JP2010278343A - 固体電解コンデンサ、固体電解コンデンサを用いた電子機器、及び固体電解コンデンサの製造方法。 - Google Patents

固体電解コンデンサ、固体電解コンデンサを用いた電子機器、及び固体電解コンデンサの製造方法。 Download PDF

Info

Publication number
JP2010278343A
JP2010278343A JP2009130983A JP2009130983A JP2010278343A JP 2010278343 A JP2010278343 A JP 2010278343A JP 2009130983 A JP2009130983 A JP 2009130983A JP 2009130983 A JP2009130983 A JP 2009130983A JP 2010278343 A JP2010278343 A JP 2010278343A
Authority
JP
Japan
Prior art keywords
anode
niobium
cathode
layer
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009130983A
Other languages
English (en)
Inventor
Kazuhiro Kaneda
和博 金田
Koichi Nishimura
康一 西村
Hiroshi Nonogami
寛 野々上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2009130983A priority Critical patent/JP2010278343A/ja
Priority to US12/720,242 priority patent/US20100302711A1/en
Publication of JP2010278343A publication Critical patent/JP2010278343A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/0425Electrodes or formation of dielectric layers thereon characterised by the material specially adapted for cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

【課題】固体電解コンデンサ、固体電解コンデンサを用いた電子機器、及び固体電解コンデンサの製造方法を提供する。
【解決手段】本発明の固体電解コンデンサは、ニオブからなる陽極1と、陽極1を覆うニオブの酸化物からなる誘電体層3と、誘電体層3を覆う銅からなる陰極層4とを有するものであるので、漏れ電流を低減させることができる。また、本発明の電子機器は、前述の固体電解コンデンサをマイコンやDSPなどの半導体集積回路のためのバイパスコンデンサとして用いるものである。本発明の固体電解コンデンサの製造方法は、ニオブからなる陽極1を形成する工程と、前記陽極を陽極酸化することにより、陽極1を覆うように、ニオブの酸化物からなる誘電体層3を形成する工程と、誘電体層3を覆う銅からなる陰極層4を形成する工程を備える。
【選択図】図1

Description

本発明は、陽極にニオブを用いた固体電解コンデンサ、この固体電解コンデンサを用いた電子機器、及びこの固体電解コンデンサの製造方法に関する。
固体電解コンデンサは、電源回路の電圧平滑の用途、電流ノイズ除去の用途に使用されるものであるが、特に、電流ノイズ除去の用途としてのバイパスコンデンサとして、コンピュータのみならず、広くデジタル機器をはじめとする様々な電子機器に使用されている。
近年、パーソナルコンピュータ等の電子機器の小型化に伴って、これらの電子機器に用いる固体電解コンデンサについても、小型で高容量のものが望まれている。このため、従来のタンタルを用いた固体電解コンデンサ(以下、タンタルコンデンサと略称する)に代えて、ニオブを用いた小型で高容量の固体電解コンデンサ(以下、ニオブコンデンサと略称する)が開発されつつある。
このようなニオブコンデンサは、ニオブからなる陽極を陽極酸化することよって得られる誘電体物質であるニオブの酸化物からなる誘電体層を備えており、このニオブの酸化物がタンタルコンデンサに用いられるタンタルの酸化物に比べて誘電率が約1.8倍大きいため、高容量化が図れるのである。従って、同程度の容量を得ようとする場合には、ニオブコンデンサは、タンタルコンデンサに比べ小型化が図れるため、小型高容量化が可能な次世代の固体電解コンデンサとして期待されている。
しかしながら、現在、開発が進められているニオブコンデンサは、上述のとおり、静電容量が高いという長所をもつものの、漏れ電流が大きくなるという短所があることが知られている(例えば、特許文献1参照)。
特開2005−322664号公報
特許文献1に記載の固体電解コンデンサは、陽極上に形成した誘電体層の表面に、陰極層として導電性高分子層を形成するものであり、これら誘電体層と導電性高分子層との密着性を向上させることによって漏れ電流の低減を図るものである。しかしながら、固体電界コンデンサに、導電性高分子層を用いている限り、漏れ電流の低減には限界があった。そこで、本発明は、漏れ電流の低減を可能とした新規のニオブコンデンサを提供することを目的とする。
本発明の固体電解コンデンサは、ニオブからなる陽極と、前記陽極を覆うニオブの酸化物からなる誘電体層と、前記誘電体層を覆う銅からなる陰極層を備えたものである。このような構成によって、固体電解コンデンサの漏れ電流の低減を可能とするものである。
また、本発明の電子機器は、前述の構成の固体電解コンデンサを用いたものである。このような本発明の電子機器としては、情報処理装置、映像機器、音響機器、さらには、通信機器などである。
さらに、本発明の固体電解コンデンサの製造方法は、ニオブからなる陽極を形成する工程と、前記陽極を陽極酸化することにより、前記陽極を覆うように、ニオブの酸化物からなる誘電体層を形成する工程と、前記誘電体層を覆う銅からなる陰極層を形成する工程を備えるものである。このような製造方法によって、漏れ電流の小さな固体電解コンデンサの製造を可能とするものである。
本発明によれば、固体電解コンデンサの漏れ電流の低減を実現するものであり、また、漏れ電流が低減された固体電解コンデンサを用いた電子機器を実現するものである。
第1実施形態におけるニオブコンデンサを説明するための断面図である。 第1実施形態におけるニオブコンデンサの陰極層の配置を説明するための斜視図である。 第1実施形態におけるニオブコンデンサの製造工程を説明するための図である。 第2実施形態におけるニオブコンデンサを説明するための断面図である。 評価サンプルにおけるニオブコンデンサを説明するための断面図である。
次に、図面を用いて、本発明の実施の形態を説明する。ただし、図面は模式的なものであり、縦横の各寸法の比率等は現実のものとは異なることに留意すべきである。従って、具体的な寸法等は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
(第1実施形態)
図1は、本実施形態におけるニオブコンデンサの内部を説明するための模式的な断面図である。
本実施形態におけるニオブコンデンサ20は、直方体の外形を有しており、基本的には、図1に示すように、ニオブからなる陽極1と、陽極1に一端部2aが埋設され、他端部2bが突出するように設けられた陽極リード2と、陽極1を陽極酸化することにより形成されたニオブ酸化物からなる誘電体層3と、誘電体層3を覆う陰極層4と、陰極層4を覆う陰極引出層5とを有している。陽極リードの他端部2bには陽極端子7が接続され、陰極引出層5には導電性接着材8により陰極端子9が接着されている。そして、陽極端子7及び陰極端子8の一部が露出するように外装樹脂体11が形成されている。
以下に、本実施形態におけるニオブコンデンサの具体的な構成を説明する。
陽極1は、弁作用金属であるニオブの金属粒子からなる粉体を所定の形状(この場合、直方体)に固めて焼結したものであり、焼結前の金属粒子間の隙間が焼結後も連通した細い孔となって残り、多孔質体を形成している。陽極リード2は針状をなし、その一端2aが陽極1に埋設され、他端2bが陽極1から植立した状態で、陽極1に一体化されている。陽極リード2の材料としては、弁作用金属であって良く、陽極1の材料と異なる材料、たとえばアルミニウムなどの弁作用金属を用いてもよいが、陽極1と同様にニオブを用いることが好ましい。
誘電体層3は、陽極1を陽極酸化することにより得られるニオブの酸化物である酸化ニオブからなる層であって、陽極1を覆うように形成されている。図1では、図示の都合上、陽極1の直方体をなす外形の表面に誘電体層3を示すに止めているが、陽極1は上述のように多孔質体であるため、多孔質体の孔の壁面にもこの誘電体層3(図示せず)が形成されている。
陰極層4は銅からなるものであって、誘電体層3を覆うように形成されている。
図2は、陽極1の表面に形成された誘電体層3上にこの陰極層4を形成した状態を示した斜視図である。本実施形態では、図1の陰極層4は、直方体の外形をなす誘電体層3の表面の略全面が陰極層4で覆われている。これらの図1、図2においては、図示の都合上、誘電体層3の直方体をなす外形の表面に陰極層4を示すに止めているが、陽極1は上述のように多孔質体であり、多孔質体の孔の壁面にも誘電体層(図示せず)とその誘電体層を覆う陰極(図示せず)が形成されている。
陰極引出層5は、陰極層4を部分的に覆うように形成されており、カーボン層5a、銀ペースト層5bが順次形成された積層構造をしている。カーボン層5aは、カーボン粒子を含む層により形成されている。このように陰極引出層5は、陰極層4上に直接接するように形成されている。
陰極端子9は、陰極引出層5に取り付けられている。具体的には、この陰極端子9は、帯状の金属板を折り曲げて形成されており、同図に示すように、その一端部9a側の下面が陰極引出層5に導電性接着材8により接着されることにより、陰極端子9と陰極引出層5とは機械的にも電気的にも接続されている。具体的な導電性接着材8の材料としては、銀とエポキシ樹脂とが混合された銀ペーストなどの材料が挙げられる。
尚、陰極引出層5は、カーボン層5a又は銀ペースト層5bのどちらか一方だけからなってもよく、陰極層4と陰極端子9とを電気的に接続するものであれば種々の構成をとることができる。また、陰極層4と陰極端子9との間に形成される層が、陰極引出層5のみであってもよい。この場合、陰極引出層5により、陰極層4と陰極端子9とが機械的にも電気的にも接続されている。
陽極端子7は、陽極リード2に取り付けられている。具体的には、この陽極端子7は、帯状の金属板を折り曲げて形成されおり、図1に示すように、その一端部7a側の下面が陽極リードの他端部2bに溶接等により機械的にも電気的にも接続されている。
陽極端子7及び陰極端子9の材料としては、銅、銅合金及び鉄‐ニッケル合金(42アロイ)などが挙げられる。
樹脂外装体11は、上述のように配された陰極層4、陽極端子7、陰極端子9の露出した周囲を覆うように形成されている。陽極端子7の他端部7b及び陰極端子9の他端部9bは、樹脂外装体11の側面から下面にかけて露出しており、この露出箇所は基板との半田接続に用いられる。樹脂外装体11の材料としては、封止材として機能する材料が用いられ、具体的にはエポキシ樹脂やシリコーン樹脂などが挙げられる。樹脂外装体11は主剤、硬化剤及びフィラーを適宜配合することにより調整された樹脂を硬化することにより形成することができる。
(第1実施形態に係るニオブコンデンサの製造方法)
本実施形態に係るニオブコンデンサの製造方法について以下に説明する。
図3は、本実施形態に係るニオブコンデンサの製造工程図である。
<工程1:陽極の形成>
1次粒径が約0.5μmのニオブ金属からなる弁作用金属の粉末を用いて、図3(a)
に示すように、陽極リード2の一端部2aが陽極1に埋め込まれた状態で陽極1を成形し
、真空中で焼結することにより、陽極1を成型する。陽極リード2の他端部2bは、陽極
1の一面から突出した形で固定されている。このように形成された多孔質焼結体からなる
陽極1の外形は、長さが4.4mm、幅が3.3mm、厚みが1.0mmからなる直方体
である。
<工程2:誘電体層の形成>
図3(b)に示すように、陽極1を陽極酸化することにより、陽極1の表面に酸化皮膜
からなる誘電体層3を形成する。具体的には、燐酸水溶液中において、約10Vの定電圧
で約2時間陽極酸化を行うことにより、ニオブ酸化物の誘電体層3を形成する。
<工程3:陰極層の形成>
図3(c)に示すように、誘電体層3の表面にメッキ法により、銅からなる陰極層4を形成する。具体的には、まず、誘電体層3まで形成した陽極1を燐酸水溶液に硫酸銅を溶解させたメッキ溶液に浸漬する。このとき、陽極リード2の他端部2bはメッキ溶液に浸漬されないよう陽極リード2を固定する。次に、陽極リード2の他端部2bとメッキ溶液に浸漬させた白金で構成された対極とに夫々電極を接続し、電解メッキを行うことで、誘電体層3上に陰極層4を形成する。このような陰極層4の厚みは、焼結体表面において1μm程度あり、焼結体の内部においてもサブミクロンオーダーの厚みである。
また、陰極層4の形成方法としては、メッキ法以外に、スパッタ法、蒸着法等が挙げられる。スパッタ法、蒸着法を用いる場合は、誘電体層3までが形成された状態の素子を回転させることにより、誘電体層3の表面に陰極層4を形成できる。本実施形態のように、陽極1が多孔質体である場合は、メッキ法で陰極層4を形成することにより、多孔質体である陽極1の孔の表面に形成された誘電体層3の表面にまで陰極層4を形成しやすくなる。また、メッキ法では、メッキ溶液中に浸漬させて陰極層4を形成するため、誘電体層3の直方体の外形の表面の略全面を覆う陰極層4を形成できる。
<工程4:陰極引出層の形成>
図3(d)に示すように、陰極層4の表面に直接接するようにカーボンペーストを塗布することによりカーボン層5aを形成し、カーボン層5a上に銀ペーストを塗布することにより銀ペースト層5bを形成した。本実施例において、陰極引出層5は、このカーボン層5a及び銀ペースト層5bにより構成されている。
<工程5:陽極端子及び陰極端子の接続>
図3(e)に示すように、陽極端子7の端部7aは、陽極リード2の端部2bに溶接等により電気的及び機械的に接続されている。また、陰極端子9の端部9aは、陰極引出層5上に導電性接着材8により電気的及び機械的に接続されている。
<工程6:モールド工程>
図3(f)に示すように、工程5まで形成後、陽極端子及び陰極端子の一部が露出するように、エポキシ樹脂及びイミダゾール化合物を含む封止材を用い、トランスファーモールド法により樹脂外装体11を形成する。具体的には、予備加熱した封止材を金型に注入し、金型内で硬化させた。樹脂外装体11を形成後、露出した陽極端子及び陰極端子を樹脂外装体11の側面から下面側に折り曲げることにより、基板との半田接続に用いる端子7b、9b部分を形成する。
(第2実施形態)
次に、第2実施形態について以下に説明する。尚、上述の第1実施形態と同様の部分については説明を省略する。
本実施形態においては、ニオブからなる陽極1としては、前述の第1実施形態では、多
孔質焼結体状のものを用いたが、これに代えて、板状あるいは箔状のものを用いる(以下、板状あるいは箔状を一括して板状と称する)。
図4は、本実施形態におけるニオブコンデンサ20の内部を説明するための模式的な断面図である。ニオブからなる板状の陽極1の一端部1a側が陽極酸化され誘電体層3が形成されている。そして、陽極1の他端部1b側の上面に陽極端子7の端部7aが接続されている。このように、板状の陽極1の用いた場合は、第1実施形態のニオブコンデンサに比べて、図1の陽極リード2を用いる必要がない。
また、ニオブからなる板状の陽極1を用いた場合は、スパッタ法や蒸着法により、陽極1を適宜回転させることにより誘電体層3上に陰極層4を均一に形成することができる。
(第3実施形態)
本発明の第3実施形態は、前述した図1に示した第1実施形態のニオブコンデンサ、あるいは図4に示した第2実施形態のニオブコンデンサを用いた電子機器である。第3実施形態の電子機器としては、パーソナルコンピュータ、PDAなどの情報処理装置、テレビジョン装置、ハードディスクレコーダ、DVDレコーダ、ブルーレイレコーダ、デジタルカメラ、ビデオカメラなどの映像機器、MP3オーディオプレーヤ、ハードディスクオーディオプレーヤなどの音響機器、さらには、電話機、携帯電話機、ファクシミリ装置などの通信機器であるが、これらに限定されるものではない。これらの電子機器は、CPUやマイコンによって制御されるものであり、また、DSPなどによって信号処理がなされるものもある。
本発明の第3実施形態の電子機器においては、これらのCPU、マイコン、DSPを構成する半導体集積回路に対して、電源回路から電源電圧を供給するための電源線とアース線が設けられている。そして、この電源線とアース線とに跨って、前述の構成のニオブコンデンサが接続されている。このニオブコンデンサは、上述の半導体集積回に供給すべき電源電圧の変動を抑制するバイパスコンデンサとして機能するものである。
(評価)
以下の工程により、漏れ電流を測定するためにニオブコンデンサの実施例と比較例の評価サンプルを作製した。図5は、斯かる評価サンプルを模式的に示した断面図である。同図に示すように評価サンプルは、上記実施形態に係るニオブコンデンサとして機能する基本的な構成である陽極1、誘電体層3及び陰極層4を備えている。このような評価サンプルの構成であれば、上記実施形態に係るニオブコンデンサの陽極1と陰極層4との間に発生する漏れ電流の確認が可能となり、以下に説明するように、その評価を行うことができる。
(実施例1)
実施例1の評価サンプルは、陽極1として、縦20mm、横40mm、厚さ1mmの圧延で作製した純度99.9%のニオブからなる板状の陽極を用いたものである。この陽極1の一端部1a表面を、0.5wt%の燐酸水溶液中において、約80Vの定電圧で、制限電流を10mA/400mmとし、約4時間陽極酸化を行うことにより、ニオブ酸化物からなる誘電体層3を形成した。このとき、誘電体層3の膜厚は、透過型電子顕微鏡による断面観察から220nmである。
その後、直径1.5mm、ピッチ5mmで孔が形成されているステンレス製の板状マスクを用いてニオブからなる板状の陽極の一部に、抵抗加熱方式による蒸着法により、直径1.5mmの銅からなる陰極層4を形成した。この場合の陰極層4の膜厚は蛍光エックス線装置による評価から、約1μnmである。
次に、マニュアルプローバと半導体パラメータアナライザ(アジレントテクノロジー社製の型番4156A)を組み合わせたシステムを用いて、本発明の実施例1の評価サンプルであるニオブコンデンサの電流−電圧特性を測定した。その結果、電圧が+15(V)、すなわち、順方向に15(V)の電圧を印加した時の電極4の1つ当りの電流値は1.53E−6(A)、電圧が−15(V)、すなわち逆方向に15(V)の電圧を印加したの時のその電流値は2.02E−6(A)であった。この測定結果を下記の表1に示す。
(比較例1)
上述の実施例1の評価サンプルにおける銅をアルミニウムに替えて陰極層1を形成したこと以外は、実施例1と同様に比較例1の評価サンプルであるニオブコンデンサを作製した。
この比較例1では、抵抗加熱による蒸着法によりアルミニウムの陰極層を形成した。この場合のアルミニウムの陰極4の膜厚は、蛍光X線装置による評価から、約1000nmであった。
この比較例1の評価サンプルについて、上述の実施例1の場合と同様の測定を行い、この測定結果を下記の表1に示す。
(比較例2)
上述の実施例1の評価サンプルにおける銅を白金に替えて陰極層4を形成したこと以外は、実施例1と同様に比較例2の評価サンプルであるニオブコンデンサを作製した。この場合の白金の陰極層4は、以下のようなスパッタ法によって形成した。
ターゲットとして99.9%の白金を用い、スパッタ条件は全圧を1.2mTorr(Ar圧)、高周波出力を200W、時間を20分とし白金の陰極層を形成した。このとき、白金の膜厚は、蛍光エックス線装置による評価から、約650nmであった。
この比較例2の評価サンプルについて、上述の実施例1の場合と同様の測定を行い、測定結果を下記の表1に示す。
(比較例3)
比較例3の評価サンプルは、縦20mm、横40mmで厚さ1mmの圧延で作製した純度99.9%のタンタルからなる板を陽極1として用い、これを陽極酸化することにより、陽極の表面に酸化タンタルからなる誘電体層3を形成した。また、陽極1にリードを取り付けるために、タンタルの板からなる陽極1の表面の一部は陽極酸化を行わなかった。このときの陽極酸化条件は、電解質:0.5wt%リン酸、電圧:80V、制限電流:10mA/400mm、時間:4時間とした。また、酸化タンタルからなる誘電体層3の膜厚は、透過型電子顕微鏡による断面観察から約120nmであった。
その後、直径1.5mm、ピッチ5mmで孔が形成されているステンレス製の板状マスクを用いて酸化タンタルからなる誘電体層3上の一部に、抵抗加熱方式による蒸着法により、銅からなる陰極層4を形成した。この場合の陰極層4の膜厚は蛍光エックス線装置による評価から、約1μmであった。
この比較例3の評価サンプルについて、上述の実施例1の場合と同様の測定を行い、測定結果を下記の表1に示す。
表1に、以上の実施例1および比較例1〜3の夫々についての測定結果を示す。
Figure 2010278343
この表1から、銅を陰極とする実施例1のニオブコンデンサが他の比較例1および2のニオブコンデンサに比べて、「順方向電圧印加の場合の電流値」、即ち、順方向の漏れ電流がもっとも小さいことが分かる。
また、この表1から、銅を陰極とする実施例1のニオブコンデンサが他の比較例1および2のニオブコンデンサや比較例3のタンタルコンデンサに比べて、「逆方向電圧印加の場合の電流値」、即ち、逆方向の漏れ電流がもっとも小さいことが分かる。そして、実施例1のニオブコンデンサは、「逆方向電圧印加の場合の電流値」、即ち、順方向の漏れ電流が逆方向の漏れ電流の値と同等のオーダの値であって、他の比較例に比べて、もっとも両電流値の差が小さいことが分かる。
従って、実施例1のニオブコンデンサは、順方向と逆方向の両方において、共に、略同等(数μA程度)に漏れ電流を抑制できるものであることが分かる。
(実施形態の効果)
前述の評価の結果から明らかなように、実施形態1および2のニオブコンデンサは、アルミニウムや白金を陰極としたニオブコンデンサに比べて、漏れ電流を低減できる。
また、順方向においても逆方向においても共に漏れ電流を低減することができる。従って、これらの実施形態のニオブコンデンサを電子機器に取り付ける作業の際に、電源線とアースとに、端子の極性が逆になるように、誤って接たり取り付けたとしても、このコンデンサの逆極性の漏れ電流が小さいために、このコンデンサ自体の損傷を回避できるので、これを正しく接続しなおして使用することができる。従って、部品の無駄を軽減して電子機器の製造歩留まりの向上に寄与できる。
加えて、実施形態1および2のニオブコンデンサは、陰極が銅からなるので、即ち、無機物であるので、陰極層に導電性高分子等の従来の有機物を用いた場合と比べ、高温時において陰極層4の膜質の劣化による不都合、即ち、陰極層4の導電率が低下や、誘電体層3と陰極層4との密着性の低下と云った不都合を抑制できるので、ESRの増大を抑えることもできる。従って、本実施形態の陰極層4は、従来のように導電性高分子等の有機物を用いた場合と比べて、ESRの増大をも抑制できるため、高温時におけるニオブコンデンサの信頼性が高まる。
また、銅は、一般的に導電性高分子等の有機物よりも導電性が優れているため、本実施形態では、陰極層の導電率を高めることが可能となり、この点でもESRを低減できる効果は大きい。
さらに、陰極引出層9は、陰極層4上に直接接するように形成されている。よって、従来のように導電性高分子を用いた場合と比べ、銅からなる陰極層は、上述のように導電率や信頼性を高めることができるため、陰極層4から陰極引出層5にかけてのESRを低減できる。
実施形態3の電子機器においては、漏れ電流が低減されたニオブコンデンサがバイパスコンデンサとして多数用いられるので、この漏れ電流による電気エネルギーの損失を抑制することが可能となる。したがって、特に電池を電源とする形態性に優れた電子機器、たとえば、形態電話機、PDA、デジタルカメラなどの電子機器の場合には、電池の消費を節約して、電子機器の長時間駆動を実現することができる。
(実施形態の変形例)
上述の実施形態では、ニオブからなる陽極1を用いるものであるが、本発明の構成要素である「ニオブからなる陽極」とは、ニオブに不純物が含有する材料からなる陽極であってもよいし、ニオブに他の金属を合金化したニオブ合金からなる陽極であってもよい。また、上述の実施形態では、銅からなる陰極4を用いるものであるが、本発明の構成要素である「銅からなる陰極」とは、銅に不純物が含有する材料からなる陽極であってもよいし、銅に他の金属を合金化した銅合金からなる陰極であってもよい。
本発明のニオブコンデンサにおける漏れ電流は、誘電体層と陰極との間に形成されるショットキー障壁によって抑制されると考えられる。この場合のショットキー障壁は、陰極の仕事関数の値から、誘電体層のバンドギャップにおける伝導帯の底の値(電子親和力)を引いた値に対応するため、銅からなる陰極仕事関数が酸化ニオブ(陽極の自己酸化膜)からなる誘電体層の伝導帯の底の値に近い値となる程度(たとえば、この値の差が0.1電子ボルト以下となる程度)であればよいと考えられる。
従って、陽極としてニオブ合金を用いる場合、上述のような陰極の仕事関数と誘電体層の伝導帯の関係が維持できる範囲において、ニオブを主体とするニオブ合金を用いることができ、合金において結晶変態を起こさない範囲をも考慮して、例えば、ニオブ合金の総重量に対してニオブ合金に含まれる添加剤の重量が20%以下であるニオブ合金が好ましい。このような陽極材料のニオブ合金に含まれる添加剤としては、ケイ素、バナジウム、ホウ素、窒素、アルミニウム、チタン、タンタル、タングステン、モリブデン、ハフニウム等が挙げられ、このような添加剤をニオブに添加することによりニオブ合金が形成される。また、陰極として銅合金を用いる場合、上述のような陰極の仕事関数と誘電体層の伝導帯の関係が維持できる範囲において、銅を主体とする銅合金を用いることができ、合金において結晶変態を起こさない範囲をも考慮して、銅合金の総重量に対して他の金属の重量が10%以下である銅合金が好ましい。このような陰極材料の銅合金に含まれる添加剤としては、アルミニウム、鉄、ニッケル、マンガン、亜鉛、錫、鉛、燐などが挙げられる。
1 陽極
2 陽極リード
3 誘電体層
4 陰極層

Claims (3)

  1. ニオブからなる陽極と、
    前記陽極を覆うニオブの酸化物からなる誘電体層と、
    前記誘電体層を覆う銅からなる陰極層を備えた固体電解コンデンサ。
  2. 前記請求項1記載の固体電解コンデンサを用いた電子機器。
  3. ニオブからなる陽極を形成する工程と、
    前記陽極を陽極酸化することにより、前記陽極を覆うように、ニオブの酸化物からなる誘電体層を形成する工程と、
    前記誘電体層を覆う銅からなる陰極層を形成する工程を備えた固体電解コンデンサの製造方法。
JP2009130983A 2009-05-29 2009-05-29 固体電解コンデンサ、固体電解コンデンサを用いた電子機器、及び固体電解コンデンサの製造方法。 Pending JP2010278343A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009130983A JP2010278343A (ja) 2009-05-29 2009-05-29 固体電解コンデンサ、固体電解コンデンサを用いた電子機器、及び固体電解コンデンサの製造方法。
US12/720,242 US20100302711A1 (en) 2009-05-29 2010-03-09 Solid electrolytic capacitor, electronic device using the same, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009130983A JP2010278343A (ja) 2009-05-29 2009-05-29 固体電解コンデンサ、固体電解コンデンサを用いた電子機器、及び固体電解コンデンサの製造方法。

Publications (1)

Publication Number Publication Date
JP2010278343A true JP2010278343A (ja) 2010-12-09

Family

ID=43219959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009130983A Pending JP2010278343A (ja) 2009-05-29 2009-05-29 固体電解コンデンサ、固体電解コンデンサを用いた電子機器、及び固体電解コンデンサの製造方法。

Country Status (2)

Country Link
US (1) US20100302711A1 (ja)
JP (1) JP2010278343A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140128981A (ko) * 2012-02-10 2014-11-06 도요 알루미늄 가부시키가이샤 알루미늄 전해 콘덴서용 전극재의 제조방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6295433B2 (ja) * 2012-08-29 2018-03-20 パナソニックIpマネジメント株式会社 固体電解コンデンサ
JP6223800B2 (ja) * 2013-12-04 2017-11-01 株式会社トーキン 固体電解コンデンサの形成方法
US9159490B2 (en) * 2014-01-07 2015-10-13 Apaq Technology Co., Ltd. Solid electrolytic capacitor package structure and method of manufacturing the same, and conductive unit
US10204743B2 (en) * 2017-02-06 2019-02-12 Kemet Electronics Corporation Capacitor with charge time reducing additives and work function modifiers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170861A (ja) * 2008-01-11 2009-07-30 Young Joo Oh 金属キャパシタ及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1215260B (de) * 1964-06-12 1966-04-28 Bosch Gmbh Robert Verfahren zur Herstellung von Trockenelektrolytkondensatoren
EP0372519B1 (en) * 1988-12-07 1994-04-27 Matsushita Electric Industrial Co., Ltd. A solid electrolytic capacitor
EP1454330B2 (en) * 2001-12-10 2017-10-04 Showa Denko K.K. Niobium alloy, sintered body thereof, and capacitor using the same
JP2004087872A (ja) * 2002-08-28 2004-03-18 Nec Tokin Corp 固体電解コンデンサ
US7480130B2 (en) * 2006-03-09 2009-01-20 Avx Corporation Wet electrolytic capacitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170861A (ja) * 2008-01-11 2009-07-30 Young Joo Oh 金属キャパシタ及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140128981A (ko) * 2012-02-10 2014-11-06 도요 알루미늄 가부시키가이샤 알루미늄 전해 콘덴서용 전극재의 제조방법
KR102079032B1 (ko) 2012-02-10 2020-02-19 도요 알루미늄 가부시키가이샤 알루미늄 전해 콘덴서용 전극재의 제조방법

Also Published As

Publication number Publication date
US20100302711A1 (en) 2010-12-02

Similar Documents

Publication Publication Date Title
JP4739982B2 (ja) 固体電解コンデンサの製造方法
US10629383B2 (en) Solid electrolytic capacitor
JP6295433B2 (ja) 固体電解コンデンサ
JP2008244184A (ja) 固体電解コンデンサおよびその製造方法
JP2010278343A (ja) 固体電解コンデンサ、固体電解コンデンサを用いた電子機器、及び固体電解コンデンサの製造方法。
JP2010212594A (ja) 固体電解コンデンサ及びその製造方法
JP5232899B2 (ja) 固体電解コンデンサ
JP2005167230A (ja) 固体電解コンデンサ
JP4911611B2 (ja) 固体電解コンデンサ
JP6273492B2 (ja) 固体電解コンデンサ及びその製造方法
JP2009071300A (ja) 固体電解コンデンサ
JP2012069788A (ja) 固体電解コンデンサ
JP2010056444A (ja) ニオブ固体電解コンデンサ
TWI327328B (ja)
JP2011222709A (ja) 固体電解コンデンサ及びその製造方法
JP2018046220A (ja) 固体電解コンデンサおよびその製造方法
JP5810262B2 (ja) 固体電解コンデンサ及びその製造方法
JP4624017B2 (ja) 固体電解コンデンサの製造方法
JP2012069789A (ja) 固体電解コンデンサの製造方法および固体電解コンデンサ
JP5091710B2 (ja) 固体電解コンデンサおよびその製造方法
TW201432751A (zh) 固體電解電容器
JP2015204387A (ja) 電解コンデンサ
JP2015177088A (ja) 固体電解コンデンサ素子およびその製造方法ならびに固体電解コンデンサ
JP2011086949A (ja) 固体電解コンデンサ
JP5816792B2 (ja) 固体電解コンデンサ及びその製造方法

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130910