JP2011102963A - 液晶配向剤、液晶表示素子及びポリオルガノシロキサン化合物 - Google Patents

液晶配向剤、液晶表示素子及びポリオルガノシロキサン化合物 Download PDF

Info

Publication number
JP2011102963A
JP2011102963A JP2010191576A JP2010191576A JP2011102963A JP 2011102963 A JP2011102963 A JP 2011102963A JP 2010191576 A JP2010191576 A JP 2010191576A JP 2010191576 A JP2010191576 A JP 2010191576A JP 2011102963 A JP2011102963 A JP 2011102963A
Authority
JP
Japan
Prior art keywords
group
liquid crystal
compound
bond
polyorganosiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010191576A
Other languages
English (en)
Other versions
JP5776152B2 (ja
Inventor
Yoshikazu Miyamoto
佳和 宮本
Fumitaka Sugiyama
文隆 杉山
Hiroaki Tokuhisa
博昭 徳久
Hiroyuki Yasuda
博幸 安田
Tsutomu Kumagai
勉 熊谷
Eiji Hayashi
英治 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2010191576A priority Critical patent/JP5776152B2/ja
Publication of JP2011102963A publication Critical patent/JP2011102963A/ja
Application granted granted Critical
Publication of JP5776152B2 publication Critical patent/JP5776152B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal (AREA)
  • Silicon Polymers (AREA)

Abstract

【課題】本発明は液晶素子の高速応答を実現しつつ、電圧保持率や残像特性等の諸性能に優れた液晶表示素子を形成することができる液晶配向剤、その液晶配向剤から形成された液晶配向膜を備える液晶表示素子及び液晶配向剤に好適に用いられるポリオルガノシロキサン化合物を提供することを目的とする。
【解決手段】本発明は[A]ポリオルガノシロキサン化合物を含有し、この[A]ポリオルガノシロキサン化合物が、エポキシ基を有するポリオルガノシロキサンに由来する部分と、下記式(1)で表されるカルボキシル基を有する化合物に由来する部分とを有する液晶配向剤である。
Figure 2011102963

【選択図】なし

Description

本発明は、液晶表示素子(LCD)の配向膜を形成するための材料として好適な液晶配向剤、この液晶配向剤から形成された液晶配向膜を有する液晶表示素子及び液晶配向剤に好適に用いられるポリオルガノシロキサン化合物に関する。
近年、液晶表示素子は消費電力が小さいことや、小型化及びフラット化が容易であること等の利点を有しているため、携帯電話等の小型の液晶表示装置から液晶テレビ等の大画面液晶表示装置まで幅広い用途で適用されている。
液晶表示装置の駆動モードとしては現在、液晶分子の配向(配列)状態の変化に応じ、TN(Twisted Nematic)、STN(Super Twisted Nematic)、IPS(In−Plane Switching)、VA(Vertical Alignment)等が知られている。また、VAモードでは配向分割により視野角を高めるため、MVA(Multi domain Vertical Alignment)方式やPVA(Patterned Vertical Alignment)方式が採用されており、さらに高速応答性やパネル開口率を向上させ、液晶にプレチルト角を付与することで光垂直配向方式、PSA(Polymer Sustained Alignment)方式等に採用することが検討されている。いずれの駆動モードにおいても、液晶分子の配向状態は液晶配向膜で直接制御されており、液晶配向膜は液晶表示素子の機能特性の発現や制御をかなりのウェイトで担っている。
かかる液晶表示装置は携帯電話や液晶テレビ等の動画表示用装置として期待されていることから、液晶表示素子に求められる特性として、動画を滑らかに表示しつつ残像を極力抑えるべく、電気光学効果の応答時間のさらなる高速化が求められている。この要求に対して、液晶配向膜に用いるポリマー側鎖に誘電異方性を与える構造を付与することで改善を図る技術が報告されている(特表2007−521361号公報及び特表2007−521506号公報参照)。しかし、本特許文献には電気光学応答時間の高速化以外に実用面で重要となる配向性や電圧保持率、残像特性等の電気特性については全く記載されていない。
このような状況から、液晶配向素子として一般に要求される配向性や電圧保持率といった電気特性を満足しつつ、電気光学応答時間の短い液晶配向素子を形成しうる液晶配向剤の開発が望まれている。
特表2007−521361号公報 特表2007−521506号公報
本発明は以上のような事情に基づいてなされたものであり、その目的は液晶素子の高速応答を実現しつつ電圧保持率や残像特性等の諸性能に優れた液晶表示素子を形成することができる液晶配向剤、その液晶配向剤から形成された液晶配向膜を備える垂直型等の液晶表示素子及び液晶配向剤に好適に用いられるポリオルガノシロキサン化合物を提供することである。
上記課題を解決するためになされた発明は、
[A]ポリオルガノシロキサン化合物を含有し、
この[A]ポリオルガノシロキサン化合物が、
エポキシ基を有するポリオルガノシロキサンに由来する部分と、
下記式(1)で表されるカルボキシル基を有する化合物(以下、「特定カルボン酸」と称することがある)に由来する部分と
を有する液晶配向剤である。
Figure 2011102963
(式(1)中、Rはメチレン基若しくは炭素数2〜30のアルキレン基、フェニレン基又はシクロヘキシレン基である。これらの基は置換基を有していてもよい。Rは二重結合、三重結合、エーテル結合、エステル結合及び酸素原子のいずれかを含む連結基である。Rは少なくとも2つの単環構造を有する基である。aは0〜1の整数である。)
当該液晶配向剤は、ポリオルガノシロキサン化合物を含んでいることから、この液晶配向剤を用いて形成した液晶配向膜を備える液晶表示素子は、配向性が良好で高い電圧保持特性を有し、残像特性に優れるとともに応答時間(立ち上がり時)を短縮できる。また、エポキシ基を有することで当該液晶配向剤はより配向性や電圧保持率といった電気特性が向上する。さらに、当該液晶配向剤が特定の構造単位を有することで、側鎖に誘電異方性を有する構造が導入され、この液晶配向剤を用いて形成した液晶配向膜を備える液晶表示素子は、さらに電気特性及び残像特性が向上し、より応答時間が短縮される。また、エポキシ基とカルボキシル基との間の反応性を利用することで、主鎖としてのポリオルガノシロキサンに側鎖としての上記式(1)で表される誘電異方性を有する構造を容易に導入できる。
上記式(1)におけるRは、下記式(2)で表される基であることが好ましい。
Figure 2011102963
(式(2)中、R及びRはそれぞれフェニレン基、ビフェニレン基、ナフタレン基、シクロヘキシレン基、ビシクロヘキシレン基、シクロへキシレンフェニレン基又は複素環であり、これらはさらに置換基を有していてもよい。Rは置換基を有していてもよい炭素数1〜10のアルキレン基、二重結合、三重結合、エーテル結合、エステル結合及び複素環のいずれかを含む連結基である。Rは水素原子、シアノ基、フッ素原子、トリフルオロメチル基、アルコキシカルボニル基、アルキル基及びアルコキシ基のいずれかであり、Rが複数の置換基を有する場合はそれぞれ同一の又は異なるものを組み合わせてもよい。bは0〜1の整数である。cは1〜9の整数である。)
当該液晶配向剤のポリオルガノシロキサン化合物の側鎖に、上記式(2)で表される構造を導入することにより、得られる液晶配向素子の電気光学応答性をさらに高速化させることができる。
上記エポキシ基が、下記式(X−1)又は(X−2)で表される基であることが好ましい。
Figure 2011102963
(式(X−1)中、Aは酸素原子又は単結合である。hは1〜3の整数である。iは0〜6の整数である。但し、iが0の場合、Aは単結合である。「*」は結合手であることを示す。)
上記式(X−1)又は(X−2)で表される基を含ませることにより、当該液晶配向剤のポリオルガノシロキサン化合物に、上記式(1)で表される特定構造を有する化合物に由来する側鎖基を導入しやすくなる。
当該液晶配向剤は、[B]ポリアミック酸及びポリイミドからなる群より選択される少なくとも1種の重合体(以下、「[B]重合体」と称することがある)をさらに含有することが好ましい。上記のような重合体を用いて液晶配向膜を作製すると、より電気特性が改善された液晶表示素子が得られる。
本発明の液晶表示素子は、当該液晶配向剤から形成された液晶配向膜を具備する。これにより、配向性や電圧保持率、残像特性等の電気特性に優れ、かつ高速化された電気光学応答性を備える液晶表示素子が得られる。
本発明には、透明電極と、この透明電極上に積層される上記液晶配向膜とを備え、液晶配向モードが垂直型で、かつ配向方位の異なる2以上の領域を有する液晶表示素子も好適に含まれる。また、配向方位の異なる2以上の領域を有する手段としては、上記透明電極としてパターニングされた透明電極を用いる手段又は上記液晶配向膜に配向分割機能を付与する手段が好ましい。かかる液晶表示素子では、TN、STN、IPS、VA(VA−MVA方式、VA−PVA方式等を含む)等の駆動モードにおいても好適に適用でき、さらにはコントラストが向上し、また高速応答性もより向上する。
本発明には、透明電極とこの透明電極上に積層される液晶配向膜とを備え、液晶配向モードが垂直型で、かつ配向方位の異なる2以上の領域を有する液晶表示素子における上記液晶配向膜形成用の液晶配向剤であって、下記式(3)で表される基を有する化合物を含有することを特徴とする液晶配向剤も好適に含まれる。また、配向方位の異なる2以上の領域を有する手段としては、パターニングされた透明電極又は配向分割機能を有する液晶配向膜を用いることが好ましい。
Figure 2011102963
(式(3)中、Rは二重結合、三重結合、エーテル結合、エステル結合又は酸素原子のいずれかを含む連結基である。Rは少なくとも2つの単環構造を有する基である。aは0〜1の整数である。「*」は結合手であることを示す。)
本発明には液晶配向モードが垂直型で、かつ配向方位の異なる2以上の領域を有する液晶表示素子であって、上記液晶配向剤(上記式(3)で表される基を有する化合物を含有することを特徴とする液晶配向剤)から形成される液晶配向膜を備えることを特徴とする液晶表示素子も好適に含まれる。
本発明のポリオルガノシロキサン化合物は、エポキシ基を有するポリオルガノシロキサンに由来する部分と、下記式(1)で表されるカルボキシル基を有する化合物、又は式(1)のRが下記式(2)で表されるカルボキシル基を有する化合物に由来する部分とを有する。
Figure 2011102963
(式(1)中、Rはメチレン基若しくは炭素数2〜30のアルキレン基、フェニレン基又はシクロヘキシレン基である。これらの基は置換基を有していてもよい。Rは二重結合、三重結合、エーテル結合、エステル結合及び酸素原子のいずれかを含む連結基である。Rは少なくとも2つの単環構造を有する基である。aは0〜1の整数である。)
Figure 2011102963
(式(2)中、R及びRはそれぞれフェニレン基、ビフェニレン基、ナフタレン基、シクロヘキシレン基、ビシクロヘキシレン基、シクロへキシレンフェニレン基又は複素環であり、これらはさらに置換基を有していてもよい。Rは置換基を有していてもよい炭素数1〜10のアルキレン基、二重結合、三重結合、エーテル結合、エステル結合及び複素環のいずれかを含む連結基である。Rは水素原子、シアノ基、フッ素原子、トリフルオロメチル基、アルコキシカルボニル基、アルキル基及びアルコキシ基のいずれかであり、Rが複数の置換基を有する場合はそれぞれ同一の又は異なるものを組み合わせてもよい。bは0〜1の整数である。cは1〜9の整数である。)
当該ポリオルガノシロキサン化合物は、配向性や高速応答性、電圧特性に加え残像特性等の諸性能を備える液晶表示素子を構成するための液晶配向剤に好適に用いることができる。
本発明によれば、配向性に優れ、高速応答が可能であり、かつ電圧特性や残像特性等の諸性能に優れた液晶表示素子を形成可能な液晶配向剤を提供できる。従って、当該液晶表示素子はTN、STN、IPS、VA(VA−MVA方式、VA−PVA方式等を含む)等の駆動モードにおいても好適に適用できる。
(a)本発明に用いられるパターニングされた透明電極の一形態を示す平面図である。(b)上記平面図におけるX−X’の拡大断面図である。 本発明に用いられるパターニングされた透明電極の一形態を示す平面図である。 本発明に用いられるパターニングされた透明電極の一形態を示す平面図である。
<液晶配向剤>
本発明の液晶配向剤は、[A]ポリオルガノシロキサン化合物を含有する。当該液晶配向剤は、[A]ポリオルガノシロキサン化合物を含んでいることから、この液晶配向剤を用いて形成した液晶配向膜を備える液晶表示素子は、配向性が良好で高い電圧保持特性を有し、また残像特性に優れるとともに応答時間を短縮できる。また、[B]重合体等の後述する「他の重合体」を含有できる。さらに、本発明の効果を損なわない範囲でその他の任意成分を含有してもよい。以下、各成分について詳述する。
<[A]ポリオルガノシロキサン化合物>
[A]ポリオルガノシロキサン化合物はエポキシ基を有するポリオルガノシロキサンに由来する部分と、上記式(1)で表される特定カルボン酸に由来する部分とを有する。当該液晶配向剤が特定の構造単位を有することで、側鎖に誘電異方性を有する構造が導入され、この液晶配向剤を用いて形成した液晶配向膜を備える液晶表示素子は、さらに電気特性及び残像特性が向上し、より応答時間が短縮される。また、エポキシ基とカルボキシル基との間の反応性を利用することで、主鎖としてのポリオルガノシロキサンに側鎖としての上記式(1)で表される誘電異方性を有する構造を容易に導入できる。
[A]ポリオルガノシロキサン化合物は、主としてポリオルガノシロキサンのエポキシ基と特定カルボン酸のカルボキシル基との反応物として得られることになると考えられるが、以降の説明を容易にするために、便宜的にエポキシ基を有するポリオルガノシロキサン(とその誘導体)に由来する部分と、特定カルボン酸に由来する部分とに分けて当該液晶配向剤に含有される[A]ポリオルガノシロキサン化合物を説明する。
[エポキシ基を有するポリオルガノシロキサンに由来する部分]
この部分は、[A]ポリオルガノシロキサン化合物の構造のうち、ポリマー主鎖としてのポリオルガノシロキサン骨格と、このポリオルガノシロキサン主鎖から延びている側鎖としてのエポキシ基含有骨格とを含む概念である。上述のように[A]ポリオルガノシロキサン化合物では、大部分のエポキシ基は特定カルボン酸と反応してその初期の構造を有していないと考えられるが、特定カルボン酸がエポキシ基以外の部分と結合している場合もあり得る。そこで、本発明では両者の態様を含めて「エポキシ基を有するポリオルガノシロキサンに由来する部分」ということとする。
[A]ポリオルガノシロキサン化合物が、グリシジル基、グリシジルオキシ基、エポキシシクロヘキシル基を含む基等のエポキシ基を有することで当該液晶配向剤はより配向性や電圧保持率といった電気特性が向上する。エポキシ基としては上記式(X−1)又は(X−2)で表される基であることが好ましい。上記式(1)で表される構造単位を有するポリオルガノシロキサンに上記式(X−1)又は(X−2)で表される基を含ませることにより、当該液晶配向剤のポリオルガノシロキサン化合物に、上記式(1)で表される特定構造を有する化合物に由来する側鎖基を導入しやすくなる。
上記式(X−1)又は(X−2)のうち、下記式で表される基が好ましい。
Figure 2011102963
(式(X−1−1)及び(X−2−1)中、「*」は結合手であることを示す。)
エポキシ基を有するポリオルガノシロキサンのゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量は、500〜100,000が好ましく、1,000〜50,000がより好ましく、1,000〜20,000が特に好ましい。
[エポキシ基を有するポリオルガノシロキサンの合成方法]
このようなエポキシ基を有するポリオルガノシロキサンは、好ましくはエポキシ基を有するシラン化合物、又はエポキシ基を有するシラン化合物と、他のシラン化合物の混合物を、好ましくは適当な有機溶媒、水及び触媒の存在下において加水分解又は加水分解・縮合することにより合成することができる。
上記エポキシ基を有するシラン化合物としては、例えば3−グリシジロキシプロピルトリメトキシシラン、3−グリシジロキシプロピルトリエトキシシラン、3−グリシジロキシプロピルメチルジメトキシシラン、3−グリシジロキシプロピルメチルジエトキシシラン、3−グリシジロキシプロピルジメチルメトキシシラン、3−グリシジロキシプロピルジメチルエトキシシラン、2−グリシジロキシエチルトリメトキシシラン、2−グリシジロキシエチルトリエトキシシラン、2−グリシジロキシエチルメチルジメトキシシラン、2−グリシジロキシエチルメチルジエトキシシラン、2−グリシジロキシエチルジメチルメトキシシラン、2−グリシジロキシエチルジメチルエトキシシラン、4−グリシジロキシブチルトリメトキシシラン、4−グリシジロキシブチルトリエトキシシラン、4−グリシジロキシブチルメチルジメトキシシラン、4−グリシジロキシブチルメチルジエトキシシラン、4−グリシジロキシブチルジメチルメトキシシラン、4−グリシジロキシブチルジメチルエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、3−(3,4−エポキシシクロヘキシル)プロピルトリメトキシシラン、3−(3,4−エポキシシクロヘキシル)プロピルトリエトキシシラン等が挙げられる。これらは単独で又は2種以上を使用してもよい。
上記他のシラン化合物としては、例えばテトラクロロシラン、テトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシシラン、テトラ−i−プロポキシシラン、テトラ−n−ブトキシラン、テトラ−sec−ブトキシシラン、トリクロロシラン、トリメトキシシラン、トリエトキシシラン、トリ−n−プロポキシシラン、トリ−i−プロポキシシラン、トリ−n−ブトキシシラン、トリ−sec−ブトキシシラン、フルオロトリクロロシラン、フルオロトリメトキシシラン、フルオロトリエトキシシラン、フルオロトリ−n−プロポキシシラン、フルオロトリ−i−プロポキシシラン、フルオロトリ−n−ブトキシシラン、フルオロトリ−sec−ブトキシシラン、メチルトリクロロシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−n−プロポキシシラン、メチルトリ−i−プロポキシシラン、メチルトリ−n−ブトキシシラン、メチルトリ−sec−ブトキシシラン、2−(トリフルオロメチル)エチルトリクロロシシラン、2−(トリフルオロメチル)エチルトリメトキシシラン、2−(トリフルオロメチル)エチルトリエトキシシラン、2−(トリフルオロメチル)エチルトリ−n−プロポキシシラン、2−(トリフルオロメチル)エチルトリ−i−プロポキシシラン、2−(トリフルオロメチル)エチルトリ−n−ブトキシシラン、2−(トリフルオロメチル)エチルトリ−sec−ブトキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリクロロシラン、2−(パーフルオロ−n−ヘキシル)エチルトリメトキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリエトキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリ−n−プロポキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリ−i−プロポキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリ−n−ブトキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリ−sec−ブトキシシラン、2−(パーフルオロ−n−オクチル)エチルトリクロロシラン、2−(パーフルオロ−n−オクチル)エチルトリメトキシシラン、2−(パーフルオロ−n−オクチル)エチルトリエトキシシラン、2−(パーフルオロ−n−オクチル)エチルトリ−n−プロポキシシラン、2−(パーフルオロ−n−オクチル)エチルトリ−i−プロポキシシラン、2−(パーフルオロ−n−オクチル)エチルトリ−n−ブトキシシラン、2−(パーフルオロ−n−オクチル)エチルトリ−sec−ブトキシシラン、ヒドロキシメチルトリクロロシラン、ヒドロキシメチルトリメトキシシラン、ヒドロキシエチルトリメトキシシラン、ヒドロキシメチルトリ−n−プロポキシシラン、ヒドロキシメチルトリ−i−プロポキシシラン、ヒドロキシメチルトリ−n−ブトキシシラン、ヒドロキシメチルトリ−sec−ブトキシシラン、3−(メタ)アクリロキシプロピルトリクロロシラン、3−(メタ)アクリロキシプロピルトリメトキシシラン、3−(メタ)アクリロキシプロピルトリエトキシシラン、3−(メタ)アクリロキシプロピルトリ−n−プロポキシシラン、3−(メタ)アクリロキシプロピルトリ−i−プロポキシシラン、3−(メタ)アクリロキシプロピルトリ−n−ブトキシシラン、3−(メタ)アクリロキシプロピルトリ−sec−ブトキシシラン、3−メルカプトプロピルトリクロロシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−メルカプトプロピルトリ−n−プロポキシシラン、3−メルカプトプロピルトリ−i−プロポキシシラン、3−メルカプトプロピルトリ−n−ブトキシシラン、3−メルカプトプロピルトリ−sec−ブトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシラン、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ−n−プロポキシシラン、ビニルトリ−i−プロポキシシラン、ビニルトリ−n−ブトキシシラン、ビニルトリ−sec−ブトキシシラン、アリルトリクロロシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、アリルトリ−n−プロポキシシラン、アリルトリ−i−プロポキシシラン、アリルトリ−n−ブトキシシラン、アリルトリ−sec−ブトキシシラン、フェニルトリクロロシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリ−n−プロポキシシラン、フェニルトリ−i−プロポキシシラン、フェニルトリ−n−ブトキシシラン、フェニルトリ−sec−ブトキシシラン、メチルジクロロシラン、メチルジメトキシシラン、メチルジエトキシシラン、メチルジ−n−プロポキシシラン、メチルジ−i−プロポキシシラン、メチルジ−n−ブトキシシラン、メチルジ−sec−ブトキシシラン、ジメチルジクロロシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジ−n−プロポキシシラン、ジメチルジ−i−プロポキシシラン、ジメチルジ−n−ブトキシシラン、ジメチルジ−sec−ブトキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジクロロシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジメトキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジエメトキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジ−n−プロポキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジ−i−プロポキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジ−n−ブトキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジ−sec−ブトキシシラン、(メチル)(3−メルカプトプロピル)ジクロロシラン、(メチル)(3−メルカプトプロピル)ジメトキシシラン、(メチル)(3−メルカプトプロピル)ジエトキシシラン、(メチル)(3−メルカプトプロピル)ジ−n−プロポキシシラン、(メチル)(3−メルカプトプロピル)ジ−i−プロポキシシラン、(メチル)(3−メルカプトプロピル)ジ−n−ブトキシシラン、(メチル)(3−メルカプトプロピル)ジ−sec−ブトキシシラン、(メチル)(ビニル)ジクロロシラン、(メチル)(ビニル)ジメトキシシラン、(メチル)(ビニル)ジエトキシシラン、(メチル)(ビニル)ジ−n−プロポキシシラン、(メチル)(ビニル)ジ−i−プロポキシシラン、(メチル)(ビニル)ジ−n−ブトキシシラン、(メチル)(ビニル)ジ−sec−ブトキシシラン、ジビニルジクロロシラン、ジビニルジメトキシシラン、ジビニルジエトキシシラン、ジビニルジ−n−プロポキシシラン、ジビニルジ−i−プロポキシシラン、ジビニルジ−n−ブトキシシラン、ジビニルジ−sec−ブトキシシラン、ジフェニルジクロロシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジ−n−プロポキシシラン、ジフェニルジ−i−プロポキシシラン、ジフェニルジ−n−ブトキシシラン、ジフェニルジ−sec−ブトキシシラン、クロロジメチルシラン、メトキシジメチルシラン、エトキシジメチルシラン、クロロトリメチルシラン、ブロモトリメチルシラン、ヨードトリメチルシラン、メトキシトリメチルシラン、エトキシトリメチルシラン、n−プロポキシトリメチルシラン、i−プロポキシトリメチルシラン、n−ブトキシトリメチルシラン、sec−ブトキシトリメチルシラン、t−ブトキシトリメチルシラン、(クロロ)(ビニル)ジメチルシラン、(メトキシ)(ビニル)ジメチルシラン、(エトキシ)(ビニル)ジメチルシラン、(クロロ)(メチル)ジフェニルシラン、(メトキシ)(メチル)ジフェニルシラン、(エトキシ)(メチル)ジフェニルシラン等のケイ素原子を1個有するシラン化合物が挙げられる。
市販品としては、例えば
KC−89、KC−89S、X−21−3153、X−21−5841、X−21−5842、X−21−5843、X−21−5844、X−21−5845、X−21−5846、X−21−5847、X−21−5848、X−22−160AS、X−22−170B、X−22−170BX、X−22−170D、X−22−170DX、X−22−176B、X−22−176D、X−22−176DX、X−22−176F、X−40−2308、X−40−2651、X−40−2655A、X−40−2671、X−40−2672、X−40−9220、X−40−9225、X−40−9227、X−40−9246、X−40−9247、X−40−9250、X−40−9323、X−41−1053、X−41−1056、X−41−1805、X−41−1810、KF6001、KF6002、KF6003、KR212、KR−213、KR−217、KR220L、KR242A、KR271、KR282、KR300、KR311、KR401N、KR500、KR510、KR5206、KR5230、KR5235、KR9218、KR9706(以上、信越化学工業社);
グラスレジン(昭和電工社);
SH804、SH805、SH806A、SH840、SR2400、SR2402、SR2405、SR2406、SR2410、SR2411、SR2416、SR2420(以上、東レ・ダウコーニング社);
FZ3711、FZ3722(以上、日本ユニカー社);
DMS−S12、DMS−S15、DMS−S21、DMS−S27、DMS−S31、DMS−S32、DMS−S33、DMS−S35、DMS−S38、DMS−S42、DMS−S45、DMS−S51、DMS−227、PSD−0332、PDS−1615、PDS−9931、XMS−5025(以上、チッソ社);
メチルシリケートMS51、メチルシリケートMS56(以上、三菱化学社);
エチルシリケート28、エチルシリケート40、エチルシリケート48(以上、コルコート社);
GR100、GR650、GR908、GR950(以上、昭和電工社)等の部分縮合物が挙げられる。
これらの他のシラン化合物のうち、得られる液晶表示素子の配向性及び保存安定性の観点から、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、3−(メタ)アクリロキシプロピルトリメトキシシラン、3−(メタ)アクリロキシプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシランが好ましい。
本発明に好ましく用いられるエポキシ基を有するポリオルガノシロキサンは誘電異方性を有する側鎖を充分な量で導入するため、そのエポキシ当量が100〜10,000g/モルであることが好ましく、150〜1,000g/モルであることがより好ましく、150〜300g/モルであることが特に好ましい。従って、エポキシ基を有するポリオルガノシロキサンの前駆体を合成するに際し、シラン化合物と他のシラン化合物との使用割合を、得られるエポキシ基を有するポリオルガノシロキサンのエポキシ当量が上記の範囲となるように調製して設定することが好ましい。本発明で用いられるエポキシ基を有するポリオルガノシロキサンを合成するに際しては、シラン化合物のみを用い、他のシラン化合物を使用しないことがより好ましい。
エポキシ基を有するポリオルガノシロキサンを合成するにあたって使用できる有機溶媒としては、例えば炭化水素化合物、ケトン化合物、エステル化合物、エーテル化合物、アルコール化合物等が挙げられる。
上記炭化水素としては、例えばトルエン、キシレン等;上記ケトンとしては、例えばメチルエチルケトン、メチルイソブチルケトン、メチルn−アミルケトン、ジエチルケトン、シクロヘキサノン等;上記エステルとしては、例えば酢酸エチル、酢酸n−ブチル、酢酸i−アミル、プロピレングリコールモノメチルエーテルアセテート、3−メトキシブチルアセテート、乳酸エチル等;上記エーテルとしては、例えばエチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、テトラヒドロフラン、ジオキサン等;上記アルコールとしては、例えば1−ヘキサノール、4−メチル−2−ペンタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ−n−プロピルエーテル、エチレングリコールモノ−n−ブチルエー
テル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ−n−プロピルエーテル等が挙げられる。これらのうち非水溶性のものが好ましい。これらの有機溶媒は単独で又は2種以上を使用してもよい。
有機溶媒の使用量は、全シラン化合物100質量部に対して、好ましくは10〜10,000質量部、より好ましくは50〜1,000質量部である。エポキシ基を有するポリオルガノシロキサンを製造する際の水の使用量は、全シラン化合物に対して、好ましくは0.5〜100倍モルであり、より好ましくは1〜30倍モルである。
上記触媒としては例えば酸、アルカリ金属化合物、有機塩基、チタン化合物、ジルコニウム化合物等を用いることができる。
上記アルカリ金属化合物としては、例えば水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド等が挙げられる。
上記有機塩基としては、例えばエチルアミン、ジエチルアミン、ピペラジン、ピペリジン、ピロリジン、ピロール等の1〜2級有機アミン;トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、ピリジン、4−ジメチルアミノピリジン、ジアザビシクロウンデセン等の3級の有機アミン;テトラメチルアンモニウムヒドロキシド等の4級の有機アミン等を、それぞれ挙げることができる。これらの有機塩基のうち、反応が穏やかに進行する点を考慮して、トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、ピリジン、4−ジメチルアミノピリジン等の3級の有機アミン;テトラメチルアンモニウムヒドロキシド等の4級の有機アミンが好ましい。
エポキシ基を有するポリオルガノシロキサンを製造する際の触媒としては、アルカリ金属化合物又は有機塩基が好ましい。アルカリ金属化合物又は有機塩基を触媒として用いることにより、エポキシ基の開環等の副反応を生じることなく、高い加水分解・縮合速度で目的とするポリオルガノシロキサンを得ることができるため、生産安定性に優れることとなり好ましい。また、触媒としてアルカリ金属化合物又は有機塩基を用いて合成されたエポキシ基を有するポリオルガノシロキサンと特定カルボン酸との反応物を含有する当該液晶配向剤は、保存安定性が極めて優れるため好都合である。その理由は、Chemical Reviews、95巻、p1409(1995年)に指摘されているように、加水分解、縮合反応において触媒としてアルカリ金属化合物又は有機塩基を用いると、ランダム構造、はしご型構造又はかご型構造が形成され、シラノール基の含有割合が少ないポリオルガノシロキサンが得られるためではないかと推察される。シラノール基の含有割合が少ないため、シラノール基同士の縮合反応が抑えられ、さらに、当該液晶配向剤が後述の他の重合体を含有するものである場合には、シラノール基と他の重合体との縮合反応が抑えられるため、保存安定性に優れる結果になるものと推察される。
触媒としては、特に有機塩基が好ましい。有機塩基の使用量は、有機塩基の種類、温度等の反応条件等により異なり、適宜に設定されるべきであるが、例えば、全シラン化合物に対して好ましくは0.01〜3倍モルであり、より好ましくは0.05〜1倍モルである。
エポキシ基を有するポリオルガノシロキサンを製造する際の加水分解又は加水分解・縮合反応は、エポキシ基を有するシラン化合物と必要に応じて他のシラン化合物とを有機溶媒に溶解し、この溶液を有機塩基及び水と混合して、例えば油浴等により加熱することにより実施することが好ましい。
加水分解・縮合反応時には、油浴の加熱温度を好ましくは130℃以下、より好ましくは40〜100℃として、好ましくは0.5〜12時間、より好ましくは1〜8時間加熱するのが望ましい。加熱中は、混合液を撹拌してもよいし、還流下に置いてもよい。
反応終了後、反応液から分取した有機溶媒層を水で洗浄することが好ましい。この洗浄に際しては、少量の塩を含む水、例えば0.2質量%程度の硝酸アンモニウム水溶液等で洗浄することにより、洗浄操作が容易になる点で好ましい。洗浄は洗浄後の水層が中性になるまで行い、その後有機溶媒層を、必要に応じて無水硫酸カルシウム、モレキュラーシーブス等の乾燥剤で乾燥した後、溶媒を除去することにより、目的とするエポキシ基を有するポリオルガノシロキサンを得ることができる。
本発明においては、エポキシ基を有するポリオルガノシロキサンとして市販されているものを用いてもよい。このような市販品としては、例えばDMS−E01,DMS−E12、DMS−E21,EMS−32(以上、チッソ社)等が挙げられる。
[A]ポリオルガノシロキサン化合物は、エポキシ基を有するポリオルガノシロキサンそのものが加水分解されて生じる加水分解物に由来する部分や、エポキシ基を有するポリオルガノシロキサン同士が加水分解縮合した加水分解縮合物に由来する部分を含んでいてもよい。当該部分の構成材料であるこれらの加水分解物や加水分解縮合物もエポキシ基を有するポリオルガノシロキサンの加水分解、縮合条件と同様に調製することができる。
[特定カルボン酸に由来する部分]
上記式(1)で表されるこの部分は、当該液晶配向剤に含有される[A]成分のポリオルガノシロキサン化合物の構造のうち、主としてポリオルガノシロキサン主鎖から延びているエポキシ基に由来する構造と結合しているカルボシキル基に由来する構造を始点とする側鎖構造に相当する。但し、本発明では、特定カルボン酸がエポキシ基以外の部分と結合している場合も含めて「特定カルボン酸に由来する部分」ということとする。
上記式(1)のRはメチレン基若しくは炭素数2〜30のアルキレン基、フェニレン基又はシクロヘキシレン基であり、これらはさらに置換基を有していてもよい。
炭素数2〜30のアルキレン基としては、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、テトラデシレン基、ヘキサデシレン基、オクタデシレン基、ノナデシレン基、イコシレン基、ヘンイコシレン基、ドコシレン基、トリコシレン基、テトラコシレン基、ペンタコシレン基、ヘキサコシレン基、ヘプタコシレン基、オクタコシレン基、ノナコシレン基、及びトリアコンチレン基等が挙げられる。これらのうち、液晶配向を安定に発現させるためにオクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、テトラデシレン基、ヘキサデシレン基、オクタデシレン基、ノナデシレン基、イコシレン基等の炭素数が8以上20以下のアルキレン基が好ましい。
は、二重結合、三重結合、エーテル結合、エステル結合及び酸素原子のいずれかを含む連結基である。なお、Rは上記結合のいずれかを含んでいればよいが、各結合を組み合わせて含んでいてもよい。また、Rがフェニレン基又はシクロヘキシレン基である場合は、形成される配向膜の配向性や溶媒への溶解性の観点から、Rは炭素数が1〜30のアルキレン基を含んでいることが好ましい。なお、aは0〜1の整数である。
は少なくとも2つの単環構造を有する基であり、好ましくは、正又は負の誘電異方性を示す。単環構造とは、一の環構造が他の環構造から独立して存在しており、一の環構造の結合が他の環構造と共有されている、いわゆる縮合環構造を有しない構造である。また、単環構造としては、脂環式構造、芳香環式構造、複素環式構造のいずれでもよく、これらを組み合わせて有していてもよい。
は少なくとも2つ以上の単環構造を有する基である限り特に限定されないが、代表的にはRは上記式(2)で表される基が好ましい。当該液晶配向剤のポリオルガノシロキサン化合物の側鎖に、上記式(2)で表される構造を導入することにより、得られる液晶配向素子の電気光学応答性をさらに高速化させることができる。式(2)中、R及びRはそれぞれ独立して、フェニレン基、ビフェニレン基、ナフタレン基、シクロヘキシレン基、ビシクロヘキシレン基、シクロへキシレンフェニレン基又は複素環である。複素環としては、例えばピリジン環、ピリダジン環、ピリミジン環等が挙げられる。
上記式(2)において、Rは、置換基を有していてもよい炭素数1〜10のアルキレン基、二重結合、三重結合、エーテル結合、エステル結合及び複素環のいずれかを含む、RとRとを連結する連結基であり、ポリオルガノシロキサン化合物に必要とされる配向性や誘導異方性に応じて適宜選択することができる。なお、bは0又は1の整数であるので、側鎖構造の設計においてRは含まれていても含まれていなくてもよい。
上記式(2)中、Rは水素原子、シアノ基、フッ素原子、トリフルオロメチル基、アルコキシカルボニル基、アルキル基及びアルコキシ基のいずれかである。アルコキシカルボニル基としては、例えばメトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基等、アルキル基としては、例えばメチル基、エチル基、プロピル基、n−ブチル基、イソブチル基等の炭素数が1〜20の直鎖又は分岐鎖状のアルキル基等、アルコキシ基としては、例えばメトキシ基、エトキシ基、プロポキシ基等がそれぞれ挙げられる。
上記式(2)において、Rが複数の置換基(R)を有する場合は、それぞれ異なるものを組み合わせて用いても良い。Rが複数の置換基を有する場合の組み合わせとしては、所望の誘電異方性を安定して発現させるために、フッ素原子とシアノ基との組み合わせ、フッ素原子とアルキル基との組み合わせ、シアノ基とアルキル基との組み合わせが好ましい。なお、cは0〜9の整数である。
上記式(1)で表されるカルボキシル基を有する化合物としては例えば、下記式(D−1)〜(D−25)で表される化合物が挙げられる。
Figure 2011102963
(式(D−1)〜(D−25)中、Rは上記式(1)と同義である。mは1〜30の整数である。)
上記式(2)で表される基としては、例えば下記式(E−1)〜(E−58)で
表される基が挙げられる。
Figure 2011102963
Figure 2011102963
Figure 2011102963
Figure 2011102963
(式(E−1)〜(E−58)中、Rは炭素数1から20のアルキル基(メチル基、エチル基、プロピル基、n−ブチル基、イソブチル基、n−ペンチル基、n−ヘキシル基等)又はアルコキシ基(メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基等)である。)
[特定カルボン酸の合成方法]
特定カルボン酸の合成手順は特に限定されず、従来公知の方法を組み合わせて行うことができる。代表的な合成手順としては、例えば(1)フェノール骨格を有する化合物と、高級脂肪酸エステルのアルキル鎖部分をハロゲンで置換した化合物とを塩基性条件下で反応させ、フェノール骨格の水酸基とハロゲンで置換された炭素との結合を形成し、その後エステルを還元して特定カルボン酸とする方法、(2)フェノール骨格を有する化合物とエチレンカーボネートとを反応させて末端アルコール化合物を生成させ、その水酸基とハロゲン化ベンゼンスルホニルクロリドとを反応させて活性化し、その後活性化部分に水酸基を含む安息香酸メチルを反応させて、スルホニル部分の脱離とともに末端アルコール化合物の水酸基と置換基として水酸基を含む安息香酸メチルの水酸基との結合を生成させ、
次いでエステルを還元して特定カルボン酸とする方法等が例示される。但し、特定カルボン酸の合成手順はこれらに限定されるものではない。
<[A]ポリオルガノシロキサン化合物の合成方法>
[A]ポリオルガノシロキサン化合物の合成方法としては、特に限定されず一般的な公知の方法で合成するこができる。エポキシ基を有する[A]ポリオルガノシロキサン化合物の合成方法としては、エポキシ基を有するポリオルガノシロキサンと特定カルボン酸とを、好ましくは触媒の存在下に反応させることにより合成することができる。
ここで特定カルボン酸は、ポリオルガノシロキサンの有するエポキシ基1モルに対して好ましくは0.001〜10モル、より好ましくは0.01〜5モル、さらに好ましくは0.05〜2モル使用される。
本発明においては、本発明の効果を損なわない範囲で特定カルボン酸の一部を下記式(5)で表される化合物で置き換えて使用してもよい。この場合、[A]ポリオルガノシロキサン化合物の合成は、エポキシ基を有するポリオルガノシロキサンと、特定カルボン酸及び下記式(4)で表される化合物の混合物とを反応させることにより行われる。
Figure 2011102963
上記式(4)中、
は炭素数1〜30の直鎖状又は分岐状のアルキル基、炭素数1〜20のアルキル基若しくはアルコキシル基で置換されていてもよい炭素数3〜10のシクロアルキル基又はステロイド骨格を有する炭素数17〜51の炭化水素基である。但し、上記アルキル基及びアルコキシ基の水素原子の一部又は全部がシアノ基、フッ素原子、トリフルオロメチル基等の置換基で置換されていてもよい。
は単結合、*−O−、*−COO−又は*−OCO−である。「*」を付した結合手がAと結合する。
は単結合、炭素数1〜20のアルキレン基、フェニレン基、ビフェニレン基、シクロへキシレン基、ビシクロへキシレン基又は下記式(L−1)若しくは(L−2)で表される基である。
Zは[A]ポリオルガノシロキサン化合物中のエポキシ基と反応して結合基を形成しうる1価の有機基である。
但し、Lが単結合であるときにはLは単結合である。
Figure 2011102963
上記式(L−1)及び(L−2)において「*」を付した結合手がそれぞれZと結合する。
Zはカルボキシル基であることが好ましい。
上記式(4)においてAが示す炭素数1〜30の直鎖状又は分岐状のアルキル基としては、例えばメチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、3−メチルブチル基、2−メチルブチル基、1−メチルブチル基、2,2−ジメチルプロピル基、n−ヘキシル基、4−メチルペンチル基、3−メチルペンチル基、2−メチルペンチル基、1−メチルペンチル基、3,3−ジメチルブチル基、2,3−ジメチルブチル基、1,3−ジメチルブチル基、2,2−ジメチルブチル基、1,2−ジメチルブチル基、1,2−ジメチルブチル基、1,1−ジメチルブチル基、n−ヘプチル基、5−メチルヘキシル基、4−メチルヘキシル基、3−メチルヘキシル基、2−メチルヘキシル基、1−メチルヘキシル基、4,4−ジメチルペンチル基、3,4−ジメチルペンチル基、2,4−ジメチルペンチル基、1,4−ジメチルペンチル基、3,3−ジメチルペンチル基、2,3−ジメチルペンチル基、1,3−ジメチルペンチル基、2,2−ジメチルペンチル基、1,2−ジメチルペンチル基、1,1−ジメチルペンチル基、2,3,3−トリメチルブチル基、1,3,3−トリメチルブチル基、1,2,3−トリメチルブチル基、n−オクチル基、6−メチルヘプチル基、5−メチルヘプチル基、4−メチルヘプチル基、3−メチルヘプチル基、2−メチルヘプチル基、1−メチルヘプチル基、2−エチルヘキシル基、n−ノナニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ヘプタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基等が挙げられる。
炭素数1〜20のアルキル基又はアルコキシ基で置換されていてもよい炭素数3〜10のシクロアルキル基としては、例えばシクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノナニル基、シクロデシル基、シクロドデシル基等が挙げられる。
ステロイド骨格を有する炭素数17〜51の炭化水素基としては、例えば下記式(A−1)〜(A−3)で表される基が挙げられる。
Figure 2011102963
上記式(4)におけるAとしては、炭素数1〜20のアルキル基、炭素数1〜20のフルオロアルキル基及び上記式(A−1)又は(A−3)から選ばれる基が好ましい。
上記式(4)で表される化合物としては、下記式(4−1)〜(4〜6)のいずれかで表される化合物が好ましい。
Figure 2011102963
上記式(4−1)〜(4−6)中、uは1〜5の整数である。vは1〜18の整数である。wは1〜20の整数である。kは1〜5の整数である。pは0又は1である。qは0〜18の整数である。rは0〜18の整数である。s及びtはそれぞれ独立して0〜2の整数である。
これらの化合物の中でも、下記式(5−1)〜(5−7)で表される化合物がより好ましい。
Figure 2011102963
上記式(4)で表される化合物は、特定カルボン酸とともにエポキシ基を有するポリオルガノシロキサンと反応し、得られる液晶配向膜にプレチルト角発現性を付与する部位となる化合物である。本明細書においては上記式(4)で表される化合物を、以下、「他のプレチルト角発現性化合物」と称することがある。
本発明において、特定カルボン酸とともに他のプレチルト角発現性化合物を使用する場合、特定カルボン酸及び他のプレチルト角発現性化合物の合計の使用割合は、ポリオルガノシロキサンの有するエポキシ基1モルに対して好ましくは0.001〜1.5モル、より好ましくは0.01〜1モル、さらに好ましくは0.05〜0.9モルである。この場合、他のプレチルト角発現性化合物は、特定カルボン酸との合計に対して好ましくは75モル%以下、より好ましくは50モル%以下の範囲で使用される。他のプレチルト角発現性化合物の使用割合が75モル%を超えると、液晶の高速応答性に悪影響が出る場合がある。
ポリオルガノシロキサン中のエポキシ基と上記式(4)及び他のプレチルト角発現性化合物で表されるカルボン酸基含有化合物の反応に使用される触媒としては、有機塩基、又はエポキシ化合物と酸無水物との反応を促進する、いわゆる硬化促進剤として公知の化合物を用いることができる。
上記有機塩基としては、例えばエチルアミン、ジエチルアミン、ピペラジン、ピペリジン、ピロリジン、ピロール等の1〜2級有機アミン;トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、ピリジン、4−ジメチルアミノピリジン、ジアザビシクロウンデセン等の3級の有機アミン;テトラメチルアンモニウムヒドロキシド等の4級の有機アミン等が挙げられる。これらの有機塩基のうち、トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、ピリジン、4−ジメチルアミノピリジン、テトラメチルアンモニウムヒドロキシドが好ましい。
上記硬化促進剤としては、例えば
ベンジルジメチルアミン、2,4,6−トリス(ジメチルアミノメチル)フェノール、シクロヘキシルジメチルアミン、トリエタノールアミン等の3級アミン;
2−メチルイミダゾール、2−n−ヘプチルイミダゾール、2−n−ウンデシルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、1−(2−シアノエチル)−2−メチルイミダゾール、1−(2−シアノエチル)−2−n−ウンデシルイミダゾール、1−(2−シアノエチル)−2−フェニルイミダゾール、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル−4,5−ジ(ヒドロキシメチル)イミダゾール、1−(2−シアノエチル)−2−フェニル−4,5−ジ〔(2’−シアノエトキシ)メチル〕イミダゾール、1−(2−シアノエチル)−2−n−ウンデシルイミダゾリウムトリメリテート、1−(2−シアノエチル)−2−フェニルイミダゾリウムトリメリテート、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾリウムトリメリテート、2,4−ジアミノ−6−〔2’−メチルイミダゾリル−(1’)〕エチル−s−トリアジン、2,4−ジアミノ−6−(2’−n−ウンデシルイミダゾリル)エチル−s−トリアジン、2,4−ジアミノ−6−〔2’−エチル−4’−メチルイミダゾリル−(1’)〕エチル−s−トリアジン、2−メチルイミダゾールのイソシアヌル酸付加物、2−フェニルイミダゾールのイソシアヌル酸付加物、2,4−ジアミノ−6−〔2’−メチルイミダゾリル−(1’)〕エチル−s−トリアジンのイソシアヌル酸付加物等のイミダゾール化合物;
ジフェニルフォスフィン、トリフェニルフォスフィン、亜リン酸トリフェニル等の有機リン化合物;ベンジルトリフェニルフォスフォニウムクロライド、テトラ−n−ブチルフォスフォニウムブロマイド、メチルトリフェニルフォスフォニウムブロマイド、エチルトリフェニルフォスフォニウムブロマイド、n−ブチルトリフェニルフォスフォニウムブロマイド、テトラフェニルフォスフォニウムブロマイド、エチルトリフェニルフォスフォニウムヨーダイド、エチルトリフェニルフォスフォニウムアセテート、テトラ−n−ブチルフォスフォニウムo,o−ジエチルフォスフォロジチオネート、テトラ−n−ブチルフォスフォニウムベンゾトリアゾレート、テトラ−n−ブチルフォスフォニウムテトラフルオロボレート、テトラ−n−ブチルフォスフォニウムテトラフェニルボレート、テトラフェニルフォスフォニウムテトラフェニルボレート等の4級フォスフォニウム塩;
1,8−ジアザビシクロ[5.4.0]ウンデセン−7やその有機酸塩等のジアザビシクロアルケン;
オクチル酸亜鉛、オクチル酸錫、アルミニウムアセチルアセトン錯体等の有機金属化
合物;
テトラエチルアンモニウムブロマイド、テトラ−n−ブチルアンモニウムブロマイド、テトラエチルアンモニウムクロライド、テトラ−n−ブチルアンモニウムクロライド等の4級アンモニウム塩;
三フッ化ホウ素、ホウ酸トリフェニル等のホウ素化合物;
塩化亜鉛、塩化第二錫等の金属ハロゲン化合物;
ジシアンジアミドやアミンとエポキシ樹脂との付加物等のアミン付加型促進剤等の高融点分散型潜在性硬化促進剤;
上記イミダゾール化合物、有機リン化合物や4級フォスフォニウム塩等の硬化促進剤の表面をポリマーで被覆したマイクロカプセル型潜在性硬化促進剤;
アミン塩型潜在性硬化促進剤;
ルイス酸塩、ブレンステッド酸塩等の高温解離型の熱カチオン重合型潜在性硬化促進剤等の潜在性硬化促進剤等が挙げられる。
これらの触媒の中でも、テトラエチルアンモニウムブロマイド、テトラ−n−ブチルアンモニウムブロマイド、テトラエチルアンモニウムクロライド、テトラ−n−ブチルアンモニウムクロライド等の4級アンモニウム塩が好ましい。
触媒は、エポキシ基を有するポリオルガノシロキサン100質量部に対して好ましくは100質量部以下、より好ましくは0.01〜100質量部、さらに好ましくは0.1〜20質量部の量で使用される。
反応温度は、好ましくは0〜200℃、より好ましくは50〜150℃である。反応時間は、好ましくは0.1〜50時間、より好ましくは0.5〜20時間である。
[A]ポリオルガノシロキサン化合物の合成反応は、必要に応じて有機溶媒の存在下に行うことができる。かかる有機溶媒としては、例えば炭化水素化合物、エーテル化合物、エステル化合物、ケトン化合物、アミド化合物、アルコール化合物等が挙げられる。これらのうち、エーテル化合物、エステル化合物、ケトン化合物が、原料及び生成物の溶解性並びに生成物の精製のし易さの観点から好ましい。溶媒は、固形分濃度(反応溶液中の溶媒以外の成分の質量が溶液の全質量に占める割合)が、好ましくは0.1質量%以上70質量%以下、より好ましくは5質量%以上50質量%以下となる量で使用される。
こうして得られた[A]ポリオルガノシロキサン化合物のゲルパーミエーションクロマトグラフィーによるスチレン換算での重量平均分子量は特に限定されないが、1,000〜200,000であることが好ましく、2,000〜20,000であることがより好ましい。このような分子量範囲にあることで、液晶表示素子の良好な配向性及び安定性を確保することができる。
本発明の[A]ポリオルガノシロキサン化合物は、エポキシ基を有するポリオルガノシロキサンに、特定カルボン酸のカルボキシレート部分のエポキシ基への開環付加により特定カルボン酸に由来する構造を導入している。この製造方法は簡便であり、しかも特定カルボン酸に由来する構造の導入率を高くすることができる点で極めて好適な方法である。
<任意成分>
当該液晶配向剤は、上記等の[A]ポリオルガノシロキサン化合物のほかに、本発明の効果を損なわない限り、例えば[A]ポリオルガノシロキサン化合物以外の重合体(以下、「他の重合体」と称することがある)、硬化剤、硬化触媒、硬化促進剤、分子内に少なくとも一つのエポキシ基を有する化合物(以下、「エポキシ化合物」と称することがある)、官能性シラン化合物、界面活性剤等のその他の任意成分を含有してもよい。
[他の重合体]
他の重合体は、当該液晶配向剤の溶液特性及び得られる液晶配向素子の電気特性をより改善するために使用できる。他の重合体としては、例えば
ポリアミック酸及びポリイミドよりなる群から選択される少なくとも1種の重合体([B]重合体);
下記式(5)で表されるポリオルガノシロキサン、その加水分解物及びその加水分解物の縮合物よりなる群から選択される少なくとも1種(以下、「他のポリオルガノシロキサン」と称することがある);
ポリアミック酸エステル、ポリエステル、ポリアミド、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン−フェニルマレイミド)誘導体、ポリ(メタ)アクリレート等が挙げられる。
Figure 2011102963
(式(5)中、Xは水酸基、ハロゲン原子、炭素数1〜20のアルキル基、炭素数1〜6のアルコキシ基又は炭素数6〜20のアリール基である。Yは水酸基又は炭素数1〜10のアルコキシ基である。)
<[B]重合体>
[B]重合体はポリアミック酸及びポリイミドからなる群より選択される少なくとも1種の重合体である。以下、ポリアミック酸、ポリイミドについて詳述する。
[ポリアミック酸]
ポリアミック酸は、テトラカルボン酸二無水物とジアミン化合物とを反応させることにより得られる。ポリアミック酸の合成に用いることのできるテトラカルボン酸二無水物としては、例えば2,3,5−トリカルボキシシクロペンチル酢酸二無水物、ブタンテトラカルボン酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3,4−シクロペンタンテトラカルボン酸二無水物、3,5,6−トリカルボキシノルボルナン−2−酢酸二無水物、2,3,4,5−テトラヒドロフランテトラカルボン酸二無水物、1,3,3a,4,5,9b−ヘキサヒドロ−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]−フラン−1,3−ジオン、1,3,3a,4,5,9b−ヘキサヒドロ−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−8−メチル−ナフト[1,2−c]−フラン−1,3−ジオン、5−(2,5−ジオキソテトラヒドロフラニル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、ビシクロ[2.2.2]−オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、下記式(F−1)〜(F−14)で表されるテトラカルボン酸二無水物等の脂肪族又は脂環式テトラカルボン酸二無水物;
Figure 2011102963
ピロメリット酸二無水物、3,3’,4,4’−ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’−ジメチルジフェニルシランテトラカルボン酸二無水物、3,3’,4,4’−テトラフェニルシランテトラカルボン酸二無水物、1,2,3,4−フランテトラカルボン酸二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3’,4,4’−パーフルオロイソプロピリデン
テトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ビス(フタル酸)フェニルホスフィンオキサイド二無水物、p−フェニレン−ビス(トリフェニルフタル酸)二無水物、m−フェニレン−ビス(トリフェニルフタル酸)二無水物、ビス(トリフェニルフタル酸)−4,4’−ジフェニルエーテル二無水物、ビス(トリフェニルフタル酸)−4,4’−ジフェニルメタン二無水物、下記式(F−15)〜(F−18)で表されるテトラカルボン酸二無水物等の芳香族テトラカルボン酸二無水物等が挙げられる。
Figure 2011102963
これらのうち、1,3,3a,4,5,9b−ヘキサヒドロ−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]−フラン−1,3−ジオン、1,3,3a,4,5,9b−ヘキサヒドロ−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−8−メチル−ナフト[1,2−c]−フラン−1,3−ジオン、2,3,5−トリカルボキシシクロペンチル酢酸二無水物、ブタンテトラカルボン酸二無水物、1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルエーテルテトラカルボン酸二無水物、上記式(F−1)、(F−2)、(F−15)〜(F−18)で表されるテトラカルボン酸二無水物が好ましい。これらテトラカルボン酸二無水物は、単独で又は2種以上を使用してもよい。
ポリアミック酸の合成に用いることのできるジアミン化合物としては、例えばp−フェニレンジアミン、m−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエタン、4,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルホン、3,3’−ジメチル−4,4’−ジアミノビフェニル、4,4’−ジアミノベンズアニリド、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノ−2,2’−ジメチルビフェニル、1,5−ジアミノナフタレン、3,3−ジメチル−4,4’−ジアミノビフェニル、5−アミノ−1−(4’−アミノフェニル)−1,3,3−トリメチルインダン、6−アミノ−1−(4’−アミノフェニル)−1,3,3−トリメチルインダン、3,4’−ジアミノジフェニルエーテル、2,2−ビス(4
−アミノフェノキシ)プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]スルホン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、9,9−ビス(4−アミノフェニル)−10−ヒドロアントラセン、2,7−ジアミノフルオレン、9,9−ビス(4−アミノフェニル)フルオレン、4,4’−メチレン−ビス(2−クロロアニリン)、2,2’,5,5’−テトラクロロ−4,4’−ジアミノビフェニル、2,2’−ジクロロ−4,4’−ジアミノ−5,5’−ジメトキシビフェニル、3,3’−ジメトキシ−4,4’−ジアミノビフェニル、4,4’−(p−フェニレンイソプロピリデン)ビスアニリン、4,4’−(m−フェニレンイソプロピリデン)ビスアニリン、2,2−ビス[4−(4−アミノ−2−トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン、4,4’−ジアミノ−2,2’−ビス(トリフルオロメチル)ビフェニル、4,4’−ビス[(4−アミノ−2−トリフルオロメチル)フェノキシ]−オクタフルオロビフェニル、6−(4−カルコニルオキシ)ヘキシルオキシ(2,4−ジアミノベンゼン)、6−(4’−フルオロ−4−カルコニルオキシ)ヘキシルオキシ(2,4−ジアミノベンゼン)、8−(4−カルコニルオキシ)オクチルオキシ(2,4−ジアミノベンゼン)、8−(4’−フルオロ−4−カルコニルオキシ)オクチルオキシ(2,4−ジアミノベンゼン)、1−ドデシルオキシ−2,4−ジアミノベンゼン、1−テトラデシルオキシ−2,4−ジアミノベンゼン、1−ペンタデシルオキシ−2,4−ジアミノベンゼン、1−ヘキサデシルオキシ−2,4−ジアミノベンゼン、1−オクタデシルオキシ−2,4−ジアミノベンゼン、1−コレステリルオキシ−2,4−ジアミノベンゼン、1−コレスタニルオキシ−2,4−ジアミノベンゼン、ドデシルオキシ(3,5−ジアミノベンゾイル)、テトラデシルオキシ(3,5−ジアミノベンゾイル)、ペンタデシルオキシ(3,5−ジアミノベンゾイル)、ヘキサデシルオキシ(3,5−ジアミノベンゾイル)、オクタデシルオキシ(3,5−ジアミノベンゾイル)、コレステリルオキシ(3,5−ジアミノベンゾイル)、コレスタニルオキシ(3,5−ジアミノベンゾイル)、(2,4−ジアミノフェノキシ)パルミテート、(2,4−ジアミノフェノキシ)ステアリレート、(2,4−ジアミノフェノキシ)−4−トリフルオロメチルベンゾエート、下記式(G−1)〜(G−7)で表されるジアミン化合物等の芳香族ジアミン;
Figure 2011102963
ジアミノテトラフェニルチオフェン等のヘテロ原子を有する芳香族ジアミン;
メタキシリレンジアミン、1,3−プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、4,4−ジアミノヘプタメチレンジアミン、1,4−ジアミノシクロヘキサン、シクロヘキサンビス(メチルアミン)、イソホロンジアミン、テトラヒドロジシクロペンタジエニレンジアミン、ヘキサヒドロ−4,7−メタノインダニレンジメチレンジアミン、トリシクロ[6.2.1.02,7]−ウンデシレンジメチルジアミン、4,4’−メチレンビス(シクロヘキシルアミン)等の脂肪族又は脂環式ジアミン;
ジアミノヘキサメチルジシロキサン等のジアミノオルガノシロキサン等が挙げられる。
これらのうち、p−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノ−2,2’−ジメチルビフェニル、シクロヘキサンビス(メチルアミン)、1,5−ジアミノナフタレン、2,7−ジアミノフルオレン、4,4’−ジアミノジフェニルエーテル、4,4’−(p−フェニレンイソプロピリデン)ビスアニリン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、2,2−ビス[4−(4−アミノ−2−トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン、4,4’−ジアミノ−2,2’−ビス(トリフルオロメチル)ビフェニル、4,4’−ビス[(4−アミノ−2−トリフルオロメチル)フェノキシ]−オクタフルオロビフェニル、1−ヘキサデシルオキシ−2,4−ジアミノベンゼン、1−オクタデシルオキシ−2,4−ジアミノベンゼン、1−コレステリルオキシ−2,4−ジアミノベンゼン、1−コレスタニルオキシ−2,4−ジアミノベンゼン、ヘキサデシルオキシ(3,5−ジアミノベンゾイル)、オクタデシルオキシ(3,5−ジアミノベンゾイル)、コレステリルオキシ(3,5−ジアミノベンゾイル)、コレスタニルオキシ(3,5−ジアミノベンゾイル)、上記式(G−1)〜(G−7)で表されるジアミンが好ましい。これらジアミンは単独で又は2種以上を使用してもよい。
ポリアミック酸の合成反応に供されるテトラカルボン酸二無水物とジアミン化合物の使用割合は、ジアミン化合物に含まれるアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が0.2〜2当量となる割合が好ましく、さらに好ましくは0.3〜1.2当量となる割合である。
ポリアミック酸の合成反応は、好ましくは有機溶媒中において、好ましくは−20〜150℃、より好ましくは0〜100℃の温度条件下において、好ましくは0.5〜24時間、より好ましくは2〜10時間行われる。ここで、有機溶媒としては、合成されるポリアミック酸を溶解できるものであれば特に制限はなく、例えばN−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N,N−ジメチルイミダゾリジノン、ジメチルスルホキシド、γ−ブチロラクトン、テトラメチル尿素、ヘキサメチルホスホルトリアミド等の非プロトン系極性溶媒;m−クレゾール、キシレノール、フェノール、ハロゲン化フェノール等のフェノール系溶媒が挙げられる。有機溶媒の使用量(a)は、テトラカルボン酸二無水物及びジアミン化合物の総量(b)が反応溶液の全量(a+b)に対して、好ましくは0.1〜50質量%、より好ましくは5〜30質量%となるような量である。
なお、上記有機溶媒には、ポリアミック酸の貧溶媒であるアルコール、ケトン、エステル、エーテル、ハロゲン化炭化水素、炭化水素類等を、生成するポリアミック酸が析出しない範囲で併用できる。かかる貧溶媒としては、例えばメチルアルコール、エチルアルコール、イソプロピルアルコール、シクロヘキサノール、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、トリエチレングリコール、ジアセトンアルコール、エチレングリコールモノメチルエーテル、乳酸エチル、乳酸ブチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸ブチル、メチルメトキシプロピオネ−ト、エチルエトキシプロピオネ−ト、プロピレンカーボネート、シュウ酸ジエチル、マロン酸ジエチル、ジエチルエーテル、エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコール−n−プロピルエーテル、エチレングリコール−i−プロピルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、エチレングリコールジメチルエーテル、エチレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、テトラヒドロフラン、ジクロロメタン、1,2−ジクロロエタン、1,4−ジクロロブタン、トリクロロエタン、クロルベンゼン、o−ジクロルベンゼン、ヘキサン、ヘプタン、オクタン、ベンゼン、トルエン、キシレン等が挙げられる。これらの貧溶媒は、単独で又は2種以上を使用してもよい。
以上のようにして、ポリアミック酸を溶解してなる反応溶液が得られる。この反応溶液はそのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸を単離したうえで液晶配向剤の調製に供してもよく、又は単離したポリアミック酸を精製したうえで液晶配向剤の調製に供してもよい。ポリアミック酸の単離は、上記反応溶液を大量の貧溶媒中に注いで析出物を得、この析出物を減圧下乾燥する方法、若しくは、反応溶液をエバポレーターで減圧留去する方法により行うことができる。また、このポリアミック酸を再び有機溶媒に溶解し、次いで貧溶媒で析出させる方法、若しくは、エバポレーターで減圧留去する工程を1回又は数回行う方法により、ポリアミック酸を精製することができる。
[ポリイミド]
上記ポリイミドは、上述のようにして得られたポリアミック酸の有するアミック酸構造を脱水閉環することにより製造することができる。このとき、アミック酸構造の全部を脱水閉環して完全にイミド化してもよく、又はアミック酸構造のうちの一部のみを脱水閉環してアミック酸構造とイミド構造とが併存する部分イミド化物としてもよい。
ポリアミック酸の脱水閉環は、(i)ポリアミック酸を加熱する方法により、又は(ii)ポリアミック酸を有機溶媒に溶解し、この溶液中に脱水剤及び脱水閉環触媒を添加し必要に応じて加熱する方法により行われる。
上記(i)のポリアミック酸を加熱する方法における反応温度は、好ましくは50〜200℃であり、より好ましくは60〜170℃である。反応温度を50℃以上とすることで脱水閉環反応を十分に進行させることができ、反応温度を200℃以下とすることで、得られるイミド化重合体の分子量の低下を抑制することができる。ポリアミック酸を加熱する方法における反応時間は、好ましくは0.5〜48時間であり、より好ましくは2〜20時間である。
一方、上記(ii)のポリアミック酸の溶液中に脱水剤及び脱水閉環触媒を添加する方法において、脱水剤としては、例えば無水酢酸、無水プロピオン酸、無水トリフルオロ酢酸等の酸無水物を用いることができる。脱水剤の使用量は、ポリアミック酸構造単位の1モルに対して0.01〜20モルとするのが好ましい。また、脱水閉環触媒としては、例えばピリジン、コリジン、ルチジン、トリエチルアミン等の3級アミンを用いることができる。しかし、これらに限定されるものではない。脱水閉環触媒の使用量は、使用する脱水剤1モルに対して0.01〜10モルとするのが好ましい。脱水閉環反応に用いられる有機溶媒としては、ポリアミック酸の合成に用いられるものとして例示した有機溶媒が挙げられる。脱水閉環反応の反応温度は好ましくは0〜180℃、より好ましくは10〜150℃であり、反応時間は好ましくは0.5〜20時間であり、より好ましくは1〜8時間である。
方法(ii)においては、上記のようにして、ポリイミドを含有する反応溶液が得られる。この反応溶液は、これをそのまま液晶配向剤の調製に供してもよく、反応溶液から脱水剤及び脱水閉環触媒を除いたうえで液晶配向剤の調製に供してもよく、ポリイミドを単離したうえで液晶配向剤の調製に供してもよく、又は単離したポリイミドを精製したうえで液晶配向剤の調製に供してもよい。反応溶液から脱水剤及び脱水閉環触媒を除くには、例えば溶媒置換等の方法を適用することができる。ポリイミドの単離、精製は、ポリアミック酸の単離、精製方法として上記したのと同様の操作を行うことにより行うことができる。
[他のポリオルガノシロキサン]
当該液晶配向剤は、[A]ポリオルガノシロキサン化合物以外にも他のポリオルガノシロキサンを含んでいてもよい。他のポリオルガノシロキサンは、上記式(5)で表されるポリオルガノシロキサン、その加水分解物及びその加水分解物の縮合物からなる群より選択される少なくとも1種であることが好ましい。なお、当該液晶配向剤が他のポリオルガノシロキサンを含む場合、他のポリオルガノシロキサンの大部分は、[A]ポリオルガノシロキサン化合物とは独立して存在しているもの、その一部は[A]ポリオルガノシロキサン化合物との縮合物として存在していても良い。
上記式(5)中のX及びYにおいて、
炭素数1〜20のアルキル基としては、例えばメチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ラウリル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基、n−エイコシル基等;
炭素数1〜16のアルコキシ基としては、例えばメトキシ基、エトキシ基等;
炭素数6〜20のアリール基としては、例えばフェニル基等が挙げられる。
他のポリオルガノシロキサンは、例えばアルコキシシラン化合物及びハロゲン化シラン化合物よりなる群から選択される少なくとも1種のシラン化合物(以下、「原料シラン化合物」と称することがある)を、好ましくは適当な有機溶媒中で、水及び触媒の存在下において加水分解又は加水分解・縮合することにより合成することができる。
ここで使用できる原料シラン化合物としては、例えばテトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシシラン、テトラ−iso−プロポキシシラン、テトラ−n−ブトキシラン、テトラ−sec−ブトキシシラン、テトラ−tert−ブトキシシラン、テトラクロロシラン;メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−n−プロポキシシラン、メチルトリ−iso−プロポキシシラン、メチルトリ−n−ブトキシシラン、メチルトリ−sec−ブトキシシラン、メチルトリ−tert−ブトキシシラン、メチルトリフェノキシシラン、メチルトリクロロシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリ−n−プロポキシシラン、エチルトリ−iso−プロポキシシラン、エチルトリ−n−ブトキシシラン、エチルトリ−
sec−ブトキシシラン、エチルトリ−tert−ブトキシシラン、エチルトリクロロシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリクロロシラン;ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジクロロシラン;トリメチルメトキシシラン、トリメチルエトキシシラン、トリメチルクロロシラン等が挙げられる。これらのうち、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシランが好ましい。
他のポリオルガノシロキサンを合成する際に、任意的に使用することのできる有機溶媒としては、例えばアルコール化合物、ケトン化合物、アミド化合物もしくはエステル化合物又はその他の非プロトン性化合物が挙げられる。これらは単独で又は2種以上を使用してもよい。
アルコール化合物としては、例えば
メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、i−ブタノール、sec−ブタノール、t−ブタノール、n−ペンタノール、i−ペンタノール、2−メチルブタノール、sec−ペンタノール、t−ペンタノール、3−メトキシブタノール、n−ヘキサノール、2−メチルペンタノール、sec−ヘキサノール、2−エチルブタノール、sec−ヘプタノール、ヘプタノール−3、n−オクタノール、2−エチルヘキサノール、sec−オクタノール、n−ノニルアルコール、2,6−ジメチルヘプタノール−4、n−デカノール、sec−ウンデシルアルコール、トリメチルノニルアルコール、sec−テトラデシルアルコール、sec−ヘプタデシルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキ
サノール、3,3,5−トリメチルシクロヘキサノール、ベンジルアルコール、ジアセトンアルコール等のモノアルコール化合物;
エチレングリコール、1,2−プロピレングリコール、1,3−ブチレングリコール、ペンタンジオール−2,4、2−メチルペンタンジオール−2,4、ヘキサンジオール−2,5、ヘプタンジオール−2,4、2−エチルヘキサンジオール−1,3、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等の多価アルコール化合物;
エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノ−2−エチルブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノ
エチルエーテル、ジプロピレングリコールモノプロピルエーテル等の多価アルコール化合物の部分エーテル等が挙げられる。これらのアルコール化合物は、単独で又は2種以上を使用してもよい。
ケトン化合物としては、例えば
アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチル−n−ブチルケトン、ジエチルケトン、メチル−i−ブチルケトン、メチル−n−ペンチルケトン、エチル−n−ブチルケトン、メチル−n−ヘキシルケトン、ジ−i−ブチルケトン、トリメチルノナノン、シクロヘキサノン、2−ヘキサノン、メチルシクロヘキサノン、2,4−ペンタンジオン、アセトニルアセトン、アセトフェノン、フェンチョン等のモノケトン化合物;
アセチルアセトン、2,4−ヘキサンジオン、2,4−ヘプタンジオン、3,5−ヘプタンジオン、2,4−オクタンジオン、3,5−オクタンジオン、2,4−ノナンジオン、3,5−ノナンジオン、5−メチル−2,4−ヘキサンジオン、2,2,6,6−テトラメチル−3,5−ヘプタンジオン、1,1,1,5,5,5−ヘキサフルオロ−2,4−ヘプタンジオン等のβ−ジケトン化合物等が挙げられる。これらのケトン化合物は、単独で又は2種以上を使用してもよい。
上記アミド化合物としては、例えばホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−エチルホルムアミド、N,N−ジエチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−エチルアセトアミド、N,N−ジエチルアセトアミド、N−メチルプロピオンアミド、N−メチルピロリドン、N−ホルミルモルホリン、N−ホルミルピペリジン、N−ホルミルピロリジン、N−アセチルモルホリン、N−アセチルピペリジン、N−アセチルピロリジン等が挙げられる。これらアミド化合物は、単独で又は2種以上を使用してもよい。
エステル化合物としては、例えばジエチルカーボネート、炭酸エチレン、炭酸プロピレン、炭酸ジエチル、酢酸メチル、酢酸エチル、γ−ブチロラクトン、γ−バレロラクトン、酢酸n−プロピル、酢酸i−プロピル、酢酸n−ブチル、酢酸i−ブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸sec−ペンチル、酢酸3−メトキシブチル、酢酸メチルペンチル、酢酸2−エチルブチル、酢酸2−エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n−ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ−n−ブチルエーテル、酢
酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n−ブチル、プロピオン酸i−アミル、シュウ酸ジエチル、シュウ酸ジ−n−ブチル、乳酸メチル、乳酸エチル、乳酸n−ブチル、乳酸n−アミル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチル等が挙げられる。これらエステル化合物は、単独で又は2種以上を使用してもよい。
その他の非プロトン性化合物としては、例えばアセトニトリル、ジメチルスルホキシド、N,N,N’,N’−テトラエチルスルファミド、ヘキサメチルリン酸トリアミド、N−メチルモルホロン、N−メチルピロール、N−エチルピロール、N−メチル−Δ3−ピロリン、N−メチルピペリジン、N−エチルピペリジン、N,N−ジメチルピペラジン、N−メチルイミダゾール、N−メチル−4−ピペリドン、N−メチル−2−ピペリドン、N−メチル−2−ピロリドン、1,3−ジメチル−2−イミダゾリジノン、1,3−ジメチルテトラヒドロ−2(1H)−ピリミジノン等が挙げられる。これら溶媒のうち、多価アルコール化合物、多価アルコール化合物の部分エーテル、又はエステル化合物が特に好ましい。
他のポリオルガノシロキサンの合成に際して使用する水の量としては、原料シラン化合物の有するアルコキシ基及びハロゲン原子の総量の1モルに対して、好ましくは0.01〜100モルであり、より好ましくは0.1〜30モルであり、さらに1〜1.5モルであることが好ましい。
他のポリオルガノシロキサンの合成に際して使用できる触媒としては、例えば金属キレート化合物、有機酸、無機酸、有機塩基、アンモニア、アルカリ金属化合物等が挙げられる。
上記金属キレート化合物としては、例えばトリエトキシ・モノ(アセチルアセトナート)チタン、トリ−n−プロポキシ・モノ(アセチルアセトナート)チタン、トリ−i−プロポキシ・モノ(アセチルアセトナート)チタン、トリ−n−ブトキシ・モノ(アセチルアセトナート)チタン、トリ−sec−ブトキシ・モノ(アセチルアセトナート)チタン、トリ−t−ブトキシ・モノ(アセチルアセトナート)チタン、ジエトキシ・ビス(アセチルアセトナート)チタン、ジ−n−プロポキシ・ビス(アセチルアセトナート)チタン、ジ−i−プロポキシ・ビス(アセチルアセトナート)チタン、ジ−n−ブトキシ・ビス(アセチルアセトナート)チタン、ジ−sec−ブトキシ・ビス(アセチルアセトナート)チタン、ジ−t−ブトキシ・ビス(アセチルアセトナート)チタン、モノエトキシ・ト
リス(アセチルアセトナート)チタン、モノ−n−プロポキシ・トリス(アセチルアセトナート)チタン、モノ−i−プロポキシ・トリス(アセチルアセトナート)チタン、モノ−n−ブトキシ・トリス(アセチルアセトナート)チタン、モノ−sec−ブトキシ・トリス(アセチルアセトナート)チタン、モノ−t−ブトキシ・トリス(アセチルアセトナート)チタン、テトラキス(アセチルアセトナート)チタン、トリエトキシ・モノ(エチルアセトアセテート)チタン、トリ−n−プロポキシ・モノ(エチルアセトアセテート)チタン、トリ−i−プロポキシ・モノ(エチルアセトアセテート)チタン、トリ−n−ブトキシ・モノ(エチルアセトアセテート)チタン、トリ−sec−ブトキシ・モノ(エチルアセトアセテート)チタン、トリ−t−ブトキシ・モノ(エチルアセトアセテート)チ
タン、ジエトキシ・ビス(エチルアセトアセテート)チタン、ジ−n−プロポキシ・ビス(エチルアセトアセテート)チタン、ジ−i−プロポキシ・ビス(エチルアセトアセテート)チタン、ジ−n−ブトキシ・ビス(エチルアセトアセテート)チタン、ジ−sec−ブトキシ・ビス(エチルアセトアセテート)チタン、ジ−t−ブトキシ・ビス(エチルアセトアセテート)チタン、モノエトキシ・トリス(エチルアセトアセテート)チタン、モノ−n−プロポキシ・トリス(エチルアセトアセテート)チタン、モノ−i−プロポキシ・トリス(エチルアセトアセテート)チタン、モノ−n−ブトキシ・トリス(エチルアセトアセテート)チタン、モノ−sec−ブトキシ・トリス(エチルアセトアセテート)チタン、モノ−t−ブトキシ・トリス(エチルアセトアセテート)チタン、テトラキス(エ
チルアセトアセテート)チタン、モノ(アセチルアセトナート)トリス(エチルアセトアセテート)チタン、ビス(アセチルアセトナート)ビス(エチルアセトアセテート)チタン、トリス(アセチルアセトナート)モノ(エチルアセトアセテート)チタン等のチタンキレート化合物;
トリエトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ−n−プロポキシ・モノ(アセチルアセトナート)ジルコニウム、トリ−i−プロポキシ・モノ(アセチルアセトナート)ジルコニウム、トリ−n−ブトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ−sec−ブトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ−t−ブトキシ・モノ(アセチルアセトナート)ジルコニウム、ジエトキシ・ビス(アセチルアセトナート)ジルコニウム、ジ−n−プロポキシ・ビス(アセチルアセトナート)ジルコニウム、ジ−i−プロポキシ・ビス(アセチルアセトナート)ジルコニウム、ジ−n−ブトキシ・ビス(アセチルアセトナート)ジルコニウム、ジ−sec−ブトキシ・ビス(アセチルアセトナート)ジルコニウム、ジ−t−ブトキシ・ビス(アセチルアセトナー
ト)ジルコニウム、モノエトキシ・トリス(アセチルアセトナート)ジルコニウム、モノ−n−プロポキシ・トリス(アセチルアセトナート)ジルコニウム、モノ−i−プロポキシ・トリス(アセチルアセトナート)ジルコニウム、モノ−n−ブトキシ・トリス(アセチルアセトナート)ジルコニウム、モノ−sec−ブトキシ・トリス(アセチルアセトナート)ジルコニウム、モノ−t−ブトキシ・トリス(アセチルアセトナート)ジルコニウム、テトラキス(アセチルアセトナート)ジルコニウム、トリエトキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ−n−プロポキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ−i−プロポキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ−n−ブトキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ−sec−
ブトキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ−t−ブトキシ・モノ(エチルアセトアセテート)ジルコニウム、ジエトキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ−n−プロポキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ−i−プロポキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ−n−ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ−sec−ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ−t−ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、モノエトキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ−n−プロポキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ−i−プロポキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ−n−ブトキシ・トリス(エチ
ルアセトアセテート)ジルコニウム、モノ−sec−ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ−t−ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウム、モノ(アセチルアセトナート)トリス(エチルアセトアセテート)ジルコニウム、ビス(アセチルアセトナート)ビス(エチルアセトアセテート)ジルコニウム、トリス(アセチルアセトナート)モノ(エチルアセトアセテート)ジルコニウム等のジルコニウムキレート化合物;
トリス(アセチルアセトナート)アルミニウム、トリス(エチルアセトアセテート)アルミニウム等のアルミニウムキレート化合物等が挙げられる。
上記有機酸としては、例えば酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、シュウ酸、マレイン酸、メチルマロン酸、アジピン酸、セバシン酸、没食子酸、酪酸、メリット酸、アラキドン酸、ミキミ酸、2−エチルヘキサン酸、オレイン酸、ステアリン酸、リノール酸、リノレイン酸、サリチル酸、安息香酸、p−アミノ安息香酸、p−トルエンスルホン酸、ベンゼンスルホン酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ギ酸、マロン酸、スルホン酸、フタル酸、フマル酸、クエン酸、酒石酸等が挙げられる。
上記無機酸としては、例えば塩酸、硝酸、硫酸、フッ酸、リン酸等が挙げられる。
上記有機塩基としては、例えばピリジン、ピロール、ピペラジン、ピロリジン、ピペリジン、ピコリン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、ジメチルモノエタノールアミン、モノメチルジエタノールアミン、トリエタノールアミン、ジアザビシクロオクラン、ジアザビシクロノナン、ジアザビシクロウンデセン、テトラメチルアンモニウムハイドロオキサイド等が挙げられる。
上記アルカリ金属化合物としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化バリウム、水酸化カルシウム等が挙げられる。これら触媒は、単独で又は2種以上を使用してもよい。
これら触媒のうち、金属キレート化合物、有機酸、無機酸が好ましい。金属キレート化合物としては、チタンキレート化合物がより好ましい。
触媒の使用量は、原料シラン化合物100質量部に対して好ましくは0.001〜10質量部であり、より好ましくは0.001〜1質量部である。
触媒は、原料であるシラン化合物中又はシラン化合物を有機溶媒に溶解した溶液中に予め添加しておいてもよく、又は添加される水中に溶解又は分散させておいてもよい。
他のポリオルガノシロキサンの合成に際して添加される水は、原料であるシラン化合物中又はシラン化合物を有機溶媒に溶解した溶液中に、断続的又は連続的に添加することが
できる。
他のポリオルガノシロキサンの合成の際の反応温度としては、好ましくは0〜100℃であり、より好ましくは15〜80℃である。反応時間は好ましくは0.5〜24時間であり、より好ましくは1〜8時間である。
当該液晶配向剤が、[A]ポリオルガノシロキサン化合物とともに他の重合体を含有するものである場合、他の重合体の含有量としては、[A]ポリオルガノシロキサン化合物100質量部に対して10,000質量部以下であることが好ましい。他の重合体のより好ましい含有量は、他の重合体の種類により異なる。
当該液晶配向剤が、[A]ポリオルガノシロキサン化合物及び[B]重合体を含有する場合における両者の好ましい使用割合としては、[A]ポリオルガノシロキサン化合物100質量部に対して[B]重合体の合計量100〜5,000質量部が好ましく、200〜3,000質量部がより好ましい。
一方、当該液晶配向剤が、[A]ポリオルガノシロキサン化合物及び他のポリオルガノシロキサンを含有するものである場合における両者の好ましい使用割合は、[A]ポリオルガノシロキサン化合物100質量部に対する他のポリオルガノシロキサンの量として100〜2,000質量部である。
当該液晶配向剤が、[A]ポリオルガノシロキサン化合物とともに他の重合体を含有するものである場合、他の重合体としては、[B]重合体、又は他のポリオルガノシロキサンが好ましい。
[硬化剤、硬化触媒及び硬化促進剤]
硬化剤及び硬化触媒は、[A]ポリオルガノシロキサン化合物の架橋反応をより強固にする目的で当該液晶配向剤に含ませることができる。硬化促進剤は、硬化剤の司る硬化反応を促進する目的で当該液晶配向剤に含ませることができる。
硬化剤としては、エポキシ基を有する硬化性化合物、又はエポキシ基を有する化合物を含有する硬化性組成物の硬化に一般に用いられている硬化剤を用いることができる。このような硬化剤としては、例えば多価アミン、多価カルボン酸無水物、多価カルボン酸が挙げられる。
多価カルボン酸無水物としては、例えばシクロヘキサントリカルボン酸の無水物及びその他の多価カルボン酸無水物が挙げられる。
シクロヘキサントリカルボン酸無水物としては、例えばシクロヘキサン−1,3,4−トリカルボン酸−3,4−無水物、シクロヘキサン−1,3,5−トリカルボン酸−3,5−無水物、シクロヘキサン−1,2,3−トリカルボン酸−2,3−酸無水物等が挙げられる。その他の多価カルボン酸無水物としては、例えば4−メチルテトラヒドロフタル酸無水物、メチルナジック酸無水物、ドデセニルコハク酸無水物、無水こはく酸、無水マレイン酸、無水フタル酸、無水トリメリット酸、下記式(6)で表される化合物、ポリアミック酸の合成に一般に用いられるテトラカルボン酸二無水物の他、α−テルピネン、アロオシメン等の共役二重結合を有する脂環式化合物と無水マレイン酸とのディールス・アルダー反応生成物及びこれらの水素添加物等が挙げられる。
Figure 2011102963
(式(6)中、xは1〜20の整数である。)
硬化触媒としては、例えば6フッ化アンチモン化合物、6フッ化リン化合物、アルミニウムトリスアセチルアセトナート等を用いることができる。これらの触媒は、加熱によりエポキシ基のカチオン重合を触媒することができる。
上記硬化促進剤としては、例えばイミダゾール化合物;4級リン化合物;4級アミン化合物;1,8−ジアザビシクロ[5.4.0]ウンデセン−7やその有機酸塩等のジアザビシクロアルケン;オクチル酸亜鉛、オクチル酸錫、アルミニウムアセチルアセトン錯体等の有機金属化合物;三フッ化ホウ素、ホウ酸トリフェニル等のホウ素化合物;塩化亜鉛、塩化第二錫等の金属ハロゲン化合物;ジシアンジアミド、アミンとエポキシ樹脂との付加物等のアミン付加型促進剤等の高融点分散型潜在性硬化促進剤;4級フォスフォニウム塩等の表面をポリマーで被覆したマイクロカプセル型潜在性硬化促進剤;アミン塩型潜在性硬化促進剤;ルイス酸塩、ブレンステッド酸塩等の高温解離型の熱カチオン重合型潜在性硬化促進剤等が挙げられる。
[エポキシ化合物]
上記エポキシ化合物は、形成される液晶配向膜の基板表面に対する接着性を向上させる観点から、当該液晶配向剤に含ませることができる。
エポキシ化合物としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2−ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6−テトラグリシジル−2,4−ヘキサンジオール、N,N,N’,N’−テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン、N,N,−ジグリシジル−ベンジルアミン、N,N−ジグリシジル−アミノメチルシクロヘキサンが好ましい。
当該液晶配向剤がエポキシ化合物を含有する場合、その含有割合としては、上記の[A]ポリオルガノシロキサン化合物と任意的に使用される他の重合体との合計100質量部に対して、好ましくは0.01〜40質量部以下、より好ましくは0.1〜30質量部である。
なお、当該液晶配向剤がエポキシ化合物を含有する場合、その架橋反応を効率良く起こす目的で、1−ベンジル−2−メチルイミダゾール等の塩基触媒を併用してもよい。
[官能性シラン化合物]
官能性シラン化合物は、得られる液晶配向膜の基板との接着性を向上する目的で使用することができる。官能性シラン化合物としては、例えば3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−アミノプロピルトリメトキシシラン、2−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、3−ウレイドプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリメトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリエトキシシラン、N−トリエトキシシリルプロピルトリエチレントリアミン、N−トリメトキシシリルプロピルトリエチレント
リアミン、10−トリメトキシシリル−1,4,7−トリアザデカン、10−トリエトキシシリル−1,4,7−トリアザデカン、9−トリメトキシシリル−3,6−ジアザノニルアセテート、9−トリエトキシシリル−3,6−ジアザノニルアセテート、N−ベンジル−3−アミノプロピルトリメトキシシラン、N−ベンジル−3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリエトキシシラン、N−ビス(オキシエチレン)−3−アミノプロピルトリメトキシシラン、N−ビス(オキシエチレン)−3−アミノプロピルトリエトキシシラン、3−グリシジロキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられ、さらに特開昭63−291922号公報に記載されているテトラカルボン酸二無水物とアミノ基を有するシラン化合物との反応物等が挙げられる。
当該液晶配向剤が官能性シラン化合物を含有する場合、その含有割合としては、上記の[A]ポリオルガノシロキサン化合物と任意的に使用される他の重合体との合計100質量部に対して、50質量部以下が好ましく、20質量部以下がより好ましい。
[界面活性剤]
界面活性剤としては、例えばノニオン界面活性剤、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、シリコーン界面活性剤、ポリアルキレンオキシド界面活性剤、含フッ素界面活性剤等が挙げられる。
当該液晶配向剤が界面活性剤を含有する場合、その含有割合としては、液晶配向剤の全体100質量部に対して、好ましくは10質量部以下であり、より好ましくは1質量部以下である。
<液晶配向剤の調製方法>
当該液晶配向剤は、上述の通り、[A]ポリオルガノシロキサン化合物を必須成分として含有し、必要に応じてその他の任意成分を含有できるが、好ましくは各成分が有機溶媒に溶解された溶液状の組成物として調製される。
当該液晶配向剤を調製するために使用することのできる有機溶媒としては、特定ポリオルガノシロキサン及び任意的に使用される他の成分を溶解し、これらと反応しないものが好ましい。当該液晶配向剤に好ましく使用することのできる有機溶媒は、任意的に添加される他の重合体の種類により異なる。
当該液晶配向剤が、[A]ポリオルガノシロキサン化合物及び[B]重合体を含有する場合における好ましい有機溶媒としては、ポリアミック酸の合成に用いられるものとして上記に例示した有機溶媒が挙げられる。このとき、本発明のポリアミック酸の合成に用いられるものとして例示した貧溶媒を併用してもよい。これら有機溶媒は、単独で又は2種以上を使用してもよい。
一方、当該液晶配向剤が、重合体として[A]ポリオルガノシロキサン化合物のみを含有する場合、又は[A]ポリオルガノシロキサン化合物及び他のポリオルガノシロキサンを含有する場合における好ましい有機溶媒としては、例えば1−エトキシ−2−プロパノール、プロピレングリコールモノエチルエーテル、プロピレンブリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノアセテート、ジプロピレングリコールメチルエーテル、ジプロピレングリコールエチルエーテル、ジプロピレングリコールプロピルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、エチレングリコールモノアミルエーテル、エチレングリコールモノヘキシルエーテル、ジエチレングリコール、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピルセロソルブアセテート、ブチルセロソルブアセテート、メチルカルビトール、エチルカルビトール、プロピルカルビトール、ブチルカルビトール、酢酸n−プロピル、酢酸i−プロピル、酢酸n−ブチル、酢酸i−ブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸sec−ペンチル、酢酸3−メトキシブチル、酢酸メチルペンチル、酢酸2−エチルブチル、酢酸2−エチルヘキシル、酢酸ベンジル、酢酸n−ヘキシル、酢酸シクロヘキシル、酢酸オクチル、酢酸アミル、酢酸イソアミル等が挙げられる。これらのうち、酢酸n−プロピル、酢酸i−プロピル、酢酸n−ブチル、酢酸i−ブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸sec−ペンチルが好ましい。
当該液晶配向剤の調製に用いられる好ましい溶媒は、他の重合体の使用の有無及びその種類に従って、上記した有機溶媒の1種以上を組み合わせて得ることができる。このような溶媒は、下記の好ましい固形分濃度において液晶配向剤に含有される各成分が析出せず、かつ液晶配向剤の表面張力が25〜40mN/mの範囲となるものである。
当該液晶配向剤の固形分濃度、すなわち液晶配向剤中の溶媒以外の全成分の重量が液晶配向剤の全重量に占める割合は、粘性、揮発性等を考慮して選択されるが、好ましくは1〜10質量%の範囲である。当該液晶配向剤は、基板表面に塗布され、液晶配向膜となる塗膜を形成するが、固形分濃度が1質量%以上である場合には、この塗膜の膜厚が過小となりにくくなって良好な液晶配向膜を得ることができる。一方、固形分濃度が10質量%以下の場合には、塗膜の膜厚が過大となることを抑制して良好な液晶配向膜を得ることができ、また、液晶配向剤の粘性が増大することを防止して塗布特性を良好なものとすることができる。特に好ましい固形分濃度の範囲は、基板に液晶配向剤を塗布する際に採用する方法によって異なる。例えば、スピンナー法による場合には1.5〜4.5質量%の範囲が特に好ましい。印刷法による場合には、固形分濃度を3〜9質量%の範囲とし、それによって溶液粘度を12〜50mPa・sの範囲とするのが特に好ましい。インクジェット法による場合には、固形分濃度を1〜5質量%の範囲とし、それによって溶液粘度を3〜15mPa・sの範囲とするのが特に好ましい。当該液晶配向剤を調製する際の温度は、好ましくは、0℃〜200℃、より好ましくは0℃〜40℃である。
<液晶表示素子>
本発明の液晶表示素子は、その駆動方式に特に制限はなく、TN、STN、IPS、VA(VA−MVA方式、VA−PVA方式等を含む)等公知の各種方式に本技術を適用することが可能であり、上記液晶配向剤から形成された上記液晶配向膜を具備する。一般的に、液晶表示素子は表面に透明電極及び液晶配向膜がこの順に積層された一対の基板を備え、この一対の基板が内側に対向配設されており、この一対の基板間に液晶が充填され、周辺部がシール剤でシールされている。
<液晶表示素子の製造方法>
当該液晶配向剤を用いて形成される液晶表示素子は、例えば以下のようにして製造することができる。本発明に用いられる液晶配向膜は、基板上に当該液晶配向剤を塗布し、次いで塗布面を加熱することにより基板上に形成される。基板としては、例えばフロートガラス、ソーダガラス等のガラス;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネート、脂環式ポリオレフィン等のプラスチックからなる透明基板を用いることができる。上記のようにして液晶配向膜が形成された基板を2枚準備し、この2枚の基板間に液晶を配置することにより、液晶セルを製造する。液晶セルを製造するには、例えば以下の2つの方法が挙げられる。
第一の方法は、従来から知られている方法である。まず、それぞれの液晶配向膜が対向するように間隙(セルギャップ)を介して2枚の基板を対向配置し、2枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶を注入充填した後、注入孔を封止することにより、液晶セルを製造することができる。
第二の方法は、ODF(One Drop Fill)方式と呼ばれる手法である。液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に例えば紫外光硬化性のシール材を塗布し、さらに液晶配向膜面上に液晶を滴下した後、液晶配向膜が対向するように他方の基板を貼り合わせ、次いで基板の全面に紫外光を照射してシール剤を硬化することにより、液晶セルを製造することができる。
いずれの方法による場合でも、次いで液晶セルを用いた液晶が等方相をとる温度まで加熱した後、室温まで徐冷することにより、注入時の流動配向を除去することが望ましい。そして、液晶セルの外側表面に偏光板を貼り合わせることにより、本発明の液晶表示素子を得ることができる。
上記シール剤としては、例えばスペーサーとしての酸化アルミニウム球及び硬化剤を含有するエポキシ樹脂等を用いることができる。
上記液晶としては、例えばネマティック型液晶、スメクティック型液晶等を用いることができる。TN型液晶セル又はSTN型液晶セルの場合、ネマティック型液晶を形成する正の誘電異方性を有するものが好ましい。このような液晶としては、例えばビフェニル系液晶、フェニルシクロヘキサン系液晶、エステル系液晶、ターフェニル系液晶、ビフェニルシクロヘキサン系液晶、ピリミジン系液晶、ジオキサン系液晶、ビシクロオクタン系液晶、キュバン系液晶等が用いられる。また上記液晶に、例えばコレスチルクロライド、コレステリルノナエート、コレステリルカーボネート等のコレステリック液晶;商品名C−15、CB−15(メルク社)として販売されているようなカイラル剤;p−デシロキシベンジリデン−p−アミノ−2−メチルブチルシンナメート等の強誘電性液晶等を、さらに添加して使用することもできる。
一方、垂直配向型液晶セルの場合には、ネマティック型液晶を形成する負の誘電異方性を有するものが好ましい。このような液晶としては、例えばジシアノベンゼン系液晶、ピリダジン系液晶、シッフベース系液晶、アゾキシ系液晶、ビフェニル系液晶、フェニルシクロヘキサン系液晶等が用いられる。
液晶セルの外側に使用される偏光板としては、特に限定されないが、ポリビニルアルコールフィルムを延伸配向させながらヨウ素を吸収させた「H膜」と呼ばれる偏光膜を酢酸セルロース保護膜で挟んだ偏光板、又はH膜そのものからなる偏光板等が挙げられる。
かくして製造された本発明の液晶表示素子は、液晶の応答速度、表示特性に加え、配向性や電圧保持率、残像特性等の諸性能に優れるものである。
<配向方位の異なる2以上の領域を有する液晶表示素子>
当該液晶表示素子は、液晶配向モードが垂直型であり、かつ配向方位が異なる2以上の領域を有しており、基本構造は上記液晶表示素子と同様である。この配向方法が異なる2以上の領域を有する手段としては、特に限定されず、例えばパターニングされた透明電極を用いる手段や、液晶配向膜のラビング処理等による配向分割手段等が挙げられる。かかる液晶表示素子では、TN、STN、IPS、VA(VA−MVA方式、VA−PVA方式等を含む)等の駆動モードにおいても好適に適用でき、さらにはコントラストが向上し、また高速応答性もより向上する。
上記パターニングされた透明電極の製造方法としては、当該液晶配向剤を好ましくはオフセット印刷法、スピンコート法又はインクジェット印刷法により塗布し、次いで、各塗布面を加熱することにより塗膜を形成する。基板の一面に設けられる透明導電膜としては、酸化スズ(SnO)からなるNESA膜(米国PPG社登録商標)、酸化インジウム−酸化スズ(In−SnO)からなるITO膜等を用いることができる。次いで、例えばパターンなしの透明導電膜を形成した後フォト・エッチングによりパターンを形成する方法、透明導電膜を形成する際に所望のパターンを有するマスクを用いる方法等によりパターンを形成する。
具体的なパターニングされた透明電極としては、図1〜図3に示すものが挙げられる。図1を参照しつつパターニングされた透明電極を説明する。図1(b)を参照すると、透明基板3は複数の領域に区画されたITO膜1を有し、スリット2が複数設けられパターニングされている。スリット2の幅w1としては、例えば10μm程度であり、スリット2間の距離w2としては例えば35μm程度である。この場合、図1(a)に示すITOラインW1は、9mm(35μm幅で200本)程度となる。透明基板の材料としては、例えばガラス等が挙げられる。なお、図1に示すパターニングされた透明電極を用いて液晶表示素子を製造する場合、かかるパターニングされた透明電極を備える基板を2枚準備し、この2枚の基板を対向させたときにスリット2同士が重ならないように(スリット2が互いにずれて、ITO膜1と接するように)配置することを要する。
液晶配向膜の配向分割手段としては、例えば上述の「液晶表示素子の製造方法」と同様に操作して液晶配向膜を有する基板を一対(2枚)作成し、これらの基板の一画素に2以上の配向方位が異なる領域を有するように、マスクを介してラビング処理する方法が挙げられる。マスクの形態としては、一つの領域の大きさに相当する穴を有する一画素を4分割するマスク(画素サイズの1/4のマトリックスで、一つ置きで穴が設けられており、その穴が対角線に並んでいるようなマスク)が挙げられる。
本発明の配向方位の異なる2以上の領域を有する液晶表示素子の製造に用いられる液晶配向剤は、上記式(3)で表される基を有する化合物を含有することが好ましい。
式(3)中、Rは二重結合、三重結合、エーテル結合、エステル結合又は酸素原子のいずれかを含む連結基である。Rは少なくとも2つの単環構造を有する基である。aは0〜1の整数である。これらの符合の詳細な説明については、[A]ポリオルガノシロキサン化合物の説明の項で行っているので、ここでは省略する。
<ポリオルガノシロキサン化合物>
本発明のポリオルガノシロキサン化合物は、エポキシ基を有するポリオルガノシロキサンに由来する部分と、下記式(1)で表されるカルボキシル基を有する化合物、又は式(1)のRが下記式(2)で表されるカルボキシル基を有する化合物に由来する部分とを有する。当該ポリオルガノシロキサン化合物の詳細な説明は、当該液晶配向剤に含まれる[A]ポリオルガノシロキサン化合物の説明の項で行っているので、ここでは省略する。当該ポリオルガノシロキサン化合物は配向性や高速応答性、電圧特性に加え残像特性等の諸性能を備える液晶表示素子を構成するための液晶配向剤に好適に用いることができる。
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に制限されるものではない。
以下の実施例において得られたエポキシ基を有するポリオルガノシロキサン及び[A]ポリオルガノシロキサン化合物の重量平均分子量(Mw)は、下記仕様のGPCにより測定したポリスチレン換算値である。
カラム:東ソー社、TSKgelGRCXLII
溶媒:テトラヒドロフラン
温度:40℃
圧力:68kgf/cm
なお、以下の実施例において用いた原料化合物及び重合体の必要量は、下記の合成例に示す合成スケールでの原料化合物及び重合体の合成を必要に応じて繰り返すことにより確保した。
<エポキシ基を有するポリオルガノシロキサンの合成>
[合成例1]
撹拌機、温度計、滴下漏斗及び還流冷却管を備えた反応容器に、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン(ECETS)100.0g、メチルイソブチルケトン500g及びトリエチルアミン10.0gを仕込み、室温で混合した。次いで、脱イオン水100gを滴下漏斗より30分かけて滴下した後、還流下で混合しつつ、80℃で6時間反応させた。反応終了後、有機層を取り出し、0.2質量%硝酸アンモニウム水溶液により洗浄後の水が中性になるまで洗浄したのち、減圧下で溶媒及び水を留去することにより、エポキシ基を有するポリオルガノシロキサンを粘調な透明液体として得た。
このエポキシ基を有するポリオルガノシロキサンについて、H−NMR分析を行なったところ、化学シフト(δ)=3.2ppm付近にエポキシ基に基づくピークが理論強度どおりに得られ、反応中にエポキシ基の副反応が起こっていないことが確認された。
[合成例2〜3]
仕込み原料を下記表1に示すとおりとした以外は、合成例1と同様に操作してエポキシ基を有するポリオルガノシロキサンをそれぞれ粘稠な透明液体として得た。合成例1〜3で得られたエポキシ基を有するポリオルガノシロキサンのMw及びエポキシ当量を表1にあわせて示す。なお、表1における原料シラン化合物の略称は以下の意味である。
ECETS:2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン
MTMS:メチルトリメトキシシラン
PTMS:フェニルトリメトキシシラン
Figure 2011102963
<特定カルボン酸の合成>
下記反応スキームに従い特定カルボン酸1を合成した。
Figure 2011102963
[合成例4]
冷却管を備えた500mLの三口フラスコに4−シアノ−4’−ヒドロキシビフェニル6.3g、11−ブロモウンデカン酸メチル10g、炭酸カリウム14.2g、N,N−ジメチルホルムアミド200mLを加え、160℃で5時間加熱撹拌した。TLCで反応の終了を確認した後、反応溶液を室温まで冷却した。反応溶液を水500mLに投入し、混合撹拌した。析出した白色固体をろ別し、水で更に洗浄した。得られた固体を80℃で真空乾燥することで、化合物1を11g得た。
[合成例5]
次に、冷却管を備えた200mLの三口フラスコに、化合物1を10g、水酸化リチウム・1水和物1.6g、メタノール30mL、水15mLを加え、80℃で4時間加熱撹拌した。TLCで反応の終了を確認した後、反応溶液を室温まで冷却した。反応溶液を撹拌した状態で、希塩酸を反応溶液にゆっくり滴下した。析出固体をろ過し、水、エタノールの順で洗浄した。得られた固体を80℃で真空乾燥することで、特定カルボン酸1を8g得た。
下記反応スキームに従い特定カルボン酸2を合成した。
Figure 2011102963
[合成例6]
冷却管を備えた500mLの三口フラスコに4−シアノ−4’−ヒドロキシビフェニル15g、エチレンカーボネート13.5g、テトラブチルアンモニウムブロミド(TBAB)2.5g、N,N−ジメチルホルムアミド300mLを加え、150℃で9時間加熱撹拌した。TLCで反応の終了を確認した後、反応溶液を室温まで冷却した。反応溶液を酢酸エチル300mL、1N−水酸化ナトリウム水溶液100mLの混合溶液で分液洗浄した。有機層を抽出した後、更に1N−水酸化ナトリウム水溶液100mL、水100mLの順で分液洗浄した。有機層を硫酸マグネシウムで乾燥後、有機溶媒を留去した。得られた固体を真空乾燥後、エタノール100mL/ヘキサン250mLで再結晶することにより、化合物2を13.1g得た。
[合成例7]
冷却管、滴下漏斗を備えた200mLの三口フラスコに化合物2を12g、4−クロロベンゼンスルホニルクロリド12.7g、脱水塩化メチレン60mLを加え混合した。氷浴で反応溶液を冷却した状態で、トリエチルアミン6.6gの脱水塩化メチレン10mL溶液を10分かけて滴下した。氷浴状態のまま、30分撹拌し、室温に戻して更に6時間撹拌した。反応溶液にクロロホルム150mLを加え、水100mLで4回分液洗浄を行った。抽出した有機層を硫酸マグネシウムで乾燥し、有機溶媒を留去した。得られた固体をエタノールで洗浄することで化合物3を16.1g得た。
[合成例8]
冷却管を備えた300mLの三口フラスコに化合物3を15g、4−ヒドロキシ安息香酸メチル11g、炭酸カリウム12.5g、N,N−ジメチルホルムアミド180mLを加え、80℃で9時間加熱撹拌した。TLCで反応の終了を確認した後、反応溶液を室温まで冷却した。応溶液を水500mLに投入し、混合撹拌した。析出した白色固体をろ別し、エタノールで更に洗浄した。得られた固体を80℃で真空乾燥することで、化合物4を10g得た。
[合成例9]
冷却管を備えた100mLの三口フラスコに、化合物4を9.5g、水酸化リチウム・1水和物1.6g、メタノール30mL、テトラヒドロフラン15mL、水15mLを加え、80℃で4時間加熱撹拌した。TLCで反応の終了を確認した後、反応溶液を室温まで冷却した。反応溶液を撹拌した状態で、希塩酸を反応溶液にゆっくり滴下した。析出固体をろ過し、水、エタノールの順で洗浄した。得られた固体を80℃で真空乾燥することで、特定カルボン酸2を9g得た。
下記反応スキームに従い特定カルボン酸3を合成した。
Figure 2011102963
[合成例10]
合成例4において、4−シアノ−4’−ヒドロキシビフェニルの代わりに2、3、5、6−テトラフルオロ−4−(ペンタフルオロフェニル)フェノールを10.7g用いることで化合物5を13.7g得た。
[合成例11]
合成例5において、化合物1の代わりに化合物5を13.5g用いることで、特定カルボン酸3を11.2g得た。
下記反応スキームに従い特定カルボン酸4を合成した。
Figure 2011102963
[合成例12]
合成例6において、4−シアノ−4’−ヒドロキシビフェニルの代わりに2、3、5、6−テトラフルオロ−4−(ペンタフルオロフェニル)フェノールを25.5g用いることで、化合物6を23.1g得た。
[合成例13]
合成例7において化合物2の代わりに化合物6を18.9g用いることで、化合物7を24.1g得た。
[合成例14]
合成例8において化合物3の代わりに化合物7を20g用いることで、化合物8を15.4g得た。
[合成例15]
合成例9において化合物4の代わりに化合物8を13g用いることで、特定カルボン酸4を11.4g得た。
下記反応スキームに従い特定カルボン酸5を合成した。
Figure 2011102963
[合成例16]
特定カルボン酸1の合成と同様にしてメチレン基の数を10から5へ変更した特定カルボン酸5を15g合成した。
<[A]ポリオルガノシロキサン化合物の合成>
[実施例1]
100mLの三口フラスコに、上記合成例1で得たエポキシ基を有するポリオルガノシロキサン9.8g、メチルイソブチルケトン28g、上記合成例5で得た特定カルボン酸1を5.0g、上記式(5)で表される化合物の一つとして例示した式(5−5)で表される4−オクチルオキシ安息香酸3.3g及びUCAT 18X(サンアプロ社の4級アミン塩)0.20gを仕込み、80℃で12時間撹拌した。反応終了後、メタノールで再沈殿を行い、沈殿物を酢酸エチルに溶解して溶液を得、該溶液を3回水洗した後、溶媒を留去することにより、[A]ポリオルガノシロキサン化合物A−1を白色粉末として14.5g得た。[A]ポリオルガノシロキサン化合物A−1のMwは6,500であった。
[実施例2]
特定カルボン酸1の代わりに合成例9で得た特定カルボン酸2を4g用いたこと以外は実施例1と同様に操作して、[A]ポリオルガノシロキサン化合物A−2の白色粉末を12.8g得た。A−2のMwは、6,000であった。
[実施例3]
特定カルボン酸1の代わりに合成例11で得た特定カルボン酸3を6.8g用いたこと以外は実施例1と同様に操作して、[A]ポリオルガノシロキサン化合物A−3の白色粉末を14.7g得た。A−3のMwは8,100であった。
[実施例4]
特定カルボン酸1の代わりに合成例15で得た特定カルボン酸4を5.6g用いたこと以外は実施例1と同様に[A]ポリオルガノシロキサン化合物の合成を行った。その結果、[A]ポリオルガノシロキサン化合物A−4の白色粉末を15.0g得た。A−4のMwは7,500であった。
[実施例5]
100mLの三口フラスコに、上記合成例1で得たエポキシ基を有するポリオルガノシロキサン9.8g、メチルイソブチルケトン28g、上記合成例5で得た特定カルボン酸1を10g及びUCAT 18X(サンアプロ社の4級アミン塩)0.20gを仕込み、80℃で12時間撹拌した。反応終了後、メタノールで再沈殿を行い、沈殿物を酢酸エチルに溶解して、この溶液を3回水洗した後、溶媒を留去することにより、[A]ポリオルガノシロキサン化合物A−5を白色粉末として16.0g得た。A−5のMwは8,500であった。
[実施例6]
特定カルボン酸1の代わりに合成例16で得た特定カルボン酸5を4.1g用いたこと以外は実施例1と同様に操作して[A]ポリオルガノシロキサン化合物A−6の白色粉末を12.4g得た。A−6のMwは6,200であった。
[実施例7]
4−オクチルオキシ安息香酸の代わりに上記式(5)で表される化合物の一つとして例示した式(5−7)で表される4−(4−ペンチルシクロヘキシル)安息香酸を3.6g用いたこと以外は実施例1と同様に操作して、[A]ポリオルガノシロキサン化合物A−7の白色粉末を13.4g得た。A−7のMwは7,900であった。
[実施例8]
100mLの三口フラスコに、上記合成例1で得たエポキシ基を有するポリオルガノシロキサン9.8g、メチルイソブチルケトン28g、上記合成例5で得た特定カルボン酸1を8.0g、上記式(5−7)で表される4−(4−ペンチルシクロヘキシル)安息香酸1.4g及びUCAT 18X(サンアプロ社の4級アミン塩)0.20gを仕込み、80℃で12時間撹拌した。反応終了後、メタノールで再沈殿を行い、沈殿物を酢酸エチルに溶解して、この溶液を3回水洗した後、溶媒を留去することにより、[A]ポリオルガノシロキサン化合物A−8を白色粉末として13.9g得た。A−8のMwは8,900であった。
[実施例9]
100mLの三口フラスコに、上記合成例1で得たエポキシ基を有するポリオルガノシロキサン9.8g、メチルイソブチルケトン28g、上記合成例5で得た特定カルボン酸1を2.0g、上記式(5−7)で表される4−(4−ペンチルシクロヘキシル)安息香酸5.8g及びUCAT 18X(サンアプロ社の4級アミン塩)0.20gを仕込み、80℃で12時間撹拌した。反応終了後、メタノールで再沈殿を行い、沈殿物を酢酸エチルに溶解して溶液を得、該溶液を3回水洗した後、溶媒を留去することにより、[A]ポリオルガノシロキサン化合物A−9を白色粉末として13.4g得た。A−9のMwは7,600であった。
[実施例10]
100mLの三口フラスコに、上記合成例1で得たエポキシ基を有するポリオルガノシロキサン9.8g、メチルイソブチルケトン28g、上記合成例5で得た特定カルボン酸1を8.0g、上記式(5−6)で表されるカルボン酸誘導体2.6g及びUCAT 18X(サンアプロ社の4級アミン塩)0.20gを仕込み、80℃で12時間撹拌した。反応終了後、メタノールで再沈殿を行い、沈殿物を酢酸エチルに溶解して、この溶液を3回水洗した後、溶媒を留去することにより、[A]ポリオルガノシロキサン化合物A−10を白色粉末として15.5g得た。A−10のMwは9,200であった。
[比較合成例1]
100mLの三口フラスコに、上記合成例1で得たエポキシ基を有するポリオルガノシロキサン9.8g、メチルイソブチルケトン28g、4−オクチルオキシ安息香酸3.3g及びUCAT 18X(サンアプロ社の4級アミン塩)0.10gを仕込み、80℃で12時間撹拌した。反応終了後、メタノールで再沈殿を行い、沈殿物を酢酸エチルに溶解して、この溶液を3回水洗した後、溶媒を留去することにより、[A]ポリオルガノシロキサン化合物CA−1を白色粉末として9.6g得た。CA−1のMwは6,000であった。
<ポリアミック酸の合成>
[合成例17]
1,2,3,4−シクロブタンテトラカルボン酸二無水物19.61g(0.1モル)と4,4’−ジアミノ−2,2’−ジメチルビフェニル21.23g(0.1モル)とをN−メチル−2−ピロリドン367.6gに溶解し、室温で6時間反応させた。次いで、反応混合物を大過剰のメタノール中に注ぎ、反応生成物を沈澱させた。沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥することにより、ポリアミック酸PA−1を35g得た。
[合成例18]
2,3,5−トリカルボキシシクロペンチル酢酸二無水物22.4g(0.1モル)とシクロヘキサンビス(メチルアミン)14.23g(0.1モル)とをN−メチル−2−ピロリドン329.3gに溶解させ、60℃で6時間反応させた。次いで、反応物を大過剰のメタノール中に注ぎ、反応生成物を沈澱させた。沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥することにより、ポリアミック酸PA−2を32g得た。
<ポリイミドの合成>
[合成例19]
上記合成例18で得たポリアミック酸PA−2を17.5gとり、これにN−メチル−2−ピロリドン232.5g、ピリジン3.8g及び無水酢酸4.9gを添加し、120℃において4時間反応させてイミド化を行った。次いで、反応混合液を大過剰のメタノール中に注ぎ、反応生成物を沈澱させた。沈殿物をメタノールで洗浄し、減圧下で15時間乾燥することにより、ポリイミドPI−1を15g得た。
[合成例20]
テトラカルボン酸二無水物として2,3,5−トリカルボキシシクロペンチル酢酸二無水物19.88g、ジアミン化合物としてp−フェニレンジアミン6.83g、ジアミノジフェニルメタン3.58gと上記式(G−4)で表されるジアミン4.72gをN−メチル−2−ピロリドン140gに溶解させ、60℃で4時間反応させた。次いで、反応溶液を大過剰のメチルアルコール中に注いで反応生成物を沈澱させた。その後、メチルアルコールで洗浄し、減圧下40℃で24時間乾燥させることによりポリアミック酸32.8gを得た。得られたポリアミック30gをN−メチル−2−ピロリドン400gに溶解させ、ピリジン12.0g及び無水酢酸15.5gを添加し110℃で4時間脱水閉環させ、上記と同様にして沈殿、洗浄、減圧乾燥を行い、Mw=92,000、Mw/Mn=4.19、イミド化率79%のポリイミドPI−2を25g得た。
<液晶配向剤の調製>
[実施例11]
合成例17で得たポリアミック酸PA−1を含有する溶液を、これに含有されるポリアミック酸PA−1に換算して1,000質量部に相当する量をとり、[A]ポリオルガノシロキサン化合物A−1(100質量部)を加え、さらにN−メチル−2−ピロリドン及びブチルセロソルブを加えて、溶媒組成がN−メチル−2−ピロリドン:ブチルセロソルブ=50:50(質量比)、固形分濃度が3.0質量%の溶液とした。この溶液を孔径10.2μmのフィルターで濾過することにより、液晶配向剤S−1を調製した。
[実施例12〜24及び比較例1]
[B]重合体としてのポリアミック酸又はポリイミド、[A]成分としてのポリオルガノシロキサン化合物の組み合わせを表2に記載のとおりとし、実施例11と同様に操作して、液晶配向剤S−2〜S−14及びCS−1を調製した。
[比較例2]
上記合成例20で得たポリイミドPI−2に、溶媒組成がN−メチル−2−ピロリドン:ブチルセロソルブ=70:30(質量比)となるようにN−メチル−2−ピロリドン及びブチルセロソルブをそれぞれ加えて、固形分濃度が3.0質量%の溶液とした。この溶液を孔径0.2μmのフィルターで濾過することにより液晶配向剤CS−2を調製した。なお、表中の「−」は該当する成分を使用しなかったことを示す。
<液晶表示素子の製造>
上記実施例11で調製した液晶配向剤S−1を、ITO膜からなる透明電極付きガラス基板の透明電極面上にスピンナーを用いて塗布し、80℃のホットプレートで1分間プレベークを行った後、窒素に置換したオーブン中、200℃で1時間加熱して溶媒を除去することにより、膜厚0.08μmの塗膜(液晶配向膜)を形成した。この操作を繰り返し、液晶配向膜を有する基板を一対(2枚)作成した。
上記基板のうちの1枚の液晶配向膜を有する面の外周に直径3.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤をスクリーン印刷により塗布した後、一対の基板の液晶配向膜面を、対向させて重ね合わせて圧着し、150℃で1時間加熱して接着剤を熱硬化した。次いで、液晶注入口より基板の間隙にネガ型液晶(メルク社、MLC−6608)を充填した後、エポキシ系接着剤で液晶注入口を封止し、さらに液晶注入時の流動配向を除くために、これを150℃で10分間加熱した後に室温まで徐冷した。
さらに、基板の外側両面に、偏光板を2枚の偏光板の偏光方向が互いに直交するように貼り合わせることにより、液晶表示素子を製造した。実施例12〜24及び比較例1〜2として調製した液晶配向剤を用いて、同様に操作し液晶表示素子を製造した。
<配向方位の異なる2以上の領域を有する液晶表示素子>
[実施例25]
図1に示すパターニングされた透明電極を用いた以外は上記液晶表示素子の製造と同様に操作して、配向方位の異なる2以上の領域を有する液晶表示素子を製造した。
[実施例26]
上記実施例11で調整した液晶配向剤A−1を、透明電極が設けられた基板上に塗布し、さらに80℃のホットプレートで1分間プレベークを行った後、窒素に置換したオーブン中、200℃で1時間加熱して溶媒を除去することにより、膜厚0.08μmの塗膜(液晶配向膜)を形成した。この操作を繰り返し、液晶配向膜を有する基板を一対(2枚)作成した。これらの基板に一画素を4分割するマスクを介してラビング処理を施した。このように、一画素に2以上の配向方位が異なる領域を持つようにラビング処理を施した以外は、上記垂直型液液晶表示素子の製造と同様に操作して、配向方位の異なる2以上の領域を有する液晶表示素子を製造した。
<評価>
製造した液晶表示素子について以下の評価を行った。結果を表2にあわせて示す。
[配向性]
上記で製造した液晶表示素子につき、電圧無印加状態における光漏れ・配向乱れの有無をバックライト照射下、目視により観察し、光漏れ・配向乱れのない場合を「○」とし、一部に光漏れ・配向乱れが存在する場合を「△」とし、全く垂直配向状態が得られていないものを「×」とした。
[電圧保持率]
上記で製造した液晶表示素子に、5Vの電圧を60マイクロ秒の印加時間、167ミリ秒のスパンで印加した後、印加解除から167ミリ秒後の電圧保持率(%)を測定した。測定装置は東陽テクニカ社VHR−1を使用した。
[残像特性]
上記と同様にして製造した液晶表示素子につき、100℃の環境温度において直流17Vの電圧を20時間印加し、直流電圧を切った直後の液晶セル内に残留した電圧(残留DC電圧)を、フリッカ−消去法により求めた。
[応答速度(立ち上がり時の電気光学応答性)]
偏光顕微鏡、光検出器、及びパルス発生機を含む装置で液晶応答の立ち上がりの時間を測定した。ここで液晶応答速度とは、作製した液晶表示素子に電圧無印加状態から5Vの電圧を最大1秒間印加した際に、透過率10%から透過率90%に変化するのに要した時間(msec.)とした。
[コントラスト]
実施例11で製造した液晶表示素子及び実施例25及び26で製造した配向方位の異なる2以上の領域を有する液晶表示素子についてコントラストの評価を行った。上記のように作製した液晶セルを2枚の偏光板の間に配置し、ライトボックスの上に固定した。一枚の偏光板を回転させ、透過する光の最小強度を測定し、最小透過率を得た。また、同じ偏光板を回転させ、透過する光の最大強度を測定し、最大透過率を得た。最大透過率−最小透過率を相対透過率と定義し、相対透過率をコントラストの代用指標として用いた。相対透過率は40以上である場合、良好と判断できる。
その結果、実施例11で製造した液晶表示素子の相対透過率は20であった。実施例25及び26で製造した配向方位の異なる2以上の領域を有する液晶表示素子の相対透過率は49であった。また、図2及び図3に示すパターニングされた透明電極を用いて配向方位の異なる2以上の領域を有する液晶表示素子を製造した場合においてもそれぞれ同様の相対透過率が得られた。
Figure 2011102963
表2の結果から明らかなように、実施例11〜24の液晶配向剤を用いて作製した液晶配向膜を備える液晶表示素子は、一般的に要求される配向性、電圧保持率及び残像特性を備えていることが分かった。液晶の応答速度については、最も差の小さい値でみても、比較例1の液晶表示素子と比べて約24%以上も高速化されていることが分かった。また、当該組成物を用いて製造した配向方位の異なる2以上の領域を有する液晶表示素子はコントラストに優れることがわかった。
本発明によれば、配向性に優れ、高速応答が可能であり、かつ電圧特性や残像特性等の諸性能に優れた液晶表示素子を形成可能な液晶配向剤を提供できる。従って、当該液晶表示素子はTN、STN、IPS、VA(MVA、PVA、光垂直配向、PSA等の方式を含む)等の駆動モードにおいても好適に適用できる。
1 ITO膜
2 スリット
3 透明基板

Claims (11)

  1. [A]ポリオルガノシロキサン化合物を含有し、
    この[A]ポリオルガノシロキサン化合物が、
    エポキシ基を有するポリオルガノシロキサンに由来する部分と、
    下記式(1)で表されるカルボキシル基を有する化合物に由来する部分と
    を有する液晶配向剤。
    Figure 2011102963
    (式(1)中、Rはメチレン基若しくは炭素数2〜30のアルキレン基、フェニレン基又はシクロヘキシレン基である。これらの基は置換基を有していてもよい。Rは二重結合、三重結合、エーテル結合、エステル結合及び酸素原子のいずれかを含む連結基である。Rは少なくとも2つの単環構造を有する基である。aは0〜1の整数である。)
  2. 上記式(1)におけるRが、下記式(2)で表される基である請求項1に記載の液晶配向剤。
    Figure 2011102963
    (式(2)中、R及びRはそれぞれフェニレン基、ビフェニレン基、ナフタレン基、シクロヘキシレン基、ビシクロヘキシレン基、シクロへキシレンフェニレン基又は複素環であり、これらはさらに置換基を有していてもよい。Rは置換基を有していてもよい炭素数1〜10のアルキレン基、二重結合、三重結合、エーテル結合、エステル結合及び複素環のいずれかを含む連結基である。Rは水素原子、シアノ基、フッ素原子、トリフルオロメチル基、アルコキシカルボニル基、アルキル基及びアルコキシ基のいずれかであり、Rが複数の置換基を有する場合はそれぞれ同一の又は異なるものを組み合わせてもよい。bは0〜1の整数である。cは1〜9の整数である。)
  3. 上記エポキシ基が、下記式(X−1)又は(X−2)で表される基である請求項1又は請求項2に記載の液晶配向剤。
    Figure 2011102963
    (式(X−1)中、Aは酸素原子又は単結合である。hは1〜3の整数である。iは0〜6の整数である。但し、iが0の場合、Aは単結合である。「*」は結合手であることを示す。)
  4. [B]ポリアミック酸及びポリイミドからなる群より選択される少なくとも1種の重合体をさらに含有する請求項1、請求項2又は請求項3に記載の液晶配向剤。
  5. 請求項1から請求項4のいずれか1項に記載の液晶配向剤から形成される液晶配向膜を備える液晶表示素子。
  6. 透明電極と、
    この透明電極上に積層される上記液晶配向膜とを備え、
    液晶配向モードが垂直型で、かつ配向方位の異なる2以上の領域を有する請求項5に記載の液晶表示素子。
  7. 配向方位の異なる2以上の領域を有する手段が、上記透明電極としてパターニングされた透明電極を用いる手段又は上記液晶配向膜に配向分割機能を付与する手段である請求項6に記載の液晶表示素子。
  8. 透明電極と、
    この透明電極上に積層される液晶配向膜とを備え、
    液晶配向モードが垂直型で、かつ配向方位の異なる2以上の領域を有する液晶表示素子における上記液晶配向膜形成用の液晶配向剤であって、
    下記式(3)で表される基を有する化合物を含有することを特徴とする液晶配向剤。
    Figure 2011102963
    (式(3)中、Rは二重結合、三重結合、エーテル結合、エステル結合又は酸素原子のいずれかを含む連結基である。Rは少なくとも2つの単環構造を有する基である。aは0〜1の整数である。「*」は結合手であることを示す。)
  9. 配向方位の異なる2以上の領域を有する手段として、パターニングされた透明電極又は配向分割機能を有する液晶配向膜を用いる請求項8に記載の液晶配向剤。
  10. 液晶配向モードが垂直型で、かつ配向方位の異なる2以上の領域を有する液晶表示素子であって、請求項8又は請求項9に記載の液晶配向剤から形成される液晶配向膜を備えることを特徴とする液晶表示素子。
  11. エポキシ基を有するポリオルガノシロキサンに由来する部分と、
    下記式(1)で表されるカルボキシル基を有する化合物又は式(1)のRが下記式(2)で表されるカルボキシル基を有する化合物に由来する部分と
    を有するポリオルガノシロキサン化合物。
    Figure 2011102963
    (式(1)中、Rはメチレン基若しくは炭素数2〜30のアルキレン基、フェニレン基又はシクロヘキシレン基である。これらの基は置換基を有していてもよい。Rは二重結合、三重結合、エーテル結合、エステル結合及び酸素原子のいずれかを含む連結基である。Rは少なくとも2つの単環構造を有する基である。aは0〜1の整数である。)
    Figure 2011102963
    (式(2)中、R及びRはそれぞれフェニレン基、ビフェニレン基、ナフタレン基、シクロヘキシレン基、ビシクロヘキシレン基、シクロへキシレンフェニレン基又は複素環であり、これらはさらに置換基を有していてもよい。Rは置換基を有していてもよい炭素数1〜10のアルキレン基、二重結合、三重結合、エーテル結合、エステル結合及び複素環のいずれかを含む連結基である。Rは水素原子、シアノ基、フッ素原子、トリフルオロメチル基、アルコキシカルボニル基、アルキル基及びアルコキシ基のいずれかであり、Rが複数の置換基を有する場合はそれぞれ同一の又は異なるものを組み合わせてもよい。bは0〜1の整数である。cは1〜9の整数である。)
JP2010191576A 2009-10-14 2010-08-27 液晶配向剤、液晶表示素子及びポリオルガノシロキサン化合物 Active JP5776152B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010191576A JP5776152B2 (ja) 2009-10-14 2010-08-27 液晶配向剤、液晶表示素子及びポリオルガノシロキサン化合物

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009237747 2009-10-14
JP2009237747 2009-10-14
JP2010191576A JP5776152B2 (ja) 2009-10-14 2010-08-27 液晶配向剤、液晶表示素子及びポリオルガノシロキサン化合物

Publications (2)

Publication Number Publication Date
JP2011102963A true JP2011102963A (ja) 2011-05-26
JP5776152B2 JP5776152B2 (ja) 2015-09-09

Family

ID=43907557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010191576A Active JP5776152B2 (ja) 2009-10-14 2010-08-27 液晶配向剤、液晶表示素子及びポリオルガノシロキサン化合物

Country Status (4)

Country Link
JP (1) JP5776152B2 (ja)
KR (1) KR101642788B1 (ja)
CN (1) CN102041007B (ja)
TW (1) TWI487719B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161925A1 (ja) * 2012-04-27 2013-10-31 シャープ株式会社 液晶表示装置及びその製造方法
CN103525435A (zh) * 2012-07-03 2014-01-22 Jsr株式会社 液晶配向剂、液晶显示元件的制造方法、液晶配向膜、液晶显示元件、聚合物及羧酸
JP2014016389A (ja) * 2012-07-05 2014-01-30 Jsr Corp 液晶配向剤、液晶表示素子及びこの製造方法
CN113698575A (zh) * 2021-09-02 2021-11-26 四川大学 一种基于硅氧烷席夫碱结构的高抗冲击可重塑阻燃环氧树脂及制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102604652B (zh) * 2011-01-13 2016-01-13 Jsr株式会社 液晶取向剂、液晶显示元件及其制造方法
JP5884618B2 (ja) * 2012-04-20 2016-03-15 Jsr株式会社 液晶配向剤、液晶配向膜、液晶表示素子及び液晶表示素子の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366229A (ja) * 1986-06-25 1988-03-24 ザ ゼネラル エレクトリツク カンパニ−,ピ−.エル.シ− 液晶ポリマ−
JPH0812759A (ja) * 1994-04-28 1996-01-16 Nissan Chem Ind Ltd 新規なジアミノベンゼン誘導体及びそれを用いたポリイミド
JP2006137874A (ja) * 2004-11-12 2006-06-01 Nippon Kayaku Co Ltd (メタ)アクリル基含有ケイ素化合物、それを用いる感光性樹脂組成物及びその硬化物
WO2008117615A1 (ja) * 2007-03-26 2008-10-02 Sharp Kabushiki Kaisha 液晶表示装置及び配向膜材料用重合体
WO2009025385A1 (ja) * 2007-08-21 2009-02-26 Jsr Corporation 液晶配向剤、液晶配向膜の製造方法および液晶表示素子
WO2009081692A1 (ja) * 2007-12-26 2009-07-02 Jsr Corporation 液晶配向剤および液晶配向膜の形成方法
WO2009096598A1 (ja) * 2008-01-30 2009-08-06 Jsr Corporation 液晶配向剤、液晶配向膜および液晶表示素子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0303041D0 (sv) 2003-06-23 2003-11-18 Ecsibeo Ab A liquid crystal device and a method for manufacturing thereof
JP4605376B2 (ja) * 2005-06-06 2011-01-05 Jsr株式会社 液晶配向剤および液晶表示素子
JP5041124B2 (ja) * 2005-07-12 2012-10-03 Jsr株式会社 液晶配向剤および液晶表示素子
JP2007241249A (ja) * 2006-02-07 2007-09-20 Jsr Corp 垂直配向型液晶配向剤、および垂直配向型液晶表示素子
JP5035523B2 (ja) * 2006-04-25 2012-09-26 Jsr株式会社 垂直配向型液晶配向剤および垂直配向型液晶表示素子
JP2007332357A (ja) * 2006-05-17 2007-12-27 Jsr Corp 垂直配向型液晶配向剤および垂直配向型液晶表示素子
KR101143129B1 (ko) * 2007-08-02 2012-05-08 제이에스알 가부시끼가이샤 액정 배향제, 액정 배향막 및 그의 형성 방법 및 액정 표시 소자
US8304031B2 (en) * 2007-08-21 2012-11-06 Jsr Corporation Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366229A (ja) * 1986-06-25 1988-03-24 ザ ゼネラル エレクトリツク カンパニ−,ピ−.エル.シ− 液晶ポリマ−
JPH0812759A (ja) * 1994-04-28 1996-01-16 Nissan Chem Ind Ltd 新規なジアミノベンゼン誘導体及びそれを用いたポリイミド
JP2006137874A (ja) * 2004-11-12 2006-06-01 Nippon Kayaku Co Ltd (メタ)アクリル基含有ケイ素化合物、それを用いる感光性樹脂組成物及びその硬化物
WO2008117615A1 (ja) * 2007-03-26 2008-10-02 Sharp Kabushiki Kaisha 液晶表示装置及び配向膜材料用重合体
WO2009025385A1 (ja) * 2007-08-21 2009-02-26 Jsr Corporation 液晶配向剤、液晶配向膜の製造方法および液晶表示素子
WO2009081692A1 (ja) * 2007-12-26 2009-07-02 Jsr Corporation 液晶配向剤および液晶配向膜の形成方法
WO2009096598A1 (ja) * 2008-01-30 2009-08-06 Jsr Corporation 液晶配向剤、液晶配向膜および液晶表示素子

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161925A1 (ja) * 2012-04-27 2013-10-31 シャープ株式会社 液晶表示装置及びその製造方法
CN103525435A (zh) * 2012-07-03 2014-01-22 Jsr株式会社 液晶配向剂、液晶显示元件的制造方法、液晶配向膜、液晶显示元件、聚合物及羧酸
CN103525435B (zh) * 2012-07-03 2016-09-14 Jsr株式会社 液晶配向剂、液晶显示元件的制造方法、液晶配向膜、液晶显示元件及聚合物
JP2014016389A (ja) * 2012-07-05 2014-01-30 Jsr Corp 液晶配向剤、液晶表示素子及びこの製造方法
CN113698575A (zh) * 2021-09-02 2021-11-26 四川大学 一种基于硅氧烷席夫碱结构的高抗冲击可重塑阻燃环氧树脂及制备方法

Also Published As

Publication number Publication date
CN102041007B (zh) 2014-03-19
JP5776152B2 (ja) 2015-09-09
KR20110040681A (ko) 2011-04-20
CN102041007A (zh) 2011-05-04
TW201120070A (en) 2011-06-16
TWI487719B (zh) 2015-06-11
KR101642788B1 (ko) 2016-07-26

Similar Documents

Publication Publication Date Title
JP4458306B2 (ja) 液晶配向剤、液晶配向膜の製造方法および液晶表示素子
JP4458305B2 (ja) 液晶配向剤、液晶配向膜の製造方法および液晶表示素子
JP5454772B2 (ja) 液晶配向剤、液晶配向膜およびその形成方法ならびに液晶表示素子
JP4416054B2 (ja) 液晶配向剤、液晶配向膜の形成方法および液晶表示素子
JP5552894B2 (ja) 液晶配向剤および液晶表示素子
JP5708957B2 (ja) 液晶配向剤、液晶配向膜および液晶表示素子
JP4507024B2 (ja) 液晶配向剤、液晶配向膜の形成方法および液晶表示素子
JP5483005B2 (ja) 液晶配向剤および液晶表示素子
JP5927859B2 (ja) 液晶表示素子の製造方法
JP5640471B2 (ja) 液晶配向剤、液晶配向膜、液晶配向膜の形成方法及び液晶表示素子
JP5866999B2 (ja) 液晶配向剤、液晶表示素子、液晶配向膜及びポリオルガノシロキサン化合物
WO2009096598A1 (ja) 液晶配向剤、液晶配向膜および液晶表示素子
KR101787445B1 (ko) 액정 배향제, 액정 표시 소자 및 이의 제조 방법
JP4544439B2 (ja) 液晶配向剤および液晶配向膜の形成方法
JP5776152B2 (ja) 液晶配向剤、液晶表示素子及びポリオルガノシロキサン化合物
JP5668577B2 (ja) 液晶配向剤、液晶配向膜、液晶表示素子及びポリオルガノシロキサン化合物
JP5867021B2 (ja) 液晶配向剤、液晶表示素子及びこの製造方法
JP5790358B2 (ja) 液晶配向剤および液晶表示素子
JP5853631B2 (ja) 液晶表示素子
JP2014016389A (ja) 液晶配向剤、液晶表示素子及びこの製造方法
JP5767800B2 (ja) 液晶配向剤および液晶表示素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150622

R150 Certificate of patent or registration of utility model

Ref document number: 5776152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250