JP2011007177A - エンジンの排熱回収装置 - Google Patents

エンジンの排熱回収装置 Download PDF

Info

Publication number
JP2011007177A
JP2011007177A JP2010068742A JP2010068742A JP2011007177A JP 2011007177 A JP2011007177 A JP 2011007177A JP 2010068742 A JP2010068742 A JP 2010068742A JP 2010068742 A JP2010068742 A JP 2010068742A JP 2011007177 A JP2011007177 A JP 2011007177A
Authority
JP
Japan
Prior art keywords
heat recovery
engine
exhaust heat
exhaust
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010068742A
Other languages
English (en)
Other versions
JP4573912B1 (ja
Inventor
Daiki Tanaka
大樹 田中
Shingo Yakushiji
新吾 薬師寺
良胤 ▲高▼島
Yoshitsugu Takashima
Yoshitaka Shibata
善隆 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2010068742A priority Critical patent/JP4573912B1/ja
Application granted granted Critical
Publication of JP4573912B1 publication Critical patent/JP4573912B1/ja
Publication of JP2011007177A publication Critical patent/JP2011007177A/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

【課題】エンジンの耐久性や性能に悪影響を与えることなく、排ガスの潜熱をも回収可能として排熱回収効率を高める。
【解決手段】エンジン1を冷却させるエンジン冷却部12と排熱回収熱交換器13との間でエンジン冷却水Bを循環させるエンジン冷却回路14を備え、排熱回収回路4には、排熱回収媒体Aの通流方向の上流側から順に、エンジン1の排ガスCと排熱回収媒体Aとを熱交換させる排ガス熱交換器19、エンジン冷却部12を通過したエンジン冷却水Bと排ガス熱交換器19を通過した排熱回収媒体Aとを熱交換させる排熱回収熱交換器13が備えられ、排ガス熱交換器19に導入させる排熱回収媒体Aの温度がエンジン1の排ガスCの露点以下に設定されている。
【選択図】図1

Description

本発明は、エンジンの排熱を回収する排熱回収媒体を通流させる排熱回収回路を備えたエンジンの排熱回収装置に関する。
従来のエンジンの排熱回収装置では、例えば、コージェネレーション装置にて動力源に用いられているエンジンからその排熱を回収するために、エンジン冷却回路のエンジン冷却水と排熱回収媒体との間で直接熱交換させる排熱回収熱交換器が排熱回収回路に備えられている。エンジン冷却回路には、エンジン冷却水とエンジンの排ガスとの間で熱交換させる排ガス熱交換器と、排ガス熱交換器を通過したエンジン冷却水にてエンジンを冷却させるエンジン冷却部とが備えられ、排ガス熱交換器及びエンジン冷却部にてエンジンの排熱をエンジン冷却水にて回収し、その回収した排熱を有するエンジン冷却水と貯湯タンクの湯水等の排熱回収媒体を排熱回収熱交換器にて熱交換させることにより、エンジンの排熱を排熱回収媒体にて直接回収している(例えば、特許文献1参照。)。
特許文献1に記載の装置では、排ガス熱交換器に導入されるエンジン冷却水の温度を、熱交換されるエンジンの排ガスの露点よりも低温になるようにすることで、排ガスの潜熱を回収し、排熱回収効率を高めている。
特許第3767785号公報
上記特許文献1に記載の装置では、排ガスの潜熱をも回収するために、排ガス熱交換器に導入されるエンジン冷却水の温度を低く設定しているので、排ガス熱交換器を通過してエンジン冷却部に導入されるエンジン冷却水の温度も低くなる。説明を加えると、例えば、回収した排熱を給湯や暖房に用いるためには、エンジン出口のエンジン冷却水温度は高温(例えば80℃程度)な方が好ましい。よって、上記特許文献1に記載の装置では、エンジン冷却水について、排ガス熱交換器への入口温度を排ガスの露点よりも低くすることが求められるととともに、エンジン出口の温度を高温にすることが求められる。しかしながら、排ガス熱交換器及びエンジン冷却部にてエンジン冷却水が回収可能な熱量には限度があることから、双方の要求を満たすためには、エンジン冷却水の循環流量を少なくして、排ガス熱交換器への入口とエンジン出口とでエンジン冷却水の温度差を大きくするしかない。その結果、エンジン入口とエンジン出口とでエンジン冷却水の温度差が大きくなるので、エンジン入口でのエンジン冷却水温度が低下することになり、エンジン冷却部に導入されるエンジン冷却水の温度が低温となる。
このように、エンジン冷却部に導入されるエンジン冷却水が低温化すると、燃焼室からクランクケース内に混入する燃焼ガス中の水分が凝縮しやすくなる。凝縮した水分がエンジンオイルと混合し攪拌されると、エンジンオイルが乳化しマヨネーズ状のスラッジとなり、潤滑性能が著しく劣化し、エンジンの耐久性に問題が生じる。また、エンジンの燃焼室内とエンジン冷却部の間の温度勾配が高くなり、材料への熱応力が大きくなり、耐久性に問題が生じる。また、エンジン冷却水をエンジンのオイルクーラに導入させた後、排ガス熱交換器に導入するものでは、オイルクーラに導入されるエンジン冷却水が低温になるので、オイル温度が低下することからオイルの粘度が高まり、潤滑性能の悪化、エンジンの効率の低下につながる。
本発明は、かかる点に着目してなされたものであり、その目的は、エンジンの耐久性や性能に悪影響を与えることなく、排ガスの潜熱をも回収可能として排熱回収効率を高めることができるエンジンの排熱回収装置を提供する点にある。
この目的を達成するために、本発明に係るエンジンの排熱回収装置の特徴構成は、エンジンの排熱を回収する排熱回収媒体を通流させる排熱回収回路を備えたエンジンの排熱回収装置において、
前記エンジンを冷却させるエンジン冷却部と排熱回収熱交換器との間でエンジン冷却水を循環させるエンジン冷却回路を備え、前記排熱回収回路には、前記排熱回収媒体の通流方向の上流側から順に、前記エンジンの排ガスと前記排熱回収媒体とを熱交換させる排ガス熱交換器、前記エンジン冷却部を通過したエンジン冷却水と前記排ガス熱交換器を通過した排熱回収媒体とを熱交換させる前記排熱回収熱交換器が備えられ、前記排ガス熱交換器に導入させる排熱回収媒体の温度が前記エンジンの排ガスの露点以下に設定されている点にある。
本特徴構成によれば、排熱回収回路では、排熱回収媒体が排ガス熱交換器に導入されて排ガスにて加熱され、排ガス熱交換器を通過した排熱回収媒体が排熱回収熱交換器に導入されてエンジン冷却水にて加熱されることになり、排ガス熱交換器及び排熱回収熱交換器にてエンジンの排熱を回収する。そして、排ガス熱交換器に導入させる排熱回収媒体の温度を排ガスの露点以下としているので、排ガス熱交換器において排ガスの潜熱をも回収することができる。また、エンジン冷却回路では、エンジン出口のエンジン冷却水温度を高温にすることで、排熱回収熱交換器への入口温度を排熱回収熱交換器に導入される排熱回収媒体を加熱可能な高温とすることができる。よって、本発明では、エンジン冷却水についてエンジン出口のエンジン冷却水温度を高温にすることが求められるだけであるので、上記特許文献1の如く、エンジン冷却水の循環流量を少なくする必要がないので、エンジン入口とエンジン出口とでエンジン冷却水の温度差が大きくならず、エンジン入口でのエンジン冷却水温度が低下するのを防止できる。そして、エンジン出口のエンジン冷却水温度を高温にすることにより、例えば、回収した排熱を給湯や暖房に用いるときにも好適なものとすることができる。以上のことから、エンジン冷却部に導入されるエンジン冷却水の過度の温度低下を防止してエンジンの耐久性や性能に悪影響を与えることなく、エンジンの排熱として排ガスの潜熱をも回収して排熱回収効率を高めることができるエンジンの排熱回収装置を実現できる。
本発明に係るエンジンの排熱回収装置の更なる特徴構成は、前記エンジンにて駆動される発電装置と、前記発電装置の発電電力を電力負荷に供給自在で、且つ、前記発電装置の発電電力の前記電力負荷に対する余剰分である余剰電力を熱に変換自在な電気ヒータに供給自在な電力供給手段とを備え、前記電気ヒータは、前記排熱回収回路において前記排熱回収熱交換器を通過した前記排熱回収媒体を加熱自在に配置されている点にある。
本特徴構成によれば、余剰電力が発生すると、電気ヒータによりその余剰電力を熱に変換し、その変換した熱により排熱回収媒体を加熱することができる。よって、エンジンの排熱に加えて、余剰電力を熱として回収することができ、熱の回収効率を向上させることができる。しかも、電気ヒータは、排熱回収回路において排熱回収熱交換器を通過した排熱回収媒体を加熱するので、電気ヒータにて発生した熱を直接排熱回収媒体に与えることができ、電気ヒータにて発生した熱を効率よく排熱回収媒体に与えることができる。
本発明に係るエンジンの排熱回収装置の更なる特徴構成は、前記エンジンは、燃焼室で燃焼する混合気の空気過剰率がストイキ範囲内に設定され、前記排ガス熱交換器に三元触媒が配置されている又は前記エンジンの排ガスの通流方向において前記排ガス熱交換器よりも上流側に三元触媒が配置されている点にある。
本特徴構成によれば、混合気の空気過剰率をストイキ範囲内に設定してエンジンをストイキ燃焼させているので、排ガス熱交換器に配置された又は排ガス熱交換器よりも上流側に配置された三元触媒により炭化水素(HC)と一酸化炭素(CO)と窒素酸化物(NOx)の3物質を同時に除去することができる。これにより、排ガス熱交換器において炭化水素(HC)と一酸化炭素(CO)と窒素酸化物(NOx)の3物質が除去された排ガスを凝縮させて排ガスの潜熱をも回収しても、排ガスを凝縮させた凝縮水に腐食等の問題が生じることがなく、有用なものとなる。
本発明のエンジンの排熱回収装置の更なる特徴構成は、
前記排熱回収回路に、前記排ガス熱交換器と前記排熱回収熱交換器との間に上流端を有すると共に前記排熱回収熱交換器の下流側に下流端を有する状態で前記排熱回収熱交換器をバイパスするバイパス路を備え、
前記排熱回収回路を通流する前記排熱回収媒体の流量を、前記排熱回収熱交換器と前記バイパス路との何れか一方又は両方に分配して導く流量分配手段が備えられている点にある。
これまで説明してきたように、本発明では、排熱回収回路を通流する排熱回収媒体が、排ガス熱交換器にて排ガスの排熱を回収すると共に、排熱回収熱交換器にてエンジン冷却水の排熱を回収して、排熱回収効率を向上させている。
そして、エンジン冷却水は、エンジン冷却回路を循環しているときで、その温度が排熱回収熱交換器に導入される排熱回収媒体の温度よりも高い場合に、排熱回収熱交換器にて熱を排熱回収媒体に回収すると共にエンジン冷却部にてエンジンの排熱を回収する形態で、エンジンを冷却している。
ここで、エンジンが低温で暖機運転を行うときで、エンジンの暖機時間を短縮したい場合、エンジン冷却水が、エンジン冷却部からエンジン排熱を回収することを抑制する必要がある。一方、排熱回収効率の低下を抑制するためには、当該暖機運転時においても、排ガスの排熱を、適切に回収することが望まれる。
上記特徴構成によれば、エンジンが低温で暖機運転が行われ、エンジンの暖機時間を短縮させたい場合には、流量分配手段が、排熱回収回路を通流する排熱回収媒体のうち、排熱回収熱交換器へ分配して導かれる排熱回収媒体の流量を減少させることで、排熱回収熱交換器にて回収されるエンジン冷却水の熱量を、排熱回収媒体の流量の減少量だけ低減できる。これにより、排熱回収熱交換器にて回収が抑制されたエンジン冷却水の熱量分が、エンジンの暖機に用いられることとなり、エンジンの暖機を優先させて、その暖機時間を短縮することができる。
更に、上述の如く、流量分配手段が、排熱回収媒体の流量を、排熱回収熱交換器の側とバイパス路の側とで分配しても、排ガス熱交換器を通流する排熱回収媒体の流量は変化しないので、排ガスの排熱は、排ガス熱交換器にて排熱回収媒体により適切に回収することができる。
以上より、エンジンの暖機運転時において、その暖機時間を短縮させながらも、排ガスの排熱を適切に回収して、排熱回収効率の低下を抑制できるエンジンの排熱回収装置を実現できる。
本発明のエンジンの排熱回収装置の更なる特徴構成は、
前記流量分配手段は、三方弁であり、
前記三方弁は、前記排熱回収回路を通流する前記排熱回収媒体の通流状態を、前記排熱回収熱交換器へ導入させる第1通流状態と、前記排熱回収媒体を前記バイパス路に通流させる第2通流状態とに切り替え可能に構成されている点にある。
上記特徴構成によれば、三方弁を設けるという比較的簡易な構成により、排熱回収回路を通流する排熱回収媒体を、排熱回収熱交換器へ導入させる第1通流状態と、バイパス路を通流させる第2通流状態との切り替えを実現できる。
これにより、例えば、エンジンが低温で暖機運転状態であるときで、エンジンの暖機を優先させて、エンジンの暖機時間を短縮したい場合、排熱回収回路を通流する排熱回収媒体がバイパス路を通流する第2通流状態となるように、三方弁の開閉状態を切り替えて、排熱回収熱交換器によるエンジン冷却水の熱量が回収されない状態とする。これにより、エンジン冷却水の熱量が、排熱回収熱交換器にて、回収されることを防止できる。この結果、排熱回収熱交換器にて回収が防止されたエンジン冷却水の熱量分が、エンジンの暖機に用いられることとなり、エンジンの暖機を優先して、その暖機時間を短縮できる。
一方、このように、排熱回収回路を通流する排熱回収媒体の通流状態を、バイパス路を通流する第2通流状態にした場合であっても、排ガス熱交換器に導入される排熱回収媒体の流量は変動しないので、排ガスの排熱は排ガス熱交換器にて排熱回収媒体により適切に回収して、排熱回収効率の低下を抑制できる。
尚、エンジンが暖機運転状態以外の定常運転状態等であるときは、エンジンの排熱を適切に回収すべく、排熱回収回路を通流する排熱回収媒体が、排熱回収熱交換器を通流する第1通流状態となるように、三方弁の開閉状態を切り替えて、排熱回収熱交換器にてエンジン冷却水の排熱を排熱回収媒体により適切に回収できる。
本発明のエンジンの排熱回収装置の更なる特徴構成は、
エンジンオイルの温度、前記エンジン冷却回路の前記エンジン冷却部と前記排熱回収熱交換器との間の前記エンジン冷却水の温度、及び前記排ガス熱交換器にて前記排ガスと熱交換した後の前記排熱回収媒体の温度のうち、少なくとも1つを測定する温度測定手段と、前記温度測定手段の測定温度に基づいて、前記エンジンの運転状態を判定する運転状態判定手段と、
前記運転状態判定手段が前記エンジンの運転状態が暖機運転状態であると判定したときに、前記排熱回収媒体の通流状態を前記第2通流状態とするように、前記三方弁の開閉状態を切り替える切替制御手段とを備えた点にある。
エンジンオイルの温度、エンジン冷却回路のエンジン冷却部と排熱回収熱交換器との間のエンジン冷却水の温度、及び排ガス熱交換器にて排ガスと熱交換した後の排熱回収媒体の温度は、エンジンの運転状態に伴って変化する。具体的には、エンジンが暖機運転状態にあるときは、それらの温度は比較的低温であり、エンジンが暖機運転状態以外の定常運転状態等にあるときは、それらの温度は比較的高温である。
即ち、上記特徴構成によれば、運転状態判定手段は、上記エンジンオイルの温度、上記エンジン冷却水の温度、及び上記排熱回収媒体の温度を測定する温度測定手段の測定温度に基づいて、エンジンの運転状態が暖機運転状態であるか否かを判定できる。そして、運転状態判定手段が、エンジンの運転状態が暖機運転状態であると判定したときに、切替制御手段が、三方弁の開閉状態を制御して、排熱回収媒体の通流状態を第2通流状態に切り替える。これにより、排熱回収回路を通流する排熱回収媒体の通流状態を、エンジンの運転状態に伴わせた状態で適切に切り替えることができ、特に、エンジンが暖機運転状態であるときには、排熱回収回路を通流する排熱回収媒体をバイパス路に通流する第2通流状態として、エンジンの暖機を優先させ、暖機時間を短縮させることができる。
本発明のエンジンの排熱回収装置の更なる特徴構成は、
前記三方弁が、前記排熱回収媒体の温度を感知して開閉状態を切り替える感温式の三方弁を備え、前記感温式の三方弁は、前記排ガス熱交換器にて前記排ガスと熱交換した後の前記排熱回収媒体の温度が、所定値より高い場合に前記第1通流状態とし、所定値以下の場合に前記第2通流状態とする点にある。
上記特徴構成によれば、感温式の三方弁が、上述の排ガス熱交換器にて排ガスと熱交換した後の排熱回収媒体の温度を直接感知する形態で、排熱回収回路を通流する排熱回収媒体の通流状態を、第1通流状態と第2通流状態とに切り替えるので、その切り替えを、エンジンの運転状態に追従した状態で、他から電気的な制御を加える必要なく、自立的に実行できる。
本発明の第1実施形態を示すコージェネレーションシステムの概略構成を示す図である。 本発明の第2実施形態を示すコージェネレーションシステムの概略構成を示す図である。
本発明に係るエンジンの排熱回収装置を適応させたコージェネレーションシステムの第1実施形態について図面に基づいて説明する。
このコージェネレーションシステムは、図1に示すように、エンジン1にて駆動されて電力負荷3に供給する電力を発生させる発電装置2と、エンジン1の排熱を回収する排熱回収媒体Aを通流させる排熱回収回路4とを備え、排熱回収回路4の排熱回収媒体Aにて回収した熱を熱負荷5に供給自在に構成されている。
発電装置2の出力側には、系統連系用のインバータ6が設けられ、そのインバータ6は、発電装置2の出力電力を商用系統7から供給される電力と同じ電圧および同じ周波数にするように構成されている。商用系統7は、電力供給ライン8を介して、テレビ、冷蔵庫、洗濯機等の電力負荷3に電気的に接続されている。
インバータ6は、コージェネ用電力供給ライン9を介して電力供給ライン8に電気的に接続され、発電装置2からの発電電力がインバータ6及びコージェネ用電力供給ライン9を介して電力負荷3に供給自在に構成されている。電力供給ライン8には、図示は省略するが、電力負荷3の負荷電力を計測する電力負荷計測手段が設けられ、この電力負荷計測手段は、電力供給ライン8を通して流れる電流に逆潮流が発生するか否かをも検出するように構成されている。そして、逆潮流が生じないように、インバータ6により発電装置2から電力供給ライン8に供給される電力が制御され、発電電力の余剰電力は、その余剰電力を熱に変換自在な電気ヒータ10に供給されるように構成されている。これにより、電力供給手段は、インバータ6及びコージェネ用電力供給ライン9から構成されている。
電気ヒータ10は、排熱回収回路4を通流する排熱回収媒体Aを加熱自在に設けられている。電気ヒータ10は、余剰電力の大きさが大きくなるほど消費電力を大きくして排熱回収媒体Aの加熱量が大きくなるように、余剰電力の大きさに応じて排熱回収媒体Aの加熱量を調整自在に構成されている。
エンジン1の運転は、制御装置11により制御されている。エンジン1は、通常の4サイクルエンジンと同様の構成を有しており、燃料ガス(例えば天然ガス)と空気の混合気を燃焼室に吸気したのち、燃焼室において混合気を圧縮し、その後、燃焼室において混合気を点火して燃焼膨張させ、燃焼により発生した排ガスCを排気路22に排気させる。図示は省略するが、エンジン1の排気路22には、排ガスCの酸素濃度を検出する酸素センサが設けられている。そして、制御装置11は、酸素センサで検出される排ガスCの酸素濃度が略ゼロとなるように燃料ガスの供給量を調整している。これにより、エンジン1は、燃焼室に供給される混合気の空気過剰率を略1.0程度のストイキ範囲内に設定されている。ここで、空気過剰率は、混合気の空燃比を理論空燃比で割ったものを示している。
エンジン1を冷却させるためのエンジン冷却水Bを循環させる回路として、エンジン冷却部12と排熱回収熱交換器13との間でエンジン冷却水Bを循環させるエンジン冷却回路14が備えられている。エンジン冷却部12は、例えば、シリンダヘッドやシリンダブロック等にエンジン冷却水Bを通流させることによりエンジン1を冷却させるように構成されている。エンジン冷却回路14には、エンジン冷却水Bの通流方向の上流側から順に、エンジン冷却部12、排熱回収熱交換器13、エンジン冷却水Bを貯留自在な膨張タンク15、エンジン冷却水循環ポンプ16が備えられている。
排熱回収回路4は、貯湯タンク17の湯水を排熱回収媒体Aとし、貯湯タンク17から取り出した排熱回収媒体Aを通流させてエンジン1の排熱を回収し、その排熱を有する排熱回収媒体Aを貯湯タンク17に戻すように構成されている。そして、排熱回収回路4には、排熱回収媒体Aの通流方向の上流側から順に、排熱回収媒体循環ポンプ18、エンジン1の排ガスCと排熱回収媒体Aとを熱交換させる排ガス熱交換器19、エンジン冷却水Bと排熱回収媒体Aとを熱交換させる排熱回収熱交換器13、電気ヒータ10が備えられている。
排ガス熱交換器19は、エンジン1から排気路22に排気された排ガスCと貯湯タンク17から取り出した排熱回収媒体Aとを熱交換させている。そして、排ガス熱交換器19は、例えば、アルミナ等の無機担体に白金、パラジウム、ロジウム等の貴金属成分を担持してなる三元触媒23が一体的に配置された触媒一体型の熱交換器にて構成されている。そして、上述の如く、エンジン1は、燃焼室に供給される混合気の空気過剰率を略1.0程度のストイキ範囲内に設定されていることから、排ガス熱交換器19に一体的に配置された三元触媒23により排ガスCから炭化水素(HC)と一酸化炭素(CO)と窒素酸化物(NOx)の3物質を同時に除去することができる。
排熱回収回路4は、排熱回収媒体Aを排ガス熱交換器19においてエンジン1の排ガスCにて加熱したのち、排熱回収熱交換器13においてエンジン冷却部12を通過したエンジン冷却水Bにて更に加熱して排熱回収媒体Aの温度を所望温度(例えば75℃)まで昇温させ、その所望温度の排熱回収媒体Aを貯湯タンク17の上部に戻すように構成されている。また、排熱回収回路4では、排熱回収熱交換器13を通過した排熱回収媒体Aを電気ヒータ10にて加熱自在としており、エンジン1の排熱に加えて、余剰電力が変換された熱によっても排熱回収媒体Aを加熱自在に構成されている。貯湯タンク17は、温度成層を形成する状態で湯水を貯湯するように構成されており、排熱回収回路4は、エンジン1の排熱にて加熱して所望温度まで昇温させた排熱回収媒体Aを貯湯タンク17に貯湯するように構成されている。
貯湯タンク17には、貯湯タンク17に給水する給水路20、貯湯タンク17に貯湯されている高温の排熱回収媒体Aを床暖房装置や浴室暖房装置等の熱負荷5に供給する熱負荷供給路21が設けられている。これにより、回収したエンジン1の排熱を有する排熱回収媒体Aを熱負荷供給路21にて熱負荷5に供給自在に構成されている。
制御装置11は、所定のコンピュータプログラムを実行することによりエンジン1の運転等を制御するように構成されている。例えば、電力負荷3での要求電力量及び熱負荷5での要求熱量について、制御装置11は、過去の要求電力量及び過去の要求熱量に基づいて、将来の要求電力量及び要求熱量を予測自在に構成されている。そして、制御装置11は、電力負荷3での要求電力量又は熱負荷5での要求熱量を賄うために、予測した将来の要求電力量又は要求熱量に応じてエンジン1の運転を制御するように構成されている。制御装置11は、エンジン1を運転させるときに、エンジン冷却水循環ポンプ16及び排熱回収媒体循環ポンプ18を作動させて、エンジン1の排熱を排熱回収媒体Aにて回収するように構成されている。
排熱回収媒体循環ポンプ18の作動により排熱回収回路4では、貯湯タンク17の底部から取り出した排熱回収媒体Aが通流される。排熱回収媒体Aが、排ガス熱交換器19、排熱回収熱交換器13、電気ヒータ10の順に通過され、電気ヒータ10を通過した排熱回収媒体Aが貯湯タンク17の上部に戻される。排ガス熱交換器19には、排気路22を通流する排ガスCが導入されており、排ガスCにて排熱回収媒体Aが加熱される。貯湯タンク17は、温度成層を形成する状態で排熱回収媒体Aを貯湯するので、低温の排熱回収媒体Aは貯湯タンク17の下部に存在することになる。これにより、貯湯タンク17の貯湯量が満杯状態(貯湯タンク17に貯湯されている排熱回収媒体Aの略全量が所望温度になっている状態)になるまで、貯湯タンク17の底部から取り出す排熱回収媒体Aは低温となる。そこで、排熱回収回路4は、貯湯タンク17の底部から取り出した低温の排熱回収媒体Aを排ガス熱交換器19に導入させて、排ガス熱交換器19に導入される排熱回収媒体Aの温度がエンジン1の排ガスCの露点(例えば60℃)以下の温度(例えば、20℃程度)に設定されている。これにより、排ガス熱交換器19では、排ガスCの潜熱をも排熱回収媒体Aにて回収でき、排熱回収効率の向上を図ることができる。
エンジン冷却水循環ポンプ16の作動によりエンジン冷却回路14では、エンジン冷却部12と排熱回収熱交換器13との間でエンジン冷却水Bが循環される。排熱回収熱交換器13には、エンジン冷却部12にてエンジン1を冷却することにより加熱されたエンジン冷却水Bが導入されるとともに、排ガス熱交換器19を通過した排熱回収媒体Aが導入され、排熱回収媒体Aがエンジン冷却水Bにて加熱される。
上述の如く、制御装置11は、電力負荷3での要求電力量又は熱負荷5での要求熱量を賄うために、予測した将来の要求電力量又は要求熱量に応じてエンジン1の運転を制御するが、例えば、熱負荷5での要求熱量を賄うために、予測した将来の要求熱量に応じてエンジン1の運転を制御する所謂熱主運転を行う場合等に、発電装置2の発電電力の電力負荷3に対する余剰分である余剰電力が発生する。このとき、余剰電力は、インバータ6により電気ヒータ10に供給される。これにより、電気ヒータ10は、余剰電力により排熱回収熱交換器13を通過した排熱回収媒体Aを加熱することになり、エンジン1の排熱を回収することに加えて、余剰電力を熱に変換してその変換した熱をも回収自在に構成されている。
制御装置11は、エンジン冷却水循環ポンプ16の回転速度を調整することにより、エンジン冷却回路14におけるエンジン冷却水Bの循環量が調整自在に構成されている。また、制御装置11は、排熱回収媒体循環ポンプ18の回転速度を調整することにより、排熱回収回路4における排熱回収媒体Aの循環量が調整自在に構成されている。これにより、エンジン冷却回路14におけるエンジン冷却水Bの循環量や排熱回収回路4における排熱回収媒体Aの循環量を調整することにより、排ガス熱交換器19を通過した排熱回収媒体Aの温度や、排熱回収熱交換器13を通過した排熱回収媒体A及びエンジン冷却水Bの温度を調整自在に構成されている。
以下、排熱回収媒体A、エンジン冷却水B及び排ガスCの夫々の温度について例示しながら、本発明におけるエンジンの排熱回収装置について説明を加える。
例えば、ストイキ燃焼を行うエンジン1から排気される排ガスCの温度が500〜600℃となっており、その500〜600℃の排ガスCが排ガス熱交換器19に導入される。一方、貯湯タンク17に所望温度の排熱回収媒体Aがほとんど貯湯されていないときには、貯湯タンク17の底部から取り出した排熱回収媒体Aの温度が排ガスCの露点以下の20℃程度になっており、その20℃程度の排熱回収媒体Aが排ガス熱交換器19に導入される。そして、排ガス熱交換器19では排ガスCの潜熱をも回収されて、排ガス熱交換器19を通過した排ガスCの温度は25℃程度まで低下する。一方、排ガス熱交換器19を通過した排熱回収媒体Aの温度は60℃程度まで上昇され、その60℃程度の排熱回収媒体Aが排熱回収熱交換器13に導入される。エンジン冷却部12を通過したエンジン冷却水Bは80℃程度まで上昇されており、その80℃程度のエンジン冷却水Bが排熱回収熱交換器13に導入される。排熱回収熱交換器13を通過した排熱回収媒体Aの温度は75℃程度まで上昇され、その75℃程度の排熱回収媒体Aが貯湯タンク17の上部に供給されて貯湯される。一方、排熱回収熱交換器13を通過したエンジン冷却水Bの温度は78℃程度まで低下され、その78℃程度のエンジン冷却水Bがエンジン冷却部12に導入される。
排熱回収熱交換器13に導入される排熱回収媒体Aは、既に排ガス熱交換器19にて排ガスCの潜熱をも回収して比較的高温(例えば60℃程度)となった排熱回収媒体Aであるので、排熱回収熱交換器13を通過したエンジン冷却水Bの温度は比較的高温(例えば78℃程度)となって過度に低温となるのを防止できる。よって、エンジン冷却部12に導入されるエンジン冷却水Bが過度に低温になるのを防止することができ、エンジン1の耐久性や性能に悪影響を与えてしまうのを防止できる。
エンジン冷却部12に導入されるエンジン冷却水Bの温度については、エンジン冷却回路14におけるエンジン冷却水Bの循環量を調整することにより、排熱回収熱交換器13を通過したエンジン冷却水Bの温度を調整することで調整することができる。そして、制御装置11は、エンジン冷却部12に導入されるエンジン冷却水Bの温度がエンジン1の耐久性や性能に悪影響を与えない温度範囲(例えば、65℃〜85℃の温度範囲)となるように、エンジン冷却水循環ポンプ16の回転速度を制御してエンジン冷却回路14におけるエンジン冷却水Bの循環量を調整している。
次に、本発明に係るエンジン1の排熱回収装置を適応させたコージェネレーションシステムの第2実施形態を図2に基づいて説明する。以下の第2実施形態の説明では、上記第1実施形態と同一の構成については、同一の符号を付すこととし、その説明を割愛することがある。当該第2実施形態に係るコージェネレーションシステムでは、エンジン1が暖機運転状態である場合に、エンジン1の暖機時間を短縮しながらも、排熱回収効率の低下を抑制することを目的とするものである。
このコージェネレーションシステムでは、排熱回収回路4に、排ガス熱交換器19と排熱回収熱交換器13との間に上流端(分岐部)を有すると共に排熱回収熱交換器13の下流側(電気ヒータ10の上流側で、貯湯タンク17の上流側)に下流端(合流部)を有する状態で排熱回収熱交換器13をバイパスするバイパス路30を備えると共に、排熱回収回路4を通流する排熱回収媒体Aの流量を、排熱回収熱交換器13とバイパス路30とに分配して導く三方弁31(流量分配手段の一例)が、バイパス路30の上流端に設けられている。
より詳細には、三方弁31は、その開閉状態を切り替えることにより、制御装置11からの制御信号によりその開閉状態を制御可能な電磁式のものから成り、排熱回収回路4を循環する排熱回収媒体Aの通流状態を、排熱回収熱交換器13へ導入させる第1通流状態(図2で点線で示す状態)と、バイパス路30に通流させる第2通流状態(図2で二点鎖線で示す状態)とを、切り替え可能に構成されている。
当該第2実施形態のコージェネレーションシステムは、上述したように、エンジン1が暖機運転状態であるときに、その暖機時間を短縮するため、エンジン1が暖機状態であるか否かを判定する機能を有している。以下、その機能を発揮するための構成について説明する。
エンジン冷却回路14には、エンジン冷却部12と排熱回収熱交換器13との間のエンジン冷却水Bの温度を測定する温度センサ32(温度測定手段)が設けられており、当該温度センサ32の測定温度は、エンジン1の運転状態に伴って変動する。具体的には、エンジン1の運転状態が暖機運転状態である場合、比較的低い温度(例えば、65℃以下の温度)となり、暖機運転状態以外の定常運転状態等である場合、比較的高い温度(例えば、65℃より高い温度)程度となる。
当該温度センサ32の測定温度に基づいて、制御装置11は、エンジン1の運転状態を判定する運転状態判定手段として機能する。具体的には、制御装置11は、エンジン1が起動している状態において、温度センサ32により測定されたエンジン冷却水Bの測定温度と暖機運転判定閾値(例えば、65℃)とを比較し、エンジン冷却水Bの測定温度が暖機運転判定閾値以下の温度である場合、エンジン1が暖機運転状態であると判定し、エンジン冷却水Bの測定温度が暖機運転判定閾値よりも高い温度である場合、エンジン1が暖機運転状態以外の定常運転状態等であると判定する。
以下、エンジン1の運転状態に基づく排熱回収媒体Aの通流状態の切り替えについて、説明を加える。尚、以下の説明では、エンジン1は、起動された後の状態にあるものとする。
制御装置11は、温度センサ32により測定されたエンジン冷却水Bの測定温度が暖機運転判定閾値(例えば、65℃)以下の温度である場合、エンジン1が暖機運転状態であると判定し、排熱回収回路4を通流する排熱回収媒体Aの通流状態を、バイパス路30を通流する第2通流状態(図2にて二点鎖線で示す状態)となるように、三方弁31の開閉状態を切り替える。これにより、排熱回収媒体Aは、排熱回収熱交換器13に通流していない状態となる。結果、エンジン冷却回路14にて、エンジン冷却部12と排熱回収熱交換器13との間を循環するエンジン冷却水Bの熱量が、排熱回収熱交換器13にて回収されることを防止できる。これにより、エンジン冷却水Bが排熱回収熱交換器13にて回収が防止された熱量分をエンジン1の暖機に用いる状態で、エンジン1の排熱の量を抑制でき、エンジン1の暖機を優先させて、その暖機時間を短縮できる。
尚、このように、制御装置11が、排熱回収回路4を通流する排熱回収媒体Aの通流状態を、バイパス路30を通流する第2通流状態(図2にて二点鎖線で示す状態)にするように、三方弁31の開閉状態を制御する場合であっても、排ガス熱交換器19に導入される排熱回収媒体Aの流量は変動しないので、排ガスCの排熱は、排ガス熱交換器19にて排熱回収媒体Aにより適切に回収され、排熱回収効率の低下を抑制できる。
一方、制御装置11は、温度センサ32により測定されたエンジン冷却水Bの測定温度が暖機運転判定閾値(例えば、65℃)より高い場合、エンジン1が暖機運転状態以外の定常運転状態等であると判定し、排熱回収回路4を通流する排熱回収媒体Aの通流状態を、排熱回収熱交換器13に導入される第1通流状態(図2にて点線にて示す状態)となるように、三方弁31の開閉状態を切り替える。即ち、制御装置11は、排熱回収回路4の回路状態を、第1実施形態のコージェネレーションシステムでの回路状態と同様の状態として、排熱回収回路4を通流する排熱回収媒体Aが、排熱回収熱交換器13にてエンジン冷却水Bの排熱を適切に回収しながらも、排ガス熱交換器19にて排ガスCの排熱をも適切に回収して、高い排熱回収効率を維持することができる。
このように、制御装置11は、エンジン1の運転状態が暖機運転状態である場合に、排熱回収回路4を通流する排熱回収媒体Aの通流状態を、バイパス路30を通流する第2通流状態(図2にて二点鎖線で示す状態)に切り替える切替制御手段として機能する。
〔別実施形態〕
(1)上記第1及び第2実施形態において、エンジン冷却回路14に、エンジン冷却水Bの通流方向でエンジン冷却部12よりも上流側にエンジン1のオイルクーラを設け、エンジン冷却水Bをオイルクーラに導入させたのち、オイルクーラを通過したエンジン冷却水Bをエンジン冷却部12に導入させることもできる。
(2)上記第1実施形態では、エンジン1は、燃焼室に供給される混合気の空気過剰率を略1.0程度のストイキ範囲内に設定されているが、例えば、空気過剰率を1.0よりも大きいリーン範囲内に設定することもできる。
(3)上記第1及び第2実施形態では、排熱回収回路4が、貯湯タンク17の湯水を排熱回収媒体Aとして、排ガス熱交換器19、排熱回収熱交換器13、電気ヒータ10の順に排熱回収媒体Aを通流させているが、排熱回収媒体Aについては、貯湯タンク17の湯水に限らず、その他の熱媒体を適応することもできる。
また、排熱回収回路4に備えた排熱回収媒体循環ポンプ18の作動により排熱回収媒体Aを通流させているが、例えば、給水路20における上水の水圧を利用して排熱回収媒体Aを通流させることもできる。
(4)上記第1実施形態では、排ガス熱交換器19を三元触媒23が一体的に配置された触媒一体型の熱交換器として、三元触媒23を排ガス熱交換器19に配置しているが、排ガスCの通流方向において排ガス熱交換器19よりも上流側の排気路22の途中に三元触媒23を配置することもできる。
(5)上記第2実施形態において、制御装置11が、エンジン冷却水Bの温度を測定する温度センサ32の測定温度に基づいて、排熱回収回路4を通流する排熱回収媒体Aの通流状態を、第1通流状態(図2に点線で示す状態)と、第2通流状態(図2に二点鎖線で示す状態)とに切り替えるように、三方弁31の開閉状態を制御する構成を示した。
しかしながら、制御装置11は、エンジン1の暖機状態に伴って変動する温度であれば、エンジン冷却水B以外の温度に基づいて、三方弁31の開閉状態を制御しても、本発明の機能を良好に発揮する。例えば、エンジン1のエンジンオイルの温度等に基づいて、三方弁31の開閉状態を制御することができる。
(6)上記第2実施形態において、三方弁31は、制御装置11により制御される電動式のものを示した。例えば、三方弁31は、排熱回収回路4を通流する排熱回収媒体Aの温度を感知して、その開閉状態を切り替える感温式の三方弁により構成しても良い。当該感温式の三方弁は、それを通流する排熱回収媒体Aの温度に伴って、内部のワックスエレメントが膨張・収縮する形態で、その開閉状態が自律的に切り替えられるものである。即ち、三方弁31を感温式のものとすることにより、排熱回収熱交換器13に排熱回収媒体Aを導入させる第1通流状態(図2に点線で示す状態)と、バイパス路30に排熱回収媒体Aを通流させる第2通流状態(図2に二点鎖線で示す状態)とを、感温式の三方弁を通流する排熱回収媒体Aの温度に基づいて、自律的に切り替えることができる。この様な自立的な切り替えを行う場合、感温式の三方弁は、弁に到達する排熱回収媒体Aの温度が、暖機運転が完了したときの排熱回収媒体Aの温度である所定値(例えば、60℃)より高い場合に上記第1通流状態となり、所定値以下の場合に上記第2通流状態となる様に構成しておけばよい。
(7)上記第2実施形態において、三方弁31(流量分配手段の一例)は、バイパス路30の上流端(分岐部)に設けられるものとしたが、別にバイパス路30の下流端(合流部)に設けても良い。この場合でも、排熱回収媒体Aを排熱回収熱交換器13とバイパス路30とに分配して導くことができる。
本発明は、エンジンの排熱を回収する排熱回収媒体を通流させる排熱回収回路を備え、エンジンの耐久性や性能に悪影響を与えることなく、排ガスの潜熱をも回収可能として排熱回収効率を高めることができる各種のエンジンの排熱回収装置に適応可能である。
1 エンジン
2 発電装置
3 電力負荷
4 排熱回収回路
10 電気ヒータ
12 エンジン冷却部
13 排熱回収熱交換器
14 エンジン冷却回路
19 排ガス熱交換器
30 バイパス路
31 三方弁(切替手段の一例)
32 温度センサ(温度測定手段の一例)
A 排熱回収媒体
B エンジン冷却水
C 排ガス

Claims (7)

  1. エンジンの排熱を回収する排熱回収媒体を通流させる排熱回収回路を備えたエンジンの排熱回収装置において、
    前記エンジンを冷却させるエンジン冷却部と排熱回収熱交換器との間でエンジン冷却水を循環させるエンジン冷却回路を備え、前記排熱回収回路には、前記排熱回収媒体の通流方向の上流側から順に、前記エンジンの排ガスと前記排熱回収媒体とを熱交換させる排ガス熱交換器、前記エンジン冷却部を通過したエンジン冷却水と前記排ガス熱交換器を通過した排熱回収媒体とを熱交換させる前記排熱回収熱交換器が備えられ、前記排ガス熱交換器に導入させる排熱回収媒体の温度が前記エンジンの排ガスの露点以下に設定されているエンジンの排熱回収装置。
  2. 前記エンジンにて駆動される発電装置と、前記発電装置の発電電力を電力負荷に供給自在で、且つ、前記発電装置の発電電力の前記電力負荷に対する余剰分である余剰電力を熱に変換自在な電気ヒータに供給自在な電力供給手段とを備え、前記電気ヒータは、前記排熱回収回路において前記排熱回収熱交換器を通過した前記排熱回収媒体を加熱自在に配置されている請求項1に記載のエンジンの排熱回収装置。
  3. 前記エンジンは、燃焼室で燃焼する混合気の空気過剰率がストイキ範囲内に設定され、前記排ガス熱交換器に三元触媒が配置されている又は前記エンジンの排ガスの通流方向において前記排ガス熱交換器よりも上流側に三元触媒が配置されている請求項1又は2に記載のエンジンの排熱回収装置。
  4. 前記排熱回収回路に、前記排ガス熱交換器と前記排熱回収熱交換器との間に上流端を有すると共に前記排熱回収熱交換器の下流側に下流端を有する状態で前記排熱回収熱交換器をバイパスするバイパス路を備え、
    前記排熱回収回路を通流する前記排熱回収媒体の流量を、前記排熱回収熱交換器と前記バイパス路との何れか一方又は両方に分配して導く流量分配手段が備えられている請求項1乃至3の何れか一項に記載のエンジンの排熱回収装置。
  5. 前記流量分配手段は、三方弁であり、
    前記三方弁は、前記排熱回収回路を通流する前記排熱回収媒体の通流状態を、前記排熱回収熱交換器へ導入させる第1通流状態と、前記排熱回収媒体を前記バイパス路に通流させる第2通流状態とに切り替え可能に構成されている請求項4に記載のエンジンの排熱回収装置。
  6. エンジンオイルの温度、前記エンジン冷却回路の前記エンジン冷却部と前記排熱回収熱交換器との間の前記エンジン冷却水の温度、及び前記排ガス熱交換器にて前記排ガスと熱交換した後の前記排熱回収媒体の温度のうち、少なくとも1つを測定する温度測定手段と、前記温度測定手段の測定温度に基づいて、前記エンジンの運転状態を判定する運転状態判定手段と、
    前記運転状態判定手段が前記エンジンの運転状態が暖機運転状態であると判定したときに、前記排熱回収媒体の通流状態を前記第2通流状態とするように、前記三方弁の開閉状態を切り替える切替制御手段とを備えた請求項5に記載のエンジンの排熱回収装置。
  7. 前記三方弁が、前記排熱回収媒体の温度を感知して開閉状態を切り替える感温式の三方弁を備え、前記感温式の三方弁は、前記排ガス熱交換器にて前記排ガスと熱交換した後の前記排熱回収媒体の温度が、所定値より高い場合に前記第1通流状態とし、所定値以下の場合に前記第2通流状態とする請求項5に記載のエンジンの排熱回収装置。
JP2010068742A 2009-05-29 2010-03-24 エンジンの排熱回収装置 Expired - Fee Related JP4573912B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010068742A JP4573912B1 (ja) 2009-05-29 2010-03-24 エンジンの排熱回収装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009131086 2009-05-29
JP2010068742A JP4573912B1 (ja) 2009-05-29 2010-03-24 エンジンの排熱回収装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010159919A Division JP5427132B2 (ja) 2009-05-29 2010-07-14 エンジンの排熱回収装置

Publications (2)

Publication Number Publication Date
JP4573912B1 JP4573912B1 (ja) 2010-11-04
JP2011007177A true JP2011007177A (ja) 2011-01-13

Family

ID=43319590

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010068742A Expired - Fee Related JP4573912B1 (ja) 2009-05-29 2010-03-24 エンジンの排熱回収装置
JP2010159919A Expired - Fee Related JP5427132B2 (ja) 2009-05-29 2010-07-14 エンジンの排熱回収装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2010159919A Expired - Fee Related JP5427132B2 (ja) 2009-05-29 2010-07-14 エンジンの排熱回収装置

Country Status (1)

Country Link
JP (2) JP4573912B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5563176B1 (ja) * 2013-10-31 2014-07-30 中国電力株式会社 エンジンの排熱回収装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9103249B2 (en) * 2012-02-29 2015-08-11 Caterpillar Inc. Flywheel mechanical energy derived from engine exhaust heat

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169762U (ja) * 1988-05-23 1989-11-30

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742062Y2 (ja) * 1988-05-23 1995-09-27 神鋼電機株式会社 エンジンの排気ガスを利用した給湯装置
JPH0725554Y2 (ja) * 1988-05-23 1995-06-07 神鋼電機株式会社 定温度補償付きの給湯装置
JP2007146676A (ja) * 2005-11-24 2007-06-14 Aisin Seiki Co Ltd コージェネレーションシステム
JP2008240557A (ja) * 2007-03-26 2008-10-09 Osaka Gas Co Ltd エネルギシステム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169762U (ja) * 1988-05-23 1989-11-30

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5563176B1 (ja) * 2013-10-31 2014-07-30 中国電力株式会社 エンジンの排熱回収装置
WO2015063935A1 (ja) * 2013-10-31 2015-05-07 中国電力株式会社 エンジンの排熱回収装置
CN105531471A (zh) * 2013-10-31 2016-04-27 中国电力株式会社 发动机的废热回收装置

Also Published As

Publication number Publication date
JP2011007192A (ja) 2011-01-13
JP4573912B1 (ja) 2010-11-04
JP5427132B2 (ja) 2014-02-26

Similar Documents

Publication Publication Date Title
JP4081896B2 (ja) 燃料電池システム
JP2008240557A (ja) エネルギシステム
JP4573912B1 (ja) エンジンの排熱回収装置
JP4964193B2 (ja) エネルギシステム
JP2019132477A (ja) コージェネレーションシステム及びその運転方法
JP5318667B2 (ja) エンジンの排熱回収装置
KR101575356B1 (ko) 연료전지차량용 히터 과열 방지 장치 및 방법
JP4030446B2 (ja) コージェネレーションシステム
JP2006336607A (ja) コージェネレーションシステム
JP2004247096A (ja) 燃料電池車両の冷却システム
JP4833707B2 (ja) 排熱回収装置
JP4363612B2 (ja) 経路温度測定方法および排熱回収装置
JP5781771B2 (ja) エンジンの排熱回収装置
JP6611649B2 (ja) 熱電併給システム
JP5542032B2 (ja) コージェネレーション装置
JP5551971B2 (ja) 貯湯式の給湯装置
JP2004257276A (ja) コージェネレーションシステム
US8499551B2 (en) Exhaust heat recovering method, exhaust heat recovering apparatus and cogeneration system
JP2011257130A (ja) 排熱回収装置
JP2004014174A (ja) 燃料電池システム
JP2001065982A (ja) 貯湯式の給湯設備
JP2009216382A (ja) コージェネレーションシステム
JP2012193712A (ja) エンジンの排熱回収装置
JP4359248B2 (ja) コージェネレーションシステム
JP2005207618A (ja) 貯留式給湯装置およびコージェネレーションシステム

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100817

R150 Certificate of patent or registration of utility model

Ref document number: 4573912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees