生し難い。また被覆層はガラスよりも柔軟であるので、研磨の初期にスラリー中の砥粒から受ける衝撃を吸収し、ガラス基板1にまで傷が発生することを防止する。
また、被覆層の厚みは、研磨の行程で用いるスラリーに含まれる砥粒の粒径以上とすることが望ましい。被覆層の厚みを砥粒の粒径以上とすることにより、研磨の初期に砥粒が被覆層を突き抜けてガラス基板1に傷を発生させることを防止することができる。また被覆層の厚みは、砥粒の粒径の10倍以下であり、最大で1000nm以下とすることが望ましい。被覆層の厚みを砥粒の粒径の10倍以下又は1000nm以下とすることにより、研磨の行程で被覆層を削り取るために必要な時間が長大になることを防止することができる。
また、緩衝層を生成する行程は、緩衝層として、脆性層及び被覆層の両方を生成する形態であってもよい。この形態では、ガラス基板1にガスクラスタイオンを照射することにより脆性層を生成し、更に脆性層に重ねて被覆層を生成する。図4は、緩衝層を生成したガラス基板1の例を示す模式的断面図である。図4(A)は、緩衝層として脆性層11を生成した例を示す。ガラス基板1の表層が脆性層11となっている。図4(B)は、緩衝層として被覆層12を生成した例を示す。ガラス基板11の表面上に、被覆層12が形成されている。図4(C)は、緩衝層として脆性層11及び被覆層12の両方を生成した例を示す。ガラス基板1の表層が脆性層11となり、脆性層11の表面に被覆層12が形成されている。緩衝層として脆性層11及び被覆層12の両方を生成する形態においても、被覆層12は研磨の工程においてガラス基板1に傷が発生することを防止し、脆性層11は研磨の行程に必要な時間を短縮させる。
次に、生成した緩衝層の厚みを測定する工程を説明する。緩衝層の厚みを測定する工程では、欠陥分布の検査の工程と同様に、陽電子消滅ガンマ線測定により、ガラス基板1に生成された緩衝層の厚みを測定する。図5は、緩衝層の厚みを測定する工程における陽電子消滅ガンマ線測定結果の例を示す模式的特性図である。図中の横軸はガラス基板1の表面からの深さを示し、縦軸は夫々の深さにおけるSパラメータを示す。図5には、脆性層11を生成したガラス基板1に対して陽電子消滅ガンマ線測定を行った結果の例を示す。Sパラメータの値は、ガラス基板1の表面からある程度の深さまで一定であり、一旦増加し、特定の深さで急激に減少し、それ以下の深さでは一定となる。前述したようにSパラメータが大きいほどガラス基板1中の欠陥は大きく欠陥濃度は高い。Sパラメータが急激に減少する特定の深さより浅い部分は、より深い部分に比べてSパラメータが大きいので、欠陥が大きく欠陥濃度が高い脆性層11である。Sパラメータが急激に減少する特定の深さの位置は、脆性層11の境界であり、特定の深さの値は脆性層11の厚みとなる。従って、脆性層11を生成したガラス基板1に対して陽電子消滅ガンマ線測定を行い、図5に示す如き測定結果から、Sパラメータが急激に減少する特定の深さを求めることにより、生成した脆性層11の厚みを測定することができる。
緩衝層を生成する行程において被覆層12を生成する形態においても、緩衝層の厚みを測定する工程では、同様に、陽電子消滅ガンマ線測定により被覆層12の厚みを測定する。ガラス基板1と被覆層12とでは密度及び欠陥濃度等が異なり、Sパラメータの値が異なるので、同様の方法で被覆層12の厚みを測定することができる。緩衝層を生成する行程において脆性層11及び被覆層12の両方を生成する形態においても、同様の方法で緩衝層の厚みを測定することができる。
緩衝層の厚みを測定した後、後述の研磨の工程で緩衝層を削り取れるように、研磨の工程でガラス基板1を研磨する深さを決定する。このため、効率良く欠陥のないマスクブランクスを製造することが可能となる。なお、研磨方法は、緩衝層を生成する工程において緩衝層の厚みを正確に制御することにより、緩衝層の厚みを測定する工程を省略する形態であってもよい。
次に、ガラス基板1の表面を洗浄する工程を説明する。洗浄の工程では、スチーム洗浄、ドライアイス洗浄、ライデンフロスト洗浄、又はブラシ洗浄等の方法で洗浄を行う洗浄機を用いて、ガラス基板1の表面を洗浄する。スチーム洗浄は、ガラス基板1の表面に蒸気を吹き付けて洗浄を行う方法である。ドライアイス洗浄は、ガラス基板1の表面にドライアイスを吹き付けて洗浄を行う方法であり、ドライアイスの気化により表面の付着物が除去される。ライデンフロスト洗浄は、ガラス基板1を加熱し、加熱したガラス基板1の表面に水滴を転がすことにより、蒸気に付着物を取り込ませる方法である。ブラシ洗浄は、ブラシでガラス基板1の表面をこすることにより洗浄を行う方法である。洗浄により、ガラス基板1の表面に付着した異物を除去し、異物が存在している状態で研磨を行って異物がガラス基板1に傷を発生させることを防止する。洗浄の工程で使用する洗浄機は、複数の洗浄方法を用いてガラス基板1を洗浄する形態であってもよい。また、洗浄機は、洗浄後のガラス基板1に異物が再度付着することを防止するために、CMPを実行する研磨装置内に設けてあることが望ましい。また、スチーム洗浄を行う洗浄機は、ガラス基板1に付着する可能性のある金属粉を発生させないように、内部をチタン、シリカ又はフッ素樹脂等でコーティングしてあることが望ましい。
図6は、研磨装置の構成例を示す模式的正面図である。研磨装置は、平坦なターンテーブル41を備え、ターンテーブル41上には、樹脂等で形成した研磨パッド(研磨具)42を敷設してある。また研磨装置は、研磨パッド42に対向した位置にガラス基板1を保持することができる保持具43と、洗浄機44とを備えている。研磨装置内は空気が清浄に調整されている。洗浄機44は、洗浄が終了したガラス基板1を排出し、保持具43は、排出されたガラス基板1を研磨パッド42に対向した位置に保持する。
次に、スラリーの砥粒を散布する工程を説明する。散布の工程では、後述する研磨の工程で使用するスラリーに含まれる砥粒を予め散布しておく。砥粒は、ガラスを機械的に研磨するためのガラス以上の硬さを有する物質、又はガラスを化学的に研磨するためのガラスと化学反応する物質の微粒子である。砥粒の材質は、シリカ、アルミナ、チタニア又はセリア等である。砥粒の粒径は、100nm以下であることが望ましい。研磨装置は、研磨パッド42上に均一に多量の砥粒51を散布する散布器45を備える。散布器45は、静電噴霧の手法により砥粒51を気体中のエアロゾルとして研磨パッド42上に噴霧し、噴霧した砥粒51を研磨パッド42に付着させることにより、砥粒を均一に散布する。なお、散布器45は、特定の溶媒中に砥粒を分散させた溶液を研磨パッド42上に塗布し、溶媒を蒸発させることによって、砥粒を均一に散布する方法等、その他の方法を用いて砥粒51を散布する形態であってもよい。
研磨装置は、スラリーの液体成分を保有する液体成分容器46と、液体成分容器46に連結したノズル47とを備える。砥粒51が散布された後、研磨装置は、液体成分容器46内の水等の液体成分52をノズル47を通して研磨パッド42上へ供給することにより、液体成分52中に砥粒51が分散したスラリーを生成する。後述する研磨の工程では、生成されたスラリーを用いて研磨を行う。砥粒51と液体成分52とを混合するのではなく、予め均一に散布した砥粒51に液体成分52を加えることにより、砥粒51と液体成分52とを直接混合するときにスラリー内で砥粒51が凝集することを防止する。スラリー内で砥粒51が凝集することが無いので、砥粒51が凝集した塊が研磨の工程でガラス基板1に傷を発生させることを防止することができる。また、予め砥粒51を均一に分散することにより、スラリー中で砥粒51が偏る事が無く、ガラス基板1の表面にムラ無く砥粒51を配置できるので、ガラス基板1の表面を均等に研磨することが可能となる。なお、スラリーの砥粒51を散布する工程は、研磨パッド42上に砥粒51を散布するのではなく、ガラス基板1の緩衝層上に砥粒51を散布する形態であってもよい。
次に、ガラス基板1を研磨する工程を説明する。研磨装置は、洗浄の工程と散布の工程とが終了した後、液体成分52を供給することによって、スラリーを生成し、次に、洗浄機44から洗浄済みのガラス基板1を排出する。このとき、洗浄機44は、ガラス基板1に生成された緩衝層が研磨パッド42に対向する向きでガラス基板1を排出する。保持具43は、排出されたガラス基板1を保持しする。研磨装置は、保持具43が保持したガラス基板1を研磨パッド62に当接させる。このとき、ガラス基板1は緩衝層が研磨パッド42に対向する向きになっており、研磨パッド42上にはスラリーが存在しているので、ガラス基板1の緩衝層がスラリーを介して研磨パッド42に当接される。研磨装置は、ガラス基板1を研磨パッド42に当接させた状態で、ターンテーブル41及び保持具43を回転させることにより、ガラス基板1のCMPを実行する。ターンテーブル41及び保持具43が回転することにより、研磨パッド42とガラス基板1とは個別に回転し、研磨パッド42とガラス基板1とはスラリーを介在させて擦り合い、ガラス基板1は緩衝層の上から機械的及び化学的に研磨される。
なお、研磨装置は、ある程度研磨が進行した段階で、研磨を中断し、砥粒51の散布及び液体成分52の供給を行うことにより、スラリーを追加する処理を行う形態であってもよい。また研磨装置は、砥粒51を散布する工程を省略し、従来のスラリーを用いて緩衝層の上からガラス基板1を研磨する形態であってもよい。
以上詳述した如く、本実施の形態においては、ガラス基板1のCMPを行う前に、緩衝層の生成及び陽電子消滅ガンマ線測定等の前処理を行うことにより、ガラス基板1での傷の発生を抑制しながらも、研磨に必要な時間の長大化を抑制することが可能となる。従って、傷のない高品質なマスクブランクスを効率的に製造することが可能となる。製造されたマスクブランクスを用いて、欠陥のない高品質なEUV露光用のフォトマスクを製造することが可能となる。なお、本発明に係る研磨方法は、マスクブランクスの製造に限らず、一般的なガラスの研磨に使用することも可能である。例えば、ガラス製レンズを研磨する際に本発明に係る研磨方法を利用することが可能である。
1 ガラス基板
11 脆性層
12 被覆層
41 ターンテーブル
42 研磨パッド(研磨具)
43 保持具
46 液体成分容器
47 ノズル
51 砥粒
52 液体成分

Claims (6)

  1. ガラスを研磨するための砥粒及び液体成分を含有するスラリーを用いてガラスの化学機械研磨を行う研磨方法において、
    スラリーを用いた研磨がガラスよりも容易な緩衝層をガラス表面に生成し、
    生成した緩衝層の上からガラスの化学機械研磨を行うこと
    を特徴とする研磨方法。
  2. ガラスの表面にガスクラスタイオンを照射することにより、ガラスの表面近傍を劣化させた脆性層を前記緩衝層として生成すること
    を特徴とする請求項1に記載の研磨方法。
  3. 前記緩衝層として、ガラスよりも柔軟な物質で、スラリー中の砥粒の粒径以上の厚さにガラスの表面を被覆した被覆層を生成すること
    を特徴とする請求項1又は2に記載の研磨方法。
  4. 前記緩衝層を生成する前に、陽電子消滅ガンマ線測定により、ガラス表面近傍に存在する欠陥の分布を検査すること
    を特徴とする請求項1乃至3のいずれか一つに記載の研磨方法。
  5. 前記緩衝層を生成した後に、陽電子消滅ガンマ線測定により、前記緩衝層の厚みを測定すること
    を特徴とする請求項1乃至4のいずれか一つに記載の研磨方法。
  6. 前記緩衝層上、又はガラスを研磨するための研磨具上に、砥粒を均一に散布し、散布した状態の砥粒に液体成分を加えることにより、スラリーを生成すること
    を特徴とする請求項1乃至5のいずれか一つに記載の研磨方法。
JP2010037398A 2010-02-23 2010-02-23 研磨方法 Ceased JP2011173184A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010037398A JP2011173184A (ja) 2010-02-23 2010-02-23 研磨方法
KR1020110015307A KR101267162B1 (ko) 2010-02-23 2011-02-22 연마 방법
US13/031,674 US8419963B2 (en) 2010-02-23 2011-02-22 Polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010037398A JP2011173184A (ja) 2010-02-23 2010-02-23 研磨方法

Publications (1)

Publication Number Publication Date
JP2011173184A true JP2011173184A (ja) 2011-09-08

Family

ID=44475627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010037398A Ceased JP2011173184A (ja) 2010-02-23 2010-02-23 研磨方法

Country Status (3)

Country Link
US (1) US8419963B2 (ja)
JP (1) JP2011173184A (ja)
KR (1) KR101267162B1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6545053B2 (ja) * 2015-03-30 2019-07-17 東京エレクトロン株式会社 処理装置および処理方法、ならびにガスクラスター発生装置および発生方法
MY186276A (en) 2015-05-13 2021-07-02 Shinetsu Chemical Co Method for producing substrates
US10357861B2 (en) * 2016-11-28 2019-07-23 Baker Hughes, A Ge Company, Llc Magnetic sample holder for abrasive operations and related methods
RU2646262C1 (ru) * 2016-12-27 2018-03-02 федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) Способ финишной планаризации поверхности оптической стеклокерамики
CN109585459A (zh) * 2018-12-05 2019-04-05 惠科股份有限公司 阵列基板的制备方法、阵列基板、显示面板及显示装置
KR20210072929A (ko) 2019-12-10 2021-06-18 현대자동차주식회사 양방향 도어 개방구조
KR20210072928A (ko) 2019-12-10 2021-06-18 현대자동차주식회사 양방향 도어 개방구조
KR20210072930A (ko) 2019-12-10 2021-06-18 현대자동차주식회사 도어의 잠금 구조
KR20210072931A (ko) 2019-12-10 2021-06-18 현대자동차주식회사 양방향 도어 개방모듈
EP4392827A1 (en) * 2022-03-25 2024-07-03 Photronics, Inc. System, method and program product for photomask surface treatment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0175961U (ja) * 1987-11-10 1989-05-23
JPH08120470A (ja) * 1994-10-26 1996-05-14 Res Dev Corp Of Japan ガスクラスターイオンビームによる 超精密研磨加工方法
JPH08220029A (ja) * 1995-02-13 1996-08-30 Toshiba Corp 放射性汚染物質用非破壊検査装置と検査方法
JP2001142233A (ja) * 1999-11-16 2001-05-25 Fuji Denki Gazo Device Kk 電子写真用感光体
JP2006008426A (ja) * 2004-06-22 2006-01-12 Asahi Glass Co Ltd ガラス基板の研磨方法
JP2006176341A (ja) * 2004-12-20 2006-07-06 Hoya Corp マスクブランクス用ガラス基板の製造方法,マスクブランクスの製造方法,露光用マスクの製造方法,及び,半導体装置の製造方法
JP2008156215A (ja) * 2006-12-01 2008-07-10 Asahi Glass Co Ltd 予備研磨されたガラス基板表面を仕上げ加工する方法
JP2009029691A (ja) * 2007-06-29 2009-02-12 Asahi Glass Co Ltd ガラス基板表面から異物を除去する方法、ガラス基板表面を加工する方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970042941A (ko) * 1995-12-29 1997-07-26 베일리 웨인 피 기계적 화학적 폴리싱 공정을 위한 폴리싱 합성물
JPH1012547A (ja) 1996-06-19 1998-01-16 Asahi Chem Ind Co Ltd 半導体基板の製造方法
US6559040B1 (en) 1999-10-20 2003-05-06 Taiwan Semiconductor Manufacturing Company Process for polishing the top surface of a polysilicon gate
JP3671223B2 (ja) * 2002-06-27 2005-07-13 国立大学法人大阪大学 陽電子を用いた材料欠陥診断装置および診断方法
JP4426883B2 (ja) 2003-03-27 2010-03-03 Hoya株式会社 Euvマスクブランクス用ガラス基板の製造方法、euv反射型マスクブランクスの製造方法、euv反射型マスクの製造方法及び半導体装置の製造方法
US7208325B2 (en) 2005-01-18 2007-04-24 Applied Materials, Inc. Refreshing wafers having low-k dielectric materials
KR101423718B1 (ko) 2008-02-26 2014-08-04 서울바이오시스 주식회사 낮은 결함 밀도를 가지는 단결정 실리콘 카바이드 기판 및그 제조 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0175961U (ja) * 1987-11-10 1989-05-23
JPH08120470A (ja) * 1994-10-26 1996-05-14 Res Dev Corp Of Japan ガスクラスターイオンビームによる 超精密研磨加工方法
JPH08220029A (ja) * 1995-02-13 1996-08-30 Toshiba Corp 放射性汚染物質用非破壊検査装置と検査方法
JP2001142233A (ja) * 1999-11-16 2001-05-25 Fuji Denki Gazo Device Kk 電子写真用感光体
JP2006008426A (ja) * 2004-06-22 2006-01-12 Asahi Glass Co Ltd ガラス基板の研磨方法
JP2006176341A (ja) * 2004-12-20 2006-07-06 Hoya Corp マスクブランクス用ガラス基板の製造方法,マスクブランクスの製造方法,露光用マスクの製造方法,及び,半導体装置の製造方法
JP2008156215A (ja) * 2006-12-01 2008-07-10 Asahi Glass Co Ltd 予備研磨されたガラス基板表面を仕上げ加工する方法
JP2009029691A (ja) * 2007-06-29 2009-02-12 Asahi Glass Co Ltd ガラス基板表面から異物を除去する方法、ガラス基板表面を加工する方法

Also Published As

Publication number Publication date
KR101267162B1 (ko) 2013-05-24
US8419963B2 (en) 2013-04-16
US20110204024A1 (en) 2011-08-25
KR20110097657A (ko) 2011-08-31

Similar Documents

Publication Publication Date Title
JP2011173184A (ja) 研磨方法
JP4997815B2 (ja) 高平坦かつ高平滑なガラス基板の作製方法
JP6752490B2 (ja) 基板処理方法における欠陥削減
CN101504915B (zh) 等离子体蚀刻方法和等离子体蚀刻装置
KR102331821B1 (ko) 기판 이면 텍스처링
US8563332B2 (en) Wafer reclamation method and wafer reclamation apparatus
JP2009029691A (ja) ガラス基板表面から異物を除去する方法、ガラス基板表面を加工する方法
JP6162417B2 (ja) 半導体装置の製造方法
CN108140556B (zh) 基片背侧纹理化
JP2009013046A (ja) ガラス基板表面を加工する方法
WO2012058548A1 (en) Integrated substrate cleaning system and method
TW201834037A (zh) 晶圓的加工方法
KR20110109845A (ko) 템플릿의 표면 처리 방법 및 장치 및 패턴 형성 방법
JP2011181894A (ja) Euvマスク修正装置および方法
TWI465837B (zh) 處理具有微型化結構之物件的方法
JP6308039B2 (ja) マスクブランク用ガラス基板の製造方法
CN101122749A (zh) 光刻图形的形成方法
JP5062455B2 (ja) 化学機械研磨パッドおよび化学機械研磨方法
JP2006240977A (ja) ガラス基板の研磨方法
TW201201249A (en) Substrate rear surface flattening method
JPH1153731A (ja) 磁気ディスク及びその作製方法
JP6638334B2 (ja) プラズマ処理装置部品のクリーニング方法及びクリーニング装置
US20160168020A1 (en) Method of finishing pre-polished glass substrate surface
KR100644051B1 (ko) 포토 레지스트 코팅 장치 및 이를 이용한 웨이퍼 이물 제거방법
House et al. Improving megasonic exposure uniformity for EUV mask substrate cleaning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20140729