JP2011102573A - 排気浄化装置 - Google Patents

排気浄化装置 Download PDF

Info

Publication number
JP2011102573A
JP2011102573A JP2009258560A JP2009258560A JP2011102573A JP 2011102573 A JP2011102573 A JP 2011102573A JP 2009258560 A JP2009258560 A JP 2009258560A JP 2009258560 A JP2009258560 A JP 2009258560A JP 2011102573 A JP2011102573 A JP 2011102573A
Authority
JP
Japan
Prior art keywords
exhaust
ammonia
catalyst
oxidation catalyst
reduction catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009258560A
Other languages
English (en)
Other versions
JP5570185B2 (ja
Inventor
Masakazu Yano
雅一 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2009258560A priority Critical patent/JP5570185B2/ja
Publication of JP2011102573A publication Critical patent/JP2011102573A/ja
Application granted granted Critical
Publication of JP5570185B2 publication Critical patent/JP5570185B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

【課題】アンモニアを還元剤として排気中のNOxを除去する排気浄化装置において、NOの発生を抑制する。
【解決手段】排気浄化装置は、排気中の窒素酸化物をアンモニアにより還元反応させる還元触媒と、該還元触媒よりも上流において排気中の一酸化窒素を二酸化窒素へ酸化反応させる酸化触媒と、前記還元触媒よりも下流において排気中のアンモニアを酸化反応させるアンモニア酸化触媒と、前記酸化触媒を迂回して排気を流すバイパス管と、該バイパス管の排気流量を調節する流量調節弁と、を少なくとも含む。この排気浄化装置の制御器は、エンジン運転状態に基づいて、排気中のNOx比を最適値とすべく流量調節弁の弁開度を算出すると共に(S1〜S4)、還元触媒におけるアンモニア吸着状態を推定し、該推定したアンモニア吸着状態に基づいて前記弁開度を補正する(S5)。
【選択図】図4

Description

本発明は、還元剤を排気中に添加して触媒により窒素酸化物を還元除去する排気浄化装置に関する。
エンジンの排気に含まれる窒素酸化物(NOx)を除去する排気浄化装置として、排気管中に還元触媒を配置し、該還元触媒の上流において排気中に還元剤を添加することによりNOxと還元反応させ、NOxを無害成分にする、選択触媒還元(Selective Catalytic Reduction:SCR)型の排気浄化装置が提案されている。現在普及しているこの種の排気浄化装置は、NOxに対する還元剤としてアンモニアを使用し、そのアンモニアの前駆体として尿素水をタンクに貯蔵して、該タンクの尿素水を排気中に噴射する方式を採用する。排気中に噴射された尿素水は、加水分解してアンモニアを生成する。
還元剤としてアンモニアを使用するSCR型の排気浄化装置において、NOxの浄化性能は排気中のNOとNOの比率であるNO/NO(NOx比とする)に依存し、NOx比=1(NO:NO=1:1)のときに最も反応が良好になると言われている。そこで、当該排気浄化装置では、還元触媒の上流に酸化触媒を設置し、排気中のNOx比を最適値に近づける仕組みを採用する。しかし、排気の温度や流量によって、酸化触媒による酸化が良好に働かない場合があり、特許文献1,2に開示の技術が提案されている。
特許文献1,2に開示された排気浄化装置は、酸化触媒を迂回するバイパスを備え、そのバイパスに排気を流す流量調節弁の開度が、エンジン運転状態に応じて制御される。エンジン運転状態に応じて酸化触媒を迂回する排気流量を調節することにより、還元触媒へ流入する排気中のNOx比を最適値に制御することができる。
特開2005−023921号公報 特開2005−233046号公報
還元剤としてアンモニアを使用する上記の排気浄化装置において、還元触媒はアンモニア吸着能力をもち、アンモニア(NH)の一部はNOと反応してNHNOとなって該還元触媒に吸着される。このNHNOがさらにNOと反応することでN、HO、NOに分解され、当該NOが再度NHと反応して還元触媒に吸着される。この還元触媒において、排気中のNOx比が崩れ、NO過剰でNOの少ない状況が継続すると、吸着されたNHNOが反応できずにアンモニア吸着能力が低下する。還元触媒のアンモニア吸着能力が低下すると、還元触媒を通過して下流へ流れ出すアンモニアが発生し得る。
そこで、排気浄化装置は、還元触媒から漏れ出たアンモニアを酸化処理するために、還元触媒の下流にアンモニア酸化触媒を備えている。このアンモニア酸化触媒においてアンモニアを酸化する際に、亜酸化窒素(NO)が生成されることが知られている(論文1)。NOは温暖化物質であるために、その排出は抑制する必要がある。
すなわち、アンモニアを還元剤として排気中のNOxを除去する排気浄化装置においては、NOの発生も加味した触媒制御を実行する必要がある。
[論文1]・・・「自動車から排出される亜酸化窒素の排出傾向について」・鈴木央一,石井素(交通安全環境研)・交通安全環境研究所フォーラム講演概要・Vol.2008, pp11-14(2008年11月27,28日)
上記課題を解決するために提案する排気浄化装置は、エンジンの排気管に配設され、排気中の窒素酸化物をアンモニアにより還元反応させる還元触媒と、該還元触媒よりも上流側の前記排気管に配設され、排気中の一酸化窒素を二酸化窒素へ酸化反応させる酸化触媒と、前記還元触媒よりも下流側の前記排気管に配設され、排気中のアンモニアを酸化反応させるアンモニア酸化触媒と、前記酸化触媒に対して並列に前記排気管に接続され、前記酸化触媒を迂回して排気を流すバイパス管と、該バイパス管の排気流量を調節する流量調節弁と、前記エンジンの運転状態に基づいて前記還元触媒におけるアンモニア吸着状態を推定し、該推定したアンモニア吸着状態に基づいて前記流量調節弁を制御する制御器と、を含んで構成される。
上記提案に係る排気浄化装置は、還元触媒のアンモニア吸着状態を推定してバイパス管の排気流量を調節することにより、還元触媒上流の排気におけるNOx比が、還元触媒のアンモニア吸着能力の変動に応じるように修正される。したがって、還元触媒を通過して下流へ流れるアンモニアが減少し、下流のアンモニア酸化触媒におけるNOの発生が抑制される。
排気浄化装置の第1実施形態を示した図。 排気浄化装置の第2実施形態を示した図。 排気浄化装置の第3実施形態を示した図。 制御器が実行する流量調節弁制御過程のフローチャート。 制御器が実行するアンモニア吸着状態推定過程のフローチャート。 制御器が実行する尿素水噴射量制御過程のフローチャート。
以下、排気浄化装置の実施形態に関し、図面を参照して説明する。
本実施形態に係るエンジン1は、一例としてターボチャージャー2を備えたディーゼルエンジンで、エンジンECU(Electronic Control Unit)3により運転制御される。エンジン1の排気マニホールドにターボチャージャー2のタービンが接続され、該タービン下流に排気管4が延設されている。
図1に示す第1実施形態に係る排気浄化装置は、排気の上流から下流へ順に排気管4に配設した、酸化触媒10、DPF(Diesel Particulate Filter)11、還元触媒12、アンモニア酸化触媒13を含んで構成される。そのうち、酸化触媒10及びDPF11が一つの筐体にキャニング(canning)され、還元触媒12及びアンモニア酸化触媒13が一つの筐体にキャニングされている。
酸化触媒10は、NOをNOへ酸化反応させて排気中のNOx比を調整するための触媒で、還元触媒12よりも上流側、図示の例では全触媒中で最も上流に配設される。この酸化触媒10と一つの筐体にキャニングして次段に配設されたDPF11は、排気中の粒子状物質(Particulate Matter:PM)を捕集するフィルタで、NOx浄化に関しては必須要素ではないので、異なる配置としてもよい。また、DPF11に触媒物質を担持させて、酸化触媒10の機能を兼任させることもできる。
これら酸化触媒10及びDPF11を収めた筐体から下流へ延びる排気管4中に、尿素水を噴射する尿素水添加器14のノズル14aが設けられる。尿素水は、アンモニアの前駆体としてタンク15に貯蔵されており、尿素水添加器14によってタンク15から吸い出され、ノズル14aから還元触媒12よりも上流の排気中に噴射される。排気中に噴射された尿素水は、加水分解してアンモニアを生成する。尿素水の噴射量は、エンジンECU3から得られるエンジン運転条件(回転速度、負荷等)及び排気中のNOx濃度に基づいて、排気浄化装置の制御器であるECU16によって制御される。なお、タンク15には尿素水の濃度や水位を検出するセンサ15aが垂下され、判定結果がECU16に入力される。
ノズル14aの下流において排気管4に配設された還元触媒12は、排気中のNOxをアンモニアにより還元反応させる。この還元触媒12と一つの筐体にキャニングして、次段にアンモニア酸化触媒13が配設される。還元触媒12よりも下流側に配設されたアンモニア酸化触媒13は、還元触媒12から漏れ出た排気中のアンモニアを酸化反応させる触媒である。
第1実施形態の排気浄化装置は、酸化触媒10に対し並列にして、バイパス管20が排気管4に接続されている。すなわち、バイパス管20は、酸化触媒10の上流で排気を取り出すと共に酸化触媒10の下流且つDPF11の上流へ排気を導入し、酸化触媒10を迂回して排気を流す迂回路となる。当該バイパス管20の途中には、排気の逆流を防ぐ逆止弁21と、バイパス管20を流れる排気流量を調節する流量調節弁22と、が設けられる。流量調節弁22は、電磁弁や電動弁で、ECU16によって弁開度が調節される。
上記のように酸化触媒10、DPF11、還元触媒12、アンモニア酸化触媒13を配設した排気管4には、ECU16による制御のために排気の状態を検出する排気センサ23,24,25が設けられている。第1の排気センサ23は、排気浄化装置へ流入する排気の温度、圧力、NOx濃度を検出するセンサで、酸化触媒10よりも上流に設けられる。第2の排気センサ24は、排気浄化装置から流出する排気の温度、圧力、NOx濃度を検出するセンサで、アンモニア酸化触媒13よりも下流に設けられる。そして、第3の排気センサ25は、アンモニア濃度を検出するセンサで、還元触媒12とアンモニア酸化触媒13との間に設けられる。なお、第3の排気センサ25は、NOx濃度のセンサとすることもできる。
図2は、排気浄化装置の第2実施形態を示す。図中、第1実施形態と共通の要素には同じ符号を付してあり、重複する説明は省略する。
第2実施形態の排気浄化装置では、バイパス管30が第1実施形態と異なり、第2実施形態に係るバイパス管30は、酸化触媒10をキャニングした筐体の一部として形成されている。すなわち、筐体の外周面に当接させてバイパス管30を這わせるか、あるいは、バイパス管30も一緒にキャニングするようにして、バイパス管30が筐体と一体化される。バイパス管30を筐体の一部とすることにより、酸化触媒10を迂回して排気を流す制御中に、排気熱がバイパス管30から筐体へ伝わり、酸化触媒10及びDPF11が保温される。なお、第2実施形態のバイパス管30にも、逆止弁21及び流量調節弁22が設けられる。
図3は、排気浄化装置の第3実施形態を示す。図中、第1実施形態と共通の要素には同じ符号を付してあり、重複する説明は省略する。第3実施形態の排気浄化装置は、バイパス管を二つ備えている。すなわち、第3実施形態は、バイパス管について、一つに限らず、二つ以上備えることも可能であることを示す例である。
第3実施形態に係る第1のバイパス管40は、第1実施形態のバイパス管20と同様のもので、排気管4に配設された酸化触媒10に対して並列に接続され、逆止弁21及び流量調節弁22を備えている。このバイパス管40は、第2実施形態のように、酸化触媒10をキャニングした筐体の一部として形成することもできる。一方、第3実施形態に係る第2のバイパス管50は、酸化触媒10に対して並列に接続され、酸化触媒10とは違う酸化能力をもった第2の酸化触媒51を備えている。例えば、第2の酸化触媒51は、酸化触媒10よりも低温域において良好な酸化能力を発揮するものとすることができる。第3実施形態において流量調節弁22は、排気管4及びバイパス管40,50のすべてに設けられる。なお、第3実施形態の酸化触媒10は、DPF11とは別の筐体にキャニングしてあるが、第1実施形態と同様にしてもよい。
以上の各実施形態における制御器のECU16は、エンジンECU3から取得したエンジン運転条件と排気センサ23〜25の検出結果とを利用して得られるエンジンの運転状態に基づいて、流量調節弁22、尿素水添加器14を制御する。当該制御過程について、図4〜図6を参照し説明する。
ECU16は、エンジンスタート後に一定の周期で、図4に示す流量調節弁制御過程を実行する。図4の流量調節弁制御過程においてECU16は、エンジン1の運転状態に基づいて、還元触媒12よりも上流の排気におけるNOx比を最適値とするべく、流量調節弁22の弁開度を算出する。さらに、エンジン1の運転状態に基づいて、還元触媒12におけるアニモニア吸着状態を推定し、その推定したアンモニア吸着状態に基づいて、前記算出した弁開度を補正する。これにより、還元触媒12のアンモニア吸着能力の現状を加味したNOx比が設定され、下流へのアンモニア流出が減少する。本実施形態の例では、エンジン1の運転状態を示すデータとして、排気管4の排気流量、酸化触媒10の入口温度、還元触媒12の温度、排気中のNOx濃度が使用される。
ステップS1でECU16は、排気センサ23から得られる酸化触媒10の入口温度、そしてエンジンECU3から得られる運転条件により算出される排気管4の排気流量を取得して、酸化触媒10においてNOが酸化してNOになる率であるNO生成率を判断する。この判断は、酸化触媒入口温度及び排気流量をXY軸にしてNO生成率をプロットしたマップを予め作成し、該マップをメモリに記憶しておいてアクセスするなどの手法により、実行することができる。
ステップS1でNO生成率を判断したECU16は、ステップS2において、そのNO生成率をしきい値と比較する。本例におけるしきい値は「0.5」で、この値は、NOの半分がNOへ酸化することを意味する。ステップS2でECU16は、NO生成率が0.5以下にある場合は、NO過多ということになるので、ステップS3において、流量調節弁22を閉弁制御してバイパス管20(30,40)を閉じ、全排気を酸化触媒10に流して酸化を促す。一方、ECU16は、NO生成率が0.5を超える場合は、NO過多ということになるので、ステップS4において、所定の計算式に従って流量調節弁22の弁開度を算出する。当該計算式は、NO生成率と排気流量とを利用して適宜作成することができる。
第3実施形態のように第2の酸化触媒51を備えている場合は、エンジン1の運転状態に応じてECU16は、例えば排気の高温領域では酸化触媒10を使用し、低温領域では第2の酸化触媒51を使用するように流量調節弁22を切り換えることができる。そして、ECU16は、その時々で使用中の酸化触媒に関わる上記マップをアクセスしてNO生成率を判断し、バイパス管40の流量調節弁22に係る弁開度を算出する。
弁開度が算出されるとECU16は、ステップS5において、随時実行している図5のサブルーチンによって推定されるアンモニア(NH)吸着状態に基づいて、算出された弁開度を補正する。そして、ECU16は、ステップS6において、流量調節弁22の弁開度制御を実行する。
図5に示すアンモニア吸着状態推定過程で、ECU16は、還元触媒12におけるアンモニアの吸着量を推定する。ステップS10においてECU16は、還元触媒12にビルトインされた温度センサにより得られる還元触媒12の温度と、エンジンECU3から得られる運転条件により算出される排気管4の排気流量とに基づいて、排気中におけるアンモニア生成率を判断する。このアンモニア生成率は、還元触媒温度及び排気流量をXY軸にしてアンモニア生成率をプロットしたマップを予め作成し、該マップをメモリに記憶しておいてアクセスするなどの手法により、実行することができる。
アンモニア生成率を判断したECU16は、ステップS11において、現在指示している尿素水噴射量とそのアンモニア生成率とを乗算し、アンモニア生成量を計算する。そして、ECU16は、計算したアンモニア生成量について、ステップS12でNOx浄化量を減算し、さらにステップS13でアンモニアスリップ量を減算する。NOx浄化量は、排気センサ23で検出されるNOx濃度と排気センサ24で検出されるNOx濃度との差を基にして得られる値で、NOxの還元反応に使用されたアンモニア量が推定される。アンモニアスリップ量は、排気センサ25で検出されるアンモニア濃度を基に得られる値で、還元触媒12を通過して流れ出たアンモニア量を示す。これらの値が示すアンモニアの量は、還元触媒12に吸着されていないものとして、アンモニア生成量から減算する。なお、排気センサ25がNOxセンサである場合は、その他の排気センサ23,24によるNOx濃度との関係から計算したり、該関係のマップをアクセスすることで、アンモニアスリップ量とすることができる。
ECU16は、以上の演算により得たアンモニア生成量を、ステップS14において、前回のアンモニア吸着状態推定過程の実行で推定されたアンモニア吸着量に合算する。そして、ECU16は、ステップS15において、アンモニア吸着量を更新して次回用に記憶し、ステップS10へ戻って次のアンモニア吸着状態推定過程を実行する。
図4のステップS5において、ECU16は、図5のステップS15で得られたアンモニア吸着量に基づいて、還元触媒12においてNHの吸着量が多いのか、それともNHNOの吸着量が多いのか、判断する。当該判断は、還元触媒12の特性に応じて予め作成したマップを、ステップS15のアンモニア吸着量でアクセスすることにより行うことができる。そして、ECU16は、還元触媒12におけるアンモニア吸着状態について、NHNOの吸着量が多いと判断した場合には、バイパス管20(30,50)の流量調節弁22の弁開度を、閉じる方に補正する。すなわち、排気中のNOが増える方に補正し、NHNOの反応を促すことで、還元触媒12のアンモニア吸着能力を改善する。当該補正値の決定も、予めマップを作成しておくことで実行することができる。
このように、ECU16が、還元触媒12のアンモニア吸着状態を推定して弁制御を実行し、バイパス管20(30,40)の排気流量を調節することにより、還元触媒12よりも上流の排気におけるNOx比が、還元触媒12のアンモニア吸着能力の変動に応じるように修正される。したがって、還元触媒12を通過して下流へ流れるアンモニアが減少し、下流のアンモニア酸化触媒13におけるNOの発生が抑制される。
以上の流量調節弁22に対する弁開度制御に加えて、本実施形態のECU16は、尿素水噴射量の増減制御も実行し、還元触媒12のアンモニア吸着能力の改善を促進する。当該尿素水噴射量制御過程のフローチャートを図6に示している。
ECU16は、エンジンECU3から得られるエンジン運転条件に加え、ステップS20において、排気センサ23により検出される酸化触媒10の入口のNOx濃度に従って、尿素水添加器14に指示する尿素水噴射量を判断する。そして、ECU16は、次のステップS21において、図5のアンモニア吸着状態推定過程によって推定されているアンモニア吸着量を、還元触媒12のアンモニア吸着特性に従うアンモニア吸着量最大値と比較する。この最大値は、還元触媒12が吸着し得るアンモニア量の最大値のことで、実測値あるいは設計値を予めメモリに記憶させたものである。
ステップS21の比較の結果、アンモニア吸着量が最大値に達していない場合、ECU16は還元反応を促すために、ステップS22において、尿素水添加器14に指示する噴射量を増量補正する。一方、ステップS21の結果、アンモニア吸着量が最大値以上になっている場合、ECU16はNOの発生を抑制するために、ステップS23において、尿素水添加器14に指示する噴射量を減量補正する。排気中に添加される尿素水量が少なくなればアンモニアの量も減少し、還元触媒12の下流へ流出するアンモニアスリップ量を抑制することができる。ECU16は、ステップS24において、ステップS22の増量補正又はステップS23の減量補正を行った尿素水噴射量を指示して尿素水添加器14の噴射制御を実行し、リターンする。以降、ECU16は、所定の周期で図6の尿素水噴射量制御過程を実行する。
1 エンジン
2 ターボチャージャー
3 エンジンECU
4 排気管
10 酸化触媒
11 DPF
12 還元触媒
13 アンモニア酸化触媒
14 尿素水添加器
15 尿素水タンク
16 ECU(制御器)
20,30,40,50 バイパス管
21 逆止弁
22 流量調節弁
23,24,25 排気センサ
51 第2の酸化触媒

Claims (4)

  1. エンジンの排気管に配設され、排気中の窒素酸化物をアンモニアにより還元反応させる還元触媒と、
    該還元触媒よりも上流側の前記排気管に配設され、排気中の一酸化窒素を二酸化窒素へ酸化反応させる酸化触媒と、
    前記還元触媒よりも下流側の前記排気管に配設され、排気中のアンモニアを酸化反応させるアンモニア酸化触媒と、
    前記酸化触媒に対して並列に前記排気管に接続され、前記酸化触媒を迂回して排気を流すバイパス管と、
    該バイパス管の排気流量を調節する流量調節弁と、
    前記エンジンの運転状態に基づいて前記還元触媒におけるアンモニア吸着状態を推定し、該推定したアンモニア吸着状態に基づいて前記流量調節弁を制御する制御器と、
    を含んで構成される排気浄化装置。
  2. 前記バイパス管が、前記酸化触媒の筐体の一部として形成されている、
    請求項1記載の排気浄化装置。
  3. アンモニアの前駆体として尿素水を前記還元触媒よりも上流の排気中に噴射する尿素水添加器が設けられ、
    前記制御器は、前記推定したアンモニア吸着状態に基づいて前記尿素水の噴射量も制御する、
    請求項1又は請求項2記載の排気浄化装置。
  4. 前記制御器は、
    前記エンジンの運転状態に基づいて、前記還元触媒よりも上流の排気における一酸化窒素及び二酸化窒素の比率を最適値とするべく、前記流量調節弁の弁開度を算出し、
    該算出した弁開度を、前記推定したアンモニア吸着状態に基づいて補正する、
    請求項1〜3のいずれかに記載の排気浄化装置。
JP2009258560A 2009-11-12 2009-11-12 排気浄化装置 Expired - Fee Related JP5570185B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009258560A JP5570185B2 (ja) 2009-11-12 2009-11-12 排気浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009258560A JP5570185B2 (ja) 2009-11-12 2009-11-12 排気浄化装置

Publications (2)

Publication Number Publication Date
JP2011102573A true JP2011102573A (ja) 2011-05-26
JP5570185B2 JP5570185B2 (ja) 2014-08-13

Family

ID=44193004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009258560A Expired - Fee Related JP5570185B2 (ja) 2009-11-12 2009-11-12 排気浄化装置

Country Status (1)

Country Link
JP (1) JP5570185B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036799A (ja) * 2010-08-05 2012-02-23 Honda Motor Co Ltd 内燃機関の排気浄化システム
JP2013122220A (ja) * 2011-12-12 2013-06-20 Mitsubishi Motors Corp 内燃機関の排気浄化装置
JP2013124610A (ja) * 2011-12-15 2013-06-24 Mitsubishi Motors Corp 内燃機関の排気浄化装置
WO2014073408A1 (ja) 2012-11-07 2014-05-15 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2014202185A (ja) * 2013-04-09 2014-10-27 ボッシュ株式会社 窒素酸化物浄化制御方法及び排気浄化装置
KR20190010309A (ko) * 2017-07-21 2019-01-30 현대자동차주식회사 Sdpf 내 nh3 산화에 따른 n2o 생성 예측 방법
CN109681298A (zh) * 2018-11-27 2019-04-26 江苏大学 一种基于NOx传感器对尿素喷射自适应修正的控制系统
CN116146312A (zh) * 2023-04-21 2023-05-23 潍柴动力股份有限公司 一种scr气流的控制方法、系统、存储介质及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002138890A (ja) * 2000-11-06 2002-05-17 Honda Motor Co Ltd 湿度センサの故障判定装置
JP2005002968A (ja) * 2003-06-16 2005-01-06 Mitsubishi Fuso Truck & Bus Corp 内燃機関の排気浄化装置
JP2006022729A (ja) * 2004-07-08 2006-01-26 Hino Motors Ltd 排気浄化装置の制御方法
JP2008128066A (ja) * 2006-11-20 2008-06-05 Mitsubishi Fuso Truck & Bus Corp 排気浄化装置
WO2008103109A1 (en) * 2007-02-21 2008-08-28 Volvo Lastvagnar Ab Control method for controlling an exhaust aftertreatment system and exhaust aftertreatment system
JP2010229929A (ja) * 2009-03-27 2010-10-14 Toyota Motor Corp 内燃機関の排気浄化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002138890A (ja) * 2000-11-06 2002-05-17 Honda Motor Co Ltd 湿度センサの故障判定装置
JP2005002968A (ja) * 2003-06-16 2005-01-06 Mitsubishi Fuso Truck & Bus Corp 内燃機関の排気浄化装置
JP2006022729A (ja) * 2004-07-08 2006-01-26 Hino Motors Ltd 排気浄化装置の制御方法
JP2008128066A (ja) * 2006-11-20 2008-06-05 Mitsubishi Fuso Truck & Bus Corp 排気浄化装置
WO2008103109A1 (en) * 2007-02-21 2008-08-28 Volvo Lastvagnar Ab Control method for controlling an exhaust aftertreatment system and exhaust aftertreatment system
JP2010229929A (ja) * 2009-03-27 2010-10-14 Toyota Motor Corp 内燃機関の排気浄化装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036799A (ja) * 2010-08-05 2012-02-23 Honda Motor Co Ltd 内燃機関の排気浄化システム
JP2013122220A (ja) * 2011-12-12 2013-06-20 Mitsubishi Motors Corp 内燃機関の排気浄化装置
JP2013124610A (ja) * 2011-12-15 2013-06-24 Mitsubishi Motors Corp 内燃機関の排気浄化装置
JP5880731B2 (ja) * 2012-11-07 2016-03-09 トヨタ自動車株式会社 内燃機関の排気浄化装置
CN104769244A (zh) * 2012-11-07 2015-07-08 丰田自动车株式会社 内燃机的排气净化装置
WO2014073408A1 (ja) 2012-11-07 2014-05-15 トヨタ自動車株式会社 内燃機関の排気浄化装置
US9593611B2 (en) 2012-11-07 2017-03-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus for internal combustion engine
JP2014202185A (ja) * 2013-04-09 2014-10-27 ボッシュ株式会社 窒素酸化物浄化制御方法及び排気浄化装置
KR20190010309A (ko) * 2017-07-21 2019-01-30 현대자동차주식회사 Sdpf 내 nh3 산화에 따른 n2o 생성 예측 방법
KR102383235B1 (ko) 2017-07-21 2022-04-05 현대자동차 주식회사 Sdpf 내 nh3 산화에 따른 n2o 생성 예측 방법
CN109681298A (zh) * 2018-11-27 2019-04-26 江苏大学 一种基于NOx传感器对尿素喷射自适应修正的控制系统
CN116146312A (zh) * 2023-04-21 2023-05-23 潍柴动力股份有限公司 一种scr气流的控制方法、系统、存储介质及电子设备
CN116146312B (zh) * 2023-04-21 2023-07-18 潍柴动力股份有限公司 一种scr气流的控制方法、系统、存储介质及电子设备

Also Published As

Publication number Publication date
JP5570185B2 (ja) 2014-08-13

Similar Documents

Publication Publication Date Title
JP5570185B2 (ja) 排気浄化装置
EP2918805B1 (en) Exhaust gas purification device for internal-combustion engine
JP4726926B2 (ja) 内燃機関の排気浄化装置
JP5163754B2 (ja) 内燃機関の排気浄化装置
JP4305643B2 (ja) 内燃機関の排気浄化装置
JP6149930B2 (ja) 内燃機関の排気浄化システム
WO2010079621A1 (ja) 触媒通過成分判定装置および内燃機関の排気浄化装置
WO2010147107A1 (ja) エンジンの排気浄化装置及び排気浄化方法
JP2009257226A (ja) 内燃機関の排気浄化装置
JP5915516B2 (ja) 内燃機関の排気浄化装置
WO2010087005A1 (ja) 排気浄化装置
JP2009156159A (ja) 排気ガス浄化システムの異常部位の判定装置
JP4419150B2 (ja) NOx触媒の異常診断装置及び異常診断方法
JP2021055563A (ja) 内燃機関の排気浄化装置、及び車両
JP2018128006A (ja) 排ガス浄化装置
JP6149940B2 (ja) 内燃機関の排気浄化装置
WO2013179393A1 (ja) 内燃機関の排気浄化装置
JP2010209737A (ja) 内燃機関の排気浄化装置
JP5672328B2 (ja) 内燃機関の排気浄化装置
JP2010185434A (ja) 内燃機関の排気浄化装置
CN110630358A (zh) 被动氮氧化物储存催化剂管理
JP2012031787A (ja) 内燃機関の排気浄化装置及び方法
JP4729990B2 (ja) 内燃機関の排気浄化装置
JP2011106313A (ja) エンジンの排気浄化装置
EP3064727B1 (en) Exhaust gas purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140606

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140624

R150 Certificate of patent or registration of utility model

Ref document number: 5570185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees