JP2010535977A - 燃料インジェクタ及びその制御方法 - Google Patents

燃料インジェクタ及びその制御方法 Download PDF

Info

Publication number
JP2010535977A
JP2010535977A JP2010519559A JP2010519559A JP2010535977A JP 2010535977 A JP2010535977 A JP 2010535977A JP 2010519559 A JP2010519559 A JP 2010519559A JP 2010519559 A JP2010519559 A JP 2010519559A JP 2010535977 A JP2010535977 A JP 2010535977A
Authority
JP
Japan
Prior art keywords
fuel
injector
pressure
pressure sensor
fuel injector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010519559A
Other languages
English (en)
Inventor
ディングル,フィリップ
Original Assignee
デルファイ・テクノロジーズ・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デルファイ・テクノロジーズ・インコーポレーテッド filed Critical デルファイ・テクノロジーズ・インコーポレーテッド
Publication of JP2010535977A publication Critical patent/JP2010535977A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3827Common rail control systems for diesel engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/005Fuel-injectors combined or associated with other devices the devices being sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • F02D2200/0604Estimation of fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/21Fuel-injection apparatus with piezoelectric or magnetostrictive elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/24Fuel-injection apparatus with sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/24Fuel-injection apparatus with sensors
    • F02M2200/247Pressure sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8092Fuel injection apparatus manufacture, repair or assembly adjusting or calibration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

【課題】内燃エンジン用燃料インジェクタ及び燃料噴射方法を提供する。
【解決手段】本発明の内燃エンジン用燃料インジェクタは、インジェクタ本体と、インジェクタ本体内に形成された、インジェクタの使用時に高圧燃料を収容する燃料供給通路と、使用時に通路内の燃料の圧力を計測するための圧力センサとを含み、圧力センサは、インジェクタ本体内に配置されており、使用時に通路内の燃料から分離されている。本発明の燃料噴射方法は、燃料の圧力を計測することによって液圧挙動分布を形成する工程と、この液圧挙動分布を使用し、噴射イベント中のインジェクタ内の燃料圧力を予測する工程と、制御信号を燃料インジェクタに供給して、噴射イベント中に噴射される燃料の量を予測燃料圧力に従って制御する工程とを含む。噴射イベント中の燃料圧力を予測することによって、噴射イベント中に送出される燃料を正確に制御できる。
【選択図】図4

Description

本発明は、内燃エンジン用燃料インジェクタ及び燃料インジェクタが送出する燃料の量を制御するための方法に関する。詳細には、本発明は、燃料噴射イベント中の燃料インジェクタ内の燃料の圧力の決定又は予測に関する。
燃料噴射システムは、エンジンの燃焼室内に噴射される燃料の量、クランクシャフト及びピストンの位置に関する燃料送出タイミング、及び燃焼室への燃料の提供の制御及び最適化を、例えば燃料を所定パターンで噴霧し分散することによって行うことができる。最新の燃料噴射システムは、電子式制御装置を使用し、燃料の送出量及び送出タイミングを高精度で行う。この高い精度は、エミッション及び性能についての市場の期待を満たす上で必要である。
コモンレール燃料噴射システムは、特にディーゼルエンジン等の圧縮点火エンジンで周知である。代表的な自動車用コモンレール燃料噴射システムを添付図面のうちの図1に概略に示す。燃料は燃料タンク20に貯蔵されており、リフトポンプ22によってフィルタ24を通してエンジン駆動高圧ポンプ26に引き出される。高圧ポンプ26は、高圧の燃料をアキュムレータ即ちレール28に供給する。燃料インジェクタ30は、夫々のジャンパーパイプ32によってレールに連結されている。各燃料インジェクタ30は、電子式制御ユニット(ECU)34の制御下で燃料をシリンダの燃焼室に噴射することによって、エンジンの夫々のシリンダに燃料を供給するように構成されている。
多くの種類の燃料インジェクタが知られている。代表的な構成では、燃料インジェクタは、アクチュエータ、例えばソレノイドアクチュエータ又は圧電アクチュエータの作動時に第1位置と第2位置との間で移動自在のバルブニードルを含む制御バルブを含む。バルブニードルは、燃料インジェクタの本体内に収容されている。本体は、バルブニードル用の着座面の下流に少なくとも一つのオリフィスが設けられたノズルを形成する。着座面は、高圧燃料リザーバの下流に設けられている。第1位置では、バルブニードルは着座面に当たってシールし、燃料が着座面を通って流れないようにする。第2位置では、バルブニードルは着座面から遠ざかった位置に保持され、燃料がリザーバからオリフィスを通って燃焼室に流入でき、かくして燃料を噴射する。
燃焼室に送出された燃料の量は、エンジンのトルク出力に影響を及ぼす。従って、エンジンに作用する条件に従って任意の所与の時期に所望のトルクを提供するように燃料の送出を注意深く制御しなければならない。
各噴射イベント中に送出される燃料の量は、ノズルオリフィスの流れ面積、燃料圧力、及び噴射持続時間の関数である。噴射持続時間は、ニードルが着座面から持ち上げられており、高圧燃料がオリフィスを通って燃焼室に流入する時間である。
所与の燃料インジェクタにおいて、ノズルオリフィスの流れ面積は一定である。従って、燃料送出量は、いわゆる「圧力−時間」原理を使用して制御される。所望量の燃料を送出するため、所定の燃料圧力を仮定した場合に、燃料がノズルを通って流れることができる時間、即ち噴射持続時間に亘って所要量の燃料が燃焼室内に通過するように、噴射持続時間を、予め計算した所定値に電子的に設定する。従って、燃料圧力が予期せぬ変化を示すと、燃焼室に送出される燃料の量が正しくなくなってしまい、その結果、エンジンの出力トルクが必要とされるよりも大きくなったり小さくなったりしてしてしまう。こうした場合には、車輛の運転性、性能、及びエミッションが損なわれてしまう。
図1を再び参照すると、点火タイミング及び持続時間の制御は、ECU34によって行われる。ECU34は、クランクシャフト速度センサ36a、クランクシャフト位相センサ36b、スロットルペダル要求センサ36c、吸気温度センサ36d、及びクーラント温度センサ36e、吸気質量流量センサ36f、及びターボチャージドエンジンの場合には吸気ブースト圧力センサ36g等を含む様々なセンサから入力信号を受け取る。更に、コモンレール燃料噴射システムは、燃料レール圧力センサ38を含む。この
燃料レール圧力センサ38は、燃料温度センサと組み合わせてもよい。ECU34は、出力信号によって、高圧ポンプ26の入口に設けられた計量流量バルブ40、レール圧力制御バルブ42、及び個々のインジェクタ30の制御バルブを作動する様々なアクチュエータの制御を行う。
レール圧力センサ38は、代表的には、圧電抵抗デバイスであり、電子装置が一体に設けられている。センサ本体の一部、代表的にはダイヤフラムがレール28内の高圧燃料に直接露呈されるようにレール28に貫入して設置されている。一般的には軟鉄ワッシャを使用してセンサ38とレール28との間をシールしてもよい。レール圧力センサ38が、非常に高圧の環境で信頼性を以て漏洩なしに作動しなければならないため、このようなセンサ38は比較的高価であり且つ壊れ易い。
レール28内の圧力、及び従って各燃料インジェクタ30内の公称燃料圧力は、エンジンの作動条件及びトルク必要条件を決定するため、ECU34によって、センサ36a乃至36gからの入力信号を使用して決定される。例えば、低エンジン速度及び低負荷では、公称レール圧力は300×103 hPa(300バール)であってもよく、高エンジン速度及び高負荷では、公称レール圧力は2000×103 hPa(2000バール)であってもよい。代表的には、エンジンのセットアップ中及び試験中の較正手順において、最適公称レール圧力範囲を対応する条件範囲について記録する。最適値は、必要とされるように、エミッションを最少にし、性能を最適化し、又は燃料消費を最少にするように決定される。これらの最適化した公称圧力をECU34のメモリーのマップに記憶し、所与のエンジン条件についての最適値を取り出す。
従って、所与のエンジン条件組の下で、公称平均レール燃料圧力は一定の値を有する。ECU34は、レール圧力センサ38から実際の瞬間的レール燃料圧力を決定し、高圧燃料ポンプ26の入口計量流量バルブ40又はレール圧力制御バルブ42を、所望の平均レール燃料圧力を達成し且つ維持する上で適切であるように作動する。このようにして、フィードバック制御システムを提供する。このフィードバック制御システムを最適化するため、高度の制御アルゴリズムが提供される。レール燃料圧力の予期せぬ変化が起こると、トルク出力の予期せぬ変化が生じるため、レール圧力センサができるだけ正確であることが重要である。
フィードバック制御システムの応答時間は、レール圧力センサ38、ECU34、高圧燃料ポンプ26、及び入口計量流量バルブ40又はレール圧力制御バルブ42の性能によって制限される。例えば、レール圧力が低下すると、レール圧力センサ38は、適当な信号をECU34に送出することによって圧力低下に応答しなければならない。この場合、ECU34は、信号を評価し、入口計量流量バルブ40を作動することによって応答しなければならず、その流れ容量の制限内で、高圧燃料ポンプ26がレール圧力を所望の値まで上昇しなければならない。
噴射イベント時に、レール28に貯えられた燃料容積に瞬間的流れ要求が加えられる。瞬間的流れ要求は、制御システムが十分に迅速に応答できない要求であり、その結果、レール28内の燃料圧力が低下する。従って、レール28内の燃料圧力は不安定になり、圧力が所望レベルを回復するまで短い時間が経過する。この回復は、望ましくは、次の噴射イベント前に完了する。圧力の低下は、通常の噴射イベントの持続時間に亘り、レール28内の平均圧力がターゲット圧力よりも僅かに低くてもよいということを意味するが、この効果は、較正中、それでも予想トルクが得られるように考慮できる。
燃料噴射技術における、特にコモンレールシステムの最近の開発により、燃焼サイクル毎に多数の噴射イベントで燃料を送出する性能が導入された。換言すると、シリンダの各サイクル中に噴射イベントが一回だけ行われるのでなく、燃料が、順次、即ち二回又はそれ以上の正確なタイミングの噴射イベントの列をなして送出され、これらのイベントの各々が、注意深く制御された量の燃料を噴射するのである。例えば、噴射順序には、燃焼室内のガスを予熱するパイロット噴射即ち予備噴射が含まれる。予備噴射は、燃料の大きな部分の噴射が行われる主噴射前に行われる。未燃焼燃料を完全燃焼し、かくして有害な排気エミッションを低減し、燃料効率を向上するため、主噴射後に後噴射を行ってもよい。
従って、最新のエンジンは、性能及び燃料効率を最適化し、有害な排気エミッションを低減するため、サイクル毎に多数の噴射イベントを使用する。所定のエンジン負荷条件及び速度条件に亘り、最適の噴射順序を変えてもよい。例えば幾つかの条件は、パイロット噴射直後に主噴射を行うことを必要とし、また幾つかの条件は、分割主噴射を必要とし、その他の条件は、パイロット噴射、主噴射、及び後噴射を必要とするが、多数のパイロット噴射又は多数の後噴射を必要とする条件もある。
多数の噴射イベントを含む順序を必要とする場合には、前の噴射イベントによって生じるレール圧力、及び従ってインジェクタ30内の燃料圧力に対する動揺が、続いて行われる噴射イベントの開始時に残る可能性が生じる。換言すると、前の噴射イベントによって生じる、燃料システム内の圧力波を、噴射イベントが続いて行われるときになくしきれていない場合がある。従って、続いて行われる噴射イベント時のインジェクタ30内の燃料圧力は、ターゲットレール圧力と対応する予想レベルにない。その代わり、インジェクタ30内の圧力は、続いて行われる噴射イベントに対する圧力波の位相関係に従って、予想圧力よりも低いか或いは高い。いずれの場合でも、不適当で予想不能な量の燃料が送出される結果となり、トルク出力及びエミッションについても同様に予想不能な結果となる。
この現象により、送出された燃料の量に大きなエラーが生じる場合があり、こうしたエラーのため、受け入れ難いエミッション、騒音の増大、運転性の低下、性能の低下等が生じる。
これらの残留圧力波による望ましからぬ効果を減少するか或いはなくすための一つの知られている方法は、燃料システムの特定の位置にチューニングオリフィスを設け、噴射イベントにより生じる圧力波を減衰し、かくして波の伝播を妨げる工程を含む。しかしながら、この方法は、比較的限られたエンジン条件範囲及び噴射順序でしかチューニングオリフィスが有効でないため、融通性がない。詳細には、所与のエンジンで一つ以上の噴射戦略が使用される場合には、この方法の有効性は限定的である。
多数の噴射順序での圧力波の効果は、理論的には、エンジンの全速度−負荷レジームを細かい粒度でマッピングすることによって、及び手順での噴射持続時間を較正し、残留圧力波を補償することによって、補償できる。しかしながら、この方法は、極めて多くの労力を必要とする較正手順、並びにECUが大量のデータを記憶したり迅速に高速で検索することを必要とするため、実行不能である。更に、較正した噴射持続時間は、パイプの長さ及び製造許容差の些細な変化の影響を受け易い。
以上に対し、本発明を案出した。
本発明の第1の特徴によれば、内燃エンジン用燃料インジェクタにおいて、インジェクタ本体と、インジェクタ本体内に形成された、インジェクタの使用時に高圧燃料を収容する燃料供給通路と、使用時に通路内の燃料の圧力を計測するための圧力センサとを含み、圧力センサは、インジェクタ本体内に配置されており、使用時に通路内の燃料から分離されている、燃料インジェクタが提供される。例えば、通路は、少なくとも部分的にインジェクタ本体の壁によって形成されており、圧力センサは、燃料供給通路内の燃料から壁によって分離されている。
圧力センサは、インジェクタの使用時の燃料供給通路内の燃料の圧力により生じる、この燃料圧力と関連した、インジェクタ本体に加わる伸びを計測してもよい。この場合、圧力センサは歪みゲージを含んでいてもよい。更に、圧力センサは、燃料供給通路内の圧力により生じる、燃料供給通路内の圧力と対応するインジェクタ本体の全部又は一部の変位、撓み、又は変形に応答できる。
レール圧力センサ等の従来の「貫入型(intrusive)」 圧力センサとは異なり、本発明の燃料インジェクタに設けられた圧力センサは通路に貫入しておらず、圧力センサの一部が通路内の燃料によって濡らされることを必要としない。かくして、本発明による圧力センサは、「非貫入型(non-intrusive)」又は「乾式(dry)」圧力センサと考えることができる。
本発明は、更に、個々のインジェクタに貫入型圧力センサを設けることと比較した場合に多くの利点を提供する。本発明によれば、圧力センサは供給通路から分離されており、そのため、精密に機械加工したボア又はブリーチ(breach)をインジェクタ内の供給通路に設ける必要がない。このようなボアは、製造に費用がかかり、漏れを生じたり機械的な故障を引き起こしたり可能性がある箇所を提供する。更に、圧力センサには供給通路の高圧環境が加わらない。これにより、センサが機械的に故障する危険が低減し、センサを高圧に耐えるように設計又は製作する必要がないため、センサの価格を引き下げることができる。同様に、センサが耐漏型である必要がないため、圧力センサの設計を比較的簡単にでき、その結果、丈夫で低価格のデバイスとなる。例えば、高圧シールが必要とされない。
インジェクタ本体には、圧力センサを収容する、通路から分離された圧力センサキャビティが形成されている。一つの変形例では、圧力センサキャビティは、インジェクタのアクチュエータ用の電気接続部を収容する。このようにして、圧力センサ及びその関連した電気接続部又はハーネスを、アクチュエータ用の電気コネクタ又はヘッダと一体化できる。インジェクタ本体には、更に、アクチュエータキャビティが形成されていてもよく、圧力センサキャビティがこのアクチュエータキャビティと連通している。
圧力センサキャビティは、インジェクタの側部から内方に、又はインジェクタの端部から内方に延びている。圧力センサキャビティは、圧力センサと電気的に通信する電子式モジュールを収容していてもよい。
圧力センサは、インジェクタ本体内の任意の適当な位置に設けられていてもよい。一つの構成では、燃料供給通路及び圧力センサは、夫々、長さ方向中央軸線を形成し、これらの軸線が実質的に交差する。別の例では、燃料供給通路は、拡径断面積部分を含み、圧力センサは、燃料供給通路の部分と整合する。
一実施例では、インジェクタ本体には、外壁及び燃料供給通路を中心として外壁とは反対側の内壁が形成されており、圧力センサは、使用時に、燃料供給通路内の燃料から内壁によって分離されている。随意であるが、圧力センサの面は、供給通路の壁と平行に延びる。
インジェクタは細長く、長さ方向軸線を形成していてもよく、圧力センサは、インジェクタの長さ方向軸線と実質的に平行に延びる燃料供給通路の壁と協働してもよい。変形例では、細長いインジェクタに圧力センサが設けられ、この圧力センサは、インジェクタの長さ方向軸線を横切って延びる供給通路の壁と協働する。
圧力センサの応答を最適化するため、圧力センサの面は、燃料供給通路を形成する壁に当接してもよい。この目的のため、インジェクタは、面を壁に押し付けるクランプエレメントを含んでいてもよい。例えば、インジェクタ本体にはポートが形成されていてもよく、クランプエレメントは、ポート内でインジェクタ本体と螺合したプラグであってもよい。
クランプエレメントが設けられている場合には、圧力センサ用の電気接続部は、クランプエレメント内に収容されていてもよい。同様に、圧力センサと電気的に通信する電子式モジュールがクランプエレメント内に収容されていてもよい。
任意の適当な圧力センサを使用してもよい。圧力センサは、例えば、磁歪材料製コアを持つ磁歪圧力センサを含んでもよい。一実施例では、圧力センサは、全体にI字形状断面の回転体であるコアを有し、このコアは、磁歪材料製であってもよい。圧力センサは、インジェクタ本体と一体のコアを含んでもよい。この場合、圧力センサは、コア内の歪みの変化に応答する。
別の特徴では、本発明は、本発明の第1の特徴による、圧力センサを持つ燃料インジェクタを較正する方法を含む。この方法は、圧力センサの出力値を計測する工程と、出力値と対応する供給通路内の流体の圧力を決定する工程とを含む。出力値と対応する流体圧力をインジェクタのセンサ特性として記録する。センサ特性を、例えば、機械が読み取ることができるバーコード等のデータフォーマット、又は人間のオペレータが読み取るための英数字コード等でエンコードしてもよい。
流体は、例えば、空気等の気体であってもよいし、オイルや燃料等の液体であってもよい。方法は、圧力センサの複数の出力値を計測する工程と、これらの複数の出力値の各々について供給通路内の対応する流体圧力を決定する工程とを含んでいてもよい。このようにして、圧力センサの較正曲線を得ることができる。
インジェクタの較正は、製造後に、しかしエンジンへの設置前に行われる。較正を行う目的のため、供給通路に一つの既知の圧力の、又は一連の既知の圧力の流体を供給する。出力値と対応する流体圧力をインジェクタのセンサ特性として記録し、センサ特性を、例えば、機械が読み取ることができるバーコード等のデータフォーマット、又は人間のオペレータが読み取るための英数字コード等でエンコードしてもよい。
本発明は、更に、本発明の第1の特徴による燃料インジェクタを含み、圧力センサが設けられたエンジンの制御ユニットのプログラム方法を含む。この方法は、燃料インジェクタを上文中に説明したように較正する工程と、例えばエンコードしたセンサ特性を読み取ることによって、記録されたセンサ特性を制御ユニットに入力する工程とを含む。
別の特徴では、本発明は、内燃エンジン用燃料噴射システムにおいて、複数の燃料インジェクタと、使用時に燃料インジェクタに燃料を供給するように構成されたアキュムレータと、使用時に燃料システム(例えば燃料インジェクタ/アキュムレータ)内の燃料の圧力を計測するための少なくとも一つの圧力センサと、液圧挙動分布を形成し、この液圧挙動分布を使用し、噴射イベント中のインジェクタ内の燃料圧力を予測し、制御信号を燃料インジェクタに供給して、噴射イベント中に噴射される燃料の量を予測燃料圧力に従って制御するため、少なくとも一つの圧力センサから圧力信号を受け取るように形成された制御ユニットとを含む、内燃エンジン用燃料噴射システムを提供する。
制御ユニットは、少なくとも一つの圧力センサから圧力信号をサンプリングし、液圧挙動分布を形成するように繰り返しプログラムされるプロセッサを含んでいてもよい。別の態様では、制御ユニットは、液圧挙動モデルを記憶するためのメモリーと、液圧挙動分布を記憶されたモデルに適用し、噴射イベント中に燃料インジェクタに作用する燃料圧力を予測するようにプログラムされたプロセッサとを含んでいてもよい。
別の特徴では、本発明は、噴射イベント中の燃料噴射システムの燃料インジェクタの燃料圧力特性を予測する方法において、噴射イベント前に燃料噴射システム内の燃料圧力特性を計測する工程と、計測した燃料圧力特性を使用し、噴射イベント中の燃料インジェクタの予測された燃料圧力特性を決定する工程とを含む、方法を提供する。又、燃料圧力特性は、噴射イベント前に圧力センサに繰り返し呼掛けることによって計測されてもよく、計測された燃料圧力特性には、一連の燃料圧力値が含まれる。
燃料圧力特性は、燃料インジェクタ内で、例えば燃料噴射システムの燃料インジェクタを本発明の第1の特徴に従って形成したときに計測されてもよい。別の態様では、燃料圧力特性は、燃料噴射システムの燃料インジェクタの上流の位置で計測されてもよく、例えば燃料インジェクタの上流のアキュムレータ内で計測されてもよい。
前記少なくとも一つの燃料圧力センサは、アキュムレータ内の燃料の圧力を感知するため、アキュムレータ内に配置された圧力センサであってもよく、又は、上文中に説明したように、各インジェクタに燃料圧力センサが設けられていてもよい。この場合、複数のセンサが設けられる。
一つの変形例の方法では、計測された燃料圧力特性を液圧挙動モデルに入力し、噴射イベント中の燃料インジェクタの予測燃料圧力特性を決定する。予測燃料圧力特性は、噴射イベント中の燃料インジェクタ内の予測平均燃料圧力を含む。
更に、本方法は、制御信号を燃料インジェクタに供給し、噴射イベント中に噴射される燃料の量を、予測燃料圧力特性に従って制御する工程を含んでいてもよい。
本発明のこの特徴により、例えば、所望量の燃料を送出するために必要とされる噴射イベントの持続時間に亘って正確な値を決定するために「圧力−時間」原理内で予測燃料圧力特性を使用できる。この目的のため、本発明は、公称燃料噴射要求を補正する方法において、燃料圧力特性を上文中に説明したように予測する工程と、噴射イベント中の予測された燃料圧力特性に基づいて補正ファクタを計算する工程と、補正ファクタを公称燃料噴射要求に適用し、噴射イベント中の燃料圧力の変化を補償する工程とを含む、方法を提供する。公称燃料噴射要求は、例えば、燃料インジェクタの燃料圧力特性が、インジェクタの上流のアキュムレータ内の燃料の公称圧力と等しい一定の圧力である場合、所望量の燃料を送出するのに必要とされる燃料噴射イベントの持続時間を含む。
従って、本発明は、更に、公称燃料噴射要求をエンジン作動パラメータに従って決定する工程と、公称燃料噴射要求を上文中に説明した方法に従って補正する工程とを含む、方法を含む。
燃料インジェクタに圧力センサが設けられている場合には、これらの圧力センサによって計測された局所的燃料圧力を使用してアキュムレータ内の燃料の圧力を推算でき、及びかくしてアキュムレータ内の燃料アキュムレータを制御するフィードバックループに入力を提供する。かくして、別の特徴では、本発明は、燃料噴射システムのアキュムレータ内の燃料の圧力を推算する方法に関する。この方法は、アキュムレータに連結された複数の燃料インジェクタ内の局所的燃料圧力を計測する工程と、計測した局所的燃料圧力の平均値を計算し、アキュムレータ内の燃料アキュムレータを推算する工程とを含む。
計測された局所的燃料圧力の平均値を計算するための任意の適当な戦略を使用してもよい。例えば、方法は、噴射システムの液圧特性を考慮に入れるため、計測された局所的燃料圧力に重きを置いてもよい。
本発明の別の特徴により、センサ故障に対する或る程度の耐久性を提供できる。燃料噴射システムのアキュムレータ内の燃料の圧力を推算する方法を考えると、この方法は、アキュムレータに連結された複数の燃料インジェクタ内の局所的燃料圧力を計測する工程と、複数のインジェクタのうちの一つのインジェクタからの圧力信号がエラーであることを検出する工程と、エラーである圧力信号をアキュムレータ内の燃料の圧力の計算から除外する工程とを含む。かくして、インジェクタの圧力センサが故障した場合でも、アキュムレータ内の燃料の圧力の概算を行うことができる。
本発明の別の特徴では、燃料圧力センサの出力のエラーを補償する方法において、燃料圧力センサの平均出力を決定する工程と、燃料圧力センサの平均出力を基準値と比較する工程と、燃料圧力センサの平均出力が、基準値から、所定の第1閾値よりも大きく異なる場合に、燃料圧力センサの出力に所定の補償オフセットを適用する工程とを含む、方法が提供される。
このようにして、センサのドリフト、オフセット不正確性、較正エラー、及びセンサ出力におけるこの他の系統的変化を補正でき、又は補償できる。
方法は、記憶された補償オフセット、例えば燃料センサの出力におけるエラーを漸次補正するための所定の値を検索する工程を含んでいてもよい。別の変形例では、方法は、燃料圧力センサの平均出力と基準値との間の差を計算する工程と、差を燃料圧力センサの出力に補正オフセットとして適用する工程とを含む。この場合、方法は、更に、補償オフセットを記憶する工程を含む。
燃料圧力センサの出力におけるエラーを補償するための方法は、エラーを補償するための適合的又は漸次戦略を含んでいてもよい。一つのこのような例では、方法は、補償オフセットの適用後、燃料センサの平均出力を決定する工程と、燃料圧力センサの平均出力を基準値と比較する工程と、燃料圧力センサの平均出力が、基準値から、所定の第2閾値よりも大きく異なる場合に、燃料圧力センサの出力に更なる補償オフセットを適用する工程とを含む。
方法は、記憶された基準値を検索する工程を含む。例えば、基準値は、メモリーに記憶された所定値であってもよい。方法の変形例では、一つ又はそれ以上の更なる燃料圧力センサの平均出力を使用して基準値を計算する。
また、センサ故障に対する或る程度の耐久性を、燃料噴射システムの燃料インジェクタの噴射イベント中の燃料圧力特性を予測する方法を含む、本発明の別の特徴に従って提供できる。この方法は、噴射イベント前に複数の燃料インジェクタ内の燃料圧力特性を計測する工程と、複数の燃料インジェクタのうちの一つの燃料インジェクタから、エラーである圧力信号を検出する工程と、燃料圧力特性の予測からエラーである圧力信号を除外する工程とを含む。
妥当な燃料特性の予測を行うことができるように、方法は、予測燃料圧力特性を複数の燃料インジェクタのうちの他の燃料インジェクタから送出する工程と、この特性を、エラーである圧力信号が検出されたインジェクタに適用する工程とを含む。
別の特徴では、本発明は、内燃エンジン用燃料噴射システムにおいて、本発明の第1の特徴による複数の燃料インジェクタを含み、これらの燃料インジェクタの各々は圧力センサを有し、更に、使用時に燃料インジェクタに燃料を供給するように構成されたアキュムレータと、燃料インジェクタの圧力センサから圧力信号を受け取って、制御信号を燃料インジェクタに供給し、燃料の噴射を制御するように構成された制御ユニットとを有する、システムを提供する。
レール燃料圧力センサを設ける必要がなく、そのため、レール圧力センサ自体の費用、及びレール圧力センサを取り付けるためにボアを燃料レールに精密に機械加工するための費用がない。更に、センサを受け入れるのに必要な燃料レールのブリーチをなくすことによって、その場所での燃料漏れ及び機械的故障の危険がなくなる。
燃料噴射システムは、アキュムレータ内の燃料を加圧するためのポンプと、アキュムレータ内の燃料圧力を制御するためのアキュムレータ圧力制御バルブとを含んでいてもよい。ポンプ及びアキュムレータ制御バルブは、両方とも、制御ユニットの制御下にある。このようにして、圧力センサ、ポンプ、圧力制御バルブ、及び制御ユニットは、組み合わせで、アキュムレータ内の燃料の圧力を制御できる。
各インジェクタ内に燃料圧力センサを設けることによって、各インジェクタ内の燃料圧力の計測値を得ることができ、これを制御ユニット即ちECUに入力する。ECUは、計測によって得られたこれらのインジェクタ燃料圧力値を使用し、各噴射イベントの噴射持続時間を計算できるのであって、従来のシステムにおけるようにインジェクタから遠方のレール燃料圧力の計測値に基づく推算インジェクタ燃料圧力を使用するのではない。このようにして、噴射イベント時に送出される燃料の量を更に正確に予測でき且つ制御できる。
従って、制御ユニットは、圧力センサから圧力信号を受け取って液圧挙動分布を形成し、この液圧挙動分布を使用して噴射イベント中のインジェクタ内の燃料圧力を予測し、燃料インジェクタに制御信号を供給し、噴射イベント中に噴射される燃料の量を予測燃料圧力に従って制御する。
この目的のため、制御ユニットは、圧力センサから圧力信号を繰り返しサンプリングし、液圧挙動分布を形成するようにプログラムされたプロセッサを含んでいてもよい。一つの変形では、制御ユニットは、液圧挙動モデルを記憶するためのメモリーと、記憶されたモデルに液圧挙動分布を適用し、噴射イベント中にインジェクタ内に作用する燃料圧力を予測するようにプログラムされたプロセッサとを含む。
別の特徴では、本発明は、燃料噴射方法において、燃料圧力計測値によって液圧挙動分布を形成する工程と、この液圧挙動分布を使用し、噴射イベント中に燃料インジェクタ内に作用する燃料圧力を予測する工程と、制御信号を燃料インジェクタに供給し、噴射イベント中に噴射される燃料の量を予測燃料圧力に従って制御する工程とを含む、燃料噴射方法に関する。
続いて行われる噴射イベント中に亘って燃料インジェクタ内に作用する燃料圧力をこのように予測することによって、噴射イベント中に噴射される燃料の量を、この他の方法で可能であるよりも正確に制御でき、全てのエンジン作動条件及び噴射戦略について制御を正確に行うことができる。
随意であるが、液圧挙動分布は、燃料圧力を繰り返しサンプリングすることによって形成される。この方法は、記憶された液圧挙動モデルを検索する工程と、記憶されたモデルに液圧挙動分布を適用し、噴射イベント中に燃料インジェクタ内に作用する燃料圧力を予測する工程とを含んでいてもよい。
方法の一つの変形は、使用時に複数の燃料インジェクタに燃料を供給するように形成されたアキュムレータ内の燃料圧力を計測することによって液圧挙動分布を形成する工程と、噴射イベント中に複数の燃料インジェクタ内に作用する燃料圧力を液圧挙動分布を使用して予測する工程と、複数の燃料インジェクタを制御し、噴射イベント中に噴射される燃料の量を予測燃料圧力に従って制御する工程とを含む。
別の特徴では、本発明には、少なくとも一つのコンピュータプログラムソフトウェア部分を含むコンピュータプログラム製品が含まれる。このコンピュータプログラムソフトウェア部分は、実施環境で実施したとき、上文中に説明した本発明による方法のうちの任意の方法を実行するように作動できる。コンピュータプログラム製品は、更に、コンピュータプログラムソフトウェア部分又は各コンピュータプログラムソフトウェア部分を記憶したデータ記憶媒体を含む。
図1は、上文中に論じた周知のコモンレール燃料噴射システムの概略図である。次に、本発明の好ましい実施例を、同様の特徴に対して同様の参照番号を使用した残りの図を参照して単なる例として説明する。 図2は、本発明による燃料インジェクタの第1実施例の側面図である。 図3は、図2の燃料インジェクタの長さ方向拡大部分断面図である。 図4は、本発明による燃料インジェクタの第2実施例の長さ方向部分断面図である。 図5は、図4の燃料インジェクタの断面図である。 図6は、本発明による燃料インジェクタの第3実施例の長さ方向部分断面図である。 図7は、図2乃至図6に示す燃料インジェクタのうちの任意の燃料インジェクタを組み込んだ、本発明によるコモンレール燃料噴射システムの概略図である。 図8は、本発明による燃料インジェクタの較正方法のフローチャートである。 図9は、図8の方法を実施するように構成された装置の概略図である。 図10は、ECUを圧力センサ較正情報でプログラムする方法のフローチャートである。 図11は、図10の方法を実施するように構成された装置の概略図である。 図12は、燃料圧力センサの出力のエラーを補償するための方法のフローチャートである。 図13は、本発明による燃料噴射方法の第1表現のフローチャートである。 図14は、図13の方法を実施するように構成された図7の燃料噴射システムのエレメント、特にECU及び燃料インジェクタの概略図である。 図15は、燃料インジェクタ内の燃料圧力センサ出力(縦軸)を時間(横軸)に対してとった、燃料圧力の経時的発展を示す概略図である。 図16は、エラー信号が検出された場合の燃料インジェクタの燃料圧力特性を予測する方法のフローチャートである。 図17は、本発明による別の燃料噴射方法のフローチャートである。 図18は、図17の方法を実施するように構成された、燃料レール圧力センサを装着した燃料レールを含む燃料噴射システムのエレメントの概略図である。
図2及び図3は、本発明の第1実施例による例示の燃料インジェクタ46を示す。図2は、細長いインジェクタ46の側面図であり、その長さ方向軸線48を示す。図3は、インジェクタ46の長さ方向軸線48と平行なインジェクタ46の長さ方向拡大詳細断面図である。
インジェクタ46は、全体に円筒形のインジェクタ本体50を含む。このインジェクタ本体50は、使用時に、内燃エンジンのシリンダへッドを通って延びる。インジェクタ本体50の上部分には、コモン燃料レール(図示せず)から高圧燃料を受け取る燃料入口52が設けられている。インジェクタ本体50の下部分には、燃料をエンジンの燃焼室内に噴射するように形成されたノズル54が設けられている。
燃料インジェクタの技術分野で知られているように、ノズル54には、二つの位置の間で移動自在のバルブニードルが収容されている。第1位置即ち閉鎖位置では、ニードルはノズル54の着座面に当たってシールし、燃料がノズル54に設けられた一つ又はそれ以上のオリフィスを通って流れないようにする。第2位置即ち閉鎖位置では、燃料がオリフィス又は各オリフィス56を通って流れることができるように、バルブニードルは着座面から引っ込められている。バルブニードルは、内方に開放する種類であってもよいし、外方に開放する種類であってもよい。バルブニードル及び着座面は添付図面には示してないが、本譲受人の米国特許第6,234,404号及び第7,159,799号に示された構成を備えていてもよい。出典を明示することにより、これらの特許文献に開示された全ての内容は本明細書の開示の一部とされる。
インジェクタ本体50の中央部には、バルブニードルを制御するためのアクチュエータが収容されている。アクチュエータは、例えば、圧電アクチュエータであってもよいしソレノイドアクチュエータであってもよい。電気信号がアクチュエータの電極に加わることによりアクチュエータが賦勢されたとき、アクチュエータの一部又は全体に長さ方向伸びが加わり、又は長さ方向に変位する。再度申し述べると、このようなアクチュエータは、上掲の本譲受人の米国特許を含む当該技術分野で知られており、添付図面には示さない。
アクチュエータの賦勢又は消勢によるアクチュエータの伸び又は変位により、ニードルの開放移動又は閉鎖移動が行われるように、アクチュエータとバルブニードルとの間にカップリングが設けられている。カップリングは、例えば、アクチュエータとバルブニードルとの間の機械的連結部を含んでいてもよい。カップリングは、その代わりに、液圧式カップリングを含んでいてもよい。その場合、アクチュエータの作動によりバルブニードルと関連したチャンバ内で圧力変化が生じ、ニードルに開放力又は閉鎖力を提供する。
アクチュエータは、インジェクタ本体50のチャンバ58内に収容されている。アクチュエータへの電気的接続部は、代表的にはブレード端子の形態であり、別のチャンバ又は端子キャビティ60内に配置される。ポート62がインジェクタ46の外面からインジェクタ本体50内に延びており、端子キャビティ60と連結し、電気的接続部に対してアクセスを提供する。
本発明のこの第1実施例では、インジェクタ46には、圧力センサ64が設けられている。圧力センサ64は、端子キャビティ60内に収容されている。圧力センサ64への電気的接続部はポート62によって提供され、そのため、アクチュエータ及び圧力センサ64への電気的接続部を、端子キャビティ60に嵌着した単一のコネクタ(図示せず)に設けることができる。これらの電気的接続部により、信号を圧力センサ64からECUに伝達できる。圧力センサ64は、圧力センサ64の出力信号を調整するための電子回路を備えていてもよい。
高圧燃料を燃料入口52からノズル54まで通すことができるように、導管即ち供給通路66がインジェクタ本体50に設けられている。供給通路66の壁68はインジェクタ本体50と一体であり、この壁が、供給通路66を、インジェクタ本体50内の他の通路及び例えば端子キャビティ60等のキャビティから分離する。かくして、壁68は、インジェクタ46の使用時に高圧燃料を供給通路66内に保持する。
更に、余分の燃料を燃料タンク又は他のリザーバに戻すため、リターン即ち後方漏れ通路70がインジェクタ本体50内に設けられている。燃料リターンパイプをインジェクタ46に連結できるように、後方漏れポート即ちリターンポート72がインジェクタ本体50の上部分に設けられている。
使用時には、供給通路66は、レールから燃料入口52を通過した高圧燃料で充填されている。供給通路66内の圧力は、インジェクタ本体50に歪みを生じ易い。供給通路66内の燃料圧力が変化すると、これと対応して、インジェクタ本体50の歪みも変化する圧力センサ64は、インジェクタ本体50内の歪みの変化、詳細には圧力センサ64を供給通路66から分離する壁68の一部の歪みの変化に応答するように形成されている。このようにして、圧力センサ64は供給通路66内の燃料の圧力と対応する出力信号を提供する。
圧力センサ64が供給通路66から壁68によって分離されているため、圧力センサ64は、燃料で濡らされることがない。このようにして、圧力センサ64は、供給通路66内の高圧環境に直接的に曝されることはなく、耐漏性である必要がない。更に、供給通路66には、圧力センサが供給通路66内の燃料と直接的に接触する場合に必要とされるポートや導管等の中断部が設けられていない。従って、供給通路66のこのような中断部と関連した漏れや破損の危険がない。
図4は、本発明の第2実施例による燃料インジェクタ74の一部の長さ方向部分断面図であり、図5は、長さ方向に対して垂直な、図4のインジェクタ74の断面図である。第2実施例の燃料インジェクタ74の構造は、第1実施例と同様であり、相違点のみを以下に詳細に説明する。
この実施例では、圧力センサはインジェクタ本体の端子キャビティ内に配置されていない。その代わり、インジェクタ本体76に、燃料入口52と近接してセンサチャンバ78が設けられている。ポート80がセンサチャンバ78からインジェクタ74の外面まで延びている。磁歪圧力センサ82がセンサチャンバ78内に配置されている。
図5に最も明瞭に示すように、圧力センサ82は、インジェクタ本体76内に形成された壁68によって高圧燃料供給通路66から分離されている。このようにして、圧力センサ82は、供給通路66の領域でのインジェクタ本体76の歪みの影響を受ける。圧力センサ82は、更に、後方漏れ通路70の近くに配置されているけれども、後方漏れ通路70内の燃料圧力は低く、インジェクタ本体76に大きな歪みを何ら生じない。
センサ82は、磁歪材料製のスラグ又はコア84を含む。コア84の全体形状は、図4に最も明瞭に示すように、I字形状断面の回転円筒体である。コア84は、ポート80に近い基端面86、及び供給通路66に近く、壁68に当接する先端面88を含む。かくして、コア84の先端面88は、供給通路66に近いセンサチャンバ78の端部に当接する。コア84の円筒体の軸線は、インジェクタ74の長さ方向軸線に対して垂直方向に延びる。そのため、コア84の先端面88は、供給通路66と平行である。
I字形状断面のコア84の小径部分即ちネックの周囲にコイル90が巻き付けてある。コア84の基端には、傾斜した第1部分94及びコア84の円筒体の軸線と平行な第2部分96を持つ溝92が設けられている。溝92の傾斜部分94の一端は、コア84の小径部分と交差し、溝92はコア84の基端面86まで延びている。基端面86には、中央ランド即ち突出部98が設けられており、溝92の第2部分96は突出部98内を延び、U字形状チャンネルを形成する。コイル90からの接続ワイヤ100がコア84からポート80まで溝92を通って延びている。
ターミナルソケット102の形態の電気的接続部がポート80内に配置されている。その結果、適当なコネクタ(図示せず)によってセンサ82をエンジンのECUに接続できる。ターミナルソケット102は、接続ワイヤ100に接続され、セラミック材料等の絶縁体106によってクランプねじ104内に支持される。クランプねじ104は、ポート80に設けられた内ねじと螺合する外ねじを備えた環状プラグを含む。
クランプねじ104は、コア84の先端面88がセンサチャンバ78の端部にしっかりと押し付けられるように、センサ82のコア84に軸線方向力を及ぼす。このようにして、供給通路66内の燃料圧力による、この圧力と対応する、センサ82と隣接したインジェクタ本体76の歪み、詳細には壁68の歪みにより、センサ82のコア84が変形する。コア84の透磁性は、加えられた応力に応じて変化する。かくして、インジェクタ本体76の歪みが変化すると、これと対応するセンサ82のコア84の変形により、その透磁性が変化する。電気的接続部102を介してコイル90のインダクタンスを計測することにより、供給通路66内の燃料圧力により生じる、この燃料圧力と関連したインジェクタ本体76の歪み、及び詳細には壁68の歪みの変化を検出できる。
図6は、本発明の第3実施例による燃料インジェクタ108の部分の長さ方向断面図を示す。本発明の第3実施例は、燃料供給通路、入口ポート、及び圧力センサの構成を除き、第1及び第2の実施例と同様である。
図6は、ノズルとは反対側の燃料インジェクタ108の最も上側の部分だけを示す。供給通路110がインジェクタ本体112内を延びており、この供給通路110は長さ方向部分114及び傾斜部分116を含む。これらの二つの部分114、116はエルボ118のところで出会う。供給通路110の長さ方向部分114は、エルボ118からノズル(図示せず)に向かって延びる。通路110の傾斜部分116は、エルボ118から、インジェクタ108の幅を横切ってインジェクタ108の外側面まで延びており、入口ポート120を形成する。本発明の第1及び第2の実施例と異なり、この第3実施例では、入口ポート120は頂部でなくインジェクタ108の側部に設けられている。
センサチャンバ122がインジェクタ本体112内に、供給通路110の傾斜部分116の上方に設けられている。ねじ山を備えたポート124がセンサチャンバ122をインジェクタ108の最も上側の頂面に連結する。本発明の第2実施例におけるのと同様に、コア84及びコイル90を含む磁歪圧力センサ82がセンサチャンバ122に設けられる。
コア84の先端面88は、燃料供給通路110の傾斜部分116の領域126の近くに配置される。傾斜部分116はこの領域126に拡径部分を有する。拡径領域126には、例えば、フィルタ又は流れ調整デバイス(図示せず)が収容される。圧力センサ82は、コア84の先端面88が、センサ82と近接した拡径領域126の側壁と平行であるように、インジェクタ108の長さ方向に対して傾斜している。
圧力センサ82は、ポート124に配置したクランプねじ128によって所定位置に保持される。上述の実施例と同様に、ターミナルソケット102がクランプねじ128の中央部分に、絶縁体製のプラグ106内に設けられている。この実施例では、クランプねじ128は、コア84の基端面86に当接してコア84にクランプ力を提供するチューブ状前方延長部を有する。チューブ状前方延長部内に、コア84の基端面86と絶縁プラグ106との間に円筒形スペーサ130が設けられており、接続ワイヤ132がコイル90からスペーサ130を通ってターミナルソケット102まで延びている。スペーサ130は、圧力センサ82用の信号調整電子装置を提供するように、電子式モジュールを収容していてもよい。
本発明の第2実施例におけるのと同様に、圧力センサ82は、インジェクタ108の本体112の歪みの変化、詳細には、供給通路110内の燃料圧力の変化により生じる供給通路110の壁68の歪みの変化に応答する。
所与の燃料圧力について、インジェクタ108の本体112の歪みは、供給通路110の拡径領域126の近くで、通路110の直径が拡大されていない供給通路110の領域の近くよりも大きい。かくしてセンサ82を拡径領域126の近くに位置決めすることによって、圧力センサ82の応答を最適化する。
本発明の燃料インジェクタに対する多くの変形及び変更が可能である。このような変更の幾つかを以下に単なる例として説明する。
インジェクタ本体に設けられた圧力センサは、任意の適当な種類であってもよい。例えば、本出願人の米国特許第7,234,361号及び第7,146,866号又は本出願人の米国特許出願第2006/0016277号に記載された種類のうちの任意のセンサと対応する磁歪センサが設けられていてもよい。出典を明示することにより、これらの文献に開示された全ての内容は本明細書の開示の一部とされる。センサのコアをインジェクタ本体と一体化してもよいと考えられる。
上文中に説明した磁歪センサの代わりに、圧電圧力センサ又は圧電抵抗圧力センサを使用してもよい。圧力センサは、インジェクタ本体の静的歪の大きさと関連した出力信号を発生する。これは、圧力センサが圧電抵抗歪ゲージ(piezoresistive strain gauge) を含む場合である。その代わり、例えば圧力センサが圧電歪ゲージ(piezoelectric strain gauge)を含む場合、圧力センサの出力は歪みの動的変化としか関連しない。
圧力センサ信号の温度補償を行うのが望ましく、磁歪センサを使用する場合、温度補償は、例えば、本出願人の米国特許出願第2007/0096724号に記載された種類の方法によって行うことができる。出典を明示することにより、この出願に開示された全ての内容は本明細書の開示の一部とされる。
圧力センサがインジェクタの端子キャビティ内に設けられている場合には、センサへの電気的接続部は、アクチュエータへの電気的接続部と別であってもよいし、又はこの電気的接続部と一体であってもよい。一つの変形例では、圧力センサをアクチュエータの電気的接続部と一体化する。これらの方法において、センサへの電気的接続部は特に簡単である。
インジェクタ本体は、幾つかの個々の構成要素を含んでいてもよい。例えば、インジェクタ本体の別々の区分が、ニードル、アクチュエータ、アクチュエータとニードルとの間のカップリング、電気的接続部等を収容していてもよい。これらの区分は、外シース又はハウジングによって互いにクランプされていてもよい。インジェクタ本体が二つ又はそれ以上の個々の構成要素又は区分で形成されている場合には、圧力センサは、一つ又はそれ以上の構成要素を通って延びる供給通路内の燃料の圧力によって変位が生じ、又はこのような変位が燃料の圧力と関連している場合、二つの構成要素の相対的変位に応答してもよいと考えられる。
インジェクタ本体内のセンサの位置は、上文中に説明した位置と異なっていてもよいということは理解されよう。確かに、センサの位置は、供給通路内の燃料圧力により生じるインジェクタ本体の歪み、変形、又は撓みをセンサが検出できるのであれば、インジェクタ本体内のどこに設けられていてもよい。このようにして、本発明は、構成要素が様々な構成の燃料インジェクタで使用でき、これらのインジェクタは、上文中に説明したのとは異なる態様で作動する。
エンジンの個々のインジェクタの各々に複数の燃料圧力センサを設けることによって、本発明は、燃料インジェクタの作動中に燃料インジェクタ内に存在する燃料圧力を連続的に監視し追跡することができる。このようにして、噴射イベントの発生時に燃料の圧力を正確に決定でき、そのため、噴射された燃料の量の制御を、従来のインジェクタ制御システムと比較して改善できる。
次に、内燃エンジンの燃料インジェクタの、本発明による様々な作動方法及び制御方法を説明する。
図7は、本発明による燃料噴射システム150を示す。燃料噴射システム150は、上文中に説明した燃料圧力センサが各燃料インジェクタ152に一体に設けられており、ECU154が各燃料インジェクタ152の圧力センサから信号を受け取ることを除き、図1に示す従来のシステムと同様である。
図1を参照して上文中に説明したのと同様の燃料噴射システム150の構成要素には、図1の構成要素と同様の参照番号が付してある。
インジェクタ152の供給通路内の燃料の圧力についての値を得るため、インジェクタ152の圧力センサからの出力信号をECU154によって評価する。ECU154には較正曲線が記憶されており、この曲線が、圧力センサからの信号の値を供給通路内の燃料圧力についての対応する値と関連付ける。
較正曲線は、例えば、燃料供給通路内の圧力を直接的に監視する圧力センサが貫入的に装着されたインジェクタを試験することによって得られた曲線であってもよい。
較正曲線を得るための別の方法を図8に示す。図9は、図8の方法を実施するのに適した装置を示す。この場合には、センサ特性又は較正曲線は、個々のインジェクタ152を、その製造後に、例えば、流体供給装置412によって既知の流体圧力を供給通路に加え(図8の工程400)、インジェクタ152の圧力センサ158の出力値を計測し(図8の工程402)、データレコーダー414を使用して出力値及び流体圧力をセンサ特性として記録する(図8の工程404)ことによって、得られる。次いで、圧力センサ158の別の出力値の計測及び記録を行うため、供給通路内の流体圧力を別の既知の値に対して調節する(図8の工程408)。所定数の構成値が記録された後(図8の工程406)、エンコーダ416を使用してセンサ特性をエンコードする(図8の工程410)。
図10は、燃料噴射システムのECUを較正情報でプログラムするための方法を示し、図11は、図10の方法を実施するのに適した装置の概略図である。随意であるが、較正曲線及び他のセンサ特性を機械で読み取ることができるフォーマットでエンコードし、例えば、図11に示すように燃料インジェクタ152に、又はインジェクタのパッケージに印刷した二次元バーコード418として燃料インジェクタ152に提供する。次いで、エンコードしたデータ418を読取機420で読み取り(図10の工程500)、デコーダー422でデコーディングし(図10の工程502)、較正曲線を含むセンサ特性を決定する。次いで、エンジンの組み立て中又はインジェクタの交換時にセンサ特性をECU154に入力する(図10の工程504)。
図7を再度参照すると、噴射イベント中に燃焼室に送出された燃料の量は、オリフィスと隣接した、夫々のインジェクタ152のノズルのチップでの燃料の圧力と関連する。従って、理想的には圧力センサはノズルのチップの近くに配置される。しかしながら、本発明では、圧力センサを、ノズルチップから離れた所定位置の供給通路の近くに配置する方が便利である。その場合、ECU154は、圧力センサ信号に補正ファクタを適用し、供給通路内の燃料圧力を評価する。補正ファクタは、例えば、圧力センサ近傍とノズルチップとの間の供給通路での動的圧力損失を考慮に入れてもよい。
エンジンの通常の作動中、各インジェクタ152と関連した圧力センサは、それらの夫々の信号をECU154に提供する。各信号は、一つのインジェクタ152の瞬間的な局所的圧力と対応する。これらの信号を合わせて考えたとき、これらの局所的圧力の時間平均は、センサのドリフト、構成エラー、又はオフセット誤差のため、互いに僅かに変化する。
ECU154は、このようなエラーに対し、例えば図12に示す適合学習法(adaptive learning method)によって補正を行うことができる。図12の工程600では、センサからの出力を計測し、工程602において、平均的センサ出力を平均的局所的圧力として決定する。工程604において、ECU154は、インジェクタ152について記録された平均的局所的圧力を、基準値、例えば他のインジェクタ152の各々のセンサが記録した平均的局所的圧力と比較する。図12の工程606では、二つの局所的圧力値の間の差が所定の閾値よりも大きい場合、ECU154は、図12の工程608で、エラーを含む読みを発生するインジェクタ152からのセンサ信号に補正オフセットを適用することによって応答する。平均的局所的圧力の比較を再び行う。それでも差が閾値よりも大きい場合には、別の補正オフセットを適用し、差が閾値よりも下に低下するまでこのプロセスを繰り返す。この工程では、補正オフセットはECU154に記録されており、その後、後に行われる計算で使用するため、対応するインジェクタ152からの信号に適用される。
噴射イベントによる液圧の乱れのため、瞬間的噴射圧力もまた、夫々のインジェクタによって異なる。例えば、第1インジェクタが噴射を行うとき、当該インジェクタで局所的圧力が急速に低下する。第2インジェクタの圧力は比較的ゆっくりとした速度で低下する。これは、圧力降下が第1インジェクタから燃料レールを通って第2インジェクタまで伝達するのに幾らかの時間を要するためである。
図7に示す実施例では、システム150の燃料レール156に圧力センサが設けられていない。従って、このようなセンサのために燃料レールにポートを設ける必要がない。燃料レール156内の平均圧力は、個々のセンサ152からの局所的圧力値の適当な平均を計算することによってECU154で推算される。このようにして、高圧燃料ポンプ入口計量バルブ40及び燃料レール圧力制御バルブ42を、ECU154によって、推算した燃料レール圧力を使用して制御できる。
インジェクタ152と関連した圧力センサの一つが故障した場合、ECU154は、多くの信号をチェックすることによって故障を検出でき、推算レール燃料圧力を計算するためのこの先の計算から当該センサを除外できる。このようにして、燃料噴射システム150は、一つ又はそれ以上の圧力センサが故障した場合でも機能し続けることができる。
エンジンの噴射戦略が、一回の燃焼サイクルに亘り、燃料インジェクタ152毎に一回の噴射イベントを要求する場合には、当該シリンダについて、及び任意の他のシリンダについて、前の噴射イベントによって発生された圧力動揺は、次の噴射イベントの開始前に低下する。このようにして、各インジェクタの局所的圧力が噴射イベント前に安定し、続いて行われる噴射イベントに要する時間を、ECU154によって、計測された局所的圧力に基づいて正確に計算できる。
エンジンの噴射戦略が、燃焼サイクル毎に燃料インジェクタ152毎に一回以上の噴射イベントを要求する場合には、噴射順序の第1噴射イベントによる圧力動揺は、順序の第2噴射イベントを行うときに未だ存在している。本発明は、各噴射イベントによって正確な量の燃料が燃焼チャンバに送出されるように、これらの圧力動揺を補正し又は補償するための方法を提供する。次に、このような方法の第1の表現を図13を参照して説明する。この方法を実施するのに適した装置を図14に概略に示す。装置は、ECU154及び燃料インジェクタ152を含み、各インジェクタには、圧力センサ158が、例えば図7に示すように一体化されて設けられている。
燃料インジェクタ152の液圧挙動−特に圧力波が燃料インジェクタ152内で伝播する態様−の計算又は計測を比較的正確に行うことができる。更に、インジェクタ152の液圧特性が既知である場合には、噴射イベントにより生じる圧力波の動力学を時間に亘って予測できる。従って、インジェクタ152内の圧力波の時間に関する発展(evolution)等のインジェクタ152内の局所的燃料圧力特性を予測することによって、続く噴射イベント時の予想局所的圧力を、局所的圧力の前の噴射計測値から決定できる。
図15は、噴射イベント後の燃料インジェクタ152内の局所的燃料圧力160の発展を概略に示す。かくして、図15は、更に、燃料インジェクタ152と一体化した燃料圧力センサ158の出力信号を表すことができる。
図13の工程200において、噴射イベント前に、対応するインジェクタ152の燃料圧力センサ158に所定間隔で又は他の既知の間隔で繰り返し呼掛ける。呼掛けの最適の数及び周波数は、インジェクタの液圧特性で決まるが、代表的な例では、少なくとも10回の呼掛けを50kHz又はそれ以上の周波数で行う。図15に162a、162b、及び162cで示す呼掛けは、一連の局所的燃料圧力値164a、164b、及び164cの夫々を発生する。三回の呼掛け162a、162b、及び162cが示してあるが、呼掛けは任意の所望の回数行ってもよい。図13の工程202において、ECU154のプロセッサ166が各呼掛け162a、162b、及び162cの結果164a、164b、及び164cを比較し、圧力が安定しているかどうかを確認する。ECU154が、呼掛け162a、162b、及び162cの結果164a、164b、及び164c間に大きな差がないことを検出した場合には、圧力波は存在しない。今まさに起ころうとしている噴射イベントに圧力動揺による悪影響が及ぼされることはなく、噴射時間に補正が適用されないと仮定できる。
しかしながら、図15に示すように、ECU154が、呼掛け162a、162b、及び162cの結果164a、164b、及び164c間に差を検出した場合には、圧力波が存在することが確認される。ECU154のメモリー168の記憶からインジェクタ152の液圧挙動のモデルを検索し、図13の工程204において、呼掛け162a、162b、及び162cの結果164a、164b、及び164cをこのモデルに入力し、続いて行われる噴射イベントの持続時間に亘って圧力波がどのように発展するのかを予測する。
モデルは、例えば、通常分布(common profile)、識別特徴(fingerprint)、又は特性(signature)として作用する記憶された多くの圧力波特性データの組を含んでいてもよい。これらのデータは、噴射イベント後に局所的圧力が時間に関してどのように変化するのかを、燃料圧力や噴射時間等の他のパラメータを考慮して示す。これらのデータ組は、計算によって得ることができ、又は試験システムを使用した較正手順中によって得ることができる。作動では、ECU154は、呼掛け162a、162b、及び162cの結果164a、164b、及び164cを記憶されたデータと突き合わせる。適合したものが見つかると、圧力波と対応するデータをメモリー168から検索し、プロセッサ166によって分析し、図13の工程206において、圧力波が続いて行われる噴射イベントに亘ってどのように伝播するのかを予測する。
必要であれば、ECU154は、図13の工程208で、噴射持続時間に対する補正を決定し、適用し、所望量の燃料が確実に噴射されるようにする。例えば、液圧モデルは、続いて行われる噴射イベントの予想持続時間に亘るインジェクタ152内の局所的圧力についての予測平均値を出力として提供してもよい。次いで、この予測平均値を使用し、必要な量の燃料を噴射するのに要する噴射持続時間を計算する。この噴射持続時間は、安定的であることが確認された局所的圧力を持つ必要な量の燃料を送出するのに必要な公称噴射持続時間よりも長くても短くてもよい。
図13の工程210において、必要な噴射時間がECU154のインジェクタ制御ユニット170に出力される。インジェクタ制御ユニット170は、インジェクタ制御信号を発生する。インジェクタ制御信号を燃料インジェクタ152のアクチュエータ172に出力し、ニードルの開閉移動を行う。
図16は、圧力センサの故障の影響を軽減するための方法を示す。図16の工程700において、ECUがセンサ158からの出力を計測し、工程702において、ECUは、センサ158の故障を示すエラー又は異常、例えばゼロ出力についてセンサ出力をチェックする。センサ出力が誤っていることが確認された場合(工程704において)、ECUは、当該圧力センサ158からの信号をこの先の計算から除外し、その代わり、液圧挙動モデル又は他の計算に別の出力を使用できる。例えば、インジェクタ152のうちの一つの圧力センサ158が故障した場合には、ECU154は、同じ又は同様の噴射順序の別の一つのインジェクタ152について計算した噴射時間を、センサが故障したセンサに適用できる。このようにして、センサの故障に対して或る程度の耐久性を提供する。
圧力の動揺を補正する又は補償するための方法は、インジェクタと一体化した圧力センサの代わりに、又はこのような圧力センサに加えて、レール燃料圧力センサを備えた燃料噴射システムにも適用できると考えられる。かくして、レール圧力センサしか使用しない方法の第2の表現を、図17を参照して以下に説明する。図17の方法を実施するのに適したシステムを図18に示す。これは、圧力センサ174が燃料レール176に設けられており、燃料インジェクタ178に圧力センサが一体に設けられていないことを除くと、図14の装置と同様である。ECU180は、レール圧力センサ174から入力信号を受け取る。
図17の工程300において、噴射イベント前にレール圧力センサ174に繰り返し呼掛け、一連のレール燃料圧力値を与える。図17の工程302において、ECU180のプロセッサ182が各呼掛けの結果を比較し、圧力が安定しているかどうかを確認する。ECU180が呼掛けの結果間に顕著な差がないと確認した場合には、今まさに行われようとしている噴射イベントに圧力の動揺の影響が及ぼされず、噴射時間に補正が加えられないものと仮定する。
しかしながら、ECU180が呼掛けの結果間に差を検出した場合には、燃料レール176内に圧力波が存在することが確定される。この圧力波は、インジェクタ178内の局所的燃料圧力に悪影響を及ぼす。
燃料インジェクタ174及び燃料レール176を含む燃料システムの液圧挙動のモデルがECU180のメモリー184に記憶されている。図17の工程304において、呼掛けの結果を燃料システムの液圧モデルに入力し、燃料インジェクタ178内の局所的圧力の概算値を発生する。これらの概算値は、計測により得られた燃料レール圧力値と対応する。
更に、各インジェクタ178の液圧挙動のモデルが、ECU180のメモリー184に記憶されている。図17の工程306において、工程304でレール圧力の計測値から計算した、燃料インジェクタ178内の局所的圧力の概算値をインジェクタ液圧モデルに入力し、図17の工程308において、圧力波が、燃料インジェクタ内で、続いて行われる噴射イベントの持続時間に亘ってどのように発展するのかの予測を含む出力を提供する。
必要であれば、図17の工程310において、ECU180は、方法の第1実施例におけるのと同様に、所望量の燃料が確実に噴射されるように噴射持続時間に対して補正を適用する。図17の工程310において、必要な噴射時間をECU180のインジェクタ制御ユニット186に出力する。この制御ユニットはインジェクタ制御信号を発生する。インジェクタ制御信号は、ニードルの開閉移動を賦勢するため、燃料インジェクタ178のアクチュエータ188に出力される。
図17の方法の変形例では、燃料システム及び燃料インジェクタの液圧挙動を一つのモデルに一体化する。その結果、計測されたレール燃料圧力値をモデルに入力し、モデルの出力は燃料インジェクタ内の予測された圧力波発展である。
本方法は、一つ又はそれ以上の圧力センサの位置によって限定されないということは理解されよう。例えば、レール内での燃料圧力の発展の更に正確な図を発生し、これをモデルに入力するように、一つ以上のレール圧力センサを設けてもよい。これらのセンサは、その代わりに、夫々のインジェクタを燃料レールに連結するジャンパーパイプに連結されていてもよいし、これらのジャンパーパイプ内に設けられていてもよい。二つ又はそれ以上の様々な位置に設けられたセンサを組み合わせて使用し、インジェクタ内での燃料圧力の発展を予測するのを補助する情報を提供してもよい。
本方法が、本方法の第2の表現におけるように、個々の燃料インジェクタから遠方の一つ又はそれ以上のセンサからの計測値を使用する場合、一つ又はそれ以上のセンサが記録した燃料圧力の発展は、燃料インジェクタ、レール圧力制御バルブ、高圧燃料ポンプ、等が発生した圧力波の組み合わせにより生じる。従って、本方法は、個々の圧力波源の計測された燃料圧力発展に対する寄与を確認する。例えば、燃料の噴射が全く行われていない期間中、例えばエンジンのオーバーラン中にセンサ出力を記録してもよい。記録されたセンサ出力は、こうした状態では、燃料インジェクタ以外の構成要素から生じた圧力波しか反映しない。この「噴射なし(injection-free)」出力は、追加の入力として液圧モデルに提供でき、予測された局所的燃料圧力を、インジェクタのところで更に正確に決定できる。
液圧モデルは、ECUで、アルゴリズムとして、参照表として、又は他の適当な形態で実施できる。モデルは、エンジンの試験中又は製造中に得られた較正データを使用して発生してもよいし、コンピュータ流体力学技術を使用して計算してもよい。

Claims (57)

  1. 内燃エンジン用燃料インジェクタ(46)において、
    インジェクタ本体(50)と、
    前記インジェクタ本体(50)内に形成された、前記インジェクタ(46)の使用時に高圧燃料を収容する燃料供給通路(66、110)と、
    使用時に前記燃料供給通路(66、110)内の燃料の圧力を計測するための圧力センサ(64)とを含み、
    前記圧力センサ(64)は、前記インジェクタ本体(50)内に配置されており、使用時に前記燃料供給通路(66、110)内の燃料から分離されている、燃料インジェクタ。
  2. 請求項1に記載の燃料インジェクタにおいて、
    前記燃料供給通路(66、110)は、少なくとも部分的に前記インジェクタ本体(50)の壁(68)によって形成されており、前記圧力センサ(64)は、前記燃料供給通路(66、110)内の燃料から前記壁(68)によって分離されている、燃料インジェクタ。
  3. 請求項1又は2に記載の燃料インジェクタにおいて、
    前記圧力センサ(64)は、使用時の前記燃料供給通路(66、110)内の燃料の圧力により生じる、この燃料圧力と関連した、前記インジェクタ本体(50)に加わる歪みを計測する、燃料インジェクタ。
  4. 請求項1、2、又は3に記載の燃料インジェクタにおいて、
    前記インジェクタ本体(50)には、前記圧力センサ(64)を収容する圧力センサキャビティ(60、78)が形成されており、前記圧力センサキャビティ(60、78)は前記燃料供給通路(66、110)から分離されている、燃料インジェクタ。
  5. 請求項4に記載の燃料インジェクタにおいて、
    前記圧力センサキャビティ(60)は、前記インジェクタ(46)のアクチュエータ用の電気接続部を収容する、燃料インジェクタ。
  6. 請求項4又は5に記載の燃料インジェクタにおいて、
    前記インジェクタ本体(50)には、更に、アクチュエータキャビティ(58)が形成されており、前記圧力センサキャビティ(60、78)は前記アクチュエータキャビティ(58)と連通している、燃料インジェクタ。
  7. 請求項4、5、又は6に記載の燃料インジェクタにおいて、
    前記圧力センサキャビティ(60、78)は、前記インジェクタ(46)の側部から内方に延びている、燃料インジェクタ。
  8. 請求項4、5、又は6に記載の燃料インジェクタにおいて、
    前記圧力センサキャビティ(60、78)は、前記インジェクタ(46)の端部から内方に延びている、燃料インジェクタ。
  9. 請求項4乃至8のうちのいずれか一項に記載の燃料インジェクタにおいて、
    前記圧力センサキャビティ(60、78)は、前記圧力センサと電気的に通信する電子式モジュールを収容する、燃料インジェクタ。
  10. 請求項1乃至9のうちのいずれか一項に記載の燃料インジェクタにおいて、
    前記燃料供給通路(66、110)及び前記圧力センサ(64)は、夫々、長さ方向中央軸線を形成し、これらの軸線が実質的に交差する、燃料インジェクタ。
  11. 請求項1乃至10のうちのいずれか一項に記載の燃料インジェクタにおいて、
    前記燃料供給通路(66、110)は、拡径断面積部分を含み、前記圧力センサ(64)は、前記燃料供給通路(66、110)の前記部分と整合する、燃料インジェクタ。
  12. 請求項1乃至11のうちのいずれか一項に記載の燃料インジェクタにおいて、
    前記インジェクタ本体(50)には、外壁及び前記燃料供給通路(66、110)を中心として前記外壁とは反対側の内壁が形成されており、前記圧力センサ(64)は、使用時に、前記燃料供給通路(66、110)内の燃料から前記内壁によって分離されている、燃料インジェクタ。
  13. 請求項1乃至12のうちのいずれか一項に記載の燃料インジェクタにおいて、
    前記圧力センサ(64)の面(88)は、前記燃料供給通路(66、110)の壁と平行に延びる、燃料インジェクタ。
  14. 請求項1乃至13のうちのいずれか一項に記載の燃料インジェクタにおいて、
    前記インジェクタ(46)は細長く、長さ方向軸線を形成し、前記圧力センサ(64)は、前記インジェクタの長さ方向軸線と実質的に平行に延びる前記燃料供給通路(66、110)の壁と協働する、燃料インジェクタ。
  15. 請求項1乃至13のうちのいずれか一項に記載の燃料インジェクタにおいて、
    前記インジェクタ(46)は細長く、長さ方向軸線を形成し、前記圧力センサ(64)は、前記インジェクタの長さ方向軸線を横切って延びる前記燃料供給通路(66、110)の壁と協働する、燃料インジェクタ。
  16. 請求項1乃至15のうちのいずれか一項に記載の燃料インジェクタにおいて、
    前記圧力センサ(64)の面(88)は、前記燃料供給通路(66、110)を形成する壁に当接する、燃料インジェクタ。
  17. 請求項16に記載の燃料インジェクタにおいて、更に、
    前記面(88)を前記壁(68)に押し付けるクランプエレメント(104、128)を含む、燃料インジェクタ。
  18. 請求項17に記載の燃料インジェクタにおいて、
    前記インジェクタ本体(50)にはポート(80)が形成されており、前記クランプエレメント(104、128)は、前記ポート(80)内で前記インジェクタ本体(50)と螺合したプラグである、燃料インジェクタ。
  19. 請求項17又は18に記載の燃料インジェクタにおいて、
    前記圧力センサ(64、82)用の電気接続部は、前記クランプエレメント(104、128)内に収容されている、燃料インジェクタ。
  20. 請求項17、18、又は19に記載の燃料インジェクタにおいて、
    前記圧力センサ(64、82)と電気的に通信する電子式モジュールが前記クランプエレメント(104、128)内に収容されている、燃料インジェクタ。
  21. 請求項1乃至20のうちのいずれか一項に記載の燃料インジェクタにおいて、
    前記圧力センサ(64、82)は、磁歪材料製コアを持つ磁歪圧力センサを含む、燃料インジェクタ。
  22. 請求項1乃至21のうちのいずれか一項に記載の燃料インジェクタにおいて、
    前記圧力センサ(64、82)は、全体にI字形状断面の回転体であるコアを有する、燃料インジェクタ。
  23. 請求項1乃至22のうちのいずれか一項に記載の燃料インジェクタにおいて、
    前記圧力センサ(64、82)は、前記インジェクタ本体(50)と一体のコアを含む、燃料インジェクタ。
  24. 内燃エンジン用燃料噴射システム(150)において、
    複数の燃料インジェクタ(152)と、
    使用時に前記燃料インジェクタ(46、108、152)に燃料を供給するように構成されたアキュムレータ(28)と、
    使用時に前記燃料噴射システム内の燃料の圧力を計測するための少なくとも一つの圧力センサ(28、64、82)と、
    液圧挙動分布を形成し、この液圧挙動分布を使用し、噴射イベント中のインジェクタ内の燃料圧力を予測し、制御信号を燃料インジェクタに供給して、噴射イベント中に噴射される燃料の量を予測燃料圧力に従って制御するため、前記少なくとも一つの圧力センサ(28、64、82)から圧力信号を受け取るように形成された制御ユニット(34)とを含む、燃料噴射システム。
  25. 請求項24に記載の燃料噴射システムにおいて、
    前記制御ユニット(34)は、
    前記少なくとも一つの圧力センサ(28、64、82)から圧力信号をサンプリングし、前記液圧挙動分布を形成するように繰り返しプログラムされるプロセッサを含む、燃料噴射システム。
  26. 請求項24又は25に記載の燃料噴射システムにおいて、
    前記制御ユニット(34)は、
    液圧挙動モデルを記憶するためのメモリーと、
    前記液圧挙動分布を記憶されたモデルに適用し、噴射イベント中に前記燃料インジェクタ(46、108、152)に作用する燃料圧力を予測するようにプログラムされたプロセッサとを含む、燃料噴射システム。
  27. 請求項24、25、又は26に記載の燃料噴射システムにおいて、
    前記少なくとも一つの圧力センサ(28、64、82)は、前記アキュムレータ内の燃料の圧力を検出するため、前記アキュムレータに配置された圧力センサである、燃料噴射システム。
  28. 請求項24、25、又は26に記載の燃料噴射システムにおいて、
    前記複数の燃料インジェクタ(46、108、152)の各々は、その内部の燃料の圧力を計測するための圧力センサを含む、燃料噴射システム。
  29. 噴射イベント中の燃料噴射システムの燃料インジェクタの燃料圧力特性を予測する方法において、
    前記噴射イベント前に前記燃料噴射システム内の燃料圧力特性を計測する工程と、
    計測した燃料圧力特性を使用し、噴射イベント中の前記燃料インジェクタの予測燃料圧力特性を決定する工程とを含む、方法。
  30. 請求項29に記載の方法において、
    前記燃料圧力特性は、噴射イベント前に圧力センサに繰り返し呼掛けることによって計測される、方法。
  31. 請求項29又は30に記載の方法において、
    前記燃料圧力特性は、前記燃料インジェクタ内で計測される、方法。
  32. 請求項29又は30に記載の方法において、
    前記燃料圧力特性は、前記燃料噴射システムの前記燃料インジェクタの上流の位置で計測される、方法。
  33. 請求項32に記載の方法において、
    前記燃料圧力特性は、前記燃料インジェクタの上流のアキュムレータ内で計測される、方法。
  34. 請求項29乃至33のうちのいずれか一項に記載の方法において、
    計測された燃料圧力特性を液圧挙動モデルに入力し、前記噴射イベント中の前記燃料インジェクタ内の予測燃料圧力特性を決定する、方法。
  35. 請求項29乃至34のうちのいずれか一項に記載の方法において、
    前記計測された燃料圧力特性は、一連の燃料圧力値を含む、方法。
  36. 請求項29乃至35のうちのいずれか一項に記載の方法において、
    前記予測燃料圧力特性は、前記噴射イベント中の前記燃料インジェクタ内の予測された平均燃料圧力を含む、方法。
  37. 請求項29乃至36のうちのいずれか一項に記載の方法において、
    制御信号を前記燃料インジェクタに供給し、噴射イベント中に噴射される燃料の量を、前記予測燃料圧力特性に従って制御する、方法。
  38. 実施環境で実施されたときに請求項29乃至37のうちのいずれか一項に記載の方法を実行するように作動できる少なくとも一つのコンピュータプログラムソフトウェア部分を含むコンピュータプログラム製品。
  39. 請求項38に記載のコンピュータプログラムソフトウェア部分又は各コンピュータプログラムソフトウェア部分を記憶したデータ記憶媒体。
  40. 公称燃料噴射要求を補正する方法において、
    請求項29乃至37のうちのいずれか一項に記載の方法に従って燃料圧力特性を予測する工程と、
    前記噴射イベント中の前記予測燃料圧力特性に基づいて補正ファクタを計算する工程と、
    前記補正ファクタを前記公称燃料噴射要求に適用し、前記噴射イベント中の燃料圧力の変化を補償する工程とを含む、方法。
  41. 燃料噴射方法において、
    公称燃料噴射要求をエンジン作動パラメータに従って決定する工程と、
    前記公称燃料噴射要求を請求項40に記載の方法に従って補正する工程とを含む、方法。
  42. 燃料圧力センサの出力のエラーを補償する方法において、
    前記燃料圧力センサの平均出力を決定する工程と、
    前記燃料圧力センサの前記平均出力を基準値と比較する工程と、
    前記燃料圧力センサの前記平均出力が、前記基準値から、所定の第1閾値よりも大きく異なる場合に、前記燃料圧力センサの前記出力に補償オフセットを適用する工程とを含む、方法。
  43. 請求項42に記載の方法において、
    記憶された補償オフセットを検索する工程を含む、方法。
  44. 請求項42又は43に記載の方法において、更に、
    前記燃料圧力センサの前記平均出力と前記基準値との間の差を計算する工程と、
    前記差を前記燃料圧力センサの前記出力に前記補償オフセットとして適用する工程とを含む、方法。
  45. 請求項44に記載の方法において、更に、
    前記補償オフセットを記憶する工程を含む、方法。
  46. 請求項42乃至45のうちのいずれか一項に記載の方法において、
    前記補償オフセットの適用後、前記燃料センサの平均出力を決定する工程と、
    前記燃料圧力センサの前記平均出力を前記基準値と比較する工程と、
    前記燃料圧力センサの前記平均出力が、前記基準値から、所定の第2閾値よりも大きく異なる場合に、前記燃料圧力センサの前記出力に更なる補償オフセットを適用する工程とを含む、方法。
  47. 請求項42乃至46のうちのいずれか一項に記載の方法において、
    記憶された基準値を検索する工程を含む、方法。
  48. 請求項42乃至46のうちのいずれか一項に記載の方法において、
    一つ又はそれ以上の更なる燃料圧力センサの平均出力を使用し、前記基準値を計算する工程を含む、方法。
  49. 実施環境で実施されたときに請求項42乃至48のうちのいずれか一項に記載の方法を実行するように作動できる少なくとも一つのコンピュータプログラムソフトウェア部分を含むコンピュータプログラム製品。
  50. 請求項49に記載のコンピュータプログラムソフトウェア部分又は各コンピュータプログラムソフトウェア部分を記憶したデータ記憶媒体。
  51. 圧力センサを持つ、請求項1乃至23のうちのいずれか一項に記載の燃料インジェクタの較正方法において、
    前記圧力センサの出力値を計測する工程と、
    前記出力値と対応する前記供給通路内の流体の圧力を決定する工程と、
    前記出力値と対応する前記流体圧力を前記インジェクタのセンサ特性として記録する工程と、
    前記センサ特性をエンコードする工程とを含む、方法。
  52. 請求項51に記載の方法において、更に、
    前記圧力センサの複数の出力値を計測する工程と、
    前記複数の出力値の各々について、供給通路内の対応する流体圧力を決定する工程とを含む、方法。
  53. 請求項51又は52に記載の方法において、
    前記供給通路には流体が既知の圧力で供給される、方法。
  54. 請求項51、52、又は53に記載の方法において、
    前記センサ特性を、機械が読み取ることができるデータフォーマットでエンコードする工程を含む、方法。
  55. 請求項54に記載の方法において、
    前記センサ特性をバーコードとしてエンコードする工程を含む、方法。
  56. 実施環境で実施されたときに請求項51乃至55のうちのいずれか一項に記載の方法を実行するように作動できる少なくとも一つのコンピュータプログラムソフトウェア部分を含むコンピュータプログラム製品。
  57. 請求項56に記載のコンピュータプログラムソフトウェア部分又は各コンピュータプログラムソフトウェア部分を記憶したデータ記憶媒体。
JP2010519559A 2007-08-07 2008-08-07 燃料インジェクタ及びその制御方法 Pending JP2010535977A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/890,737 US7552717B2 (en) 2007-08-07 2007-08-07 Fuel injector and method for controlling fuel injectors
PCT/IB2008/053171 WO2009019663A2 (en) 2007-08-07 2008-08-07 Fuel injector and method for controlling fuel injectors

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012118833A Division JP2012167676A (ja) 2007-08-07 2012-05-24 燃料インジェクタ及びその制御方法

Publications (1)

Publication Number Publication Date
JP2010535977A true JP2010535977A (ja) 2010-11-25

Family

ID=40341844

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010519559A Pending JP2010535977A (ja) 2007-08-07 2008-08-07 燃料インジェクタ及びその制御方法
JP2012118833A Pending JP2012167676A (ja) 2007-08-07 2012-05-24 燃料インジェクタ及びその制御方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012118833A Pending JP2012167676A (ja) 2007-08-07 2012-05-24 燃料インジェクタ及びその制御方法

Country Status (6)

Country Link
US (2) US7552717B2 (ja)
EP (2) EP2188517B1 (ja)
JP (2) JP2010535977A (ja)
CN (1) CN101815858B (ja)
ES (1) ES2533718T3 (ja)
WO (1) WO2009019663A2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242576A (ja) * 2009-04-03 2010-10-28 Denso Corp 燃料噴射弁及び燃料噴射弁の内部電気接続方法
JP2010242579A (ja) * 2009-04-03 2010-10-28 Denso Corp 燃料噴射弁及び燃料噴射弁の製造方法
JP2012167617A (ja) * 2011-02-15 2012-09-06 Toyota Motor Corp 多気筒内燃機関の制御装置
US8444069B2 (en) 2009-04-03 2013-05-21 Denso Corporation Fuel injection apparatus
JP2014508246A (ja) * 2011-02-08 2014-04-03 ボルボ ラストバグナー アーベー 燃料インジェクタを評価する方法

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008343092B2 (en) 2004-12-06 2014-09-11 Vertiflex, Inc. Spacer insertion instrument
US8613272B2 (en) * 2007-08-22 2013-12-24 Hoerbiger Kompressortechnik Holding Gmbh Spark-ignited gas engine
JP5079650B2 (ja) * 2007-11-02 2012-11-21 株式会社デンソー 燃料噴射弁及び燃料噴射装置
JP5079643B2 (ja) * 2007-11-02 2012-11-21 株式会社デンソー 燃料噴射弁及び燃料噴射装置
JP5169669B2 (ja) * 2007-11-02 2013-03-27 株式会社デンソー 燃圧検出装置、及び燃圧検出システム
JP5064341B2 (ja) * 2007-11-02 2012-10-31 株式会社デンソー 燃料噴射弁及び燃料噴射装置
JP4959509B2 (ja) * 2007-11-06 2012-06-27 株式会社デンソー 燃料噴射弁
EP2098709B1 (en) * 2008-03-04 2016-07-06 GM Global Technology Operations LLC A method for operating an internal combustion engine
US8412440B2 (en) * 2008-03-19 2013-04-02 Bosch Corporation Pressure sensor failure diagnosis method and common rail type fuel injection control apparatus
JP5383132B2 (ja) * 2008-03-28 2014-01-08 株式会社デンソー 燃圧センサ搭載構造、燃圧検出システム、燃料噴射装置、それに用いられる圧力検出装置及び蓄圧式燃料噴射装置システム
JP5195451B2 (ja) * 2008-04-15 2013-05-08 株式会社デンソー 燃料噴射装置、それに用いられる蓄圧式燃料噴射装置システム
KR101033323B1 (ko) * 2008-11-27 2011-05-09 현대자동차주식회사 커먼레일 디젤 엔진의 연료량 제어 장치 및 방법
US7980120B2 (en) * 2008-12-12 2011-07-19 GM Global Technology Operations LLC Fuel injector diagnostic system and method for direct injection engine
US7938101B2 (en) * 2009-02-11 2011-05-10 GM Global Technology Operations LLC Adaptive control of fuel delivery in direct injection engines
US7806106B2 (en) * 2009-02-13 2010-10-05 Gm Global Technology Operations, Inc. Fuel injector flow correction system for direct injection engines
JP5220674B2 (ja) * 2009-04-03 2013-06-26 株式会社デンソー 燃料噴射弁及び燃料噴射弁の内部電気接続方法
JP5120318B2 (ja) 2009-04-03 2013-01-16 株式会社デンソー 燃料噴射弁
JP5265439B2 (ja) * 2009-04-03 2013-08-14 株式会社デンソー 燃料噴射弁
JP5154495B2 (ja) * 2009-04-03 2013-02-27 株式会社日本自動車部品総合研究所 燃料噴射弁及び燃料噴射弁の内部電気接続方法
JP5169951B2 (ja) * 2009-04-03 2013-03-27 株式会社デンソー 燃料噴射弁
JP5262933B2 (ja) 2009-04-03 2013-08-14 株式会社デンソー 燃料噴射装置
JP2010255427A (ja) * 2009-04-21 2010-11-11 Denso Corp 燃料噴射弁
DE102009046419B4 (de) * 2009-11-05 2021-11-25 Robert Bosch Gmbh Verfahren und Vorrichtung zum Überwachen eines Kraftstoffdrucks
WO2011072293A2 (en) * 2009-12-11 2011-06-16 Purdue Research Foundation Flow rate estimation for piezo-electric fuel injection
GB2478516A (en) * 2010-01-12 2011-09-14 Jaguar Cars Method of controlling the operation of a fuel injector allowing compensation for fuel pressure fluctuation
CH702496B1 (de) * 2010-05-07 2011-07-15 Liebherr Machines Bulle Sa Hochdruckinjektor.
JP5165728B2 (ja) * 2010-06-18 2013-03-21 株式会社デンソー 燃圧波形取得装置
DE102010063380A1 (de) * 2010-12-17 2012-06-21 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE102011103988A1 (de) * 2011-06-10 2012-12-13 Mtu Friedrichshafen Gmbh Verfahren zur Raildruckregelung
JP5730679B2 (ja) * 2011-06-16 2015-06-10 ヤンマー株式会社 エンジン装置
CA2796614C (en) 2012-11-21 2015-01-06 Westport Power Inc. Fuel injector calibration and trimming
WO2015009692A1 (en) * 2013-07-15 2015-01-22 Cummins Inc. System and method for fuel injector on-time calculation using fuel system pressure prediction
US9518528B2 (en) 2013-07-15 2016-12-13 Cummins Inc. System and method for fuel injector on-time calculation using fuel system pressure prediction
DE102013214960A1 (de) * 2013-07-31 2015-02-05 Robert Bosch Gmbh Brennstoffeinspritzsystem
DE102014204629A1 (de) * 2014-03-13 2015-09-17 Robert Bosch Gmbh Kraftstoffinjektor, insbesondere Common-Rail-Injektor
DE102014204746A1 (de) * 2014-03-14 2015-09-17 Robert Bosch Gmbh Kraftstoffinjektor, insbesondere Common-Rail-Injektor
DE102014205686A1 (de) * 2014-03-26 2015-10-01 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Brennkraftmaschine, Verfahren zum Ermitteln einer Lernstruktur für den Betrieb einer Brennkraftmaschine, Steuergerät für eine Brennkraftmaschine und Brennkraftmaschine
DE102014212458A1 (de) * 2014-06-27 2015-12-31 Robert Bosch Gmbh Kraftstoffinjektor
US9677496B2 (en) * 2014-07-16 2017-06-13 Cummins Inc. System and method of injector control for multipulse fuel injection
US9562487B2 (en) * 2014-08-01 2017-02-07 Purdue Research Foundation Method and apparatus for dynamic surface control of a piezoelectric fuel injector during rate shaping
DE102014215977A1 (de) * 2014-08-12 2016-02-18 Robert Bosch Gmbh Injektor
DE102014222796A1 (de) * 2014-11-07 2016-05-12 Robert Bosch Gmbh Injektor
US9476363B2 (en) * 2015-01-08 2016-10-25 Solar Turbines Incorporated Actuator to valve calibration of a fuel control valve assembly
DE102015206032A1 (de) * 2015-04-02 2016-10-06 Robert Bosch Gmbh Kraftstoffinjektor und Verfahren zum Herstellen eines Kraftstoffinjektors
DE102015207307A1 (de) * 2015-04-22 2016-10-27 Robert Bosch Gmbh Kraftstoffinjektor
DE102015208069A1 (de) * 2015-04-30 2016-11-03 Robert Bosch Gmbh Kraftstoffinjektor
CN107636299A (zh) * 2015-05-23 2018-01-26 穆罕默德·亚明·卡恩 用于标定柴油泵燃油量的便携式仪器
US9784235B2 (en) * 2015-06-16 2017-10-10 Ford Global Technologies, Llc Pilot fuel injection adaptation
DE102015220327A1 (de) * 2015-10-19 2017-04-20 Robert Bosch Gmbh Verfahren zum Bestimmen mindestens einer Kraftstoffeigenschaft
EP3165748A1 (de) * 2015-11-04 2017-05-10 GE Jenbacher GmbH & Co. OG Brennkraftmaschine mit einspritzmengensteuerung
US9803576B2 (en) * 2016-02-16 2017-10-31 Robert Bosch Gmbh System and method to predict calibration values based on existing calibrations
DE102016202842A1 (de) * 2016-02-24 2017-08-24 Robert Bosch Gmbh Kraftstoffeinspritzventil
US9995241B1 (en) * 2016-11-23 2018-06-12 GM Global Technology Operations LLC Controlling fuel injectors using correlated gain curve data
WO2018151869A1 (en) * 2017-02-16 2018-08-23 Liquid Controls Llc System and method for liquid fuel delivery
US10401398B2 (en) 2017-03-03 2019-09-03 Woodward, Inc. Fingerprinting of fluid injection devices
GB2564132B (en) * 2017-07-04 2019-12-25 Ford Global Tech Llc A method and system for operating a fuel injection system
US10968854B2 (en) * 2018-03-27 2021-04-06 Toyota Jidosha Kabushiki Kaisha Controller and control method for internal combustion engine
WO2019199277A1 (en) * 2018-04-10 2019-10-17 Cummins Inc. System and method for measuring fuel injection during pump operation
US20190362115A1 (en) * 2018-05-22 2019-11-28 Hamilton Sundstrand Corporation Calibration system based on encoded images
US10731593B2 (en) 2018-10-10 2020-08-04 Ford Global Technologies, Llc Method and system for fuel injector balancing
US10844804B2 (en) 2019-03-15 2020-11-24 Ford Global Technologies, Llc Method and system for fuel injector balancing
US10900436B2 (en) 2019-03-15 2021-01-26 Ford Global Technologies, Llc Method and system for fuel injector balancing
JP7293959B2 (ja) * 2019-08-06 2023-06-20 株式会社デンソー 燃料噴射弁
US20210089905A1 (en) * 2019-09-19 2021-03-25 Conocophillips Company Machine-learning based system for virtual flow metering
DE102019126069B4 (de) * 2019-09-27 2022-01-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft System und Verfahren zur Kalibrierung einer Steuer- und Regelvorrichtung zur Einspritzdruckregelung bei einem Verbrennungsmotor
US11794701B2 (en) 2020-07-07 2023-10-24 Ford Global Technologies, Llc Vehicle sensor cleaning
WO2022235686A1 (en) * 2021-05-03 2022-11-10 Cummins Inc. Systems and methods of using a fuel injector as a pressure sensor to detect top-dead-center for a cylinder
CN114165377B (zh) * 2021-12-17 2023-06-30 中国船舶集团有限公司第七一一研究所 共轨系统以及限压阀

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575526A (en) * 1980-06-11 1982-01-12 Diesel Kiki Co Ltd Method of detecting injection flow in fuel injection valve
JPH01121521A (ja) * 1987-10-31 1989-05-15 Mazda Motor Corp ディーゼルエンジンの燃料制御装置
JPH10246144A (ja) * 1997-03-04 1998-09-14 Isuzu Motors Ltd エンジンの燃料噴射方法及びその装置
US20030111049A1 (en) * 2001-12-18 2003-06-19 Lewis Stephen R. Measuring check motion through pressure sensing
US20030121501A1 (en) * 2002-01-02 2003-07-03 Barnes Travis E. Utilization of a rail pressure predictor model in controlling a common rail fuel injection system
US6622549B1 (en) * 1997-02-06 2003-09-23 Marek T. Wlodarczyk Fuel injectors with integral fiber optic pressure sensors and associated compensation and status monitoring devices
US20040154593A1 (en) * 2002-11-28 2004-08-12 Stmicroelectronics S.R.L. Virtual pressure sensor for a common rail injection system
JP2005172592A (ja) * 2003-12-10 2005-06-30 Kayaba Ind Co Ltd 圧力センサ
JP2007136194A (ja) * 2005-11-17 2007-06-07 Alcon Inc 外科用カセット及び外科システム

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036539U (ja) * 1989-06-06 1991-01-22
US5445019A (en) * 1993-04-19 1995-08-29 Ford Motor Company Internal combustion engine with on-board diagnostic system for detecting impaired fuel injectors
US5535621A (en) * 1994-03-02 1996-07-16 Ford Motor Company On-board detection of fuel injector malfunction
BR9711420A (pt) * 1996-09-26 1999-08-24 Akzo Nobel Nv Injetor sem agulha
JP3921717B2 (ja) * 1996-11-25 2007-05-30 トヨタ自動車株式会社 燃料供給制御装置
DE19700738C1 (de) * 1997-01-11 1998-04-16 Daimler Benz Ag Verfahren zur Regelung der Einspritzmengen von Injektoren einer kraftstoffeinspritzenden Brennkraftmaschine
DE19746119A1 (de) * 1997-10-18 1999-04-22 Bosch Gmbh Robert Verfahren zum Starten einer Brennkraftmaschine
GB9823028D0 (en) 1998-10-22 1998-12-16 Lucas Ind Plc Fuel injector
GB2351772B (en) * 1999-07-08 2003-07-23 Caterpillar Inc Pressure-intensifying hydraulically-actuated electronically-controlled fuel injection system with individual mechanical unit pumps
JP3849367B2 (ja) * 1999-09-20 2006-11-22 いすゞ自動車株式会社 コモンレール式燃料噴射装置
US6405709B1 (en) * 2000-04-11 2002-06-18 Cummins Inc. Cyclic pressurization including plural pressurization units interconnected for energy storage and recovery
US6345606B1 (en) * 2000-04-12 2002-02-12 Delphi Technologies, Inc Method for controlling fuel rail pressure using a piezoelectric actuated fuel injector
US6497223B1 (en) * 2000-05-04 2002-12-24 Cummins, Inc. Fuel injection pressure control system for an internal combustion engine
US6480781B1 (en) * 2000-07-13 2002-11-12 Caterpillar Inc. Method and apparatus for trimming an internal combustion engine
US6363314B1 (en) * 2000-07-13 2002-03-26 Caterpillar Inc. Method and apparatus for trimming a fuel injector
US6612292B2 (en) * 2001-01-09 2003-09-02 Nissan Motor Co., Ltd. Fuel injection control for diesel engine
US6705278B2 (en) * 2001-06-26 2004-03-16 Caterpillar Inc Fuel injector with main shot and variable anchor delay
EP1318288B1 (en) * 2001-12-06 2017-09-06 Denso Corporation Fuel injection system for internal combustion engine
US7497076B2 (en) * 2002-05-07 2009-03-03 Extengine Transport Systems Emission control system
US7318414B2 (en) * 2002-05-10 2008-01-15 Tmc Company Constant-speed multi-pressure fuel injection system for improved dynamic range in internal combustion engine
JP3741087B2 (ja) * 2002-07-12 2006-02-01 トヨタ自動車株式会社 筒内噴射式内燃機関の燃料噴射制御装置
US6848414B2 (en) * 2002-08-08 2005-02-01 Detroit Diesel Corporation Injection control for a common rail fuel system
US6850835B1 (en) * 2003-08-01 2005-02-01 Caterpillar Inc On engine trim for fuel injectors
US7080550B1 (en) * 2003-08-13 2006-07-25 Cummins Inc. Rate tube measurement system
JP4042058B2 (ja) * 2003-11-17 2008-02-06 株式会社デンソー 内燃機関用燃料噴射装置
US6928986B2 (en) * 2003-12-29 2005-08-16 Siemens Diesel Systems Technology Vdo Fuel injector with piezoelectric actuator and method of use
JP4196895B2 (ja) * 2004-07-12 2008-12-17 株式会社デンソー 燃料噴射装置
US20060016277A1 (en) 2004-07-23 2006-01-26 Nehl Thomas W Non-invasive magnetostrictive sensor
DE102004047959A1 (de) * 2004-10-01 2006-04-06 Siemens Ag Verfahren und Vorrichtung zur Bestimmung des Drucks in Rohren
US7146866B2 (en) 2004-10-25 2006-12-12 Delphi Technologies, Inc. Magnetostrictive strain sensor and method
US7234361B2 (en) 2005-01-11 2007-06-26 Delphi Technologies, Inc. Magnetostrictive strain sensor (airgap control)
EP1693562B1 (en) 2005-01-19 2007-05-30 Delphi Technologies, Inc. Fuel injector
US7007676B1 (en) * 2005-01-31 2006-03-07 Caterpillar Inc. Fuel system
ATE386877T1 (de) * 2005-03-25 2008-03-15 Delphi Tech Inc Verfahren zur bestimmung von parametern eines einspritzsystems
JP4483684B2 (ja) * 2005-04-28 2010-06-16 株式会社デンソー 筒内噴射式内燃機関の燃料噴射制御装置
US7464689B2 (en) * 2005-10-12 2008-12-16 Gm Global Technology Operations, Inc. Method and apparatus for controlling fuel injection into an engine
US7362096B2 (en) 2005-10-21 2008-04-22 Delphi Technologies, Inc. Robust detection of strain with temperature correction
CA2538984C (en) * 2006-03-10 2007-11-06 Westport Research Inc. Method of accurately metering a gaseous fuel that is injected directly into a combustion chamber of an internal combustion engine
GB0609519D0 (en) * 2006-05-12 2006-06-21 Delphi Tech Inc Fuel injector
US7717088B2 (en) * 2007-05-07 2010-05-18 Ford Global Technologies, Llc Method of detecting and compensating for injector variability with a direct injection system
US7720593B2 (en) * 2007-10-02 2010-05-18 Ford Global Technologies, Llc Fuel injection strategy for gasoline direct injection engine during high speed/load operation
US7558665B1 (en) * 2007-12-20 2009-07-07 Cummins, Inc. System for determining critical on-times for fuel injectors
US7523743B1 (en) * 2007-12-20 2009-04-28 Cummins Inc. System for determining fuel rail pressure drop due to fuel injection
US7975535B2 (en) * 2008-05-09 2011-07-12 Omar Cueto Method and system for testing a fuel injector

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575526A (en) * 1980-06-11 1982-01-12 Diesel Kiki Co Ltd Method of detecting injection flow in fuel injection valve
JPH01121521A (ja) * 1987-10-31 1989-05-15 Mazda Motor Corp ディーゼルエンジンの燃料制御装置
US6622549B1 (en) * 1997-02-06 2003-09-23 Marek T. Wlodarczyk Fuel injectors with integral fiber optic pressure sensors and associated compensation and status monitoring devices
JPH10246144A (ja) * 1997-03-04 1998-09-14 Isuzu Motors Ltd エンジンの燃料噴射方法及びその装置
US20030111049A1 (en) * 2001-12-18 2003-06-19 Lewis Stephen R. Measuring check motion through pressure sensing
US20030121501A1 (en) * 2002-01-02 2003-07-03 Barnes Travis E. Utilization of a rail pressure predictor model in controlling a common rail fuel injection system
US20040154593A1 (en) * 2002-11-28 2004-08-12 Stmicroelectronics S.R.L. Virtual pressure sensor for a common rail injection system
JP2005172592A (ja) * 2003-12-10 2005-06-30 Kayaba Ind Co Ltd 圧力センサ
JP2007136194A (ja) * 2005-11-17 2007-06-07 Alcon Inc 外科用カセット及び外科システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242576A (ja) * 2009-04-03 2010-10-28 Denso Corp 燃料噴射弁及び燃料噴射弁の内部電気接続方法
JP2010242579A (ja) * 2009-04-03 2010-10-28 Denso Corp 燃料噴射弁及び燃料噴射弁の製造方法
US8444069B2 (en) 2009-04-03 2013-05-21 Denso Corporation Fuel injection apparatus
JP2014508246A (ja) * 2011-02-08 2014-04-03 ボルボ ラストバグナー アーベー 燃料インジェクタを評価する方法
JP2012167617A (ja) * 2011-02-15 2012-09-06 Toyota Motor Corp 多気筒内燃機関の制御装置

Also Published As

Publication number Publication date
WO2009019663A3 (en) 2009-09-11
US7900605B2 (en) 2011-03-08
EP2188517B1 (en) 2012-08-01
EP2188517A2 (en) 2010-05-26
ES2533718T3 (es) 2015-04-14
CN101815858A (zh) 2010-08-25
JP2012167676A (ja) 2012-09-06
CN101815858B (zh) 2012-11-14
WO2009019663A2 (en) 2009-02-12
US20090038589A1 (en) 2009-02-12
EP2436911B1 (en) 2015-02-25
US20090223487A1 (en) 2009-09-10
US7552717B2 (en) 2009-06-30
EP2436911A1 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP2012167676A (ja) 燃料インジェクタ及びその制御方法
US8224554B2 (en) Fuel injector with built-in fuel pressure sensor
JP4555513B2 (ja) 噴射弁の圧電式のアクチュエータ用の制御電圧を規定するための方法
US8539935B2 (en) Fuel injection device, fuel injection system, and method for determining malfunction of the same
JP4501975B2 (ja) 燃料噴射装置及び燃料噴射装置の製造方法
US8459234B2 (en) Fuel injection device, fuel injection system, and method for determining malfunction of the same
EP2105605B1 (en) Fuel pressure sensor/sensor mount assembly
JP4293147B2 (ja) インジェクタの特性測定試験装置および特性測定試験方法
US7905136B2 (en) Method of operating a fuel injector
JP4470134B2 (ja) 噴射量制御方法、噴射装置および噴射システム
US20100121600A1 (en) Method and Device For Checking A Pressure Sensor Of A Fuel Injector System
JP5293765B2 (ja) 燃料噴射状態推定装置
US20120303246A1 (en) Method for operating an internal combustion engine
JP2005248722A (ja) 増圧式燃料噴射装置の補正方法
US20200318571A1 (en) Fuel injector control using noise signal
CN109555614B (zh) 用于校准力传感器或压力传感器的方法
JP5573889B2 (ja) 燃料噴射弁の特性取得方法
US9027395B2 (en) Measuring apparatus and method and apparatus for determining a leakage of an injection valve
JP4061982B2 (ja) 燃料噴射システム
JP2004138048A (ja) 燃料噴射システムの駆動方法、コンピュータプログラム、並びに燃料噴射システムの駆動用制御および/または調整装置、および内燃機関
KR20180071298A (ko) 하나 이상의 연료 특성의 결정 방법

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111125

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120224

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120803