JP2011091583A - 周波数シンセサイザ - Google Patents

周波数シンセサイザ Download PDF

Info

Publication number
JP2011091583A
JP2011091583A JP2009242805A JP2009242805A JP2011091583A JP 2011091583 A JP2011091583 A JP 2011091583A JP 2009242805 A JP2009242805 A JP 2009242805A JP 2009242805 A JP2009242805 A JP 2009242805A JP 2011091583 A JP2011091583 A JP 2011091583A
Authority
JP
Japan
Prior art keywords
value
frequency
temperature
main
crystal oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009242805A
Other languages
English (en)
Other versions
JP5426316B2 (ja
Inventor
Takaaki Ishikawa
貴章 石川
Kuichi Kubo
九一 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2009242805A priority Critical patent/JP5426316B2/ja
Publication of JP2011091583A publication Critical patent/JP2011091583A/ja
Application granted granted Critical
Publication of JP5426316B2 publication Critical patent/JP5426316B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

【課題】 電源投入直後の出力周波数を簡単な処理で安定させることができる周波数シンセサイザを提供する。
【解決手段】 温度補償を行わない水晶発振器1と、分数分周PLL回路2と、分数分周PLLにおける分周値を制御する制御部3とを備え、制御部3が、予め求められた電源投入からの時間と発振器出力の偏差との関係に基づいて、電源投入からの時間とその時点での周波数偏差を補償するための主分周値Mとステップ値nとを対応付けて時間依存パラメータテーブルとしてメモリー33に記憶しており、電源が投入されると、時間依存パラメータテーブルを参照して、カウンター34で計測された電源投入からの時間に対応する主分周値Mとステップ値nを読み出して分数分周PLL回路2に設定する周波数シンセサイザとしている。
【選択図】 図2

Description

本発明は、周波数シンセサイザに係り、特に電源投入直後の出力周波数を安定させることができる周波数シンセサイザに関する。
[先行技術の説明]
従来、温度補償型水晶発振器(TCXO;Temperature Compensated Crystal Oscillator)を基準信号源として用いた周波数シンセサイザでは、電源投入直後には、IC自体の発熱により水晶振動子とICとの温度差が生じ、周波数変動が発生してしまう。GPS機能を備えた携帯電話機等では高い周波数精度が要求されるため、この周波数変動は深刻な問題となる。
また、TCXO内のICチップの小型化に対する要求も大きく、立ち上がり時の周波数変動をTCXO内のICのみで補正するのは困難である。
[水晶振動子とICの電源投入後の温度推移:図7]
TCXOにおける水晶振動子と温度補償回路を備えたIC(LSI)との電源投入後の温度変化について図7を用いて説明する。図7は、TCXOにおける電源投入後の水晶振動子とIC(LSI)との温度変化を示す模式説明図である。
図7に示すように、TCXOの電源が投入されると、LSIでは回路自体からの発熱により温度が急上昇する。それに対して、水晶振動子の温度変化は緩やかであるため、電源投入直後のLSIと水晶振動子の温度差はかなり大きくなってしまい、正確な温度補償が行われず、周波数が安定しない。
[電源投入後の周波数変動:図8]
TCXOの電源投入後の出力周波数について図8を用いて説明する。図8は、TCXOの電源投入後の出力周波数の変動を示す模式説明図である。
図8に示すように、TCXOの出力周波数は、上述したLSIと水晶振動子との温度差により電源投入直後は変動が大きく、時間の経過と共に安定してくることがわかる。
[関連技術]
尚、周波数シンセサイザや水晶発振器の温度補償に関する技術としては、特開昭63−308402号公報(出願人:富士通株式会社、特許文献1)、特開昭63−312704号公報(出願人:キンセキ株式会社、特許文献2)、特開2003−69426号公報(出願人:松下電器産業株式会社、特許文献3)、特開平9−321622号公報(出願人:三菱電機株式会社、特許文献4)、特開2002−325034号公報(出願人:松下電工株式会社、特許文献5)、特開2007−267246号公報(出願人:松下電器産業株式会社、特許文献6)がある。
特許文献1には、信号発振器からの周波数を分周器で分周して出力する発振器において、制御回路が、温度変化による周波数変化を補償する分周器の分周比を計算し、分周器が当該分周比で分周するディジタル温度補償発振器が記載されている。
また、特許文献2には、ROMに、温度に対応して発振器出力を一定にする分周比を記憶しておき、水晶発振器を温度検出部として用いて、検出された温度情報に対応する分周比をプログラマブル分周器に設定するディジタル温度補償水晶発振器が記載されている。
特許文献3には、温度検出回路からの出力に応じて、制御信号発生回路で、可変分周器の分数部分の補正データを生成して、分数分周PLLの可変分周器における分数部分の分周比を補正する周波数シンセサイザが記載されている。
また、特許文献4には、分数分周方式の周波数シンセサイザにおいて、正確に位相誤差を補償して周波数切り替え時間の高速化を図ることが記載されている。
特許文献5には、分周器が、検出された温度と予め記憶された温度特性データとに応じて制御手段から与えられる主分周数N又は主分周数N+1を切り替えて分周するフラクショナルN方式周波数シンセサイザにおいて、温度特性データとして、予め設定された周波数偏差を逸脱する温度範囲のデータを記憶していることが記載されている。
特許文献6には、起動時からの所定時間、温度補償機能を無効とすることにより、起動時のICチップ表面温度の変動の影響を抑制して、起動時における水晶発振回路の出力周波数を安定させる水晶発振回路の基準電流制御回路が記載されている。
また、分数分周方式を用いた周波数シンセサイザにおいて、切換変動の小さなフィルタ切換方式により、高速周波数切換と、低位相雑音特性とを両立することも提案されている(非特許文献1)。
しかしながら、特許文献1〜6、及び非特許文献1には、電源投入からの時間に応じて分数分周方式のPLLにおける分周比を補正することは記載されていない。
特開昭63−308402号公報 特開昭63−312704号公報 特開2003−69426号公報 特開平9−321622号公報 特開2002−325034号公報 特開2007−267246号公報
分数分周方式を用いた高速周波数切換シンセサイザ,電子情報通信学会論文誌 C-I,Vol.J76-C-I,No.11,pp.445-452,1993年11月
しかしながら、従来の周波数シンセサイザでは、電源投入時のICと水晶振動子との温度差により出力周波数を簡単な処理で安定させることができないという問題点があった。
本発明は上記実状に鑑みて為されたもので、電源投入直後の出力周波数を簡単な処理で安定させることができる周波数シンセサイザを提供することを目的とする。
上記従来例の問題点を解決するための本発明は、基準信号を発生する水晶発振器と、設定された主分周値及びステップ値によって特定される分周値で電圧制御発振器の出力信号を分周して、基準信号と分周された信号との位相差に基づいて電圧制御発振器の出力周波数を制御する分数分周PLL回路と、主分周値とステップ値とを分数分周PLL回路に設定する制御部とを備えた周波数シンセサイザであって、水晶発振器が、温度補償回路を備えておらず、分数分周PLL回路が、電圧制御発振器と、プログラマブル分周器と、位相比較器と、ループフィルタと、ラッチ回路と、加算器とを備え、ラッチ回路が、基準信号をクロックとして、設定されたステップ数をクロック毎に出力し、加算器が、ラッチ回路からの出力をクロック毎に加算し、オーバーフローした場合にオーバーフロー信号をプログラマブル分周器に出力し、プログラマブル分周器が、加算器からオーバーフロー信号が入力されないときには主分周値で分周し、オーバーフロー信号が入力されたときには主分周値に1を加算した値で分周し、制御部が、電源投入からの時間に応じた水晶発振器の出力周波数の偏差の情報に基づいて、偏差を補償する分周値とするための主分周値及びステップ値を電源投入からの時間に対応付けて記憶しておき、電源が投入されると、電源投入からの時間を計時し、計時された時間に対応して記憶された主分周値及びステップ値を読み出して、主分周値をプログラマブル分周器に設定すると共に、ステップ値をラッチ回路に設定することを特徴としている。
また、本発明は、基準信号を発生する水晶発振器と、設定された主分周値及びステップ値によって特定される分周値で電圧制御発振器の出力信号を分周して、基準信号と分周された信号との位相差に基づいて電圧制御発振器の出力周波数を制御する分数分周PLL回路と、主分周値とステップ値とを分数分周PLL回路に設定する制御部とを備えた周波数シンセサイザであって、水晶発振器が、温度を検出する温度センサーを備え、温度補償回路を備えておらず、分数分周PLL回路が、電圧制御発振器と、プログラマブル分周器と、位相比較器と、ループフィルタと、ラッチ回路と、加算器とを備え、ラッチ回路が、基準信号をクロックとして、設定されたステップ数をクロック毎に出力し、加算器が、ラッチ回路からの出力をクロック毎に加算し、オーバーフローした場合にオーバーフロー信号をプログラマブル分周器に出力し、プログラマブル分周器が、加算器からオーバーフロー信号が入力されないときには主分周値で分周し、オーバーフロー信号が入力されたときには主分周値に1を加算した値で分周し、制御部が、温度とそれに対応する水晶発振器の出力周波数の偏差の情報に基づいて、偏差を補償する分周値とするための主分周値及びステップ値を温度に対応付けて記憶しておき、電源が投入されると、温度センサーで検出された温度に対応して記憶された主分周値及びステップ値を読み出して、主分周値をプログラマブル分周器に設定すると共に、ステップ値をラッチ回路に設定することを特徴としている。
また、本発明は、上記周波数シンセサイザにおいて、水晶発振器が、温度を検出する温度センサーを備え、制御部が、温度とそれに対応する出力周波数の偏差の情報に基づいて、偏差を補償する分周値とするための主分周値及びステップ値を温度に対応付けて記憶しておき、電源が投入されると、温度センサーで検出された温度に対応して記憶された主分周値及びステップ値を読み出し、温度に対応して記憶された主分周値及びステップ値が、時間に対応して記憶された主分周値及びステップ値と一致する場合には、一致した主分周値及びステップ値を設定し、一致しない場合には、主分周値として、温度に対応して記憶された主分周値と時間に対応して記憶された主分周値との平均値又は平均値に最も近い整数値を設定し、ステップ値として、温度に対応して記憶されたステップ値と時間に対応して記憶されたステップ値との平均値又は平均値に最も近い整数値を設定することを特徴としている。
また、本発明は、上記周波数シンセサイザにおいて、水晶発振器が、電源投入からの時間に応じた水晶発振器の出力周波数の偏差の情報を記憶するメモリーを備え、制御部が、メモリーから電源投入からの時間に応じた水晶発振器の出力周波数の偏差の情報を読み出し、当該情報に基づいて偏差を補償する分周値とするための主分周値及びステップ値を算出して、電源投入からの時間に対応付けて記憶しておくことを特徴としている。
また、本発明は、上記周波数シンセサイザにおいて、水晶発振器が、温度とそれに対応する水晶発振器の出力周波数の偏差の情報を記憶するメモリーを備え、制御部が、メモリーから温度とそれに対応する水晶発振器の出力周波数の偏差の情報を読み出し、当該情報に基づいて偏差を補償する分周値とするための主分周値及びステップ値を算出して、温度に対応付けて記憶しておくことを特徴としている。
また、本発明は、上記周波数シンセサイザにおいて、制御部が主分周値及びステップ値を算出する処理を行う代わりに、処理を外部装置で行わせることを特徴としている。
本発明によれば、基準信号を発生する水晶発振器と、設定された主分周値及びステップ値によって特定される分周値で電圧制御発振器の出力信号を分周して、基準信号と分周された信号との位相差に基づいて電圧制御発振器の出力周波数を制御する分数分周PLL回路と、主分周値とステップ値とを分数分周PLL回路に設定する制御部とを備えた周波数シンセサイザであって、水晶発振器が、温度補償回路を備えておらず、分数分周PLL回路が、電圧制御発振器と、プログラマブル分周器と、位相比較器と、ループフィルタと、ラッチ回路と、加算器とを備え、ラッチ回路が、基準信号をクロックとして、設定されたステップ数をクロック毎に出力し、加算器が、ラッチ回路からの出力をクロック毎に加算し、オーバーフローした場合にオーバーフロー信号をプログラマブル分周器に出力し、プログラマブル分周器が、加算器からオーバーフロー信号が入力されないときには主分周値で分周し、オーバーフロー信号が入力されたときには主分周値に1を加算した値で分周し、制御部が、電源投入からの時間に応じた水晶発振器の出力周波数の偏差の情報に基づいて、偏差を補償する分周値とするための主分周値及びステップ値を電源投入からの時間に対応付けて記憶しておき、電源が投入されると、電源投入からの時間を計時し、計時された時間に対応して記憶された主分周値及びステップ値を読み出して、主分周値をプログラマブル分周器に設定すると共に、ステップ値をラッチ回路に設定する周波数シンセサイザとしているので、時間に応じて主分周値及びステップ値を設定するだけの簡単な処理で、電源投入直後の基準信号の変動を補償する適切な主分周値及びステップ値を分数分周PLL回路に設定することができ、電源投入直後から出力周波数を安定させることができる効果がある。
また、本発明によれば、基準信号を発生する水晶発振器と、設定された主分周値及びステップ値によって特定される分周値で電圧制御発振器の出力信号を分周して、基準信号と分周された信号との位相差に基づいて電圧制御発振器の出力周波数を制御する分数分周PLL回路と、主分周値とステップ値とを分数分周PLL回路に設定する制御部とを備えた周波数シンセサイザであって、水晶発振器が、温度を検出する温度センサーを備え、温度補償回路を備えておらず、分数分周PLL回路が、電圧制御発振器と、プログラマブル分周器と、位相比較器と、ループフィルタと、ラッチ回路と、加算器とを備え、ラッチ回路が、基準信号をクロックとして、設定されたステップ数をクロック毎に出力し、加算器が、ラッチ回路からの出力をクロック毎に加算し、オーバーフローした場合にオーバーフロー信号をプログラマブル分周器に出力し、プログラマブル分周器が、加算器からオーバーフロー信号が入力されないときには主分周値で分周し、オーバーフロー信号が入力されたときには主分周値に1を加算した値で分周し、制御部が、温度とそれに対応する水晶発振器の出力周波数の偏差の情報に基づいて、偏差を補償する分周値とするための主分周値及びステップ値を温度に対応付けて記憶しておき、電源が投入されると、温度センサーで検出された温度に対応して記憶された主分周値及びステップ値を読み出して、主分周値をプログラマブル分周器に設定すると共に、ステップ値をラッチ回路に設定する周波数シンセサイザとしているので、検出温度に応じて主分周値及びステップ値を設定するだけの簡単な処理で、電源投入直後の基準信号の変動を補償する適切な主分周値及びステップ値を分数分周PLL回路に設定することができ、電源投入直後から出力周波数を安定させることができる効果がある。
また、本発明によれば、水晶発振器が、温度を検出する温度センサーを備え、制御部が、温度とそれに対応する出力周波数の偏差の情報に基づいて、偏差を補償する分周値とするための主分周値及びステップ値を温度に対応付けて記憶しておき、電源が投入されると、温度センサーで検出された温度に対応して記憶された主分周値及びステップ値を読み出し、温度に対応して記憶された主分周値及びステップ値が、時間に対応して記憶された主分周値及びステップ値と一致する場合には、一致した主分周値及びステップ値を設定し、一致しない場合には、主分周値として、温度に対応して記憶された主分周値と時間に対応して記憶された主分周値との平均値又は平均値に最も近い整数値を設定し、ステップ値として、温度に対応して記憶されたステップ値と時間に対応して記憶されたステップ値との平均値又は平均値に最も近い整数値を設定する上記周波数シンセサイザとしているので、時間と温度とを両方考慮して電源投入直後の発振器出力の周波数変動を精度よく補償することができ、電源投入直後からシンセサイザ出力を安定させることができる効果がある。
また、本発明によれば、水晶発振器が、電源投入からの時間に応じた水晶発振器の出力周波数の偏差の情報を記憶するメモリーを備え、制御部が、メモリーから電源投入からの時間に応じた水晶発振器の出力周波数の偏差の情報を読み出し、当該情報に基づいて偏差を補償する分周値とするための主分周値及びステップ値を算出して、電源投入からの時間に対応付けて記憶しておく上記周波数シンセサイザとしているので、利用されるシステムや所望のシンセサイザ出力に応じて、制御部がメモリーからの情報に基づいて主分周値やステップ値を算出でき、電源投入直後の発振器出力の周波数変動を適切に補償して、電源投入直後からシンセサイザ出力を安定させることができる効果がある。
また、本発明によれば、水晶発振器が、温度とそれに対応する水晶発振器の出力周波数の偏差の情報を記憶するメモリーを備え、制御部が、メモリーから温度とそれに対応する水晶発振器の出力周波数の偏差の情報を読み出し、当該情報に基づいて偏差を補償する分周値とするための主分周値及びステップ値を算出して、温度に対応付けて記憶しておく上記周波数シンセサイザとしているので、利用されるシステムや所望のシンセサイザ出力に応じて、制御部がメモリーからの情報に基づいて主分周値やステップ値を算出でき、電源投入直後の発振器出力の周波数変動を適切に補償して、電源投入直後からシンセサイザ出力を安定させることができる効果がある。
また、本発明によれば、制御部が主分周値及びステップ値を算出する処理を行う代わりに、処理を外部装置で行わせる上記周波数シンセサイザとしているので、制御部の処理を軽減し、コストを低減することができる効果がある。
本実施の形態に係る周波数シンセサイザに用いられる水晶発振器の構成ブロック図である。 本周波数シンセサイザの構成ブロック図である。 (a)は時間依存パラメータテーブルの模式説明図であり、(b)は温度依存パラメータテーブルの模式説明図である。 A/Dコンバーターを内蔵した水晶発振器の構成ブロック図である。 別の水晶発振器の構成を示す概略構成ブロック図である。 別の水晶発振器における温度センサー出力電圧特性を示す模式説明図である。 TCXOにおける電源投入後の水晶振動子とIC(LSI)との温度変化を示す模式説明図である。 TCXOの電源投入後の出力周波数の変動を示す模式説明図である。
[実施の形態の概要]
本発明の実施の形態について図面を参照しながら説明する。
本発明の実施の形態に係る周波数シンセサイザは、分数分周PLL(Fractional-N PLL)回路と、基準信号源として温度補償を行わない水晶発振器を備えており、制御部が、予め実験的に求めた電源投入時からの時間と水晶発振器の出力周波数の偏差に基づいて、電源投入時からの時間と、当該偏差を補償するための分数分周PLLにおける分周比を設定するパラメータとを対応付けて記憶しておき、水晶発振器の発振出力をクロックとしてカウントして電源投入時からの時間を計測し、カウント値に対応するパラメータ(時間依存パラメータ)を読み出して分数分周PLL回路に設定するものであり、簡単な処理で電源投入直後の水晶発振器の偏差を補償して、シンセサイザ出力周波数を安定させることができるものである。
また、本実施の形態に係る周波数シンセサイザは、上記構成に加えて、水晶発振器に温度センサーを設け、予め測定された温度センサーの出力と周波数特性とを記憶しておき、制御部が、水晶発振器から読み取った温度−周波数特性に基づいて、温度センサーの出力に対応する水晶発振器の出力周波数の偏差を補償するための分周比を設定するパラメータを算出して、温度とパラメータとを対応付けて記憶しておき、電源投入後、温度センサーから出力される温度データに対応するパラメータ(温度依存パラメータ)と上記時間依存パラメータとを読み取り、温度依存パラメータと時間依存パラメータとが一致しない場合には、それらの平均値に基づくパラメータを分数分周PLL回路に設定するものであり、電源投入直後の水晶発振器の偏差を補償して、シンセサイザ出力周波数を安定させることができるものである。
[実施の形態に係る水晶発振器:図1]
本実施の形態に係る周波数シンセサイザ(本周波数シンセサイザ)に用いられる水晶発振器の構成について図1を用いて説明する。図1は、本実施の形態に係る周波数シンセサイザに用いられる水晶発振器の構成ブロック図である。
図1に示すように、本周波数シンセサイザに用いられる水晶発振器1は、基準信号源としての水晶振動子11と、発振出力を制御するIC10とを備え、IC10には、発振回路16と、温度センサー17と、メモリー18とが設けられている。
更に、外部と接続する端子として、発振器出力を出力する発振出力端子12と、温度センサーからの電圧を出力する温度センサー電圧出力端子13と、外部からのクロックが供給されるクロック端子(CLK)14と、データの授受を行うデータ端子(DATA)15と、電源電圧端子(VDD)と、接地電圧端子(VSS)とが設けられている。
IC10の各構成部分について説明する。
発振回路16は、水晶振動子11を発振させ、発振出力を基準信号として出力する回路である。
温度センサー17は、水晶発振器1内部の温度に応じた電圧を出力する。
メモリー18は、不揮発性メモリーで構成され、高温から低温までの広い温度範囲について、温度センサー電圧端子13から出力される温度センサー電圧出力と、発振出力の偏差(所定の周波数からのズレ)とを対応付けたテーブルが記憶されている。つまり、メモリー18には、当該水晶発振器1の温度−発振出力特性が記憶されている。
また、メモリー18に、電源投入時からの時間と、発振出力端子12から出力される発振出力の偏差とを対応付けて、当該水晶発振器1の電源投入からの時間−発振出力特性を記憶しておいてもよい。
尚、温度−発振出力特性や時間−発振出力特性は、予め実験等により求めた測定値に基づいて記憶されるものである。
また、本水晶発振器1では、IC10に温度補償回路を搭載していない。これにより、IC10を小型化することができ、水晶発振器1全体の小型化及び低消費電力を可能とするものである。
[本周波数シンセサイザの構成:図2]
次に、本周波数シンセサイザの構成について図2を用いて説明する。図2は、本周波数シンセサイザの構成ブロック図である。
図2に示すように、本周波数シンセサイザは、基本的には、水晶発振器1と、分数分周PLL回路(図ではFractional-N PLL)2と、制御部3とから構成されている。
各構成部分について説明する。
水晶発振器1は、図1に示したものと同等であり、本周波数シンセサイザの基準信号を出力する。
分数分周PLL回路2は、基準信号に基づいて所定の周波数Foutを生成して出力するものであり、位相比較器22と、ループフィルタ23と、VCO(Voltage-Controlled Oscillator;電圧制御発振器)24と、プログラマブル分周器25と、ラッチ回路26と、Nビットアダー27とを備えている。
VCO24は、入力された制御電圧に応じた周波数Foutを出力する。
プログラマブル分周器25は、分周比を可変とする分周器であり、後述する制御部3からの主分周値MとNビットアダー27からのオーバーフロー信号に応じて、分周値M又は(M+1)でVCO24からの出力周波数を分周する。具体的には、通常(オーバーフロー信号が入力されないとき)は分周値をMとし、オーバーフロー信号が入力された場合には分周値をM+1とする。
位相比較器22は、水晶発振器1からの発振出力frefとプログラマブル分周器25から出力される分周されたシンセサイザ出力の位相を比較して、位相差に応じた電圧(位相差信号)を出力する。
ループフィルタ23は位相差信号を平滑化して制御電圧としてVCO24に出力する。
ラッチ回路26とNビットアダー27はアキュムレータ29を構成しており、プログラマブル分周器25における分周値を主分周値M又は主分周値に1を加算したM+1に設定するものである。
ラッチ回路26は、最大Nビットラッチ可能なラッチ回路であり、水晶発振器1からの発振出力frefのクロックをnビットラッチし、クロック毎にnビットをNビットアダー27に出力する。nは、Nビットアダー27にクロック毎に加算されるステップ値(ラッチ数)であり、制御部3から指定される。
Nビットアダー27は、ラッチ回路26からの出力をクロック毎に加算し、Nビットをオーバーフローすると、プログラマブル分周器25にオーバーフロー信号(図では「+1」と記載)を出力する。すなわち、Nビットアダー27は、クロック毎にnビットずつ加算し、オーバーフローするとオーバーフロー信号を出力するものである。
つまり、プログラマブル分周器25は、Nビットのクロックの内、nクロックの分周値をM+1とすることになる。例えば、N=8とすると、28=256クロックの内、n回は分周値M+1で分周するものである。
これにより、プログラマブル分周器25の平均の分周値は、M+(n/256)となり、アダーのビット数だけ分解能を増やして分数の分周値を設定可能とするものである。
そして、本周波数シンセサイザでは、制御部3が主分周値M及びステップ値nの値を指定して、分周値を調整するようになっている。
シンセサイザ出力は、Fout=fref×(M+(n/2N))で表され、M及びnを調整することにより、周波数変動を補償することができるものである。
制御部3は、電源投入時の周波数変動を抑制するために、プログラマブル分周器25に適切な分周値を設定する制御を行うものであり、マイコン等で構成され、A/D変換器32と、メモリー33と、カウンター34とを備えている。尚、制御部3を、本シンセサイザが搭載される携帯電話機等の制御部の機能の一部として備えてもよい。
A/D変換器32は、水晶発振器1の温度センサー電圧出力端子13からの温度センサー電圧をA/D変換する。
カウンター34は、水晶発振器1からの発振出力frefをクロックとしてカウントし、電源投入時からの時間を計時するものである。
メモリー33は、プログラマブル分周器25に適切な分周値を設定するためのパラメータとして、主分周値M及びステップ値nを記憶している。
本周波数シンセサイザでは、電源投入時からの時間と、水晶発振器1の周波数偏差を補償するM及びnを対応付けて記憶する時間依存パラメータテーブルと、温度と周波数偏差を補償するM及びnを対応付けて記憶する温度依存パラメータテーブルとを備えている。
[パラメータテーブル:図3]
ここで、メモリー33に記憶されている時間依存パラメータテーブルと温度依存パラメータテーブルについて図3を用いて説明する。図3は、(a)は時間依存パラメータテーブルの模式説明図であり、(b)は温度依存パラメータテーブルの模式説明図である。
図3(a)に示すように、時間依存パラメータテーブルは、電源投入時からのカウンタ値(電源投入時からの時間)と、それに対応する主分周値M及びステップ値nを記憶しているものである。
水晶発振器1の出力は、図7に示したように電源投入時からの時間に応じて周波数偏差が変化するため、予め実験的に電源投入時からのカウント値とそれに対応する所望の周波数からの偏差を測定して制御部3のメモリー33に記憶しておき、制御部3で、当該周波数偏差を補償する主分周値M及びステップ値nを算出して、電源投入時からのカウント値に対応付けて時間依存パラメータテーブルとして記憶しているものである。
また、上述したように、電源投入時からのカウント値とそれに対応する周波数偏差(時間−発振器出力特性)を水晶発振器1のメモリー18に記憶しておき、制御部3が水晶発振器1から時間−発振器出力特性を読み出して、当該特性に基づいてM及びnを算出してメモリー33に設定するようにしてもよい。
Mとnの算出について説明すると、Fout/frefの値の整数部をa、小数部をbとすると、M=aとして算出され、また、(n/2N)=bであるから、n=b×2Nとして算出される。
同様に、図3(b)に示すように、温度依存パラメータテーブルは、温度データと、それに対応する主分周値M及びステップ値nを記憶しているものである。温度データは、水晶発振器1の温度センサー電圧出力端子13からの電圧を制御部3のA/D変換器32でデジタルデータに変換した値である。
そして、本周波数シンセサイザでは、制御部3が、水晶発振器1に記憶されている温度−発振出力特性を要求し、取得した当該温度−発振出力特性に基づいて、温度に応じた周波数偏差を補償するための主分周値M及びステップ値nを算出して、温度依存パラメータテーブルとして記憶しているものである。
尚、発振器1の周波数偏差を補償するM及びnを制御部3で算出するのではなく、外部のコンピュータ等で算出して、時間依存パラメータテーブル及び温度依存パラメータテーブルを生成し、当該テーブルを制御部3に読み込むようにしてもよい。
また、搭載されるシステムに応じて、所望のシンセサイザ出力を可変とする場合には、各々のシンセサイザ出力周波数に応じた時間依存パラメータテーブル及び温度依存パラメータテーブルを備えることが望ましい。
あるいは、複数の周波数シンセサイザ出力に応じたテーブルを外部のコンピュータ等で生成しておき、設定されたシンセサイザ出力周波数に応じたテーブルを制御部3のメモリー33に読み込んで記憶することも可能である。
[本周波数シンセサイザの動作]
本周波数シンセサイザの動作について図2を用いて説明する。
まず、電源投入時からの時間に応じて主分周値M及びステップ値nを制御する動作について説明する。
制御部3は、水晶発振器1の発振出力frefをクロックとしてカウンター34でカウントし、メモリー33に記憶されている時間依存パラメータテーブルに基づいて、カウンター34のカウント値に対応する主分周値M及びステップ値nを読み取って、Mをプログラマブル分周器25に設定し、nをアキュムレータ29に設定する。
プログラマブル分周器25は、アキュムレータ29からのオーバーフロー信号が入力されない場合には分周値Mで分周し、オーバーフロー信号が入力されると分周値をM+1として分周する。
これにより、本周波数シンセサイザでは、電源投入からの時間に応じた周波数偏差を打ち消すよう、プログラマブル分周器25の分周値を調整することができ、電源投入直後の周波数変動を簡単な処理で抑制することができるものである。
次に、温度センサーで測定された温度に基づいて主分周値M及びステップ値nを制御する動作について説明する。
制御部3は、水晶発振器1から出力される温度センサー電圧をA/D変換器32でデジタルデータの温度データに変換し、メモリー33に記憶されている温度依存パラメータテーブルを参照して、温度データに対応する主分周値M及びステップ値nを読み取って、それぞれ、プログラマブル分周器25とアキュムレータ29に設定する。
これにより、本周波数シンセサイザでは、水晶発振器1の温度に応じて、周波数偏差を打ち消す適切な分周値をプログラマブル分周器25の分周値を設定することができ、電源投入直後のシンセサイザ出力の周波数変動を簡単な処理で抑制することができるものである。
更に、本周波数シンセサイザでは、電源投入時からの時間と、温度の両方を考慮した制御を行うことも可能としている。
この場合、制御部3は、カウンター34のカウンタ値に対応する主分周値M及びステップ値nを時間依存パラメータテーブルから読み取り、また、A/D変換器32からの温度データに対応するM及びnを温度依存パラメータから読み取る。
時間依存パラメータテーブルと温度依存パラメータテーブルから読み取ったM及びnが一致していれば、当該M及びnをそれぞれプログラマブル分周器25とアキュムレータ29に設定する。
また、2つのテーブルから読み取ったM、nが異なる場合には、それぞれの平均値又は平均値に最も近い整数値をM、nとして設定する。平均値が整数にならない場合には、切り上げ又は切り下げにより最も近い整数値を決定する。
これにより、本周波数シンセサイザでは、電源投入時からの時間と、水晶発振器1の温度とに応じて、適切な分周値を設定でき、電源投入直後の水晶発振器1の周波数偏差を精度よく補償して、シンセサイザ出力を安定させることができるものである。
[A/D変換器を内蔵した水晶発振器:図4]
また、本周波数シンセサイザには、基準信号源として、図1に示した水晶発振器1の代わりに図4に示した水晶発振器1′を備えたものもある。
図4は、A/D変換器を内蔵した水晶発振器の構成ブロック図である。
図4に示すように、水晶発振器1′は、温度センサー17からの温度センサー電圧をA/D変換するA/D変換器19を備えている。
また、メモリー18には、温度データを書き込むエリアが設けられている。
そして、水晶発振器1′では、温度センサー17で検出された温度センサー電圧をA/D変換器19でA/D変換し、デジタル値の温度データをメモリー18に一旦書き込んで、クロック端子14からのクロックに応じてデータ端子15から出力する。
図2に示した本周波数シンセサイザにおいて、水晶発振器1の代わりに図4に示した水晶発振器1′を備えた場合には、水晶発振器1′のデータ端子15からデジタルデータの温度データが出力されるので、制御部3は、当該デジタルデータを用いて温度依存パラメータテーブルを参照することができるものである。
これにより、図2に示した本周波数シンセサイザの制御部3ではA/D変換器32が不要となり、装置構成を簡易にすることができるものである。
[実施の形態の効果]
本発明の実施の形態に係る周波数シンセサイザによれば、温度補償を行わない水晶発振器1と、分数分周PLL回路2と、分数分周PLLにおける分周値を制御する制御部3とを備え、制御部3が、予め求められた電源投入からの時間と発振器出力周波数の偏差との関係に基づいて、電源投入からの時間とその時点での周波数偏差を補償するための主分周値Mとステップ値nとを対応付けて時間依存パラメータテーブルとしてメモリー33に記憶しており、電源が投入されると、時間依存パラメータテーブルを参照して、カウンター34で計測された電源投入からの時間に対応する主分周値Mとステップ値nを読み出して分数分周PLL回路2に設定する周波数シンセサイザとしているので、電源投入からの時間に応じてテーブルから読み取った適切な分周値を設定して電源投入直後の水晶発振器1の周波数偏差を補償することができ、簡単な処理で電源投入時のシンセサイザ出力の周波数変動を抑制することができる効果がある。
また、本周波数シンセサイザによれば、制御部3が、水晶発振器1のメモリー18に予め記憶された温度データと出力周波数の偏差との関係に基づいて、温度データと当該偏差を補償するための主分周値Mとステップ値nとを対応付けて温度依存パラメータテーブルとしてメモリー33に記憶しており、電源が投入されると、温度依存パラメータテーブルを参照して、温度データに応じた主分周値Mとステップ値nを読み出し、Mとnを分数分周PLL回路2に設定する周波数シンセサイザとしているので、温度に応じてテーブルから読み取った適切な分周値を設定して電源投入直後の水晶発振器1の周波数偏差を補償することができ、簡単な処理で電源投入時のシンセサイザ出力の周波数変動を抑制することができる効果がある。
また、本周波数シンセサイザによれば、制御部3が、電源投入からの時間に応じて時間依存パラメータテーブルから主分周値Mとステップ値nとを読み出すと共に、温度データに応じて温度依存パラメータテーブルからMとnとを読み出し、2つのテーブルから読み出したM,nの値がそれぞれ一致していれば当該値を設定し、一致していない場合には平均値又は平均値に最も近い整数値を設定するようにしているので、時間と温度の両方を考慮して、電源投入直後の発振器出力の周波数変動を精度よく補償することができ、シンセサイザ出力を安定させる効果がある。
更に、本周波数シンセサイザによれば、A/D変換器19を備えた水晶発振器1′を基準信号源として用いることにより、制御部3にA/D変換器32を設ける必要がなくなり、装置構成を簡易にすることができる効果がある。
[別の水晶発振器の例:図5]
次に、電源投入直後の周波数の変動を小さくする別の実施の形態に係る水晶発振器(別の水晶発振器)について説明する。
別の水晶発振器は、温度変化による周波数変動を内部の処理によって補償するTCXOである。
別の水晶発振器の構成について図5を用いて説明する。図5は、別の水晶発振器の構成を示す概略構成ブロック図である。
図5に示すように、別の水晶発振器は、温度センサー41と、電圧切替器42と、タイマー回路43と、三次関数電圧発生回路44と、データ記憶部45と、発振回路46とを備えている。
通常、水晶発振器の温度特性は、三次関数によって表されるものであり、TCXOでは、当該三次関数の逆位相の三次関数を生成して、それによって温度の変化によって生じる周波数偏差を打ち消すようにしている。
一般に、電源投入時にはICの温度だけが急激に上昇して、ICと水晶振動子との温度差が大きくなるために出力周波数が不安定となっているが、別の水晶発振器では、電源投入から一定時間の間は、見かけの温度差を小さくする制御を行って、出力周波数の変動を補償するものである。
各部について説明する。
温度センサー41は、従来と同様のものであり、水晶発振器の温度に応じた電圧を出力する。
タイマー43は、電源投入からの時間を計時し、予め設定された一定時間が経過すると電圧切替器42にタイムアップを報知する。タイムアップするまでの一定時間は、実験的に求められ、電源投入後、ICと水晶の温度がほぼ等しくなるのに要する時間としている。
電圧切替器42は、温度センサー41からの電圧を電源投入からの時間に応じて切り替えて、温度センサー電圧として三次関数電圧発生回路44に出力する。
別の発振器の特徴として、電圧切替器42は、電源投入直後の一定時間は、温度の上昇に対する温度センサー電圧上昇の割合を通常よりも低くした電圧を出力し、一定時間経過後(タイマー回路43のタイムアップ後)は、温度センサー41からの電圧をそのまま出力する。
これにより、電源投入後一定時間は、温度の上昇に比べて温度センサー電圧の上昇は小さくなるため、実際よりも低い温度が検出されたことと同等になり、ICと水晶振動子との温度の差を見かけ上小さくすることができるものである。
また、例えば、電源投入直後に傾きを低下させて、タイムアップまでの時間の経過と共に一様な割合、若しくは水晶振動子の温度変化に比例する関数に従って傾きを徐々に増加させ、タイムアップ時には温度センサー41の電圧と等しくなるよう制御する等、傾きを時間経過と共に連続的に変化させるようにしてもよい。
データ記憶部45は、当該水晶発振器における温度と所望の周波数からの周波数偏差を記憶している。
また、三次関数電圧発生回路44は、データ記憶部45に記憶されている温度と周波数偏差の値から、当該温度特性を補償する三次関数を発生して、発生した三次関数と電圧切換器42からの温度センサー電圧に応じた電圧を発振回路46の可変容量素子に印加する。
発振回路46は、水晶振動子(図示せず)を発振させて発振器出力を取り出す回路であり、可変容量素子(バリキャップダイオード)を備え、三次関数電圧発生回路44から印加される電圧で可変容量素子の容量を変化させて水晶発振器の温度特性を補償する。
[温度センサー出力電圧特性:図6]
次に、別の水晶発振器における温度センサー出力電圧特性について図6を用いて説明する。図6は、別の水晶発振器における温度センサー出力電圧特性を示す模式説明図である。
図6に示すように、温度センサー41からの電圧の温度に対する特性を(a)とすると、電源投入から一定時間は、(b)に示すように温度増加に対する電圧増加の割合を小さく(傾きを小さく)するよう、電圧切替器42が電圧を変換して出力する。各温度において、(b)は一定の割合で(a)より低い電圧値となっている。
[別の発振器の動作]
別の発振器の動作について簡単に説明する。
別の発振器では、電源が投入されると、タイマー回路43が計時を開始する。温度センサー41は、温度を検出して温度に応じた電圧を出力する。
電圧切替器42は、電源投入から一定時間の間は、図6(b)の特性となるよう、温度センサー41からの電圧を一定の割合で低下させて温度センサー電圧として三次関数電圧発生回路44に出力し、三次関数電圧発生回路44では、入力された温度センサー電圧と記憶されている三次関数に基づいて電圧を決定し、発振回路46の可変容量素子に印加する。
そして、タイマー回路43からタイムアップが報知されると、ICと水晶との温度はほぼ等しくなっているので、電圧切替器42は、温度センサー41からの電圧をそのまま温度センサー電圧として出力する。
これにより、別の水晶発振器では、電源投入から一定時間の間は、実際よりも低く温度が検出されることになり、ICと水晶振動子との見かけの温度差を小さくでき、電源投入直後の発振器出力の周波数偏差を小さくすることができる効果がある。
また、別の水晶発振器によれば、簡易な構成を追加するだけで、電源投入直後の周波数変動を抑制した水晶発振器を容易に実現することができる効果がある。
また、別の水晶発振器を用いて周波数シンセサイザを構成してもよく、電源投入直後のシンセサイザ出力を安定させることができる効果がある。
本発明は、電源投入直後の出力周波数を安定させることができる周波数シンセサイザに適している。
1…水晶発振器、 2…分数分周PLL回路(Fractional-N PLL)、 3…制御部、 10…IC、 11…水晶振動子、 12…発振出力端子、 13…温度センサー電圧出力端子、 14…クロック端子、 15…データ端子、 16…発振回路、 17…温度センサー、 18…メモリー、 19…A/D変換器、 22…位相比較器、 23…ループフィルタ、 24…VCO、 25…プログラマブル分周器、 26…ラッチ回路、 27…Nビットアダー、 29…アキュムレータ、 32…A/D変換器、 33…メモリー、 34…カウンター、 41…温度センサー、 42…電圧切替器、 43…タイマー回路、 44…三次関数電圧発生回路、 45…データ記憶部、 46…発振回路

Claims (6)

  1. 基準信号を発生する水晶発振器と、設定された主分周値及びステップ値によって特定される分周値で電圧制御発振器の出力信号を分周して、前記基準信号と前記分周された信号との位相差に基づいて前記電圧制御発振器の出力周波数を制御する分数分周PLL回路と、主分周値とステップ値とを前記分数分周PLL回路に設定する制御部とを備えた周波数シンセサイザであって、
    前記水晶発振器が、温度補償回路を備えておらず、
    前記分数分周PLL回路が、電圧制御発振器と、プログラマブル分周器と、位相比較器と、ループフィルタと、ラッチ回路と、加算器とを備え、
    前記ラッチ回路が、前記基準信号をクロックとして、設定されたステップ数をクロック毎に出力し、
    前記加算器が、前記ラッチ回路からの出力をクロック毎に加算し、オーバーフローした場合にオーバーフロー信号を前記プログラマブル分周器に出力し、
    前記プログラマブル分周器が、前記加算器から前記オーバーフロー信号が入力されないときには前記主分周値で分周し、前記オーバーフロー信号が入力されたときには前記主分周値に1を加算した値で分周し、
    前記制御部が、電源投入からの時間に応じた前記水晶発振器の出力周波数の偏差の情報に基づいて、前記偏差を補償する分周値とするための主分周値及びステップ値を電源投入からの時間に対応付けて記憶しておき、電源が投入されると、前記電源投入からの時間を計時し、前記計時された時間に対応して記憶された主分周値及びステップ値を読み出して、前記主分周値を前記プログラマブル分周器に設定すると共に、前記ステップ値を前記ラッチ回路に設定することを特徴とする周波数シンセサイザ。
  2. 基準信号を発生する水晶発振器と、設定された主分周値及びステップ値によって特定される分周値で電圧制御発振器の出力信号を分周して、前記基準信号と前記分周された信号との位相差に基づいて前記電圧制御発振器の出力周波数を制御する分数分周PLL回路と、主分周値とステップ値とを前記分数分周PLL回路に設定する制御部とを備えた周波数シンセサイザであって、
    前記水晶発振器が、温度を検出する温度センサーを備え、温度補償回路を備えておらず、
    前記分数分周PLL回路が、電圧制御発振器と、プログラマブル分周器と、位相比較器と、ループフィルタと、ラッチ回路と、加算器とを備え、
    前記ラッチ回路が、前記基準信号をクロックとして、設定されたステップ数をクロック毎に出力し、
    前記加算器が、前記ラッチ回路からの出力をクロック毎に加算し、オーバーフローした場合にオーバーフロー信号を前記プログラマブル分周器に出力し、
    前記プログラマブル分周器が、前記加算器から前記オーバーフロー信号が入力されないときには前記主分周値で分周し、前記オーバーフロー信号が入力されたときには前記主分周値に1を加算した値で分周し、
    制御部が、温度とそれに対応する前記水晶発振器の出力周波数の偏差の情報に基づいて、前記偏差を補償する分周値とするための主分周値及びステップ値を温度に対応付けて記憶しておき、電源が投入されると、前記温度センサーで検出された温度に対応して記憶された主分周値及びステップ値を読み出して、前記主分周値を前記プログラマブル分周器に設定すると共に、前記ステップ値を前記ラッチ回路に設定することを特徴とする周波数シンセサイザ。
  3. 水晶発振器が、温度を検出する温度センサーを備え、
    制御部が、温度とそれに対応する出力周波数の偏差の情報に基づいて、前記偏差を補償する分周値とするための主分周値及びステップ値を温度に対応付けて記憶しておき、電源が投入されると、前記温度センサーで検出された温度に対応して記憶された主分周値及びステップ値を読み出し、前記温度に対応して記憶された主分周値及びステップ値が、時間に対応して記憶された主分周値及びステップ値と一致する場合には、前記一致した主分周値及びステップ値を設定し、一致しない場合には、主分周値として、前記温度に対応して記憶された主分周値と前記時間に対応して記憶された主分周値との平均値又は前記平均値に最も近い整数値を設定し、ステップ値として、前記温度に対応して記憶されたステップ値と前記時間に対応して記憶されたステップ値との平均値又は前記平均値に最も近い整数値を設定することを特徴とする請求項1記載の周波数シンセサイザ。
  4. 水晶発振器が、電源投入からの時間に応じた前記水晶発振器の出力周波数の偏差の情報を記憶するメモリーを備え、
    制御部が、前記メモリーから前記電源投入からの時間に応じた前記水晶発振器の出力周波数の偏差の情報を読み出し、前記情報に基づいて偏差を補償する分周値とするための主分周値及びステップ値を算出して、電源投入からの時間に対応付けて記憶しておくことを特徴とする請求項1又は3記載の周波数シンセサイザ。
  5. 水晶発振器が、温度とそれに対応する前記水晶発振器の出力周波数の偏差の情報を記憶するメモリーを備え、
    制御部が、前記メモリーから前記温度とそれに対応する前記水晶発振器の出力周波数の偏差の情報を読み出し、前記情報に基づいて偏差を補償する分周値とするための主分周値及びステップ値を算出して、温度に対応付けて記憶しておくことを特徴とする請求項2又は3記載の周波数シンセサイザ。
  6. 制御部が主分周値及びステップ値を算出する処理を行う代わりに、前記処理を外部装置で行わせることを特徴とする請求項4又は5記載の周波数シンセサイザ。
JP2009242805A 2009-10-21 2009-10-21 周波数シンセサイザ Expired - Fee Related JP5426316B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009242805A JP5426316B2 (ja) 2009-10-21 2009-10-21 周波数シンセサイザ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009242805A JP5426316B2 (ja) 2009-10-21 2009-10-21 周波数シンセサイザ

Publications (2)

Publication Number Publication Date
JP2011091583A true JP2011091583A (ja) 2011-05-06
JP5426316B2 JP5426316B2 (ja) 2014-02-26

Family

ID=44109424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009242805A Expired - Fee Related JP5426316B2 (ja) 2009-10-21 2009-10-21 周波数シンセサイザ

Country Status (1)

Country Link
JP (1) JP5426316B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013243606A (ja) * 2012-05-22 2013-12-05 Seiko Epson Corp 温度情報生成回路、発振器、電子機器、温度補償システム及び電子部品の温度補償方法
CN106856403A (zh) * 2015-12-08 2017-06-16 上海贝岭股份有限公司 实时时钟产生装置及方法
JP2017220770A (ja) * 2016-06-07 2017-12-14 セイコーエプソン株式会社 温度補償型発振回路、発振器、電子機器、移動体及び発振器の製造方法
CN109861689A (zh) * 2019-02-25 2019-06-07 中国科学院微电子研究所 一种参考频率的产生方法及装置
JP2020137026A (ja) * 2019-02-22 2020-08-31 セイコーエプソン株式会社 発振器、電子機器および移動体
JP2020137025A (ja) * 2019-02-22 2020-08-31 セイコーエプソン株式会社 発振器、電子機器および移動体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335017A (ja) * 1986-07-30 1988-02-15 Japan Radio Co Ltd 無線周波数安定化装置
JPH03209917A (ja) * 1990-01-11 1991-09-12 Japan Radio Co Ltd Pll方式の周波数シンセサイザ
JP2000509219A (ja) * 1996-04-22 2000-07-18 モトローラ・インコーポレイテッド 温度補償および周波数逓倍機能を備えた周波数シンセサイザおよびその製造方法
JP2002325034A (ja) * 2001-04-25 2002-11-08 Matsushita Electric Works Ltd フラクショナルn方式周波数シンセサイザ
WO2008021810A2 (en) * 2006-08-09 2008-02-21 Qualcomm Incorporated Reference signal generation for multiple communication systems
JP2008271355A (ja) * 2007-04-24 2008-11-06 Nippon Dempa Kogyo Co Ltd 表面実装用の温度補償水晶発振器
WO2009063612A1 (ja) * 2007-11-14 2009-05-22 Panasonic Corporation シンセサイザ、シンセサイザモジュール、およびこれを用いた受信装置、電子機器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335017A (ja) * 1986-07-30 1988-02-15 Japan Radio Co Ltd 無線周波数安定化装置
JPH03209917A (ja) * 1990-01-11 1991-09-12 Japan Radio Co Ltd Pll方式の周波数シンセサイザ
JP2000509219A (ja) * 1996-04-22 2000-07-18 モトローラ・インコーポレイテッド 温度補償および周波数逓倍機能を備えた周波数シンセサイザおよびその製造方法
JP2002325034A (ja) * 2001-04-25 2002-11-08 Matsushita Electric Works Ltd フラクショナルn方式周波数シンセサイザ
WO2008021810A2 (en) * 2006-08-09 2008-02-21 Qualcomm Incorporated Reference signal generation for multiple communication systems
JP2008271355A (ja) * 2007-04-24 2008-11-06 Nippon Dempa Kogyo Co Ltd 表面実装用の温度補償水晶発振器
WO2009063612A1 (ja) * 2007-11-14 2009-05-22 Panasonic Corporation シンセサイザ、シンセサイザモジュール、およびこれを用いた受信装置、電子機器

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013243606A (ja) * 2012-05-22 2013-12-05 Seiko Epson Corp 温度情報生成回路、発振器、電子機器、温度補償システム及び電子部品の温度補償方法
CN106856403A (zh) * 2015-12-08 2017-06-16 上海贝岭股份有限公司 实时时钟产生装置及方法
JP2017220770A (ja) * 2016-06-07 2017-12-14 セイコーエプソン株式会社 温度補償型発振回路、発振器、電子機器、移動体及び発振器の製造方法
CN107483016A (zh) * 2016-06-07 2017-12-15 精工爱普生株式会社 温度补偿型振荡电路、振荡器及其制造方法、电子设备、移动体
CN107483016B (zh) * 2016-06-07 2023-06-02 精工爱普生株式会社 温度补偿型振荡电路、振荡器及其制造方法、电子设备、移动体
JP2020137026A (ja) * 2019-02-22 2020-08-31 セイコーエプソン株式会社 発振器、電子機器および移動体
JP2020137025A (ja) * 2019-02-22 2020-08-31 セイコーエプソン株式会社 発振器、電子機器および移動体
JP7268394B2 (ja) 2019-02-22 2023-05-08 セイコーエプソン株式会社 発振器、電子機器および移動体
JP7275638B2 (ja) 2019-02-22 2023-05-18 セイコーエプソン株式会社 発振器、電子機器および移動体
CN109861689A (zh) * 2019-02-25 2019-06-07 中国科学院微电子研究所 一种参考频率的产生方法及装置
CN109861689B (zh) * 2019-02-25 2023-05-23 中国科学院微电子研究所 一种参考频率的产生方法及装置

Also Published As

Publication number Publication date
JP5426316B2 (ja) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5426316B2 (ja) 周波数シンセサイザ
US7298219B2 (en) Phase-locked loop circuit
US7332975B2 (en) Reference-less clock circuit
TWI485986B (zh) 時脈訊號合成之方法與裝置
US20100090768A1 (en) Pll circuit
JP4374463B2 (ja) 発振周波数制御回路
JP4355350B2 (ja) 発振周波数制御回路
JP6045961B2 (ja) 水晶発振器及び発振装置
JP4625494B2 (ja) 発振周波数制御回路
US8638172B2 (en) Local oscillator
US10985762B2 (en) Compensating for frequency variation of a crystal oscillator and related systems, methods and devices
US7633348B2 (en) Frequency-locking device and frequency-locking method thereof
JP4625849B2 (ja) 発振器制御装置
US7151414B2 (en) Method and circuit for frequency synthesis using a low drift current controlled oscillator with wide output frequency range
WO2015151870A1 (ja) 発振装置
JP2006135892A (ja) 電圧制御発振器及び発振周波数調整方法
CN112234981A (zh) 数据与时钟恢复电路
US20180287617A1 (en) Locked loop circuit with reference signal provided by un-trimmed oscillator
JP4534140B2 (ja) Pll回路
JP5145398B2 (ja) 発振周波数制御回路
US9281822B2 (en) Oscillator
US8125284B2 (en) Temperature compensation method and apparatus for an output frequency signal based on successive approximation
JP2007067635A (ja) 半導体集積回路
JP4545769B2 (ja) 温度補償型発振器
JP4880014B2 (ja) 周波数シンセサイザ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees