JP2011165305A - 不揮発性メモリ装置及びそれを含むメモリシステム - Google Patents

不揮発性メモリ装置及びそれを含むメモリシステム Download PDF

Info

Publication number
JP2011165305A
JP2011165305A JP2011008099A JP2011008099A JP2011165305A JP 2011165305 A JP2011165305 A JP 2011165305A JP 2011008099 A JP2011008099 A JP 2011008099A JP 2011008099 A JP2011008099 A JP 2011008099A JP 2011165305 A JP2011165305 A JP 2011165305A
Authority
JP
Japan
Prior art keywords
data
read
bit pattern
memory
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011008099A
Other languages
English (en)
Inventor
Donghyuk Chae
東 赫 蔡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2011165305A publication Critical patent/JP2011165305A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • G11C11/5628Programming or writing circuits; Data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • G11C11/5642Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5678Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using amorphous/crystalline phase transition storage elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0064Verifying circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3436Arrangements for verifying correct programming or erasure
    • G11C16/3454Arrangements for verifying correct programming or for detecting overprogrammed cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/56Indexing scheme relating to G11C11/56 and sub-groups for features not covered by these groups
    • G11C2211/564Miscellaneous aspects
    • G11C2211/5646Multilevel memory with flag bits, e.g. for showing that a "first page" of a word line is programmed but not a "second page"

Abstract

【課題】閾値電圧分布の改善のためのアルゴリズムの適用に適合するビットパターン順序と均一のエラー確率分布/読み出しレイテンシの具現に適合するビットパターン順序とを採用する。
【解決手段】メモリシステムは第1ビットパターン順序に基づいてデータを変換するように構成された制御器と、そして第1ビットパターン順序に対応するプログラム方法によって変換されたデータをプログラムするように、そして第1ビットパターン順序と異なる第2ビットパターン順序に対応する読み出し方法によってデータを読み出すように構成された不揮発性メモリ装置を含む。
【選択図】 図1A

Description

本発明は半導体メモリ装置に係り、より具体的にはマルチ−ビットデータを格納する不揮発性メモリ装置に関する。
半導体メモリは、一般的に衛星から消費者電子技術までの範囲に属するマイクロプロセッサを基盤にする応用やコンピュータのようなデジタルロジック設計にとって一番必須的なマイクロ電子素子である。したがって、高集積度及び高速度のための縮小(scaling)を通して得られるプロセス向上及び技術開発を含む半導体メモリの製造技術の進歩は異なるデジタルロジック系列の性能基準を確立するのに役に立つ。
半導体メモリ装置は広い範囲で揮発性半導体メモリ装置と不揮発性半導体メモリ装置とに分けられる。揮発性半導体メモリ装置において、ロジック情報はスタティックランダムアクセスメモリの場合、双安定フリップフロップロジック状態を設定することによって、またダイナミックランダムアクセスメモリの場合、キャパシタ充電を通して格納される。揮発性半導体メモリ装置の場合、電源が印加されている間データが格納されて読み出され、電源を遮断するとデータは消失する。
MROM、PROM、EPROM、EEPROMなどのような不揮発性半導体メモリ装置は電源が遮断されてもデータを格納することができる。不揮発性メモリのデータ格納状態は使われる製造技術によって永久的や再プログラムが可能である。不揮発性半導体メモリ装置はコンピュータ、航空電子工学、通信、そして消費者電子技術産業のような広い範囲への応用でプログラム及びマイクロコードの格納のため使われる。単一チップで揮発性及び不揮発性メモリ格納モードの組み合わせが速いし、再プログラム可能な不揮発性メモリを要求するシステムで不揮発性RAM(nvRAM)のような装置でも使用可能である。その上、応用指向業務のための性能を最適化させるため、いくつかの追加的なロジック回路を含む特定メモリ構造が開発されている。
不揮発性半導体メモリ装置において、MROM、PROM及びEPROMではシステム自体に消去及び書き込みが自由でなく、一般使用者が記憶内容を更新するのが難しい。これに対し、EEPROMは電気的に消去及び書き込みが可能なので継続的な更新が必要なシステムプログラミング(system programming)や補助記憶装置への応用が拡大されている。
米国特許公開第2008/0023747号公報 米国特許公開第2008/0084729号公報 米国特許第7529124号 米国特許第6858906号 米国公開特許第2004−0169238号 米国公開特許第2006−0180851号 韓国特許第673020号
本発明は、上述した問題点に鑑みてなされたものであって、その目的は、読み出し性能を向上させることができる不揮発性メモリ装置及びそれを含むメモリシステムを提供することにある。
上記目的を達成するためになされた本発明の一特徴は、第1ビットパターン順序に基づいてデータを変換するように構成された制御器と、前記第1ビットパターン順序に対応するプログラム方法によって変換されたデータをプログラムするように、そして前記第1ビットパターン順序と異なる第2ビットパターン順序に対応する読み出し方法によってデータを読み出すように構成された不揮発性メモリ装置を含むメモリシステムを提供する点にある。
本発明の他の特徴は不揮発性メモリ装置及び前記不揮発性メモリ装置を制御するように構成された制御器を含むメモリシステムの動作方法を提供する点にあり、この動作方法は第1ビットパターン順序に基づいてデータを変換し、前記第1ビットパターン順序に対応するプログラム方法によって変換されたデータを前記不揮発性メモリ装置に格納し、前記第1ビットパターン順序と異なる第2ビットパターン順序に対応する読み出し方法によって前記不揮発性メモリ装置からデータを読み出し、データ変換無しで読み出されたデータを外部に出力することを含む。
上記目的を達成するためになされた本発明のもう1つの特徴は、行と列から配列されたメモリセルを有するメモリセルアレイと、第1ビットパターン順序に対応するプログラム方法によって入力データが前記メモリセルアレイの選択された行に属するメモリセルにプログラムできるように、プログラム動作を制御する。そして前記第1ビットパターン順序と異なる第2ビットパターン順序に対応する読み出し方法によって前記メモリセルアレイの前記選択された行に属するメモリセルからデータが読み出される。読み出し動作を制御するように構成された制御ロジックを含み、前記選択された行に属するメモリセルから読み出されたデータは、前記選択された行に属するメモリセルにプログラムされたデータと異なる不揮発性メモリ装置を提供する。
本発明によれば、閾値電圧分布の改善のためのアルゴリズムの適用に適合するビットパターン順序と均一のエラー確率分布/読み出しレイテンシの具現に適合するビットパターン順序とを採用することができる。
例示的な実施形態によるビットパターンの順序を示す図。 例示的な実施形態によるビットパターンの順序を示す図。 例示的な実施形態による図1Aに示すビット割当方式のプログラム方式を説明するための図。 例示的な実施形態による図1Bに示すビット割当方式のプログラム方式を説明するための図。 本発明の例示的な実施形態によるメモリシステムを概略的に示すブロック図。 本発明の例示的な実施形態による図3に示す不揮発性メモリ装置を概略的に示すブロック図。 オールビットラインメモリ構造、またはオッド・イーブンメモリ構造のためにメモリセルアレイをメモリブロックから構成する例を示す図。 本発明の例示的な実施形態によるメモリシステムの動作を説明するための図。(その1) 本発明の例示的な実施形態によるメモリシステムの動作を説明するための図面。(その2) 本発明の例示的な実施形態による不揮発性メモリ装置を含む集積回路カードを概略的に示すブロック図。 本発明の例示的な実施形態による不揮発性メモリ装置を含むコンピュータシステムを概略的に示すブロック図。 本発明の例示的な実施形態による図8に示すメモリ制御器を概略的に示すブロック図。
本発明の利点及び特徴、そしてそれを達成する方法は添付される図面と共に詳細に後述されている実施形態を通じて説明される。しかし、本発明はここで説明される実施形態に限定されず、他の形態に具体化され得る。但し、本実施形態は本発明が属する技術分野で通常の知識を有する者に本発明の技術的思想を容易に実施できる程度に詳細に説明するために提供されたものである。
図面において、本発明の実施形態は示された特定形態に制限されるものではなく明確性のために誇張されたものである。また明細書全体にわたって同一の参照番号で表示された部分は同一の構成要素を示す。
本明細書で、‘及び/または’という表現は、前後に並べる構成要素の内で少なくとも1つを含む意味として使われる。また、‘連結する/結合する’という表現は異なる構成要素と直接的に連結するか、或いは異なる構成要素を通して間接的に連結することを含む意味に使われる。本明細書で単数型は特別に言及しない限り、複数型も含む。また、明細書で使われる‘含む’または‘含み’と言及された構成要素、段階、動作及び素子は1つ以上の異なる構成要素、段階、動作、素子及び装置の存在、または追加を意味する。
価格競争力の向上のため、マルチ−レベルデータ格納技術等の開発が加速化されている傾向にある。例えば、メモリセルに格納されるデータビットの数が増加している。メモリセルに格納されるデータビットの数が増加することによって、カップリング、エラー率、プログラム回数、読み出し回数などのような多様な問題点が予想されている。そういう問題点を最小化できるビットパターン順序(the ordering of bit patterns)を決定することが重要な観点として台頭している。ビットパターン順序はビット割当方式と呼ばれる。ここで、ビットパターンは1つのメモリセルに格納されるビットの列を意味する。
例えば、1つのメモリセルに4−ビットデータが格納される場合、ビットパターンは“1111”、“0000”、そしてその間に存在する値の内の何れか1つを有し、そのビットパターンの順序、すなわちビット割当方式はメモリセルに格納されるデータビットの数によって多様に構成することができる。例示的な実施形態によるビットパターンの順序、すなわちビット割当方式が図1A及び図1Bに図示されている。
図1A及び図1Bに示すビットパターンはメモリセルに4−ビットデータが格納される場合に対応する。その際、選択されたワードラインのメモリセルには各々4−ページデータが格納される。メモリセル各々は消去状態Eとプログラム状態P1〜P15との内の何れか1つを有するようにプログラムされる。
例えば、図1Aを参照すれば、メモリセルが消去状態Eを有する場合、メモリセルには“1111”のデータが格納される。メモリセルがプログラム状態P1を有する場合、メモリセルには“0111”のデータが格納される。すなわち、データ状態E〜P15は対応するビットパターンを各々有するように割り当てされる。データ状態E〜P15に各々対応するビットパターンは図1Bに示すようにも割り当てされる。例えば、メモリセルが消去状態Eを有する場合、メモリセルには“1111”のデータが格納される。メモリセルがプログラム状態P1を有する場合、メモリセルには“1101”のデータが格納される。
例示的な実施形態において、ビットパターンの順序が図1A及び図1Bに示すものに限定されないことはよく理解できるであろう。
メモリセルに格納されたデータを読み出す動作は、メモリセルの閾値電圧がどの状態に該当するかを判断し、判断結果によって対応する4−ビットデータを得る過程である。読み出し動作はページ単位で実行され、‘0’と‘1’とが区分される状態境界に基づいて、メモリセルの閾値電圧が状態境界より高いか、或いは低いかを確認することによって、各ページに属する各メモリセルのデータが‘0’または‘1’であるかを知るために行なわれる。
例えば、図1Aに示すビットパターンの順序を有するようにメモリセルをプログラムする場合、最初のページデータは状態P7と状態P8との間の状態境界に対応する読み出し電圧VR8を利用して読み出し動作を一回実行することによって読み出される。第2ページデータは状態P3と状態P4と間の状態境界、そして状態P11とP12と間の状態境界に各々対応する読み出し電圧VR4と読み出し電圧VR12とを利用して読み出し動作を2回実行することによって読み出される。第3ページデータは状態P1と状態P2と間の状態境界、状態P5と状態P6と間の状態境界、状態P9とP10と間の状態境界、そして状態P13と状態P14との間の状態境界に各々対応する読み出し電圧VR2、電圧VR6、電圧VR10、電圧VR14を利用して読み出し動作を4回実行することによって読み出される。第4 ページデータは状態Eと状態P1と間の状態境界、状態P2と状態P3と間の状態境界、状態P4と状態P5と間の状態境界、状態P6と状態P7と間の状態境界、状態P8と状態P9との間の状態境界、状態P10と状態P11との間の状態境界、状態P12と状態P13との間の状態境界、そして状態P14と状態P15との間の状態境界に各々対応する読み出し電圧VR1、電圧VR3、電圧VR5、電圧VR7、電圧VR9、電圧VR11、電圧VR13、電圧VR15を利用して読み出し動作を8回実行することによって読み出される。
図1Bに示すビットパターンの順序を有するようにメモリセルをプログラムする場合、先に説明したのと同じ方式で読み出し電圧が決定され、そのように決定された読み出し電圧を利用して読み出し動作が実行される。例えば、最初のページデータは読み出し電圧VR2、読み出し電圧VR7、読み出し電圧VR13とを利用して3回読み出し動作を実行することによって読み出され、第2ページデータは読み出し電圧VR1、読み出し電圧VR6、読み出し電圧VR8、読み出し電圧VR11を利用して4回読み出し動作を実行することによって読み出される。第3ページデータは読み出し電圧VR3、読み出し電圧VR5、読み出し電圧VR9、読み出し電圧VR15を利用して4回読み出し動作を実行することによって読み出され、第4ページデータは読み出し電圧VR4、読み出し電圧VR10、読み出し電圧VR12、読み出し電圧VR14を利用して4回読み出し動作を実行することによって読み出される。
決まったビットパターンの順序によってプログラムされたマルチ−ビットデータは、決まったビットパターンの順序に対応する読み出し方法によって読み出される。すなわち、ビットパターンの順序によってマルチ−ビットデータをプログラムする方法は1つの読み出し方法に対応する。例えば、図1Aに示すビットパターンの順序によって格納されたマルチ−ビットデータは図1Aで説明した読み出し方法で読み出される。もし、図1Aに示すビットパターンの順序によって格納されたマルチ−ビットデータが図1Bで説明した読み出し方法で読み出されると、格納されたデータと異なるデータが読み出される。したがって、ビットパターンの順序が決定されれば、決定されたビットパターンの順序に対応するプログラム方法と読み出し方法とが決定される。これは決定されたビットパターンの順序に対応するプログラム方法によってマルチ−ビットデータが格納されれば、プログラム方法に対応する(または、決定されたビットパターンの順序に対応する)読み出し方法によってマルチ−ビットデータが読み出されることを意味する。
図1A及び図1Bに各々示すビットパターンの順序によってデータをプログラムする場合、右側ボックスA0と右側ボックスA1とに各々示すように第1乃至第4ページデータの各々を読み出す際に発生するエラー確率は読み出し回数に対応する。例えば、図1Aに示すビットパターンの順序、すなわちビット割当方式のエラー確率分布は1:2:4:8であり、図1Bに示すビット割当方式のエラー確率分布は3:4:4:4である。メモリシステムのエラー訂正能力が一番大きいエラー確率を有するページに対するエラーを訂正できるように設計しなければならないため、図1Aに示すビット割当方式を採用したメモリシステムは、図1Bに示すビット割当方式を採用したメモリシステムと比較してみると、相対的に大きいエラー訂正能力を有するエラー訂正回路を必要とする。図1Bに示すビット割当方式は均一のエラー確率分布(または、均一の読み出しレイテンシー)を具現することが容易である。
図2Aは例示的な実施形態にともなう図1Aに示すビット割当方式によるプログラム方式を説明するための図であり、図2Bは例示的な実施形態による図1Bに示すビット割当方式によるプログラム方式を説明するための図である。図2Aに示すプログラム方式は閾値電圧分布の増加幅が状態毎に均一であるため、セルの間カップリングによるセル分布劣化を補償するための各種アルゴリズムを適用するのに適合する。一方、図2Bに示すプログラム方式は閾値電圧分布の増加幅が状態毎に均一でないゆえにセルの閾値電圧分布を改善するための各種アルゴリズムを適用するのに適合しない。
以上の説明から分かるように、均一のエラー確率分布を具現できるだけでなく閾値電圧分布の改善のための各種アルゴリズムを適用できるビット割当方式を決定するのが難しい。本発明の例示的な実施形態にともなうメモリシステムは均一のエラー確率分布を具現でき、閾値電圧分布の改善のための各種アルゴリズムを適用するのに適合したプログラム及び読み出し方式を使用し、これは以後詳細に説明される。
図3は本発明の例示的な実施形態によるメモリシステムを概略的に示すブロック図である。
図3を参照すると、メモリシステムは格納媒体として不揮発性メモリ装置を使用する。メモリシステムはホスト100、制御器200、そして不揮発性メモリ装置300を含む。制御器200はホスト100の要請に応答して不揮発性メモリ装置300を制御する。制御器200は閾値電圧分布の改善のための各種アルゴリズムを適用するのに適合したビットパターン順序を有するようにホスト100から提供されているデータを変換し、そのように変換されたデータは不揮発性メモリ装置300に格納される。
例えば、制御器200はデータ変換器201を含む。データ変換器201は不揮発性メモリ装置300に格納されるデータを変換するように構成される。例示的な実施形態において、データ変換器201は不揮発性メモリ装置300から読み出されたデータを変換しない。すなわち、不揮発性メモリ装置300から読み出されたデータは変換無しでホスト100へ伝送される。データ変換は多様に具現することができる。データ変換は選択されたワードラインのメモリセルに格納される全てのページデータが制御器200(例えば、バッファメモリ)に臨時に格納された後、行なわれる。
例えば、状態E〜P15に各々対応するビットパターンが図1Bに示すように割当てされ、図2Aに示すようにプログラム動作が実行されると仮定する。ここで、ビットパターンの割当てはデータ変換以前にホスト100で伝送されるデータと関連したものである。このような仮定によれば、制御器200(例えば、制御器200のバッファメモリ)には第1ないし第4ページデータが臨時格納される。制御器200のデータ変換器201は図1Aに示すようにビットパターンを有するように臨時に格納されたデータを変換する。変換されたデータは図2Aに示すプログラム方式によって不揮発性メモリ装置300に格納される。
例えば、P1状態に対応する入力データは“1101”から“0111”に変換され、P2状態に対応する入力データは“1100”から“0011”に変換され、P3状態に対応する入力データは“1000”から“1011”に変換される。すなわち、ホスト100によって書き込み要請された“1101”のデータ(P1状態に対応する)は制御器200のデータ変換器201によって“0111”に変換され、変換された“0111”は不揮発性メモリ装置300に格納される。ここで、データ変換はここに開示されたものに限定されないことは理解できるであろう。
不揮発性メモリ装置300は制御器200の要請に応答してプログラム/読み出し動作を実行するように構成される。不揮発性メモリ装置300は制御器200で伝送されたデータが図2Aに示すプログラム方式(すなわち、変換されたデータのビットパターンの順序に対応するプログラム方式)によってプログラムできるように構成される。不揮発性メモリ装置300はホスト100によって書き込み要請されたデータ(すなわち、データ変換以前にホスト100から伝送されたデータ)が読み出されるように読み出し動作を実行する。ホスト100によって書き込み要請されたデータ(すなわち、データ変換以前にホスト100から伝送されたデータ)が読み出されることによって、読み出されたデータは制御器200の変換動作無しで直接ホスト100へ伝送される。すなわち、不揮発性メモリ装置300は図1Aに示すビット割当方式によってプログラム動作を実行するように、そして図1Bに示すビット割当方式によって読み出し動作を実行するように構成される。これは以後に、詳細に説明される。
図4は本発明の例示的な実施形態による図3に示す不揮発性メモリ装置を概略的に示すブロック図である。
図4を参照すれば、不揮発性メモリ装置は、例えば、ナンドフラッシュメモリ装置である。しかし、本発明がナンドフラッシュメモリ装置に限定されないことは理解できる。例えば、本発明がMROM、PROM、FRAM、NOR型フラッシュメモリ装置等に適用されることは理解できるであろう。
不揮発性メモリ装置300は、行(ワードライン:WL)と列(ビットライン:BL)とに配列されたメモリセルを有するメモリセルアレイ310を含む。各メモリセルは1−ビットデータ、またはM−ビット(マルチ−ビット)データ(Mは2、またはそれより大きい整数)を格納する。各メモリセルはフローティングゲート、または電荷トラップ層のような電荷格納層を有するメモリセル、可変抵抗素子を有するメモリセル、またはそのようなもので具現することができる。メモリセルアレイ310はよく知られた断層アレイ構造(single−layer array structure)(または、2次元アレイ構造と称する)、または多層アレイ構造(multi−layer array structure)(または、3次元アレイ構造と称する)を有するように具現される。
例示的な3次元アレイ構造が引用文献1に“SEMICONDUCTOR MEMORY DEVICE WITH MEMORYCELLS ON MULTIPLELAYERS”という題目で、そして引用文献2に“SEMICONDUCTOR DEVICE WITH THREE−DIMENSIONAL ARRAY STRUCTURE”という題目で各々掲載され、この出願のレファレンスとして含まれる。
行選択回路320はメモリセルアレイ310の行に対する選択及び駆動動作を実行するように構成される。電圧発生回路330は制御ロジック340によって制御され、プログラム、消去、そして読み出し動作に必要な電圧(例えば、プログラム電圧、パス電圧、消去電圧、読み出し電圧等)を生成するように構成される。読み出し/書き込み回路350は制御ロジック340によって制御され、動作モードにより感知増幅器として、または書き込みドライバとして動作する。例えば、読み出し動作の間、読み出し/書き込み回路350は選択された行のメモリセル(または、選択されたメモリセル)からデータを感知する感知増幅器として動作する。
そのようにして読み出されたデータは決まった入出力単位で入出力回路360を通して、外部に提供される。プログラム動作の間、読み出し/書き込み回路350はプログラムデータによって選択された行のメモリセルを駆動する書き込みドライバとして動作する。読み出し/書き込み回路350はビットラインに、またはビットライン対に各々対応するページバッファを含む。各々のメモリセルがマルチ−ビット/マルチ−レベルデータを格納する場合、読み出し/書き込み回路350の各ページバッファは2つ、またはそれより多いラッチを有するように構成される。
入出力回路360は外部(例えば、メモリ制御器、またはホスト)とインターフェースするように構成される。
制御ロジック340は読み出し動作を制御するように構成された読み出しスケジュラ341とプログラム動作を制御するように構成されたプログラムスケジュラ342とを含む。読み出しスケジュラ341はデータ変換以前にホスト100から伝送されたデータと関連の割当方式に対応する読み出し方式(例えば、図1Bに示す読み出し方式)によって読み出し動作を制御する。すなわち、読み出しスケジュラ341は均一のエラー確率分布を有するビット割当方式に対応する読み出し動作を実行するように構成される。プログラムスケジュラ342は変換されたデータと関連されるビット割当方式に対応するプログラム方式(例えば、図2Aに示すプログラム方式)によってプログラム動作を制御する。すなわち、プログラムスケジュラ342はセル分布劣化を補償するための各種アルゴリズムを適用するのが適合するプログラム動作を実行するように構成される。
例示的な実施形態において、読み出しスケジュラ341は外部装置(例えば、制御器)によってプログラムできるように構成される。例えば、読み出しスケジュラ341の読み出しアルゴリズムは、パワー−アップの際に、制御器200によるレジスタセットの設定を通してプログラムできる。プログラムスケジュラ342もやはり読み出しスケジュラ341と同じようにプログラムできるように構成される。一方、読み出し及びプログラムスケジュラ341と読み出し及びプログラムスケジュラ342の読み出し及びプログラムアルゴリズムはハードウェア的に固定できる。
図5はオールビットラインメモリ構造、またはオッド−イーブンメモリ構造のメモリセルアレイをメモリブロックに構成する例を示す図である。メモリセルアレイ310の例示的な構造が説明される。一例として、メモリセルアレイ310が1024個のメモリブロックに分けられたナンドフラッシュメモリ装置が説明される。各メモリブロックに格納されたデータは同時に消去できる。一実施形態において、メモリブロックは同時に消去される格納素子の最小単位である。各メモリブロックには、例えば、ビットライン(例えば、1KBのビットライン)に各々対応する複数の列が存在する。オールビットライン(all bit line:ABL)構造という一実施形態において、メモリブロックの全てのビットラインは読み出し及びプログラム動作の間、同時に選択することができる。共通ワードラインに属し、全てのビットラインに連結した格納素子は同時にプログラムできる。
例示的な実施形態において、同じ列に属する複数の格納素子はナンドストリングを構成するように直列に連結される。ナンドストリングの1端子はストリング選択ラインSSLによって制御される選択トランジスタを通して対応するビットラインに連結され、他の端子は接地選択ラインGSLによって制御される選択トランジスタを通して共通ソースライン(CSL)に連結される。
オッド−イーブン構造(odd−even architecture)という他の例示的な実施形態において、ビットラインはイーブンビットライン(BLe)とオッドビットライン(BLo)とに区分される。オッド/イーブンビットライン構造において、共通ワードラインに属するオッドビットラインと連結した格納素子は第1時間にプログラムされ、共通ワードラインに属するイーブンビットラインと連結した格納素子は第2時間にプログラムされる。データは他のブロックにプログラムでき、他のメモリブロックから読み出される。このような動作は同時に実行できる。
図6は本発明の例示的な実施形態によるメモリシステムの動作を説明するための図である。以下、本発明の例示的な実施形態によるメモリシステムの動作が参照図面に基づいて詳細に説明される。説明の前に、不揮発性メモリ装置300のメモリセルには4−ビットデータ(または、16−レベルデータ)が格納されると仮定する。
ホスト100から書き込み/プログラム動作が要請される際に、制御器200はホスト100から提供されてプログラムデータを臨時格納する。ホスト100から提供されるプログラムデータは、例えば、制御器200を通して、すぐには不揮発性メモリ装置300へは伝送されない。データ変換のために、制御器200は選択されたワードラインのメモリセルに格納される4−ページデータが集められるまで待機する。一旦4−ページデータが集められれば、制御器200のデータ変換器201はセル分布劣化を補償するための各種アルゴリズムを適用するのに適合するようにバッファーメモリ(図示せず)に臨時格納された4−ページデータを変換する。
例えば、第4ないし第1ページデータビットのパターンがP1状態に対応する“1101”である場合、“1101”のビットパターンは“0111”のビットパターンを有するように変換される。第4ないし第1ページデータビットのパターンがP2状態に対応する“1100”である場合、“1100”のビットパターンは“0011”のビットパターンを有するように変換される。他の状態に対応するビットパターンもやはり前述のように変換される。たとえプログラムデータが変換されても、プログラムされる状態は変化出来ない。すなわち、P1状態に対応するデータが入力される場合、変換されたビットパターンもやはりP1状態に対応する。
変換されたデータは不揮発性メモリ装置300に伝送され、不揮発性メモリ装置300のプログラムスケジュラ342は変換されたデータを選択されたワードラインのメモリセルにプログラムする。選択されたワードラインのメモリセルは図6に示す方式によって、すなわち、変換されたデータのビットパターンの順序に対応する図2Aに示すプログラム方式によってプログラムされる。このようなプログラム方式は閾値電圧分布の改善のための各種アルゴリズムを適用するのに適合した方式である。一旦4−ページデータが選択されたワードラインのメモリセルにプログラムされれば、プログラム手順は終了する。
以後、選択されたワードラインのメモリセルに格納されたデータがホスト100から要請されると、不揮発性メモリ装置300は読み出し要請されたデータを選択されたワードラインのメモリセルから読み出し、読み出されたデータを制御器200へ伝送する。制御器200は変換過程なし読み出されたデータをすぐにホスト100へ伝送する。
もっと具体的に説明すると、選択されたワードラインのメモリセルに格納された第1ページデータがホスト100から要請されると、不揮発性メモリ装置300は読み出し電圧VR8ではなく読み出し電圧VR2、読み出し電圧VR7、読み出し電圧VR13を利用し、読み出し動作を3回実行することによって第1ページデータを読み出す。そのように読み出されたページデータはデータ変換以前にホスト100から伝送されたデータ(図6のボックス(B0)の第1ページデータに対応する)である。
選択されたワードラインのメモリセルに格納された第2ページデータがホスト100から要請されると、不揮発性メモリ装置300は読み出し電圧VR4と読み出し電圧VR12ではなく、読み出し電圧VR1、読み出し電圧VR6、読み出し電圧VR8、読み出し電圧VR11を利用し、読み出し動作を4回実行することによって第2ページデータを読み出す。そのように読み出されたページデータは変換される以前にホスト100から伝送されたデータ(図6のボックスB0の第2ページデータに対応する)である。
選択されたワードラインのメモリセルに格納された第3ページデータがホスト100から要請されると、不揮発性メモリ装置300は読み出し電圧VR2、読み出し電圧VR6、読み出し電圧VR10、読み出し電圧VR14ではなく読み出し電圧VR3、読み出し電圧VR5、読み出し電圧VR9、読み出し電圧VR15を利用し、読み出し動作を4回実行することによって第3ページデータを読み出す。そのように読み出されたページデータは変換される以前にホスト100から伝送されたデータ(図6のボックスB0の第3ページデータに対応する)である。
選択されたワードラインのメモリセルに格納された第4ページデータがホスト100から要請されると、不揮発性メモリ装置300は読み出し電圧VR1、読み出し電圧VR3、...、読み出し電圧VR13、読み出し電圧VR15ではなく、読み出し電圧VR4、読み出し電圧VR10、読み出し電圧VR12、読み出し電圧VR14を利用し、読み出し動作を4回実行することによって第4ページデータを読み出す。そのように読み出されたページデータは変換される以前にホスト100から伝送されたデータ(図6のボックスB0の第4ページデータに対応する)である。
以上の説明から分かるように、制御器200は閾値電圧分布の改善のための各種アルゴリズムを適用するのに適合したビットパターン順序を有するようにデータを変換し、変換されたデータは不揮発性メモリ装置300に格納される。不揮発性メモリ装置300は均一のエラー確率分布を具現するのに適合するビットパターン順序によってデータを読み出す。そのように読み出されたデータは変換過程なしに制御器200を通してホスト100へ伝送される。
すなわち、読み出し動作に対応するビットパターン順序はプログラム動作に対応するビットパターン順序と相異なる。言い換えれば、不揮発性メモリ装置300で伝送されるプログラムデータは不揮発性メモリ装置300から伝送される読み出されたデータとは異なる。
不揮発性メモリ装置がROMのように使われる応用で、工場でプログラム動作を実行する際にあらかじめデータを変換し、変換されたデータを不揮発性メモリ装置にプログラムすることで制御器のバッファ負担をなくすことが可能である。この場合、データ変換は先に説明した図1Aのビットパターンの順序に対応するプログラム方式によって行なわれ、データプログラムは先に説明した図1Bのビットパターンの順序に対応する読み出し方式によって行なわれる。
図7は本発明の例示的な実施形態による不揮発性メモリ装置を含む集積回路カードを概略的に示すブロック図である。
図7を参照すれば、集積回路カード(例えば、スマートカード)は不揮発性メモリ装置1000と制御器2000とを含む。不揮発性メモリ装置1000は図4に示したものと実質的に同一なので、それに対する説明は省略する。
制御器2000は図3に示したものと実質的に同一なので、それに対する説明は省略する。制御器2000は不揮発性メモリ装置1000を制御し、CPU2100、ROM2200、RAM2300、そして入出力インターフェース2400を含む。CPU2100はROM2200に格納される多様なプログラムに基づいて集積回路カードの動作を全般的に制御し、入出力インターフェース2400は外部とのインターフェースを提供する。
フラッシュメモリ装置は電力が遮断されても格納されたデータを維持することができる不揮発性メモリ装置である。セルラフォン、PDAデジタルカメラ、ポータブルゲームコンソール、そしてMP3Pのようなモバイル装置等の使用増加によって、フラッシュメモリ装置はデータストレージとしてだけでなくコードストレージとしてもより広く使われる。フラッシュメモリ装置は、また、HDTV、DVD、ルータ、そしてGPSのようなホームアプリケーションに使うことができる。本発明の例示的な実施形態による不揮発性メモリ装置を含むコンピュータシステムが図8に概略的に示されている。
本発明によるコンピュータシステムはバス3001に電気的に連結されたマイクロプロセッサ3100、ユーザーインターフェース3200、ベースバンドチップセット(baseband chipset)のようなモデム3300、メモリ制御器3400、そして格納媒体としてフラッシュメモリ装置3500を含む。フラッシュメモリ装置3500は図4に示したものと実質的に同一に構成される。フラッシュメモリ装置3500にはマイクロプロセッサ3100によって処理された/処理されるN−ビットデータ(Nは1、またはそのより大きい整数)がメモリ制御器3400を通して格納される。本発明によるコンピュータシステムがモバイル装置である場合、コンピュータシステムの動作電圧を供給するためのバッテリー3600が追加的に提供される。
なお、図面には示さないが、本発明によるコンピュータシステムには応用チップセット(application chipset)、カメライメージプロセッサ(Camera Image Processor:CIS)、モバイルDRAMなどが提供され得ることはこの分野の通常的な知識を習得した者には自明である。メモリ制御器とフラッシュメモリ装置は、例えば、データを格納するのに不揮発性メモリを使用する半導体ドライブ/ディスク(Solid State Drive/Disk:SSD)を構成できる。
図9は本発明の例示的な実施形態による図8に示したメモリ制御器を概略的に示すブロック図である。
図9を参照すれば、制御器は格納媒体にデータを格納するように、そして格納媒体からデータを読み出すように構成される。制御器はホストインターフェース4100、メモリインターフェース4200、処理ユニット4300、バッファメモリ4400、そしてエラー制御ユニット4500を含む。ホストインターフェース4100は外部装置(例えば、ホスト)とインターフェースするように構成され、メモリインターフェース4200は格納媒体とインターフェースするように構成される。処理ユニット4300は制御器の動作を全般的に制御するように構成される。バッファメモリ4400は格納媒体に格納されるデータ、または格納媒体から読み出されたデータを臨時に格納するのに使われる。また、バッファメモリ4400は処理ユニット4300の作業メモリ(work memory)として使うことができる。エラー制御ユニット4500は格納媒体から読み出されたデータのエラーの検出及び訂正をするように構成される。図9に示すように、制御器にコードデータを格納するためのROM4600が追加的に提供され得ることは理解できるであろう。
本発明の例示的な実施形態において、メモリセルは可変抵抗メモリセルで構成され、例示的な可変抵抗メモリセル及びそれを含むメモリ装置は引用文献3に掲載され、この出願のレファレンスとして含まれる。
本発明の他の例示的な実施形態において、メモリセルは電荷格納層を有する多様なセル構造の内の1つを利用して具現することができる。電荷格納層を有するセル構造は電荷トラップ層を利用する電荷トラップフラッシュ構造、アレイが多層に積層されるスタックフラッシュ構造、ソース/ドレインがないフラッシュ構造、ピン−タイプフラッシュ構造などを含む。
電荷格納層として電荷トラップフラッシュ構造を有するメモリ装置が引用文献4、引用文献5、そして引用文献6に各々掲載され、この出願のレファレンスとして含まれる。ソース/ドレインがないフラッシュ構造は引用文献7に掲載され、この出願のレファレンスとして含まれる。
本発明によるフラッシュメモリ装置そして/またはメモリ制御器は、多様な形態のパッケージを利用して実装できる。例えば、本発明によるフラッシュメモリ装置そして/またはメモリコントローラは、PoP(Package on Package)、Ball grid arrays(BGAs)、Chip scale packages(CSPs)、Plastic Leaded Chip Carrier(PLCC)、Plastic Dual In−Line Package(PDIP)、Die in Waffle Pack、Die in Wafer Form、Chip On Board(COB)、Ceramic Dual In−Line Package(CERDIP)、Plastic Metric Quad Flat Pack(MQFP)、Thin Quad Flatpack(TQFP)、Small Outline(SOIC)、Shrink Small Outline Package(SSOP)、Thin Small Outline(TSOP)、System In Package(SIP)、Multi Chip Package(MCP)、Wafer−levelFabricated Package(WFP)、Wafer−Level Processed Stack Package(WSP)などのようなパッケージを利用して実装できる。
本発明の範囲、または技術的思想を逸脱せず、本発明の構造が多様に修正や変更できることはこの分野に熟練された者には自明である。上述した内容を考慮する際に、もし本発明の修正及び変更が下記の請求項及び同等物の範囲内に属すれば、本発明はこの発明の変更及び修正を含むものと看做す。
100:ホスト
200:制御器
300:不揮発性メモリ装置

Claims (10)

  1. 第1ビットパターン順序に基づいてデータを変換するように構成された制御器と、
    前記第1ビットパターン順序に対応するプログラム方法によって変換されたデータをプログラムするように、そして前記第1ビットパターン順序と異なる第2ビットパターン順序に対応する読み出し方法によってデータを読み出すように構成された不揮発性メモリ装置とを含むことを特徴とするメモリシステム。
  2. 前記読み出されたデータは、前記制御器による変換無しで外部装置へ伝送されることを特徴とする請求項1記載のメモリシステム。
  3. 前記第1ビットパターン順序は、閾値電圧分布の改善をためのアルゴリズムを適用するのに適合し、前記第2ビットパターン順序は均一なエラー確率分布及び読み出しレイテンシを具現するのに適合することを特徴とする請求項1記載のメモリシステム。
  4. 前記変換されたデータは選択されたワードラインのメモリセルに格納され、前記選択されたワードラインのメモリセルから読み出されたデータと異なることを特徴とる請求項1記載のメモリシステム。
  5. 前記不揮発性メモリ装置は、前記第2ビットパターン順序に対応する読み出し方法を制御するように構成された読み出しスケジュールROMを含み、前記読み出しスケジュールROMは前記制御器によりプログラムできるように構成されることを特徴とする請求項1記載のメモリシステム。
  6. 前記制御器は、
    前記不揮発性メモリ装置の選択されたワードラインに属するメモリセルに格納されるマルチ−ビットデータを格納するように構成されたバッファメモリと、
    前記バッファメモリに格納されたマルチ−ビットデータを変換するように構成されたデータ変換器とを含むことを特徴とする請求項1項記載のメモリシステム。
  7. 前記データ変換器は前記不揮発性メモリ装置から読み出されたデータの変換を行わないことを特徴とする請求項6に記載のメモリシステム。
  8. 不揮発性メモリ装置と、
    前記不揮発性メモリ装置を制御するように構成された制御器を含むメモリシステムの動作方法において、
    第1ビットパターン順序に基づいてデータを変換し、
    前記第1ビットパターン順序に対応するプログラム方法により前記変換されたデータを前記不揮発性メモリ装置に格納し、
    前記第1ビットパターン順序と異なる第2ビットパターン順序に対応する読み出し方法により前記不揮発性メモリ装置からデータを読み出し、
    データ変換無く、前記読み出しされたデータを外部に出力することを特徴とする動作方法。
  9. 行と列に配列されたメモリセルを有するメモリセルアレイと、
    第1ビットパターン順序に対応するプログラム方法により入力データが前記メモリセルアレイの選択された行に属するメモリセルにプログラムされるように、プログラム動作を制御し、そして前記第1ビットパターン順序と異なる第2ビットパターン順序に対応する読み出し方法によって前記メモリセルアレイの前記選択された行に属するメモリセルからデータが読み出されるように、読み出し動作を制御するように構成された制御ロジックとを含み、
    前記選択された行に属するメモリセルから読み出されたデータは前記選択された行に属するメモリセルにプログラムされたデータと異なることを特徴とする不揮発性メモリ装置。
  10. 前記選択された行に属するメモリセルにプログラムされたデータは、前記外部装置により変換したデータであり、前記選択された行に属するメモリセルから読み出されたデータはデータ変換前のデータであることを特徴とする請求項9記載の不揮発性メモリ装置。
JP2011008099A 2010-02-08 2011-01-18 不揮発性メモリ装置及びそれを含むメモリシステム Withdrawn JP2011165305A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0011553 2010-02-08
KR1020100011553A KR20110092090A (ko) 2010-02-08 2010-02-08 불 휘발성 메모리 장치 및 그것을 포함한 메모리 시스템

Publications (1)

Publication Number Publication Date
JP2011165305A true JP2011165305A (ja) 2011-08-25

Family

ID=44353608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011008099A Withdrawn JP2011165305A (ja) 2010-02-08 2011-01-18 不揮発性メモリ装置及びそれを含むメモリシステム

Country Status (5)

Country Link
US (2) US8743604B2 (ja)
JP (1) JP2011165305A (ja)
KR (1) KR20110092090A (ja)
CN (1) CN102157201A (ja)
TW (1) TW201131573A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013235645A (ja) * 2012-05-04 2013-11-21 Samsung Electronics Co Ltd 3次元不揮発性メモリを含むメモリシステムのプログラム方法
JP2015195071A (ja) * 2014-03-18 2015-11-05 株式会社東芝 不揮発性メモリおよび書き込み方法
US9548107B1 (en) 2015-07-09 2017-01-17 Kabushiki Kaisha Toshiba Semiconductor memory device

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5380510B2 (ja) * 2011-09-30 2014-01-08 株式会社東芝 不揮発性半導体記憶装置
US10565501B1 (en) * 2013-04-19 2020-02-18 Amazon Technologies, Inc. Block device modeling
KR102068519B1 (ko) 2013-07-01 2020-01-21 삼성전자주식회사 저장 장치, 그것의 쓰기 방법 및 읽기 방법
KR102120823B1 (ko) * 2013-08-14 2020-06-09 삼성전자주식회사 비휘발성 메모리 장치의 독출 시퀀스 제어 방법 및 이를 수행하는 메모리 시스템
KR102157875B1 (ko) * 2013-12-19 2020-09-22 삼성전자주식회사 불휘발성 메모리 장치 및 그것을 포함한 메모리 시스템
KR20160032910A (ko) * 2014-09-17 2016-03-25 에스케이하이닉스 주식회사 메모리 시스템 및 메모리 시스템의 동작 방법
SG11201702739VA (en) * 2014-10-03 2017-04-27 Agency Science Tech & Res Active storage unit and array
KR102263046B1 (ko) 2014-10-29 2021-06-09 삼성전자주식회사 메모리 장치, 메모리 시스템, 상기 메모리 장치의 동작 방법 및 상기 메모리 시스템의 동작 방법
KR102287760B1 (ko) 2014-10-29 2021-08-09 삼성전자주식회사 메모리 시스템 및 상기 메모리 시스템의 동작 방법
KR102252378B1 (ko) 2014-10-29 2021-05-14 삼성전자주식회사 메모리 장치, 메모리 시스템, 상기 메모리 장치의 동작 방법 및 상기 메모리 시스템의 동작 방법
KR102246843B1 (ko) * 2015-01-15 2021-05-03 에스케이하이닉스 주식회사 데이터 저장 장치 및 그것의 동작 방법
KR102451154B1 (ko) * 2015-12-07 2022-10-06 삼성전자주식회사 불휘발성 메모리 장치 및 불휘발성 메모리 장치의 동작 방법
US9934847B2 (en) * 2016-03-11 2018-04-03 Toshiba Memory Corporation Memory system storing 4-bit data in each memory cell and method of controlling thereof including soft bit information
KR102422478B1 (ko) * 2016-05-10 2022-07-19 삼성전자주식회사 불휘발성 메모리 장치의 독출 방법
JP2018037123A (ja) * 2016-08-29 2018-03-08 東芝メモリ株式会社 半導体記憶装置及びメモリシステム
US10593398B2 (en) 2016-09-13 2020-03-17 Toshiba Memory Corporation Semiconductor storage device including a controller configured to execute a first write and a second write
US9691492B1 (en) * 2016-09-29 2017-06-27 Intel Corporation Determination of demarcation voltage for managing drift in non-volatile memory devices
KR20180080842A (ko) * 2017-01-05 2018-07-13 에스케이하이닉스 주식회사 반도체 메모리 장치 및 이의 동작 방법
KR20200117374A (ko) * 2019-04-04 2020-10-14 에스케이하이닉스 주식회사 비휘발성 메모리 장치, 이의 동작 방법 및 이를 이용하는 시스템
KR20200117746A (ko) 2019-04-05 2020-10-14 삼성전자주식회사 비휘발성 메모리 장치, 비휘발성 메모리 장치의 동작 방법 및 비휘발성 메모리 장치를 포함하는 메모리 시스템
KR20210024269A (ko) 2019-08-21 2021-03-05 삼성전자주식회사 빠른 읽기 페이지를 포함하는 불휘발성 메모리 장치 및 이를 포함하는 스토리지 장치
EP3783614B1 (en) * 2019-08-21 2022-06-08 Samsung Electronics Co., Ltd. Nonvolatile memory device including a fast read page and a storage device including the same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0172366B1 (ko) * 1995-11-10 1999-03-30 김광호 불휘발성 반도체 메모리 장치의 독출 및 프로그램 방법과 그 회로
JP2000298992A (ja) 1999-04-13 2000-10-24 Hitachi Ltd 多値記憶不揮発性半導体メモリの制御装置
US7253467B2 (en) * 2001-06-28 2007-08-07 Samsung Electronics Co., Ltd. Non-volatile semiconductor memory devices
US6858906B2 (en) * 2001-06-28 2005-02-22 Samsung Electronics Co., Ltd. Floating trap non-volatile semiconductor memory devices including high dielectric constant blocking insulating layers
US20060180851A1 (en) * 2001-06-28 2006-08-17 Samsung Electronics Co., Ltd. Non-volatile memory devices and methods of operating the same
US6657891B1 (en) * 2002-11-29 2003-12-02 Kabushiki Kaisha Toshiba Semiconductor memory device for storing multivalued data
US7493457B2 (en) * 2004-11-08 2009-02-17 Sandisk Il. Ltd States encoding in multi-bit flash cells for optimizing error rate
US7813170B2 (en) * 2005-11-11 2010-10-12 Kabushiki Kaisha Toshiba Semiconductor memory device capable of memorizing multivalued data
KR100673020B1 (ko) 2005-12-20 2007-01-24 삼성전자주식회사 전계효과 소오스/드레인 영역을 가지는 반도체 장치
KR100764738B1 (ko) * 2006-04-06 2007-10-09 삼성전자주식회사 향상된 신뢰성을 갖는 상변화 메모리 장치, 그것의 쓰기방법, 그리고 그것을 포함한 시스템
EP1865513A1 (en) * 2006-06-07 2007-12-12 STMicroelectronics S.r.l. Nonvolatile memory device
KR100813618B1 (ko) * 2006-07-25 2008-03-17 삼성전자주식회사 3차원 어레이 구조를 갖는 반도체 메모리 장치
JP4892307B2 (ja) * 2006-09-08 2012-03-07 株式会社東芝 不揮発性半導体格納装置
US7646664B2 (en) * 2006-10-09 2010-01-12 Samsung Electronics Co., Ltd. Semiconductor device with three-dimensional array structure
JP2009059453A (ja) * 2007-09-03 2009-03-19 Toshiba Corp 不揮発性半導体記憶装置及びメモリシステム
US7826277B2 (en) * 2008-03-10 2010-11-02 Hynix Semiconductor Inc. Non-volatile memory device and method of operating the same
US8208304B2 (en) * 2008-11-16 2012-06-26 Anobit Technologies Ltd. Storage at M bits/cell density in N bits/cell analog memory cell devices, M>N

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013235645A (ja) * 2012-05-04 2013-11-21 Samsung Electronics Co Ltd 3次元不揮発性メモリを含むメモリシステムのプログラム方法
JP2015195071A (ja) * 2014-03-18 2015-11-05 株式会社東芝 不揮発性メモリおよび書き込み方法
US10255971B2 (en) 2014-03-18 2019-04-09 Toshiba Memory Corporation Nonvolatile memory and writing method
US10431298B2 (en) 2014-03-18 2019-10-01 Toshiba Memory Corporation Nonvolatile memory and writing method
US10790017B2 (en) 2014-03-18 2020-09-29 Toshiba Memory Corporation Nonvolatile memory and writing method
US10937490B2 (en) 2014-03-18 2021-03-02 Toshiba Memory Corporation Nonvolatile memory and writing method
US11270765B2 (en) 2014-03-18 2022-03-08 Toshiba Memory Corporation Nonvolatile memory and writing method
US11763883B2 (en) 2014-03-18 2023-09-19 Kioxia Corporation Nonvolatile memory and writing method
US9548107B1 (en) 2015-07-09 2017-01-17 Kabushiki Kaisha Toshiba Semiconductor memory device

Also Published As

Publication number Publication date
US8743604B2 (en) 2014-06-03
TW201131573A (en) 2011-09-16
KR20110092090A (ko) 2011-08-17
US20120314496A1 (en) 2012-12-13
CN102157201A (zh) 2011-08-17
US20110194347A1 (en) 2011-08-11

Similar Documents

Publication Publication Date Title
JP2011165305A (ja) 不揮発性メモリ装置及びそれを含むメモリシステム
JP5584595B2 (ja) フラッシュメモリ装置及びそのプログラム方法
US8582360B2 (en) Read method for nonvolatile memory device, and data storage system using the same
US20220130456A1 (en) Nonvolatile memory and writing method
JP5632210B2 (ja) 非揮発性メモリ装置及びそのプログラム方法
JP6202972B2 (ja) メモリシステム及びそれの読み出し校正方法
JP6262426B2 (ja) メモリシステム及びそれのブロック複写方法
US8990481B2 (en) Method of operating nonvolatile memory devices storing randomized data generated by copyback operation
KR101636248B1 (ko) 플래시 메모리 장치, 이를 포함하는 플래시 메모리 시스템 및 이의 프로그램 방법
CN101847443B (zh) 非易失性存储器器件和相关的编程方法
US9177660B2 (en) Method of operating memory device
US8432735B2 (en) Memory system and related method of programming
US9147483B2 (en) Apparatus and method of operating memory device
JP2011165301A (ja) フラッシュメモリ装置及びその読み出し方法
US8630124B2 (en) Nonvolatile memory devices having memory cell arrays with unequal-sized memory cells and methods of operating same
KR100764750B1 (ko) 유연한 어드레스 맵핑 스킴을 갖는 플래시 메모리 장치
US9147475B2 (en) Data storage device comprising nonvolatile memory chips and control method thereof
KR20100007813A (ko) 메모리 제어기, 메모리 시스템, 및 메모리 시스템을 위한 제어 방법
KR20100088898A (ko) 플래시 메모리 장치, 및 이의 프로그램 및 독출 방법
KR20150072517A (ko) 불휘발성 메모리 장치 및 그것을 포함한 메모리 시스템
KR101679358B1 (ko) 플래시 메모리 장치, 이의 프로그램 방법 및 독출 방법
JP6470389B2 (ja) 制御方法
US20160062688A1 (en) Flash memory device, flash memory system, and operating method
CN112395128A (zh) 存储器控制器的操作方法、存储设备及其操作方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140528

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20140626