JP2011066262A - 半導体装置及び半導体装置の製造方法 - Google Patents

半導体装置及び半導体装置の製造方法 Download PDF

Info

Publication number
JP2011066262A
JP2011066262A JP2009216450A JP2009216450A JP2011066262A JP 2011066262 A JP2011066262 A JP 2011066262A JP 2009216450 A JP2009216450 A JP 2009216450A JP 2009216450 A JP2009216450 A JP 2009216450A JP 2011066262 A JP2011066262 A JP 2011066262A
Authority
JP
Japan
Prior art keywords
film
dielectric constant
chamber
high dielectric
constant insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009216450A
Other languages
English (en)
Inventor
Arihito Ogawa
有人 小川
Sadayoshi Horii
貞義 堀井
Hideji Itaya
秀治 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2009216450A priority Critical patent/JP2011066262A/ja
Publication of JP2011066262A publication Critical patent/JP2011066262A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】バンドギャップが狭い高誘電率膜を用いたキャパシタにおいて、リーク電流を低減するとともに、製造コストを削減することができる半導体装置及び半導体装置の製造方法を提供する。
【解決手段】ウエハ2上に形成された下部電極としてのTiN膜100と、TiN膜100上に形成された第1の高誘電率絶縁膜としてのHfO膜110と、HfO膜110上に形成され、HfO膜110のバンドギャップよりも狭いバンドギャップを有する第2の高誘電率絶縁膜としてのTiO膜120と、TiO膜120上に形成され、非貴金属であって4.8eVよりも高い仕事関数を有する上部電極膜としてのCo膜130と、により構成されている。
【選択図】図3

Description

本発明は、半導体装置及び半導体装置の製造方法に関する。
MOSFET(Metal−Oxide−Semiconductor Field Effect Transistor)の高集積化及び高性能化に伴い、DRAM(Dynamic Random Access Memory)キャパシタの絶縁膜として高誘電率絶縁膜が適用されている。また、DRAMキャパシタの電極には、電極材料として窒化チタン(TiN)やルテニウム(Ru)等が検討されている。
通常、DRAMキャパシタ部の電極には、リーク電流低減の観点から高仕事関数を有する電極を用いる事が理想であるが、コスト面等を考慮すると、安価に成膜可能な金属膜で、かつ、絶縁膜とのバンドオフセットが十分に確保できる電極が選択される。
例えば、絶縁膜として、バンドギャップが広い酸化ハフニウム(HfO)膜や酸化ジルコニウム(ZrO)膜等を用いた場合には、電極として仕事関数が4.6eV程度のTiN膜が用いられる。一方、絶縁膜として、バンドギャップが狭い二酸化チタン(TiO)や五酸化ニオブ(Nb)を用いた場合には、電極としてTiN膜は用いられず、高価な、5.1eV程度の高い仕事関数を有する金(Au)やRu等の貴金属が用いられる材料として候補に挙がっている。
特許文献1には、第一の電極薄膜及び第二の電極薄膜の導体材料として金(Au)やルテニウム(Ru)、銅(Cu)等を用い、誘電体膜を酸化アルミニウム層及び酸化タンタル層で形成する薄膜キャパシタ及びその製造方法が開示されている。
特開2005−93597号公報
しかしながら、AuやRu等の貴金属を電極材料として用いた場合、材料が高価であること、また、成膜が困難であることなどの問題があり、実用化に至っていない。
一方、AuやRu等と比較して安価であり、成膜し易く、かつ、高仕事関数を有するニッケル(Ni)やコバルト(Co)等の金属膜を下部電極として用いた場合、これらの膜は、下部電極上へのキャパシタ絶縁膜形成時やその後の熱処理(PDA:Post Deposition Annealing)時に酸化されやすく、酸化膜換算膜厚(EOT:Equivalent Oxide Thickness)の増大に繋がる。
本発明は、バンドギャップが狭い高誘電率絶縁膜を用いたキャパシタにおいて、リーク電流を低減するとともに、製造コストを削減することができる半導体装置及び半導体装置の製造方法を提供することを目的とする。
本発明の一態様によれば、基板上に形成された下部電極膜と、前記下部電極膜上に形成された第1の高誘電率絶縁膜と、前記第1の高誘電率絶縁膜上に形成され、前記第1の高誘電率絶縁膜のバンドギャップよりも狭いバンドギャップを有する第2の高誘電率絶縁膜と、前記第2の高誘電率絶縁膜上に形成された上部電極膜と、を有し、前記上部電極膜は、非貴金属であって4.8eVよりも高い仕事関数を有する金属膜により構成されていることを特徴とする半導体装置が提供される。
本発明の他の態様によれば、基板上に下部電極膜を形成する工程と、前記下部電極膜上に第1の高誘電率絶縁膜を形成する工程と、前記第1の高誘電率絶縁膜上に、前記第1の高誘電率絶縁膜のバンドギャップよりも狭いバンドギャップを有する第2の高誘電率絶縁膜を形成する工程と、前記第2の高誘電率絶縁膜上に、非貴金属であって4.8eVよりも高い仕事関数を有する金属膜により構成される上部電極膜を形成する工程と、を有することを特徴とする半導体装置の製造方法が提供される。
本発明によれば、バンドギャップが狭い高誘電率絶縁膜を用いたキャパシタにおいて、リーク電流を低減するとともに、製造コストを削減することができる半導体装置及び半導体装置の製造方法を提供することができる。
本発明の一実施形態にかかる基板処理装置の構成図である。 本発明の一実施形態にかかる一工程のシーケンスフローである。 本発明の一実施形態にかかる一工程により形成される積層構造の模式図である。 図4(a)は、本発明の一実施形態にかかるエネルギー準位図であり、図4(b)は、上部電極にTiNを用いた場合のエネルギー準位図である。 仕事関数が4.8eVよりも高い非貴金属である金属元素を示す図である。
以下、本発明の一実施形態を図面に即して説明する。
図1は、本発明の一実施形態に係る基板処理システムとしての基板処理装置を示している。
[基板処理装置の構成]
まず、本発明の一実施形態に係る基板処理装置について説明する。
本実施形態において、基板処理装置は、構造的には図1に示されているようにクラスタ装置として構成されている。なお、本実施形態に係るクラスタ装置においては、ウエハ2を搬送するためのウエハ搬送用キャリア(基板収納容器)として、FOUP(Front Opening Unified Pod 、以下ポッドという)4が使用されている。
図1に示されているように、クラスタ装置10は、大気圧未満の圧力(負圧)に耐える構造に構成された搬送室としての第一ウエハ移載室(以下、負圧移載室という)12を備えており、負圧移載室12の筐体(以下、負圧移載室筐体という)14は、平面視が七角形で上下両端が閉塞した箱形状に形成されている。
負圧移載室12の中央部には、負圧下においてウエハ2を移載する搬送装置としてのウエハ移載装置(以下、負圧移載装置という)16が設置されており、この負圧移載装置16はスカラ形ロボット(SCARA:Selective Compliance Assembly Robot Arm)によって構成されている。
負圧移載室筐体14の7枚の側壁のうち長い側壁には、搬入用予備室(以下、搬入室という)18と搬出用予備室(以下、搬出室という)20とが、それぞれ隣接して連結されている。搬入室18の筐体と搬出室20の筐体とは、それぞれ平面視が略菱形で上下両端が閉塞した箱形状に形成されているとともに、負圧に耐え得るロードロックチャンバ構造に構成されている。
搬入室18及び搬出室20の負圧移載室12と反対側には、大気圧以上の圧力(以下、正圧という)を維持可能な構造に構成された第二ウエハ移載室(以下、正圧移載室という)22が隣接して連結されており、この正圧移載室22の筐体は、平面視が横長の長方形で上下両端が閉塞した箱形状に形成されている。
搬入室18と正圧移載室22との境には、ゲートバルブ24Aが設置されており、搬入室18と負圧移載室12との間には、ゲートバルブ24Bが設置されている。
搬出室20と正圧移載室22との境には、ゲートバルブ26Aが設置されており、搬出室20と負圧移載室12との間には、ゲートバルブ26Bが設置されている。
正圧移載室22には、正圧下でウエハ2を移載する第二ウエハ移載装置(以下、正圧移載装置という)28が設置されており、この正圧移載装置28はスカラ形ロボットによって構成されている。正圧移載装置28は、正圧移載室22に設置されたエレベータによって昇降されるように構成されているとともに、リニアアクチュエータによって左右方向に往復移動されるように構成されている。正圧移載室22の左側端部には、ノッチ合わせ装置30が設置されている。
正圧移載室22の正面壁には、三つのウエハ搬入搬出口32、34、36が、隣合わせに並べられて開設されており、これらのウエハ搬入搬出口32、34、36は、ウエハ2を正圧移載室22に対して搬入搬出し得るように設定されている。
これらのウエハ搬入搬出口32、34、36には、ポッドオープナ40がそれぞれ設置されている。ポッドオープナ40は、ポッド4を載置する載置台42と、載置台42に載置されたポッド4のキャップを着脱するキャップ着脱機構44とを備えており、載置台42に載置されたポッド4のキャップをキャップ着脱機構44によって着脱することにより、ポッド4のウエハ出し入れ口を開閉するようになっている。
ポッドオープナ40の載置台42に対してはポッド4が、図示しない工程内搬送装置(RGV)によって供給及び排出されるようになっている。
負圧移載室筐体14の7枚の側壁のうち正圧移載室22と反対側に位置する4枚の側壁には、第一処理ユニット50と、第二処理ユニット52と、第三処理ユニット54と、第四処理ユニット56とが、それぞれ隣接して連結されている。
第一処理ユニット50には処理室50aが設けられ、第二処理ユニット52には処理室52aが設けられ、第三処理ユニット54には処理室54aが設けられ、第四処理ユニット56には処理室56aが設けられている。
また、第一処理ユニット50と負圧移載室12との間には、ゲートバルブ60が設置されている。第二処理ユニット52と負圧移載室12との間には、ゲートバルブ62が設置されている。第三処理ユニット54と負圧移載室12との間には、ゲートバルブ64が設置されている。第四処理ユニット56と負圧移載室12との間には、ゲートバルブ66が設置されている。
負圧移載室筐体14における7枚の側壁のうちの他の2枚の側壁には、第一クーリングユニット72と、第二クーリングユニット74とがそれぞれ連結されており、第一クーリングユニット72及び第二クーリングユニット74は、いずれも処理済みのウエハ2を冷却するように構成されている。
クラスタ装置10は、後述するシーケンスフローを統括的に制御するためのコントローラ80を備えている。
[基板処理工程]
次に、半導体装置の製造工程の一工程として、前記構成に係るクラスタ装置10を使用して、基板を処理する方法について説明する。
図2は、本実施形態に係る一工程のシーケンスフローを示し、図3は、本実施形態に係る一工程により形成される積層構造の模式図を示す。なお、以下の説明において、クラスタ装置10を構成する各部の動作はコントローラ80により制御される。
まず、クラスタ装置10の載置台42に複数枚(例えば25枚)のウエハ2を収容したポッド4が載置される。載置台42に載置されたポッド4のキャップが、キャップ着脱機構44によって取り外され、ポッド4のウエハ出し入れ口が開放される。ポッド4が開放されると、正圧移載室22に設置された正圧移載装置28は、ウエハ搬入搬出口32(又は34、36)を通してポッド4からウエハ2を一枚ずつピックアップし、搬入室18に投入し、ウエハ2を搬入室用仮置き台に移載して行く。
この移載作業中には、搬入室18の正圧移載室22側はゲートバルブ24Aによって開かれており、また、搬入室18の負圧移載室12側はゲートバルブ24Bによって閉じられており、負圧移載室12内の圧力は、例えば、100Paに維持されている。
続いて、搬入室18の正圧移載室22側がゲートバルブ24Aによって閉じられ、搬入室18が排気装置(図示せず)によって負圧に排気される。搬入室18内が予め設定された圧力値に減圧されると、搬入室18の負圧移載室12側がゲートバルブ24Bによって開かれる。次に、負圧移載室12の負圧移載装置16は、搬入室用仮置き台からウエハ2を一枚ずつピックアップして負圧移載室12に搬入する。その後、搬入室18の負圧移載室12側がゲートバルブ24Bによって閉じられる。続いて、第一処理ユニット50のゲートバルブ60が開かれ、負圧移載装置16はウエハ2を第一処理ユニット50の処理室50a内へ搬入(ウエハロード)する。その後ゲートバルブ60が閉じられる。
なお、ウエハ2の処理室50a内への搬入に際しては、搬入室18及び負圧移載室12が真空排気されることによって内部の酸素や水分が予め除去されているため、外部の酸素や水分がウエハ2の処理室50a内への搬入に伴って処理室50a内に侵入することが確実に防止される。
第一処理ユニット50の処理室50a内では、ウエハ2上に下部電極としての窒化チタン膜(TiN膜)100がALD法により形成される(S10)。ステップ10(S10)において、TiN膜100は、処理室50a内へのTi原料の供給工程と、Ti原料を処理室50a内から除去するための不活性ガスによる処理室50a内のパージ工程と、処理室50a内への窒化源の供給工程と、窒化源を処理室50a内から除去するための不活性ガスによる処理室50a内のパージ工程と、を1サイクルとして、このサイクルを所定回数実施することで形成される(TiN膜形成工程)。
Ti原料としては、例えば塩化チタン(TiCl)が用いられ、窒化源としては、例えばアンモニアガス(NH)が用いられ、不活性ガスとしては、例えば窒素ガス(N)が用いられる。
第一処理ユニット50の処理室50a内で、ALD法により、TiN膜100を形成する際の処理条件としては、ウエハ温度:200〜500℃、処理室内圧力:1〜1000Pa、TiCl供給流量:10〜2000sccm、NH供給流量:1〜5000sccm、N供給流量:10〜10000sccm、膜厚:5〜50nmが例示される。
下部電極としてのTiN膜100の形成が終了すると、ゲートバルブ60が開かれ、成膜済みのウエハ2は、負圧移載装置16によって第一処理ユニット50の処理室50a内から負圧に維持された負圧移載室12に搬出(ウエハアンロード)される。続いて、ゲートバルブ60が閉じられた後に、ゲートバルブ62が開かれ、負圧移載装置16は、ウエハ2を第二処理ユニット52の処理室52a内へ搬入(ウエハロード)する。その後ゲートバルブ62が閉じられる。
次いで、第二処理ユニット52の処理室52a内では、ウエハ2上に形成された下部電極としてのTiN膜100上に、第1の高誘電率絶縁膜としての酸化ハフニウム膜(HfO膜)110と、第2の高誘電率絶縁膜としての酸化チタン膜(TiO膜)120が、ALD法により形成される(S12、S14)。すなわち、処理室52a内では、TiN膜100上にHfO膜110が形成され、このHfO膜110上にTiO膜120が形成される。
ステップ12(S12)において、HfO膜110は、処理室52a内へのHf原料の供給工程と、Hf原料を処理室52a内から除去するための不活性ガスによる処理室52a内のパージ工程と、処理室52a内への酸化源の供給工程と、酸化源を処理室52a内から除去するための不活性ガスによる処理室52a内のパージ工程と、を1サイクルとしてこのサイクルを所定回数実施することで形成される(HfO膜形成工程)。Hf原料としては、例えばTEMAHf(Hf[N(CH)(C)])が用いられ、酸化源としては、例えば水蒸気(HO)が用いられ、不活性ガスとしては、例えば窒素ガス(N)が用いられる。
第二処理ユニット52の処理室52a内で、ALD法により、HfO膜110を形成する際の処理条件としては、ウエハ温度:100〜400℃、処理室内圧力:1〜1000Pa、TEMAHf供給流量:10〜2000sccm、HO供給流量:10〜2000sccm、N供給流量:10〜10000sccm、膜厚:2〜12nmが例示される。
ステップ14(S14)において、TiO膜120は、処理室52a内へのTi原料の供給工程と、Ti原料を処理室52a内から除去するための不活性ガスによる処理室52a内のパージ工程と、処理室52a内への酸化源の供給工程と、酸化源を処理室52a内から除去するための不活性ガスによる処理室52a内のパージ工程と、を1サイクルとしてこのサイクルを所定回数実施することで形成される(TiO膜形成工程)。Ti原料としては、例えばTDMATi(Ti[N(CH)が用いられ、酸化源としては、例えば水蒸気(HO)が用いられ、不活性ガスとしては、例えば窒素ガス(N)が用いられる。
第二処理ユニット52の処理室52a内で、ALD法により、TiO膜120を形成する際の処理条件としては、ウエハ温度:150〜450℃、処理室内圧力:1〜1000Pa、TDMATi供給流量:10〜2000sccm、HO供給流量:10〜2000sccm、N供給流量:10〜10000sccm、膜厚:1〜12nmが例示される。
高誘電率絶縁膜としてのHfO膜110及びTiO膜120の形成が終了すると、ゲートバルブ62が開かれ、HfO膜110及びTiO膜120が形成されたウエハ2は、負圧移載装置16によって第二処理ユニット52の処理室52a内から負圧に維持された負圧移載室12に搬出(ウエハアンロード)される。続いて、ゲートバルブ62が閉じられた後に、ゲートバルブ64が開かれて、負圧移載装置16はウエハ2を、第三処理ユニット54の処理室54a内へ搬入(ウエハロード)する。その後ゲートバルブ64が閉じられる。
第三処理ユニット54の処理室54a内では、ウエハ2上に形成されたHfO膜110及びTiO膜120に対し熱処理としてのPDA(Post Deposition Annealing)が施される(S16)。ステップ16(S16)において、熱処理は、不活性ガス雰囲気下で、HfO膜110及びTiO膜120を、アニールにより緻密化もしくは結晶化するために行われる(PDA工程)。不活性ガスとしては、例えば窒素ガス(N)が用いられる。
第三処理ユニット54の処理室54a内で、HfO膜110及びTiO膜120に対し熱処理を施す際の処理条件としては、ウエハ温度:400〜700℃、処理室内圧力:1〜1000Pa、N供給流量:10〜10000sccm、熱処理時間:1〜60秒が例示される。
HfO膜110及びTiO膜120の熱処理が終了すると、ゲートバルブ64が開かれ、熱処理後のウエハ2は、負圧移載装置16によって第三処理ユニット54の処理室54a内から負圧に維持された負圧移載室12に搬出(ウエハアンロード)される。続いて、ゲートバルブ64が閉じられた後に、ゲートバルブ66が開かれて、負圧移載装置16はウエハ2を、第四処理ユニット56の処理室56a内へ搬入(ウエハロード)する。その後ゲートバルブ66が閉じられる。
第四処理ユニット56の処理室56a内では、ウエハ2上に形成されている熱処理後のTiO膜120上に、上部電極としてのコバルト膜(Co膜)130がCVD法により形成される(S18)。ステップ18(S18)において、Co膜130は、処理室56a内へのCo原料の供給工程と、Co原料を処理室内から除去するための不活性ガスによる処理室内のパージ工程と、を1サイクルとしてこのサイクルを所定回数実施することで形成される(Co膜形成工程)。Co原料としては、例えばCo(Cが用いられ、不活性ガスとしては、例えば窒素ガス(N)が用いられる。
第四処理ユニット56の処理室56a内で、CVD法により、Co膜130を形成する際の処理条件としては、ウエハ温度:100〜500℃、処理室内圧力:1〜1000Pa、Co(C供給流量:10〜2000sccm、N供給流量:10〜10000sccm、膜厚:1〜50nmが例示される。
上部電極としてのCo膜130の形成が終了すると、ゲートバルブ66が開かれ、成膜済みのウエハ2は負圧移載装置16によって第四処理ユニット56の処理室56a内から負圧に維持された負圧移載室12に搬出(ウエハアンロード)される。
なお、下部電極(TiN膜)形成工程(S10)、HfO膜形成工程(S12)、TiO膜形成工程(S14)、熱処理工程(S16)、及び、上部電極(Co膜)形成工程(S18)実施後のウエハ2は、第一クーリングユニット72又は第二クーリングユニット74が使用されて、必要に応じて冷却される場合もある。
Co膜130形成後のウエハ2が、第四処理ユニット56の処理室56a内から負圧移載室12に搬出され、ゲートバルブ66が閉じられた後、搬出室20の負圧移載室12側がゲートバルブ26Bによって開かれ、負圧移載装置16は処理済ウエハ2を負圧移載室12から搬出室20へ搬送し、搬出室20の搬出室用仮置き台の上に移載する。この際には、事前に、搬出室20の正圧移載室22側がゲートバルブ26Aによって閉じられ、搬出室20が排気装置(図示せず)により負圧に排気される。搬出室20が予め設定された圧力値に減圧されると、搬出室20の負圧移載室12側がゲートバルブ26Bによって開かれ、処理済ウエハ2が搬出されることとなる。処理済ウエハ搬出後に、ゲートバルブ26Bは閉じられる。
処理済ウエハ2についてのクラスタ装置10における第四処理ユニット56から負圧移載室12を介して行なわれる搬出室20へのアンローディング作業は、真空下に維持された第四処理ユニット56、負圧移載室12及び搬出室20において実施される。このため、ウエハ2の第四処理ユニット56から搬出室20への搬出作業に際して、このウエハ2に形成された膜の表面に自然酸化膜が生成したり、有機物等の不純物や異物等が付着したりすることが防止される。
同様に、搬入室18から第一処理ユニット50へ、第一処理ユニット50から第二処理ユニット52へ、第二処理ユニット52から第三処理ユニット54へ、第三処理ユニット54から第四処理ユニット56へウエハ2をそれぞれ搬送する場合においても、搬送作業はいずれも真空下に維持された状態で実施されるため、ウエハ2に形成された膜の表面に自然酸化膜が生成したり、有機物等の不純物や異物等が付着したりすることが防止される。
以上の作動が繰り返されることにより、搬入室18に一括して搬入された25枚のウエハ2について、第一処理ユニット50による下部電極(TiN膜)形成工程(S10)、第二処理ユニット52によるHfO膜形成工程(S12)、及び、TiO膜形成工程(S14)、第三処理ユニット54によるPDA工程(16)、第四処理ユニット56による上部電極(Co膜)形成工程(S18)が順次に実施されて行く。
なお、先に処理されているウエハ2が第一処理ユニット50での処理を終了し、第二処理ユニット52に搬入された後に、次のウエハ2を第一処理ユニット50に搬送し、処理することが可能である。つまり、一連の処理順序の中で、それぞれの処理ユニットが空き状態になったら、次のウエハ2を搬入して、並列で複数のウエハを処理することが可能である。25枚のウエハ2について一連の所定の処理が完了すると、処理済のウエハ2は搬出室20の仮置き台に溜められた状態になる。
25枚のウエハ2に対する一連の処理が完了し、処理済の25枚のウエハ2が搬出室20の仮置き台に収容されると、負圧に維持された搬出室20内に窒素ガスが供給され、搬出室20内が大気圧となった後に、搬出室20の正圧移載室22側が、ゲートバルブ26Aによって開かれる。次いで、載置台42に載置された空のポッド4のキャップが、ポッドオープナ40のキャップ着脱機構44によって開かれる。
続いて、正圧移載室22の正圧移載装置28は搬出室20からウエハ2をピックアップして正圧移載室22に搬出し、正圧移載室22のウエハ搬入搬出口32(又は34、36)を通してポッド4に収納して行く。処理済みの25枚のウエハ2のポッド4への収納が完了すると、ポッド4のキャップがポッドオープナ40のキャップ着脱機構44によってウエハ出し入れ口に装着され、ポッド4が閉じられる。処理済みの25枚のウエハ2を収納したポッド4は載置台42の上から次の工程へ工程内搬送装置によって搬送されて行く。
次に、上記実施形態により形成された積層構造のエネルギー準位について説明する。
図4は、エネルギー準位図を示す図である。図4(a)は、本実施形態に係る積層構造として上部電極にCo膜を用いた場合のエネルギー準位を示す図であり、図4(b)は、比較として上部電極にTiN膜を用いた場合のエネルギー準位を示す図である。
上記実施形態では、リーク電流の低減と高容量化の両立のために、絶縁膜として、界面におけるポテンシャル障壁であるバンドオフセットが高いHfO膜と、誘電率が高いTiO膜を用いた場合の積層構造について説明した。
ここで、MIM(Metal Insulator Metal)構造におけるリーク電流は、おもに金属電極の仕事関数と、絶縁膜の伝導帯側のバンドオフセットによって決定される。また、一般的にキャパシタは、±1Vの電圧が印加されて使用される。したがって、リーク電流を低減するために、電極の仕事関数と絶縁膜の伝導帯側のバンドオフセットは、1.0eVよりも高い値であることが望ましい。
図4(a)に示すように、本実施形態において、下部電極として用いたTiN膜の仕事関数は、4.6eV程度とあまり高い値でない。しかし、このTiN膜(下部電極)と接する絶縁膜としてHfO膜を用いているため、HfO膜の伝導帯側のバンドオフセットは2.6eVと十分な値が確保され、リーク電流が低減される。
一方、上部電極と接する絶縁膜であるTiO膜の伝導帯側のバンドエネルギーはHfO膜よりも1.6eV程度低い。ここで、Co膜は5.0eV程度の仕事関数を有する。このため、上部電極としてCo膜を用いた場合、TiO膜の伝導帯側のバンドオフセットは1.4eVとなり、リーク電流が低減される。
比較として、図4(b)に示すように、上部電極にTiN膜を用いた場合、TiO膜の伝導帯側のバンドオフセットは1.0eVと低い値となり、リーク電流が増大する。
なお、上記実施形態では、高容量化のための高誘電率絶縁膜としてTiO膜を、上部電極としてCo膜を、それぞれ用いた場合について説明したが、本発明はこれに限らず、高誘電率絶縁膜としてHfO、ZrO、Nb、五酸化タンタル(Ta)、チタン酸ストロンチウム(SrTiO)、チタン酸バリウムストロンチウム(BaSrTiO)、又は、チタン酸ジルコニウム酸鉛(PZT)等を用いた場合にも適用でき、上部電極として、図5に示すように、Ni、ベリリウム(Be)、炭素(C)、セレン(Se)、テルル(Te)、又は、レニウム(Re)等、仕事関数が4.8eVよりも高い貴金属以外の金属膜、すなわち非貴金属の金属膜を用いた場合にも適用できる。なお、貴金属とは、Au、銀(Ag)、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)、Ru、及び、オスミウム(Os)の元素を指す。
[本発明の好ましい態様]
以下に、本発明の好ましい態様について付記する。
本発明の一態様によれば、基板上に形成された下部電極膜と、前記下部電極膜上に形成された第1の高誘電率絶縁膜と、前記第1の高誘電率絶縁膜上に形成され、前記第1の高誘電率絶縁膜のバンドギャップよりも狭いバンドギャップを有する第2の高誘電率絶縁膜と、前記第2の高誘電率絶縁膜上に形成された上部電極膜と、を有し、前記上部電極膜は、非貴金属であって4.8eVよりも高い仕事関数を有する金属膜により構成されていることを特徴とする半導体装置が提供される。
好ましくは、前記下部電極膜が窒化チタン膜であり、前記第1の高誘電率絶縁膜が、酸化ハフニウム膜又は酸化ジルコニウム膜であり、前記第2の高誘電率絶縁膜が、酸化ハフニウム膜、酸化ジルコニウム膜、酸化チタン膜、酸化ニオブ膜、酸化タンタル膜、チタン酸ストロンチウム膜、チタン酸バリウムストロンチウム膜、又は、チタン酸ジルコン酸鉛膜であり、前記上部電極膜が、コバルト膜、ニッケル膜、ベリリウム膜、カーボン膜、セレン膜、テルル膜、又は、レニウム膜である。
本発明の他の態様によれば、基板上に下部電極膜を形成する工程と、前記下部電極膜上に第1の高誘電率絶縁膜を形成する工程と、前記第1の高誘電率絶縁膜上に、前記第1の高誘電率絶縁膜のバンドギャップよりも狭いバンドギャップを有する第2の高誘電率絶縁膜を形成する工程と、前記第2の高誘電率絶縁膜上に、非貴金属であって4.8eVよりも高い仕事関数を有する金属膜により構成される上部電極膜を形成する工程と、を有することを特徴とする半導体装置の製造方法が提供される。
2 ウエハ
4 ポッド
10 クラスタ装置
12 負圧移載室
18 搬入室
20 搬出室
40 ポッドオープナ
50 第一処理ユニット
52 第二処理ユニット
54 第三処理ユニット
56 第四処理ユニット
80 コントローラ
100 下部電極(TiN膜)
110 HfO
120 TiO
130 上部電極(Co膜)

Claims (3)

  1. 基板上に形成された下部電極膜と、
    前記下部電極膜上に形成された第1の高誘電率絶縁膜と、
    前記第1の高誘電率絶縁膜上に形成され、前記第1の高誘電率絶縁膜のバンドギャップよりも狭いバンドギャップを有する第2の高誘電率絶縁膜と、
    前記第2の高誘電率絶縁膜上に形成された上部電極膜と、
    を有し、
    前記上部電極膜は、非貴金属であって4.8eVよりも高い仕事関数を有する金属膜により構成されていることを特徴とする半導体装置。
  2. 前記下部電極膜が窒化チタン膜であり、
    前記第1の高誘電率絶縁膜が、酸化ハフニウム膜又は酸化ジルコニウム膜であり、
    前記第2の高誘電率絶縁膜が、酸化ハフニウム膜、酸化ジルコニウム膜、酸化チタン膜、酸化ニオブ膜、酸化タンタル膜、チタン酸ストロンチウム膜、チタン酸バリウムストロンチウム膜、又は、チタン酸ジルコン酸鉛膜であり、
    前記上部電極膜が、コバルト膜、ニッケル膜、ベリリウム膜、カーボン膜、セレン膜、テルル膜、又は、レニウム膜であることを特徴とする請求項1に記載の半導体装置。
  3. 基板上に下部電極膜を形成する工程と、
    前記下部電極膜上に第1の高誘電率絶縁膜を形成する工程と、
    前記第1の高誘電率絶縁膜上に、前記第1の高誘電率絶縁膜のバンドギャップよりも狭いバンドギャップを有する第2の高誘電率絶縁膜を形成する工程と、
    前記第2の高誘電率絶縁膜上に、非貴金属であって4.8eVよりも高い仕事関数を有する金属膜により構成される上部電極膜を形成する工程と、
    を有することを特徴とする半導体装置の製造方法。
JP2009216450A 2009-09-18 2009-09-18 半導体装置及び半導体装置の製造方法 Pending JP2011066262A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009216450A JP2011066262A (ja) 2009-09-18 2009-09-18 半導体装置及び半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009216450A JP2011066262A (ja) 2009-09-18 2009-09-18 半導体装置及び半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2011066262A true JP2011066262A (ja) 2011-03-31

Family

ID=43952190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009216450A Pending JP2011066262A (ja) 2009-09-18 2009-09-18 半導体装置及び半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2011066262A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014141473A (ja) * 2012-12-28 2014-08-07 Tosoh Corp 第5族金属オキソ−アルコキソ錯体、その製造方法及び第5族金属酸化物膜の作製方法
JP2015124158A (ja) * 2013-12-25 2015-07-06 東ソー株式会社 ニオブオキソ−アルコキソ錯体、その製造方法及びニオブ酸化物膜の作製方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014141473A (ja) * 2012-12-28 2014-08-07 Tosoh Corp 第5族金属オキソ−アルコキソ錯体、その製造方法及び第5族金属酸化物膜の作製方法
JP2015124158A (ja) * 2013-12-25 2015-07-06 東ソー株式会社 ニオブオキソ−アルコキソ錯体、その製造方法及びニオブ酸化物膜の作製方法

Similar Documents

Publication Publication Date Title
US9653301B2 (en) Semiconductor device having electrode made of high work function material, method and apparatus for manufacturing the same
JP5097554B2 (ja) 半導体装置の製造方法、基板処理方法および基板処理装置
US7592217B2 (en) Capacitor with zirconium oxide and method for fabricating the same
US20080093711A1 (en) Dielectric layers and methods of forming the same
CN107863289B (zh) 半导体装置的制造方法、基板处理装置和存储介质
JPH11238861A (ja) 薄膜キャパシタ及びその製造方法
JPH11243181A (ja) 薄膜キャパシタ及びその製造方法
US8193098B2 (en) Method for manufacturing semiconductor device
JP2005194540A (ja) 成膜方法及び半導体装置
KR100536030B1 (ko) 반도체 장치의 커패시터 형성 방법
JP2011066262A (ja) 半導体装置及び半導体装置の製造方法
KR20110103534A (ko) 유전막 구조물 형성 방법, 이를 이용한 커패시터 제조 방법 및 커패시터
JP5944549B2 (ja) 半導体装置の製造方法、基板処理装置および半導体装置
US7229917B2 (en) Film formation method and apparatus for semiconductor process
KR20090022801A (ko) 반도체 소자의 제조방법
JP2014135387A (ja) 半導体装置の製造方法、基板処理システムおよびプログラム
JP2004023042A (ja) 半導体装置および半導体装置の製造方法
JP6176776B2 (ja) 半導体装置の製造方法、基板処理装置、基板処理システムおよびプログラム
US20230307491A1 (en) Liner to form composite high-k dielectric
US11973106B2 (en) Semiconductor device and method for manufacturing the same
KR100772685B1 (ko) 캐패시터 형성 방법
JP2001342572A (ja) 誘電体薄膜の製造方法およびその製造装置
KR100671634B1 (ko) 반도체 소자의 캐패시터 제조방법
JP2024523781A (ja) 薄膜の蒸着方法
KR20220155789A (ko) 박막 증착 방법