JP2010258402A - 静電容量素子及び共振回路 - Google Patents

静電容量素子及び共振回路 Download PDF

Info

Publication number
JP2010258402A
JP2010258402A JP2009208353A JP2009208353A JP2010258402A JP 2010258402 A JP2010258402 A JP 2010258402A JP 2009208353 A JP2009208353 A JP 2009208353A JP 2009208353 A JP2009208353 A JP 2009208353A JP 2010258402 A JP2010258402 A JP 2010258402A
Authority
JP
Japan
Prior art keywords
electrode
upper electrode
lower electrode
external terminal
variable capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009208353A
Other languages
English (en)
Inventor
Masaki Kanno
正喜 管野
Toshiaki Yokota
敏昭 横田
Kazutaka Hanyu
和隆 羽生
Makoto Watanabe
渡辺  誠
Noritaka Sato
則孝 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2009208353A priority Critical patent/JP2010258402A/ja
Priority to RU2011110426/07A priority patent/RU2523065C2/ru
Priority to CN2009801376940A priority patent/CN102165541B/zh
Priority to BRPI0918551A priority patent/BRPI0918551A2/pt
Priority to US13/063,624 priority patent/US8736401B2/en
Priority to CN201210597224.6A priority patent/CN103123868B/zh
Priority to PCT/JP2009/067116 priority patent/WO2010035879A1/ja
Publication of JP2010258402A publication Critical patent/JP2010258402A/ja
Priority to US14/251,191 priority patent/US9337796B2/en
Priority to RU2014116666/07A priority patent/RU2014116666A/ru
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/255Means for correcting the capacitance value
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/06Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture having a dielectric selected for the variation of its permittivity with applied voltage, i.e. ferroelectric capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Micromachines (AREA)

Abstract

【課題】誘電体層を挟んで対向する電極間の位置ずれによる容量の変化を抑制して、所望の容量を有する静電容量素子を安定して製造する。
【解決手段】本発明の静電容量素子は、誘電体層10と、誘電体層10の所定面10a上に形成された第1電極11と、誘電体層10の前記所定面10aとは反対側の面10b上に形成された第2電極12とを備える構成とする。そして、第1電極11が第2電極12に対して所定方向に相対的に位置ずれを起こしても、第1電極11及び第2電極12間の対向電極領域の面積が変化しないように、第1及び第2電極11,12の形状を設定する。
【選択図】図7

Description

本発明は、静電容量素子及びそれを備える共振回路に関し、より具体的には、例えばpFオーダーの小さな容量を有する静電容量素子及びそれを備える共振回路に関する。
従来、外部からバイアス信号を印加することにより、容量を変化させて入力信号の周波数や時間などを制御する可変容量素子が活用されている。そのような可変容量素子としては、例えば、可変容量ダイオード(バリキャップ)やMEMS(Micro Electro Mechanical Systems)などが商品化されている。
また、従来、上述のような可変容量素子を、非接触IC(Integrated Circuit)カードにおける保護回路として利用する技術が提案されている(例えば、特許文献1参照)。特許文献1に記載の技術では、非接触ICカードをそのリーダライターに近づけた際に、過大な受信信号により耐電圧性の低い半導体素子からなる制御回路が破壊されないようにするために、保護回路として可変容量素子を用いる。
図60に、特許文献1で提案されている非接触ICカードのブロック構成図を示す。特許文献1では、可変容量素子として可変容量ダイオード303dを用いる。そして、バイアス除去用コンデンサ303c及び可変容量ダイオード303dの直列回路をコイル303a及びコンデンサ303bからなる共振回路に並列に接続する。
特許文献1では、受信信号を検波回路313で検波して得た直流電圧Voutを抵抗314a及び314bで抵抗分割する。そして、抵抗分割された直流電圧(抵抗314bに掛かる直流電圧)を、その直流電圧の変動を除去するために設けられたコイル315を介して可変容量ダイオード303dに印加して、可変容量ダイオード303dの容量を調整する。すなわち、抵抗分割された直流電圧を可変容量ダイオード303dの制御電圧として用いる。
特許文献1では、受信信号が過大な場合は、制御電圧により可変容量ダイオード303dの容量が小さくなり、これにより受信アンテナ303の共振周波数が高くなる。この結果、容量が変化する前の受信アンテナ303の共振周波数fにおける受信信号のレスポンスは容量低下前より低くなり、受信信号レベルを抑制することができる。特許文献1で提案されている技術では、このようにして可変容量素子により信号処理部320(制御回路)を保護する。
また、本発明者らは、従来、可変容量素子として強誘電体材料を用いた素子を提案している(例えば、特許文献2参照)。特許文献2では、信頼性及び生産性の向上を図るために、図61(a)及び(b)に示すような電極構造を有する可変容量素子400を提案している。図61(a)は、可変容量素子400の概略斜視図であり、図61(b)は、可変容量素子400の断面構成図である。特許文献2の可変容量素子400では、直方体形状の誘電体層404の4つの面に、それぞれ端子が設けられる。4つの端子のうち、一方の対向する2つの端子が信号電源403に接続される信号端子403a及び403bであり、他方の対向する2つの端子が制御電源402に接続される制御端子402a及び402bである。
可変容量素子400の内部は、図61(b)に示すように、複数の制御電極402c〜402g及び複数の信号電極403c〜403fが、誘電体層404を介して交互に積層された構造になっている。具体的には、最下層から、制御電極402g、信号電極403f、制御電極402f、信号電極403e、制御電極402e、信号電極403d、制御電極402d、信号電極403c及び制御電極402cがこの順で誘電体層404を介して積層される。そして、図61(b)の例では、制御電極402g、制御電極402e及び制御電極402cが一方の制御端子402aに接続され、制御電極402f及び制御電極402dが他方の制御端子402bに接続される。また、信号電極403f及び信号電極403dは一方の信号端子403aに接続され、信号電極403e及び信号電極403cは他方の信号端子403bに接続される。
特許文献2の可変容量素子400では、制御端子及び信号端子に個別に電圧を印加することができるとともに、内部に信号電極及び制御電極を複数積層させるので、低コストで容量を増大することができるという利点がある。また、特許文献2のような構造の可変容量素子400は、製造が容易であり、低コストである。さらに、特許文献2の可変容量素子400では、バイアス除去用コンデンサは不要になる。
特開平08−7059号公報 特開2007−287996号公報
比誘電率の大きい強誘電体材料を用いて、小さい容量の可変容量素子を作製する際には、誘電体層を厚くして電極間距離を大きくする、または、対向する電極面積を小さくする必要がある。しかしながら、誘電体層を厚くすると誘電体層に印加される電界強度が小さくなるので、可変容量素子の容量を変化させるための制御電圧が高くなる。
一方、誘電体層を厚くする代わりに電極面積を小さくすると、可変容量素子の抵抗値が増大する。可変容量素子の抵抗値は電極の積層数に反比例するので、従来、上記問題を解決するために、誘電体層の層数を増やしてそれらを挟んで形成する電極の積層数を増やしている。しかしながら、この場合、各誘電体層を挟んで対向する電極間に位置ずれが発生すると、これにより、各層の容量が変化する。その結果、可変容量素子毎の容量のばらつきが大きくなり、所望の容量を有する可変容量素子を安定して製造することができないという問題が生じる。
上記問題は、可変容量素子が、特許文献1で提案されているような制御端子を別途設けない2端子タイプの可変容量素子であっても、特許文献2で提案されているような制御端子を別途設ける4端子タイプの可変容量素子であっても同様に生じる。
さらに、上述した可変容量素子毎の容量のばらつきの問題は、可変容量素子に限らず、入力信号の種類(交流または直流)及びその信号レベルに関係なく容量がほとんど変化しない静電容量素子に対しても同様に生じる。
本発明は、上記問題を解決するためになされたものであり、本発明の目的は、誘電体層を挟んで対向する電極間の位置ずれによる容量の変化を抑制して、所望の容量を有する静電容量素子を安定して製造することである。
上記問題を解決するために、本発明の静電容量素子は、誘電体層と、誘電体層の所定面上に形成された第1電極と、誘電体層の前記所定面とは反対側の面上に形成された第2電極とを備える構成とする。第1電極は所定の第1形状で形成する。そして、第2電極は、第1電極を前記反対側の面に投影した際の投影パターンと重なる第1領域を有し、且つ、第1電極が所定面内の所定方向に相対的に位置ずれを起こしても、第1領域の面積が変化しない第2形状で形成されるようにする。
本発明では、第1電極が第2電極に対して所定方向に相対的に位置ずれを起こしても、第1電極を第2電極側に投影した際の投影パターンと第2電極とが重なる領域(第1領域)の面積は変化しない。それゆえ、本発明によれば、誘電体層を挟んで形成される電極間の位置ずれによる容量変化を抑制することができ、所望の容量を有する静電容量素子を安定して製造することができる。
図1は、積層型コンデンサの概略構成図である。 図2は、可変容量コンデンサの概略断面図である。 図3(a)は、可変容量コンデンサの上面図であり、図3(b)は、可変容量コンデンサの下面図である。 図4(a)は、位置ずれがない場合の上電極の投影パターンと下電極との重なり状態を示す図である。また、図4(b)は、上電極が+y方向に位置ずれした場合の上電極の投影パターンと下電極との重なり状態を示す図であり、図4(c)は、上電極が−y方向に位置ずれした場合の上電極の投影パターンと下電極との重なり状態を示す図である。 図5(a)は、位置ずれがない場合の上電極の投影パターンと下電極との重なり状態を示す図である。また、図5(b)は、上電極が+x方向に位置ずれした場合の上電極の投影パターンと下電極との重なり状態を示す図であり、図5(c)は、上電極が−x方向に位置ずれした場合の上電極の投影パターンと下電極との重なり状態を示す図である。 図6は、第1の実施形態の可変容量コンデンサの概略断面図である。 図7(a)は、第1の実施形態の可変容量コンデンサの上面図であり、図7(b)は、第1の実施形態の可変容量コンデンサの下面図である。 図8は、第1の実施形態において、位置ずれがない場合の上電極の投影パターンと下電極との重なり状態を示す図である。 図9(a)は、第1の実施形態において、上電極が+y方向に位置ずれした場合の上電極の投影パターンと下電極との重なり状態を示す図である。また、図9(b)は、第1の実施形態において、上電極が−y方向に位置ずれした場合の上電極の投影パターンと下電極との重なり状態を示す図である。 図10(a)は、第1の実施形態において、上電極が+x方向に位置ずれした場合の上電極の投影パターンと下電極との重なり状態を示す図である。また、図10(b)は、第1の実施形態において、上電極が−x方向に位置ずれした場合の上電極の投影パターンと下電極との重なり状態を示す図である。 図11(a)及び(b)は、上電極の延在方向と下電極の延在方向とが平行である場合の上電極と下電極との重なり状態を示す図である。 図12(a)及び(b)は、上電極の延在方向と下電極の延在方向とが交差する場合の上電極と下電極との重なり状態を示す図である。 図13(a)は、変形例1の可変容量コンデンサの上電極の構成図であり、図13(b)は、変形例1の可変容量コンデンサの下電極の構成図である。 図14は、変形例1において、位置ずれがない場合の上電極の投影パターンと下電極との重なり状態を示す図である。 図15(a)は、変形例1において、上電極が+y方向に位置ずれした場合の上電極の投影パターンと下電極との重なり状態を示す図である。また、図15(b)は、変形例1において、上電極が−y方向に位置ずれした場合の上電極の投影パターンと下電極との重なり状態を示す図である。 図16(a)は、変形例1において、上電極が+x方向に位置ずれした場合の上電極の投影パターンと下電極との重なり状態を示す図である。また、図16(b)は、変形例1において、上電極が−x方向に位置ずれした場合の上電極の投影パターンと下電極との重なり状態を示す図である。 図17(a)は、変形例2の可変容量コンデンサの上電極の構成図であり、図17(b)は、変形例2の可変容量コンデンサの下電極の構成図である。 図18は、変形例2において、位置ずれがない場合の上電極の投影パターンと下電極との重なり状態を示す図である。 図19(a)は、変形例2において、上電極が+y方向に位置ずれした場合の上電極の投影パターンと下電極との重なり状態を示す図である。また、図19(b)は、変形例2において、上電極が−y方向に位置ずれした場合の上電極の投影パターンと下電極との重なり状態を示す図である。 図20(a)は、変形例2において、上電極が+x方向に位置ずれした場合の上電極の投影パターンと下電極との重なり状態を示す図である。また、図20(b)は、変形例2において、上電極が−x方向に位置ずれした場合の上電極の投影パターンと下電極との重なり状態を示す図である。 図21(a)は、第2の実施形態の可変容量コンデンサの上電極の構成図であり、図21(b)は、第2の実施形態の可変容量コンデンサの下電極の構成図である。 図22は、第2の実施形態において、位置ずれがない場合の上電極の投影パターンと下電極との重なり状態を示す図である。 図23(a)は、第2の実施形態において、上電極が+y方向に位置ずれした場合の上電極の投影パターンと下電極との重なり状態を示す図である。また、図23(b)は、第2の実施形態において、上電極が−y方向に位置ずれした場合の上電極の投影パターンと下電極との重なり状態を示す図である。 図24(a)は、第2の実施形態において、上電極が+x方向に位置ずれした場合の上電極の投影パターンと下電極との重なり状態を示す図である。また、図24(b)は、第2の実施形態において、上電極が−x方向に位置ずれした場合の上電極の投影パターンと下電極との重なり状態を示す図である。 図25は、2端子タイプの可変容量コンデンサの周辺の回路構成図である。 図26は、変形例3の可変容量素子の概略断面図である。 図27は、第3の実施形態の可変容量コンデンサの概略断面図である。 図28(a)は、第3の実施形態の可変容量コンデンサの第1制御電極の構成図であり、図28(b)は、第1信号電極の構成図である。また、図28(c)は、第3の実施形態の第2制御電極の構成図であり、図28(d)は、第2信号電極の構成図である。 図29(a)は、第4の実施形態の可変容量コンデンサの上電極の構成図であり、図29(b)は、第4の実施形態の可変容量コンデンサの下電極の構成図である。 図30は、第4の実施形態において、位置ずれがない場合の上電極の投影パターンと下電極との重なり状態を示す図である。 図31(a)は、変形例4の可変容量コンデンサの上電極の構成図であり、図31(b)は、変形例4の可変容量コンデンサの下電極の構成図である。 図32は、変形例4において、位置ずれがない場合の上電極の投影パターンと下電極との重なり状態を示す図である。 図33は、可変容量コンデンサの概略斜視図である。 図34(a)は、図33に示す可変容量コンデンサの上面図であり、図34(b)は、図34(a)中のA−A断面図である。 図35は、図33に示す可変容量コンデンサの等価回路図である。 図36(a)は、第5の実施形態の可変容量コンデンサの概略斜視図であり、図36(b)は、第5の実施形態の可変容量コンデンサの上面図である。 図37(a)は、第5の実施形態の可変容量コンデンサの上電極の構成図であり、図37(b)は、第5の実施形態の可変容量コンデンサの下電極の構成図である。 図38は、第5の実施形態において、位置ずれがない場合の上電極の投影パターンと下電極との重なり状態を示す図である。 図39(a)は、変形例5の可変容量コンデンサの概略斜視図であり、図39(b)は、変形例5の可変容量コンデンサの上面図である。 図40(a)は、変形例5の可変容量コンデンサの上電極の構成図であり、図40(b)は、変形例5の可変容量コンデンサの下電極の構成図である。 図41は、変形例5の可変容量コンデンサにおいて、位置ずれがない場合の上電極の投影パターンと下電極との重なり状態を示す図である。 図42(a)は、第6の実施形態の可変容量コンデンサの概略斜視図であり、図42(b)は、第6の実施形態の可変容量コンデンサの上面図である。 図43(a)は、第6の実施形態の可変容量コンデンサの上電極の構成図であり、図43(b)は、第6の実施形態の可変容量コンデンサの下電極の構成図である。 図44は、第6の実施形態において、位置ずれがない場合の上電極の投影パターンと下電極との重なり状態を示す図である。 図45(a)は、第7の実施形態の可変容量素子の概略斜視図であり、図45(b)は、第7の実施形態の可変容量素子の上面図である。 図46(a)は、第7の実施形態の可変容量素子の上電極の構成図であり、図46(b)は、第7の実施形態の可変容量素子の下電極の構成図である。 図47は、第7の実施形態において、位置ずれがない場合の上電極の投影パターンと下電極との重なり状態を示す図である。 図48は、第7の実施形態の可変容量素子の等価回路図である。 図49は、第7の実施形態の可変容量素子の実装例を示す図である。 図50は、変形例6の可変容量素子の概略構成図である。 図51(a)は、変形例7の可変容量素子の概略斜視図であり、図51(b)は、変形例7の可変容量素子の上面図である。 図52(a)は、変形例7の可変容量素子の上電極の構成図であり、図52(b)は、変形例7の可変容量素子の下電極の構成図である。 図53は、変形例7の可変容量素子において、位置ずれがない場合の上電極の投影パターンと下電極との重なり状態を示す図である。 図54は、変形例7の可変容量素子の等価回路図である。 図55は、変形例8の可変容量素子の概略構成図である。 図56(a)は、変形例8の可変容量素子の上電極の構成図であり、図56(b)は、変形例8の可変容量素子の下電極の構成図である。 図57は、変形例8の可変容量素子において、位置ずれがない場合の上電極の投影パターンと下電極との重なり状態を示す図である。 図58は、変形例9の可変容量コンデンサの概略構成図である。 図59は、第8の実施形態の非接触ICカードのブロック構成図である。 図60は、従来の非接触ICカードのブロック構成図である。 図61(a)は、従来の4端子タイプの可変容量素子の概略斜視図であり、図61(b)は、従来の4端子タイプの可変容量素子の断面構成図である。
以下に、本発明の実施形態に係る静電容量素子の一例を、図面を参照しながら、以下の順で説明する。なお、以下に示す例では、静電容量素子として可変容量素子を例に挙げ説明するが、本発明はこれに限定されるものではない。
1.第1の実施形態:2端子タイプの可変容量素子の構成例
2.第2の実施形態:一方向の位置ずれに対応可能な2端子タイプの可変容量素子の構成例
3.第3の実施形態:4端子タイプの可変容量素子の構成例
4.第4の実施形態:電極抵抗値をさらに低減可能な可変容量素子の構成例
5.第5の実施形態:外部端子間の浮遊容量を低減可能な可変容量素子の構成例
6.第6の実施形態:外部端子間の浮遊容量を低減可能な可変容量素子の別の構成例
7.第7の実施形態:一つの強誘電体層に複数の可変容量コンデンサを配列する構成例
8.第8の実施形態:本発明の静電容量素子を備える非接触受信装置の構成例
<1.第1の実施形態>
第1の実施形態では、容量の変化を制御する制御端子を別途設けない2端子タイプの可変容量素子の一例を説明する。
[電極間の位置ずれの影響]
本実施形態の可変容量素子の構成を説明する前に、まず、上述した本発明で解決すべき位置ずれの問題を、図面を参照しながらより具体的に説明する。
図1に、一般的な積層型の可変容量コンデンサの概略構成を示す。なお、図1には、積層型の可変容量コンデンサの分解図を示す。積層型の可変容量コンデンサは、誘電体層90及び誘電体層90上に形成された上電極91からなる層と、誘電体層93及び誘電体層93上に形成された下電極92からなる層とを積層した構成となる。
誘電体層90は、板状の形状を有する。そして、上電極91は誘電体層90の表面において、その一方の短辺部から誘電体層90の長辺に沿って長さLで延在して形成される。また、誘電体層93及び下電極92からなる層は、誘電体層90及び上電極91からなる層と同じ構成である。
そして、誘電体層90及び上電極91からなる層と、誘電体層93及び下電極92からなる層とを積層する際、電極が形成されていない表面部(誘電体層90及び93が露出している面領域)が互いに重ならないように両者の層を重ねる。これにより、上電極91を下電極92側に投影した際の投影パターンと下電極92とが重なる領域(以下、対向電極領域ともいう)が形成される。なお、図1の2端子タイプの可変容量コンデンサでは、各電極の対向電極領域以外の電極領域が信号電源及び制御電源にリード線等を介して接続される。
ここで、対向電極領域の面積をS、誘電体層90の厚さ(電極間距離)をd、誘電体層90の比誘電率をε、そして、真空の誘電率をεとすると、上電極91及び下電極92間の容量Cは、C=ε×ε×(S/d)で表される。また、各電極の幅をW、厚さをt、電極の積層数をN、電極の比抵抗をρとすると、可変容量コンデンサの直流抵抗Rは、R=ρ×L/(W×t×N)で表される。
比誘電率εが例えば1000以上となる強誘電体材料を用いて小容量(例えば470pF以下)の可変容量コンデンサを形成するためには、電極間距離d(誘電体層90の厚さ)を大きくする及び/又は対向電極領域の面積Sを小さくする必要がある。しかしながら、上述のように電極間距離dを大きくすると、容量を変化させるための制御電圧が大きくなり(例えば、約50〜100V程度になる)、低電圧駆動(例えば、約5V以下)の用途には適さない。それゆえ、可変容量素子を低電圧駆動するためには、対向電極領域の面積Sを小さくする、すなわち、小さな電極を形成しなければならない。
対向電極領域の面積Sは、対向電極領域の電極の延在方向の長さΔLを短くすることにより、小さくすることができる。対向電極領域の長さΔLは、コンデンサ長さをLcとすると、ΔL=2L−Lcで求められる(なお、Lは電極長さである。図1参照)。ここで、コンデンサ長さLcを固定とすると、電極長さLを短くすることにより、対向電極領域の長さΔLを小さくすることができる。また、電極の幅Wを狭くすることによっても対向電極領域の面積Sを小さくすることができる。
しかしながら、小さな電極を形成すると、電極の抵抗値Rが大きくなるという問題が生じる。特に、上述のように、電極の抵抗値Rは電極長さLに比例し、電極幅Wに反比例するので、電極の幅Wを狭くすると電極毎の抵抗値Rが大きくなる。したがって、電極の抵抗値Rをより小さくする場合、電極の形状としては、その長さLを短くし、且つ、幅Wを広くすることが望ましい。
また、上述した電極の抵抗値の問題は、電極の積層数Nを大きくすることにより解消される。しかしながら、電極の積層数Nが増えると、誘電体層を挟んで対向する電極間の相対的な位置ずれによる容量変化への影響が大きくなる。なお、誘電体層を挟んで対向する電極間の相対的な位置ずれ量及び位置ずれ方向は、電極形成時の製造プロセス(例えば、マスクの位置合わせ等)の精度により変化する。
ここで、誘電体層を挟んで対向する電極間の位置ずれの様子を、図面を参照しながら説明する。図2に、従来の可変容量コンデンサの概略構成を示す。なお、ここでは、説明を簡略化するため、誘電体層が1層の可変容量コンデンサの例を説明する。可変容量コンデンサ94は、直方体状の強誘電体層95と、強誘電体層95を挟み込むように形成された上電極96及び下電極97とで構成される。図2の可変容量コンデンサ94は2端子タイプの可変容量素子であり、上電極96及び下電極97は、それぞれリード線98及び99を介して、信号電源及び制御電源に接続される。
また、図3(a)及び(b)に、それぞれ可変容量コンデンサ94の上電極96及び下電極97の構成を示す。なお、図3(a)及び(b)は、それぞれ可変容量コンデンサ94の上面図及び下面図である。
上電極96は、T字状の形状を有し、強誘電体層95の上面95aに形成される。上電極96は、強誘電体層95の上面95aの一方の短辺に沿って形成された端子部96bと、端子部96bの中央から端子部96bの延在方向(図3(a)中のy方向)に直交する方向(x方向)に延在した電極部96aとで構成される。なお、リード線98は端子部96bに接続される。
一方、下電極97は、上電極96と同様にT字状の形状を有し、強誘電体層95の下面95bに形成される。下電極97は、強誘電体層95の下面95bの他方の短辺に沿って形成された端子部97bと、端子部97bの中央から端子部97bの延在方向(図3(b)中のy方向)に直交する方向(x方向)に延在した電極部97aとで構成される。なお、リード線99は端子部97bに接続される。
図4(a)〜(c)及び図5(a)〜(c)に、上電極96を下電極97側(強誘電体層95の下面95b)に投影した際の上電極96の投影パターン96pと下電極97との重なり領域と、上電極96及び下電極97間の位置ずれとの関係を示す。
図4(a)は、上電極96と下電極97とが相対的に位置ずれしていない場合の上電極96の投影パターン96p(以下、上電極投影パターン96pという)と下電極97との重なり状態を示す図である。図4(b)は、上電極96が下電極97に対して相対的に+y方向(図面上では上方向)に位置ずれした場合の上電極投影パターン96pと下電極97との重なり状態を示す図である。また、図4(c)は、上電極96が下電極97に対して相対的に−y方向(図面上では下方向)に位置ずれした場合の上電極投影パターン96pと下電極97との重なり状態を示す図である。なお、図4(b)及び(c)では、下電極97に対する上電極96の位置ずれ方向を太実線の矢印で示す。
また、図5(a)は、図4(a)と同様に、上電極96と下電極97とが相対的に位置ずれしていない場合の上電極投影パターン96pと下電極97との重なり状態を示す図である。図5(b)は、上電極96が下電極97に対して相対的に+x方向(図面上では右方向)に位置ずれした場合の上電極投影パターン96pと下電極97との重なり状態を示す図である。また、図5(c)は、上電極96が下電極97に対して相対的に−x方向(図面上では左方向)に位置ずれした場合の上電極投影パターン96pと下電極97との重なり状態を示す図である。なお、図5(b)及び(c)では、下電極97に対する上電極96の位置ずれ方向を太実線の矢印で示す。
例えば、図4(b)、4(c)及び図5(b)に示すように上電極96と下電極97との位置が相対的にずれると、対向電極領域Saから外れる電極領域Saoが発生する。この場合には、対向電極領域Saの面積は、位置ずれがない場合に比べて小さくなる。また、例えば、図5(c)の場合には、上電極96及び下電極97間の位置ずれにより、対向電極領域Saに新たに加わる電極領域Saiが発生し、対向電極領域Saの面積は、位置ずれがない場合に比べて大きくなる。
上述のような積層型の可変容量コンデンサ94は、電極付の誘電体層を複数作製しておき、それらを順次積層して作製する。そして、上電極同士を外部電極で接続し且つ下電極同士を他の外部電極で接続して、誘電体層毎に形成されるコンデンサ成分を並列接続することにより大きな容量(積層数に比例)と小さな抵抗(積層数に反比例)とを得る。
各層の積層時の誘電体層を挟んで対向する電極間の位置ずれ量は、電極形成時のマスクの位置あわせ等の精度により異なるが、現状の製造プロセスでは、例えば10μm程度となる。この様な精度において、例えば、電極長さが800μm程度の大容量コンデンサを作製する場合には、位置ずれによる容量変化の影響は非常に小さい。しかしながら、例えば、誘電体層の比誘電率ε=3000とし、厚さdを2μmとして、66pF程度の容量の積層型可変容量コンデンサを作製する場合には、対向電極領域Saのサイズは、50μm×50μm程度となる。この場合、上述した位置ずれ量(約10μm)は無視できない値となり、所望の容量の可変容量コンデンサを安定して作製することができない。
そこで、本発明は、強誘電体材料で形成された誘電体層を挟んで対向する電極間の相対的な位置ずれによる対向電極領域Saの変化を抑制して、上記問題を解決する。
[可変容量コンデンサの構成]
図6に、本実施形態の可変容量コンデンサの概略構成を示す。また、図7(a)及び(b)に、本実施形態の電極の構成を示す。なお、図7(a)及び(b)は、それぞれ可変容量コンデンサの上面図及び下面図である。
可変容量コンデンサ1(可変容量素子)は、主に、強誘電体層10と、強誘電体層10を挟み込むように形成された上電極11及び下電極12とで構成される。上電極11及び下電極12は、それぞれリード線13及び14を介して、信号電源及び制御電源(不図示)に接続される。なお、後述するように、本実施形態の可変容量コンデンサ1を作製する際には、上電極11を形成した強誘電体層10と、下電極12を形成した別の強誘電体層とを積層する(図1に示すような構成にする)。ただし、図6では、説明を簡略化するために下電極12が形成される別の強誘電体層は図示していない。
強誘電体層10(誘電体層)は、外部から印加される制御信号に応じて容量が変化する誘電体材料で形成される。例えば、強誘電体層10は、比誘電率が1000を超えるような強誘電体材料で形成されたシート状部材(厚さは、例えば2μm程度)で構成することができる。なお、強誘電体層10の電極が形成される面10a及びそれとは反対側の面10b(以下、それぞれ上面10a及び下面10bという)の形状は長方形であり、その長辺と短辺の比は、例えば、2:1にすることができる。
強誘電体層10の形成材料としては、イオン分極を生じる強誘電体材料を用いることができる。イオン分極を生じる強誘電体材料は、イオン結晶材料からなり、プラスのイオンとマイナスのイオンの原子が変位することで電気的に分極する強誘電体材料である。このイオン分極を生じる強誘電体材料は、一般に、所定の2つの元素をA及びBとすると、化学式ABO(Oは酸素元素)で表され、ペロブスカイト構造を有する。このような強誘電体材料としては、例えば、チタン酸バリウム(BaTiO)、ニオブ酸カリウム(KNbO)、チタン酸鉛(PbTiO)等が挙げられる。また、強誘電体層10の形成材料として、例えば、チタン酸鉛(PbTiO)にジルコン酸鉛(PbZrO)を混ぜ合わせたPZT(チタン酸ジルコン酸鉛)を用いてもよい。
また、強誘電体層10の形成材料として、電子分極を生じる強誘電体材料を用いてもよい。この強誘電体材料では、プラスの電荷に偏った部分と、マイナスの電荷に偏った部分とに分かれて電気双極子モーメントが生じ、分極が生じる。そのような材料として、従来、Fe2+の電荷面と、Fe3+の電荷面の形成により、分極を形成して強誘電体的特性を示す希土類鉄酸化物が報告されている。この系においては、希土類元素をREとし、鉄族元素をTMとしたときに、分子式(RE)・(TM)・O(Oは酸素元素)で表される材料が高誘電率を有することが報告されている。なお、希土類元素としては、例えば、Y、Er、Yb、Lu(特にYと重希土類元素)が挙げられ、鉄族元素としては、例えば、Fe、Co、Ni(特にFe)が挙げられる。また、(RE)・(TM)・Oとしては、例えば、ErFe、LuFe、YFeが挙げられる。また、強誘電体層10の形成材料として、異方性を有する強誘電体材料を用いてもよい。
上電極11(第1電極)は、強誘電体層10の上面10a上に形成される。上電極11は、図7(a)に示すように、略L字状の形状(第1形状)を有する。上電極11は、電極部11a(第1電極部)と、端子部11bとで構成される。端子部11bは、強誘電体層10の上面10aの一方の短辺(図面上では右側短辺)に沿って形成される。また、電極部11aは、端子部11bの一方の長辺側(図面上では下側の長辺側)の位置から端子部11bの延在方向(図7(a)中のy方向)に直交する方向(x方向:第1方向)に延在して形成される。
下電極12(第2電極)は、強誘電体層10の下面10b上に形成される。下電極12は、図7(b)に示すように、略U字状の形状(第2形状)を有する。下電極12は、電極部12a(第2電極部)と、端子部12bとで構成される。端子部12bは、L字状の形状を有し、強誘電体層10の下面10bの他方の短辺(図面上では左側短辺)に沿って形成される短辺部分と、下面10bの一方の長辺(図面上では上側長辺)に沿って形成される長辺部分とで構成される。そして、電極部12aは、端子部12bの長辺部分の端部から、その長辺部分の延在方向(図7(b)中のx方向)に直交する方向(y方向:第2方向)に延在して形成される。
なお、上電極11及び下電極12は、例えば、金属微粉末(Pd、Pd/Ag、Ni等)を含む導電ペーストを用いて形成される。これにより、可変容量コンデンサ1の製造コストを低減することができる。
[可変容量コンデンサの作製方法]
ここで、本実施形態の可変容量コンデンサ1の作製方法の一例を簡単に説明する。まず、上述した強誘電体材料からなるシート部材を用意する。なお、このシート部材が、上述した強誘電体層10となる。
次いで、例えばPd、Pd/Ag、Ni等の金属微粉末をペースト化した導電ペーストを調製する。そして、その導電ペーストを電極形状に対応する開口部が形成されたマスクを介して、シート部材の一方の表面に塗布(シルク印刷等)して上電極11を形成する。次いで、上電極11と同様にして、別のシート部材(不図示)の一方の表面に下電極12を形成する。
次いで、上電極11(導電ペースト層)が塗布されたシート部材と、下電極12(導電ペースト層)が塗布された別のシート部材とを、シート部材と導電ペースト層が交互に配置されるように積層する。次いで、その積層部材を加熱圧着する。次いで、加熱圧着した部材を還元性雰囲気中で、高温焼成してシート部材と導電ペースト層(上電極11及び下電極12)とを一体化させる。本実施形態では、このようにして、本実施形態の可変容量コンデンサ1を作製する。
なお、本実施形態では、コンデンサとして作用する強誘電体層10が1層の構成例を説明したが、本発明はこれに限定されず、複数の強誘電体層10を、電極を介して積層してもよい。この場合、電極が一方の表面に形成された強誘電体材料からなるシート部材(電極付の強誘電体層)を、例えば上述した製造方法と同様にして、複数作製し、それらを順次積層して作製する。また、この場合、複数の上電極11を接続する外部電極端子と、複数の下電極12を接続する別の外部電極端子とを設け、それらの外部電極端子により、強誘電体層10毎に形成されるコンデンサ成分を並列接続する。これにより、可変容量コンデンサの容量(積層数に比例)をより大きくすることができるとともに、抵抗値(積層数に反比例)を小さくすることができる。
[電極形状の設計概要]
次に、本実施形態の可変容量コンデンサ1における上電極11及び下電極12の設計概要を、図8を参照しながら説明する。図8に、上電極11を強誘電体層10の下面10bに投影した上電極投影パターン11pと、下電極12との重なり状態を示す。なお、図8は、上電極11が下電極12に対して位置ずれしていない場合の上電極投影パターン11pと、下電極12との重なり状態を示す。また、図8には、本実施形態で電極の形状及び寸法を設計する際に考慮する主な寸法パラメータの例(ΔL1、ΔL2、S1〜S3、L1、L2、W1及びW2)を示す。なお、電極の設計時に考慮する寸法パラメータは、図8の例に限定されない。
また、本実施形態では、上電極11が下電極12に対して、強誘電体層10の下面10bの長辺及び短辺の延在方向、すなわち、図8中のx方向及びy方向に位置ずれを起こす例を説明する。
本実施形態では、上電極投影パターン11pの電極部11paの延在方向(x方向)と、下電極12の電極部12aの延在方向(y方向)とが直交するように上電極11及び下電極12を形成する。また、上電極11及び下電極12の形状及び寸法は、必要とする容量値、抵抗値及び想定される電極間の最大の位置ずれ量を考慮して設計する。より具体的には、図8中に示すような寸法パラメータが、例えば、次のような条件を満たすように各電極を設計する。
(1)ΔL1
ΔL1は、上電極投影パターン11pの電極部11paの先端と、下電極12の電極部12aとの距離である。本実施形態では、上電極11の下電極12に対する+x方向の相対的な位置ずれ量が想定される最大値になった場合であっても、ΔL1≧0となるように、上電極11の電極部11aの長さL1を設定する。
(2)ΔL2
ΔL2は、下電極12の電極部12aの先端と、上電極投影パターン11pの電極部11paとの距離である。本実施形態では、上電極11の下電極12に対する−y方向の相対的な位置ずれ量が想定される最大値になった場合であっても、ΔL2≧0となるように、下電極12の電極部12aの長さL2を設定する。
(3)S1
S1は、上電極投影パターン11pの電極部11paの先端と、下電極12の端子部12bの短辺部分との距離である。本実施形態では、上電極11の下電極12に対する−x方向の相対的な位置ずれ量が想定される最大値になった場合であっても、S1≧0が満たされるようにする。すなわち、上電極11の下電極12に対する−x方向の相対的な位置ずれが最大になった場合に、上電極投影パターン11pの電極部11paの先端が下電極12の端子部12bの短辺部分と重ならないようにする。
(4)S2
S2は、上電極投影パターン11pの端子部11pbと、下電極12の電極部12aとの距離である。本実施形態では、上電極11の下電極12に対する−x方向の相対的な位置ずれ量が想定される最大値になった場合であっても、S2≧0が満たされるようにする。すなわち、上電極11の下電極12に対する−x方向の相対的な位置ずれが最大になった場合に、上電極投影パターン11pの端子部11pbが下電極12の電極部12aと重ならないようにする。
(5)S3
S3は、上電極投影パターン11pの電極部11paと、下電極12の端子部12bの長辺部分との距離である。本実施形態では、上電極11の下電極12に対する+y方向の相対的な位置ずれ量が想定される最大値になった場合であっても、S3≧0が満たされるようにする。すなわち、上電極11の下電極12に対する+y方向の相対的な位置ずれが最大になった場合に、上電極投影パターン11pの電極部11paが下電極12の端子部12bの長辺部分と重ならないようにする。
(6)L1及びL2
L1及びL2は、それぞれ上電極11の電極部11aの長さ及び下電極12の電極部12aの長さである。本実施形態では、L1及びL2は、例えば、上記(1)〜(5)の寸法パラメータ(ΔL1、ΔL2及びS1〜S3)との関係、並びに、必要とする可変容量コンデンサの容量値及び抵抗値を考慮して設定される。
(7)W1及びW2
W1及びW2は、それぞれ上電極11の電極部11aの幅及び下電極12の電極部12aの幅である。本実施形態では、W1及びW2は、例えば、上記(1)〜(5)の寸法パラメータ(ΔL1、ΔL2及びS1〜S3)との関係、並びに、必要とする可変容量コンデンサの容量値及び抵抗値を考慮して設定される。
なお、上電極11及び下電極12の形状は、本実施形態の形状(図7(a)及び(b)に示す形状)に限定されない。上述した設計概要の条件を満たすような形状であれば任意の形状を適用することができる。
[位置ずれと対向電極領域の面積との関係]
上述のように上電極11及び下電極12を構成することにより、上電極11及び下電極12間の相対位置がx方向及びy方向の一方または両方にずれても、対向電極領域Saの面積を一定にすることができる。その様子を図9(a)及び(b)並びに10(a)及び(b)に示す。図9(a)及び(b)並びに10(a)及び(b)は、上電極投影パターン11pと下電極12との重なり領域Sa(対向電極領域)と、上電極11及び下電極12間の位置ずれとの関係を示す図である。
図9(a)は、上電極11が下電極12に対して相対的に+y方向(図面上では上方向)に位置ずれした場合の状態を示す図である。また、図9(b)は、上電極11が下電極12に対して相対的に−y方向(図面上では下方向)に位置ずれした場合の状態を示す図である。なお、図9(a)及び(b)中の一点鎖線は、上電極11が下電極12に対して位置ずれしていない場合の上電極投影パターン11pの位置を示している。また、図9(a)及び(b)では、下電極12に対する上電極11の位置ずれ方向を太実線の矢印で示す。
また、図10(a)は、上電極11が下電極12に対して相対的に+x方向(図面上では右方向)に位置ずれした場合の状態を示す図である。また、図10(b)は、上電極11が下電極12に対して相対的に−x方向(図面上では左方向)に位置ずれした場合の状態を示す図である。なお、図10(a)及び(b)中の一点鎖線は、上電極11が下電極12に対して位置ずれしていない場合の上電極投影パターン11pの位置を示している。また、図10(a)及び(b)では、下電極12に対する上電極11の位置ずれ方向を太実線の矢印で示す。
図9(a)及び(b)並びに10(a)及び(b)から明らかなように、本実施形態の可変容量コンデンサ1の上電極11と下電極12との位置がx方向及びy方向のいずれにずれても、対向電極領域Sa(第1領域)の面積は変わらない。より具体的に説明すると、位置ずれにより新たに重なる電極部分(例えば、図9(a)及び(b)中の領域Sai)の面積と、位置ずれにより対向電極領域Saから外れる電極部分(例えば、図9(a)及び(b)中の領域Sao)の面積とが等しくなる。この結果、対向電極領域Saの面積は変わらない。
それゆえ、本実施形態の可変容量コンデンサ1では、上電極11及び下電極12間の位置がx方向及びy方向のいずれに位置ずれを起こしても、対向電極領域Saの面積は変わらず、容量も変化しない。したがって、本実施形態によれば、強誘電体材料を用いてpFオーダーの小容量の可変容量コンデンサを製造する場合であっても、誘電体層を挟んで対向する電極の位置ずれに関係なく、所望の容量の可変容量コンデンサを安定して作製することができる。
また、本実施形態では、上電極11及び/又は下電極12の電極部の幅を狭くすることで、容易により小さな容量の可変容量コンデンサを作製することが可能になる。
さらに、本実施形態では、強誘電体層を挟んで対向する電極の位置ずれが発生しても対向電極面積を一定(容量を不変)にすることができるので、一層当たりの電極面積を小さくして積層数を増やすことができる。これにより、可変容量コンデンサの容量をより大きくし且つ抵抗値をより低減することができる。また、本実施形態では、電極の形成が容易であり且つ低コストである。
ここで、本実施形態のように強誘電体層を挟んで対向する上電極の電極部の延在方向と下電極の電極部の延在方向とを交差させるタイプの可変容量コンデンサでは、その容量をより大きくし且つ抵抗値をより低減することができる理由をより詳細に説明する。
図11(a)及び(b)に、上電極の電極部(以下、上電極部という)の延在方向と下電極の電極部(以下、下電極部という)の延在方向とが一致する場合における、両電極部間の重なり状態を示す。なお、図11(b)に示す上電極部253及び下電極部254の幅は、それぞれ図11(a)に示す電極構成(以下、基準構成という)の上電極部251及び下電極部252の幅の1/2である。また、図11(b)に示す上電極部253及び下電極部254の長さは、それぞれ図11(a)に示す基準構成の上電極部251及び下電極部252の長さと同じである。
この場合、図11(b)に示す上電極部253及び下電極部254間の対向面積は、図11(a)に示す基準構成の1/2になる。その結果、図11(b)に示す電極構成の容量は、基準構成のそれの1/2となり、電極部の抵抗は2倍になる。すなわち、上電極部の延在方向と下電極部の延在方向とを一致させるタイプのコンデンサにおいて、電極部の幅だけを基準構成に対して1/nにした場合には、容量は基準構成の1/nとなり、電極部の抵抗は基準構成のn倍になる。それゆえ、図11(a)及び(b)に示すような上電極及び下電極を平行配置するタイプにおいて、電極部の幅だけを1/nにした電極構成のコンデンサを用いて基準構成と同じ容量を得るためには、電極部の幅を1/nにしたコンデンサをn層積層する必要がある。そして、この場合、コンデンサ全体の抵抗は、基準構成のそれと同じになる。
また、図12(a)及び(b)に、上電極部の延在方向と下電極部の延在方向とが直交する場合における、両電極部間の重なり状態を示す。なお、図12(b)に示す上電極部257及び下電極部258の幅は、それぞれ図12(a)に示す電極構成(基準構成)の上電極部255及び下電極部256の幅の1/2である。また、図12(b)に示す上電極部257及び下電極部258の長さは、それぞれ図12(a)に示す基準構成の上電極部255及び下電極部256の長さと同じである。
この場合、図12(b)に示す上電極部257及び下電極部258間の対向面積は、図12(a)に示す基準構成の1/4になる。その結果、図12(b)に示す電極構成の容量は、基準構成のそれの1/4となり、電極部の抵抗は2倍になる。すなわち、上電極部の延在方向と下電極部の延在方向とを交差させるタイプのコンデンサにおいて、電極部の幅だけを基準構成に対して1/nにした場合には、容量は基準構成の1/nとなり、電極部の抵抗は基準構成のn倍になる。それゆえ、図12(a)及び(b)に示すような上電極及び下電極を交差させるタイプにおいて、電極部の幅だけを1/nにした電極構成のコンデンサを用いて基準構成と同じ容量を得るためには、電極部の幅を1/nにしたコンデンサをn層積層する必要がある。そして、この場合、コンデンサ全体の抵抗は基準構成のそれの1/nになる。
上述のことから、積層型コンデンサにおいては、上電極及び下電極を交差させるタイプの方が、上電極及び下電極を平行配置するタイプに比べて、積層型コンデンサ全体の抵抗値を小さくすることが可能になる。
[変形例1]
上記第1の実施形態では、上電極11の電極部11aの延在方向(x方向)と、下電極12の電極部12aの延在方向(y方向)とが直交する例を説明したが、本発明はこれに限定されない。変形例1では、上電極の電極部の延在方向と、下電極の電極部の延在方向とが直交しない構成例を説明する。
[電極構成]
図13(a)及び(b)に、それぞれ変形例1の可変容量コンデンサの上電極及び下電極の構成を示す。なお、図13(a)及び(b)は、それぞれ変形例1の可変容量コンデンサの上面図及び下面図である。変形例1では、上電極21及び下電極22の構成(形状)を変えたこと以外は、上記第1の実施形態(図6並びに7(a)及び(b))の可変容量コンデンサ1と同様の構成とする。また、図13(a)及び(b)において、上記第1の実施形態(図7(a)及び(b))と同様の構成には、同じ符号を付して示す。
上電極21は、V字状の形状を有し、電極部21aと、端子部21bとで構成される。端子部21bは、強誘電体層10の上面10aの一方の短辺(図面上では右側短辺)に沿って形成される。また、電極部21aは、端子部21bの一方の端部から端子部11bの延在方向(図13(a)中のy方向)に対して斜め方向(直交しない方向)に延在して形成される。図13(a)の図面上では、電極部21aは、強誘電体層10の上面10aの右上の角部からそれに対向する左下の角部に向かう方向に延在する。
下電極22は、V字状の形状を有し、図13(b)面中のy方向に対して上電極21と対称形状を有する。また、下電極22は、電極部22aと、端子部22bとで構成される。端子部22bは、強誘電体層10の下面10bの他方の短辺(図面上では左側短辺)に沿って形成される。また、電極部22aは、端子部22bの一方の端部から端子部21bの延在方向(図13(b)中のy方向)に対して斜め方向(直交しない方向)に延在して形成される。図13(b)の図面上では、電極部22aは、強誘電体層10の下面10bの左上の角部からそれに対向する右下の角部に向かう方向に延在する。なお、下電極22の電極部22aの延在方向は、上電極21の電極部21aの延在方向と直交しない。
なお、変形例1の可変容量コンデンサは、例えば、上述した第1の実施形態の製造方法と同様にして作製することができる。また、変形例1では、強誘電体層10が1層の構成例を説明したが、本発明はこれに限定されず、複数の強誘電体層10を、電極を介して積層してもよい。
[電極形状の設計概要]
次に、変形例1の可変容量コンデンサにおける上電極21及び下電極22の設計概要を、図14を参照しながら説明する。図14に、変形例1の上電極21を強誘電体層10の下面10bに投影した上電極投影パターン21pと、下電極22との重なり状態を示す。なお、図14は、上電極21が下電極22に対して位置ずれしていない場合の上電極投影パターン21pと、下電極22との重なり状態を示す。また、図14には、変形例1の電極の形状及び寸法を設計する際に考慮する主な寸法パラメータ(ΔL3、ΔL4、S4、S5、L3、L4、W3及びW4)の例を示す。なお、電極の設計時に考慮する寸法パラメータは、図14の例に限定されない。
変形例1では、上電極投影パターン21pの電極部21paの延在方向と、下電極22の電極部22aの延在方向とが交差する(ただし、直交しない)ように上電極21及び下電極22を形成する。また、上電極21及び下電極22の形状及び寸法は、必要とする容量値、抵抗値及び想定される電極間の最大の位置ずれ量を考慮して設計する。より具体的には、図14中に示すような寸法パラメータが、例えば次のような条件を満たすように各電極を設計する。
(1)ΔL3
ΔL3は、上電極投影パターン21pの電極部21paの先端と、下電極22の電極部22aとの間の最小距離である。この例では、上電極21の下電極22に対する+x及び+y方向の相対的な位置ずれ量が想定される最大値になった場合であっても、ΔL3≧0となるように、上電極21の電極部21aの最小長さL3を設定する。
(2)ΔL4
ΔL4は、下電極22の電極部22aの先端と、上電極投影パターン21pの電極部21paとの間の最小距離である。この例では、上電極21の下電極22に対する+x及び−y方向の相対的な位置ずれ量が想定される最大値になった場合にも、ΔL4≧0となるように、下電極22の電極部22aの最小長さL4を設定する。
(3)S4
S4は、上電極投影パターン21pの電極部21paの先端と、下電極22の端子部22bとの間の最小距離である。この例では、上電極21の下電極22に対する−x方向の相対的な位置ずれ量が想定される最大値になった場合であっても、S4≧0が満たされるようにする。すなわち、上電極21の下電極22に対する−x方向の相対的な位置ずれが最大になった場合に、上電極投影パターン21pの電極部21paの先端が下電極22の端子部22bと重ならないようにする。
(4)S5
S5は、上電極投影パターン21pの端子部21pbと、下電極22の電極部22aの先端との間の最小距離である。この例では、上電極21の下電極22に対する−x方向の相対的な位置ずれが想定される最大値になった場合であっても、S5≧0が満たされるようにする。すなわち、上電極21の下電極22に対する−x方向の相対的な位置ずれが最大になった場合に、上電極投影パターン21pの端子部21pbが下電極22の電極部22aの先端と重ならないようにする。
(5)L3及びL4
L3及びL4は、それぞれ上電極21の電極部21aの最小長さ及び下電極22の電極部22aの最小長さである。この例では、L3及びL4は、上記(1)〜(4)の寸法パラメータ(ΔL3、ΔL4、S4及びS5)との関係、並びに、必要とする可変容量コンデンサの容量値及び抵抗値を考慮して設定される。
(6)W3及びW4
W3及びW4は、それぞれ上電極21の電極部21aの幅及び下電極22の電極部22aの幅である。この例では、W3及びW4は、上記(1)〜(4)の寸法パラメータ(ΔL3、ΔL4、S4及びS5)との関係、並びに、必要とする可変容量コンデンサの容量値及び抵抗値を考慮して設定される。
なお、上電極21及び下電極22の形状は、図13(a)及び(b)に示す形状に限定されない。上述した設計概要の条件を満たすような形状であれば任意の形状を適用することができる。例えば、上電極21と下電極22とがy方向に対して対称形状を有し、且つ、各電極の延在方向が直交していてもよい。さらに、例えば、上電極21と下電極22とが対称形状を有していなくてもよいし、一方の電極部の幅が、他方の電極部の幅より狭くてもよい。
[位置ずれと対向電極領域の面積との関係]
上述のように上電極21及び下電極22を構成することにより、上電極21及び下電極22間の相対位置がx方向及びy方向の一方または両方にずれても、対向電極領域Saの面積を一定にすることができる。その様子を図15(a)及び(b)並びに16(a)及び(b)に示す。図15(a)及び(b)並びに16(a)及び(b)は、上電極投影パターン21pと下電極22との重なり領域Sa(対向電極領域)と、上電極21及び下電極22間の位置ずれとの関係を示す図である。
図15(a)は、上電極21が下電極22に対して相対的に+y方向(図面上では上方向)に位置ずれした場合の状態を示す図である。また、図15(b)は、上電極21が下電極22に対して相対的に−y方向(図面上では下方向)に位置ずれした場合の状態を示す図である。なお、図15(a)及び(b)中の一点鎖線は、上電極21が下電極22に対して位置ずれしていない場合の上電極投影パターン21pの位置を示している。また、図15(a)及び(b)では、下電極22に対する上電極21の位置ずれ方向を太実線の矢印で示す。
また、図16(a)は、上電極21が下電極22に対して相対的に+x方向(図面上では右方向)に位置ずれした場合の状態を示す図である。また、図16(b)は、上電極21が下電極22に対して相対的に−x方向(図面上では左方向)に位置ずれした場合の状態を示す図である。なお、図16(a)及び(b)中の一点鎖線は、上電極21が下電極22に対して位置ずれしていない場合の上電極投影パターン21pの位置を示している。また、図16(a)及び(b)では、下電極22に対する上電極21の位置ずれ方向を太実線の矢印で示す。
図15(a)及び(b)並びに16(a)及び(b)から明らかなように、変形例1の可変容量コンデンサの上電極21と下電極22との位置がx方向及びy方向のいずれに位置ずれしても、対向電極領域Saの面積は変わらない。より具体的に説明すると、位置ずれにより新たに重なる電極部分(例えば、図15(a)及び(b)中の領域Sai)の面積と、位置ずれにより対向電極領域Saから外れる電極部分(例えば、図15(a)及び(b)中の領域Sao)の面積とが等しくなる。この結果、対向電極領域Saの面積は変わらない。
それゆえ、変形例1の可変容量コンデンサでは、上電極21が下電極22に対して位置ずれを起こしても容量は変化しないので、上記第1の実施形態と同様の効果が得られる。さらに、変形例1では、上電極21の形状と、下電極22の形状とが、y方向に対して対称であるので、上電極21及び下電極22の設計がより容易になる。
ただし、上電極21及び下電極22を上述したマスクを介して塗布法(シルク印刷等)で形成する場合には、その塗布方向は、例えば、x方向またはy方向となる。変形例1では、電極部がx方向またはy方向に対して斜め方向に延在する(平行または直交していない)ので、より幅の狭い電極部を塗布法で形成する場合、電極部の膜厚分布やエッジ形状が所望したものにならない可能性もある。それゆえ、より幅の狭い電極部を塗布法で形成する場合には、電極部の延在方向は塗布方向と平行であるまたは直交することが好ましい。
[変形例2]
上記変形例1では、上電極及び下電極の端子部を強誘電体層の上下面の短辺の延在方向(y方向)に沿って、その短辺近傍に形成した例を説明したが、本発明はこれに限定されない。変形例2では、上電極及び下電極の端子部を強誘電体層の上下面の長辺の延在方向(x方向)に沿って、その長辺近傍に形成する例を説明する。
[電極構成]
図17(a)及び(b)に、変形例2の上電極及び下電極の構成を示す。なお、図17(a)及び(b)は、それぞれ変形例2の可変容量コンデンサの上面図及び下面図である。変形例2では、上電極31及び下電極32の構成(形状)を変えたこと以外は、上記第1の実施形態(図6並びに7(a)及び(b))の可変容量コンデンサ1と同様の構成とする。また、図17(a)及び(b)において、上記第1の実施形態(図7(a)及び(b))と同様の構成には、同じ符号を付して示す。
上電極31は、変形例1と同様に、V字状の形状を有し、電極部31aと、端子部31b(第1端子部)とで構成される。端子部31bは、強誘電体層10の上面10aの一方の長辺(図面上では下側長辺)に沿って形成される。また、電極部31aは、端子部31bの一方の端部から端子部31bの延在方向(図17(a)中のx方向)に対して斜め方向に延在して形成される。図17(a)の図面上では、電極部31aは、強誘電体層10の上面10aの右下の角部からそれに対向する左上の角部に向かう方向に延在する。
下電極32は、V字状の形状を有し、図17(b)面中のx方向に対して上電極31と対称形状を有する。また、下電極32は、電極部32aと、端子部32b(第2端子部)とで構成される。端子部32bは、強誘電体層10の下面10bの他方の長辺(図面上では上側短辺)に沿って形成される。また、電極部32aは、端子部32bの一方の端部から端子部31bの延在方向(図17(b)中のx方向)に対して斜め方向に延在して形成される。図17(b)の図面上では、電極部32aは、強誘電体層10の下面10bの右上の角部からそれに対向する左下の角部に向かう方向に延在する。なお、変形例3では、下電極32の電極部32aの延在方向は、上電極31の電極部31aの延在方向と直交する。
なお、変形例2の可変容量コンデンサは、例えば、上述した第1の実施形態の製造方法と同様にして作製することができる。また、変形例2では、強誘電体層10が1層の構成例を説明したが、本発明はこれに限定されず、複数の強誘電体層10を、電極を介して積層してもよい。
図18に、変形例2の可変容量コンデンサの上電極31を強誘電体層10の下面10bに投影した上電極投影パターン31pと、下電極32との重なり状態を示す。なお、図18は、上電極31が下電極32に対して位置ずれしていない場合の上電極投影パターン31pと、下電極32との重なり状態を示す。
変形例2では、上電極投影パターン31pの電極部31paの延在方向と、下電極32の電極部32aの延在方向とが直交するような形状で、上電極31及び下電極32が形成されている。なお、上電極31及び下電極32の形状及び寸法を設計は、変形例1と同様に、必要とする容量値、抵抗値及び想定される電極間の最大の位置ずれ量を考慮して設計することができる。
[位置ずれと対向電極領域の面積との関係]
上述のように上電極31及び下電極32を構成することにより、上電極31及び下電極32間の相対位置がx方向及びy方向の一方または両方にずれても、対向電極領域Saの面積を一定にすることができる。その様子を図19(a)及び(b)並びに20(a)及び(b)に示す。図19(a)及び(b)並びに20(a)及び(b)は、上電極投影パターン31pと下電極32との重なり領域Sa(対向電極領域)と、上電極31及び下電極32間の位置ずれとの関係を示す図である。
図19(a)は、上電極31が下電極32に対して相対的に+y方向(図面上では上方向)に位置ずれした場合の状態を示す図である。また、図19(b)は、上電極31が下電極32に対して相対的に−y方向(図面上では下方向)に位置ずれした場合の状態を示す図である。なお、図19(a)及び(b)中の一点鎖線は、上電極31が下電極32に対して位置ずれしていない場合の上電極投影パターン31pの位置を示している。また、図19(a)及び(b)では、下電極32に対する上電極31の位置ずれ方向を太実線の矢印で示す。
また、図20(a)は、上電極31が下電極32に対して相対的に+x方向(図面上では右方向)に位置ずれした場合の状態を示す図である。また、図20(b)は、上電極31が下電極32に対して相対的に−x方向(図面上では左方向)に位置ずれした場合の状態を示す図である。なお、図20(a)及び(b)中の一点鎖線は、上電極31が下電極32に対して位置ずれしていない場合の上電極投影パターン31pの位置を示している。また、図20(a)及び(b)では、下電極32に対する上電極31の位置ずれ方向を太実線の矢印で示す。
図19(a)及び(b)並びに20(a)及び(b)から明らかなように、変形例2の可変容量コンデンサの上電極31と下電極32との位置がx方向及びy方向のいずれに位置ずれしても、対向電極領域Saの面積は変わらない。より具体的に説明すると、位置ずれにより新たに重なる電極部分(例えば、図19(a)及び(b)中の領域Sai)の面積と、位置ずれにより対向電極領域Saから外れる電極部分(例えば、図19(a)及び(b)中の領域Sao)の面積とが等しくなる。この結果、対向電極領域Saの面積は変わらない。
それゆえ、変形例2の可変容量コンデンサでは、上電極31が下電極32に対して位置ずれを起こしても容量は変化しないので、上記第1の実施形態と同様の効果が得られる。また、変形例2では、上電極31の形状と、下電極32の形状とが、x方向に対して対称であるので、上電極31及び下電極32の設計がより容易になる。
さらに、変形例2では、上電極31及び下電極32の端子部を強誘電体層10の上下面の長辺の延在方向(x方向)に沿って、その近傍に形成するので、上電極31及び下電極32の電極部の長さを変形例1に比べて短くすることができる。この場合、変形例1に比べて、可変容量コンデンサの抵抗値を低減することができる。
上記第1の実施形態、並びに、変形例1及び2では、静電容量素子として可変容量素子(可変容量コンデンサ)を例に挙げ説明したが、本発明はこれに限定されない。上記第1の実施形態、並びに、変形例1及び2で説明した上電極及び下電極の構成は、入力信号の種類及びその信号レベルに関係なく容量がほとんど変化しない静電容量素子(以下、定容量素子という)に対しても同様に適用可能である。
ただし、この場合、誘電体層は、比誘電率の低い常誘電体材料で形成される。常誘電体材料としては、例えば、紙、ポリエチレンテレフタレート、ポリプロピレン、ポリフェニレンサルファイド、ポリスチレン、ポリスチレン、TiO、MgTiO、MgTiO、SrMgTiO、Al、Ta等を用いることができる。なお、このような定容量素子は、上記第1の実施形態の可変容量素子と同様にして作製することができる。
上述した上電極及び下電極間の位置ずれによる可変容量素子毎の容量のばらつきの問題は、可変容量素子に限らず、定容量素子に対しても同様に生じる。それゆえ、上記第1の実施形態、並びに、変形例1及び2で説明した上電極及び下電極の構成を定容量素子に適用した場合には、上記問題を解消することができ、第1の実施形態と同様の効果が得られる。
<2.第2の実施形態>
第1の実施形態並びに変形例1及び2では、上電極及び下電極間の相対位置がx及びy方向に位置ずれする場合に適用する例を説明したが、本発明はこれに限定されない。例えば、上電極及び下電極の位置を位置合わせする装置及び製造プロセスによっては、x方向またはy方向に、すなわち一方向に位置ずれが顕著である場合がある。このような場合には、上電極及び下電極間の位置ずれの影響はx方向またはy方向のみを考慮すればよい。本実施形態では、このようなx方向またはy方向に位置ずれが顕著である場合に適用可能な可変容量素子の一例を説明する。
[電極構成]
図21(a)及び(b)に、本実施形態の可変容量コンデンサ(可変容量素子)の上電極及び下電極の構成を示す。なお、図21(a)及び(b)は、それぞれ可変容量コンデンサの上面図及び下面図である。本実施形態では、図21(a)及び(b)中のy方向の位置ずれが顕著である例について説明する。また、図21(a)及び(b)において、第1の実施形態(図7(a)及び(b))と同様の構成には同じ符号を付して示す。
本実施形態の可変容量コンデンサの構成は、上電極41及び下電極42の構成(形状)を変えたこと以外は、上記第1の実施形態(図6並びに7(a)及び(b))の可変容量コンデンサ1と同様である。それゆえ、ここでは、電極以外の構成の説明は省略する。
上電極41(第1電極)は、強誘電体層10の上面10a上に形成される。上電極41は、T字状の形状(第1形状)を有し、電極部41a(第1電極部)と、端子部41bとで構成される。端子部41bは、強誘電体層10の上面10aの一方の短辺(図面上では右側短辺)に沿って、その近傍に形成される。また、電極部41aは、端子部41bの中央から端子部41bの延在方向(図21(a)中のy方向)に対して直交する方向(x方向:第1方向)に延在して形成される。
下電極42(第2電極)は、強誘電体層10の下面10b上に形成される。下電極42は、略U字状の形状(第2形状)を有し、2つの電極部42a及び42c(第2電極部)と、端子部42bとで構成される。端子部42bは、強誘電体層10の下面10bの他方の短辺(図面上では左側短辺)に沿って、その近傍形成される。電極部42a及び42cは、端子部42bの両端からそれぞれ端子部42bの延在方向(図21(b)中のy方向)と直交する方向(x方向:第2方向)に延在して形成される。なお、ここでは、電極部42a及び電極部42cの形状は同じとする。
すなわち、本実施形態では、上電極41の電極部41aの延在方向と、下電極42の電極部42a及び42cの延在方向とは平行である。この場合、後述するように、上電極41及び下電極42間には、複数の対向電極領域(図22中のSa1及びSa2)が形成される。また、本実施形態では、各電極部の延在方向(x方向)は、電極間の位置ずれ方向(y方向)と直交することになる。
また、本実施形態では、強誘電体層10が1層の構成例を説明したが、本発明はこれに限定されず、複数の強誘電体層10を、電極を介して積層してもよい。この場合、例えば上述した第1の実施形態の製造方法と同様にして、電極付の強誘電体層を複数作製し、それらを順次積層して作製する。また、この場合、複数の上電極41を接続する外部電極端子と、複数の下電極42を接続する別の外部電極端子とを設け、それらの外部電極端子により、強誘電体層10毎に形成されるコンデンサ成分を並列接続する。これにより、可変容量コンデンサの容量(積層数に比例)をより大きくすることができるとともに、抵抗値(積層数に反比例)を小さくすることができる。
[電極形状の設計概要]
次に、本実施形態の可変容量コンデンサにおける上電極41及び下電極42の設計概要を、図22を参照しながら説明する。図22に、本実施形態の可変容量コンデンサの上電極41を強誘電体層10の下面10bに投影した上電極投影パターン41pと、下電極42との重なり状態を示す。なお、図22は、上電極41が下電極42に対して位置ずれしていない場合の上電極投影パターン41pと、下電極42との重なり状態を示す。また、図22には、本実施形態の電極の形状及び寸法を設計する際に考慮する主な寸法パラメータ(ΔL5、ΔL6、S6、L5、L6、W5及びW6)の例を示す。
本実施形態では、上電極投影パターン41pの電極部41paが、下電極42の2つの電極部42a及び電極部42cと重なるように、上電極41及び下電極42の形状を設定する。また、上電極41及び下電極42の形状及び寸法は、必要とする容量値、抵抗値及び想定される電極間の最大の位置ずれ量を考慮して設計する。より具体的には、図22中に示すような寸法パラメータが、例えば次のような条件を満たすように各電極を設計する。なお、電極の設計時に考慮する寸法パラメータは、図22の例に限定されない。
(1)ΔL5及びΔL6
ΔL5及びΔL6は、対向電極領域Sa1及びSa2のy方向の幅である。本実施形態では、上電極投影パターン41pの下電極42に対するy方向の相対的な位置ずれ量が想定される最大値になった場合にも、ΔL5≧0且つΔL6≧0となるように、上電極41及び下電極42の形状及び寸法を設計する。より具体的には、常に、ΔL5≧0且つΔL6≧0となるように、上電極41の電極部41aの幅W5、並びに、下電極42の電極部42a及び電極部42c間の間隔S6を設定する。
(2)L5及びL6
L5及びL6は、上電極41の電極部41aの長さ及び下電極42の電極部42a又は電極部42cの長さである。本実施形態では、上電極投影パターン41pの電極部41paが、下電極42の2つの電極部42a及び電極部42cと重なるように、上電極41及び下電極42の各電極部の長さを設定する。また、L5及びL6は、必要とする可変容量コンデンサの容量値及び抵抗値を考慮して設定される。
(3)W5及びW6
W5及びW6は、上電極41の電極部41aの幅及び下電極42の電極部42a又は電極部42cの幅である。本実施形態では、W5は、下電極42の2つの電極部42a及び電極部42c間の間隔S6より大きくなるように設定される。また、W5及びW6は、必要とする可変容量コンデンサの容量値及び抵抗値を考慮して設定される。
なお、上電極41及び下電極42の形状は、本実施形態の形状(図21(a)及び(b)に示す形状)に限定されない。上述した設計概要の条件を満たすような形状であれば任意の形状を適用することができる。
[位置ずれと対向電極領域の面積との関係]
上述のように上電極41及び下電極42を構成することにより、上電極41及び下電極42間の相対位置がy方向にずれても、対向電極領域Sa1及びSa2の総面積を一定にすることができる。その様子を図23(a)及び(b)に示す。図23(a)及び(b)は、上電極41を強誘電体層10の下面10bに投影した際の上電極投影パターン41pと下電極42との重なり領域(対向電極領域)Sa1及びSa2と、上電極41及び下電極42間の位置ずれとの関係を示す図である。
図23(a)は、上電極41が下電極42に対して相対的に+y方向(図面上では上方向)に位置ずれした場合の状態を示す図である。また、図23(b)は、上電極41が下電極42に対して相対的に−y方向(図面上では下方向)に位置ずれした場合の状態を示す図である。なお、図23(a)及び(b)中の一点鎖線は、上電極41が下電極42に対して位置ずれしていない場合の上電極投影パターン41pの位置を示している。また、図23(a)及び(b)では、下電極42に対する上電極41の位置ずれ方向を太実線の矢印で示す。
図23(a)及び(b)から明らかなように、本実施形態の可変容量コンデンサの上電極41と下電極42との位置がy方向にずれても、対向電極領域Sa1及びSa2の総面積は変わらない。具体的に説明すると、例えば図23(a)の場合には、位置ずれにより対向電極領域Sa1に新たに重なる領域Saiの面積と、位置ずれにより対向電極領域Sa2から外れる領域Saoの面積とが等しくなり、対向電極領域Sa1及びSa2の総面積は変わらない。
それゆえ、本実施形態の可変容量コンデンサでは、上電極41と下電極42との位置がy方向にずれても、対向電極領域Sa1及びSa2の総面積は変わらないので、容量も変化しない。したがって、本実施形態によれば、第1の実施形態と同様の効果が得られる。
なお、本実施形態の可変容量コンデンサでは、上述のように、y方向の位置ずれが顕著である場合に適用可能であり、x方向の位置ずれに対して容量が変化する。その様子を図24(a)及び(b)に示す。図24(a)及び(b)は、上電極41を強誘電体層10の下面10bに投影した際の上電極投影パターン41pと下電極42との重なり領域(対向電極領域)Sa1及びSa2と、x方向の位置ずれとの関係を示す図である。
図24(a)は、上電極41が下電極42に対して相対的に+x方向(図面上では右方向)に位置ずれした場合の状態を示す図である。また、図24(b)は、上電極41が下電極42に対して相対的に−x方向(図面上では左方向)に位置ずれした場合の状態を示す図である。なお、図24(a)及び(b)中の一点鎖線は、上電極41が下電極42に対して位置ずれしていない場合の上電極投影パターン41pの位置を示している。また、図24(a)及び(b)では、下電極42に対する上電極41の位置ずれ方向を太実線の矢印で示す。
図24(a)及び(b)から明らかなように、本実施形態では、上電極41が下電極42に対して相対的にx方向にずれると、対向電極領域Sa1及びSa2の総面積が変化し、容量が変化する。より具体的には、図24(a)の場合には、位置ずれにより、図24(a)中の領域Saoが対向電極領域から外れるので、対向電極領域Sa1及びSa2の総面積が位置ずれがない場合に比べて小さくなる。一方、図24(b)の場合には、位置ずれにより、図24(b)中の領域Saiが対向電極領域に新たに加わるので、対向電極領域Sa1及びSa2の総面積が位置ずれがない場合に比べて大きくなる。
なお、本実施形態では、y方向の一方向の位置ずれが顕著である場合の例を説明したが、本発明はこれに限定されない。x方向の一方向の位置ずれが顕著である場合にも適用可能である。その場合には、例えば、図21(a)及び(b)に示す上電極41及び下電極42をそれぞれ上面10a及び下面10b内で90度回転させた形状にすればよい。
上記第2の実施形態では、静電容量素子として可変容量素子(可変容量コンデンサ)を例に挙げ説明したが、本発明はこれに限定されない。上記第2の実施形態で説明した上電極及び下電極の構成は、入力信号の種類及びその信号レベルに関係なく容量がほとんど変化しない定容量素子に対しても同様に適用可能であり、同様の効果が得られる。ただし、この場合、誘電体層は、比誘電率の低い常誘電体材料で形成される。なお、常誘電体材料としては、上記第1の実施形態で説明した常誘電体材料と同様の材料を用いることができる。
[変形例3]
上記第1及び第2の実施形態並びに変形例1及び2の可変容量コンデンサは、上述のように、2端子タイプの可変容量コンデンサであるので、その容量を制御する制御用バイアス信号を加えるための専用端子を持たない。それゆえ、これらの可変容量コンデンサを非接触ICカード等に用いる場合、実際の回路上では、可変容量コンデンサを4端子化する。
図25に、実際の回路上における可変容量コンデンサ周辺の回路構成例を示す。実際の回路上では、可変容量コンデンサ50の一方の端子を、バイアス除去用コンデンサ61を介して交流信号の一方の入出力端子63に接続するとともに、電流制限抵抗62を介して制御電圧の入力端子64に接続する。また、可変容量コンデンサ50の他方の端子を、交流信号の他方の入出力端子65に接続するとともに、制御電圧の出力端子66に接続する。
このような可変容量コンデンサ50の回路構成では、信号電流(交流信号)は、バイアス除去用コンデンサ61及び可変容量コンデンサ50を流れ、制御電流(直流バイアス電流)は、電流制限抵抗62を介して可変容量コンデンサ50のみを流れる。この際、制御電圧を変化させることにより、可変容量コンデンサ50の容量Cvが変化し、その結果、信号電流も変化する。
[可変容量素子の構成]
そこで、変形例3では、可変容量コンデンサ50と、バイアス除去用コンデンサ61とを一体化した可変容量素子の例を説明する。図26に、可変容量コンデンサ50と、バイアス除去用コンデンサ61とを一体化した可変容量素子の構成例を示す。なお、図26において、第1の実施形態(図6)と同様の構成には同じ符号を付して示す。
可変容量素子2は、強誘電体層51と、強誘電体層51を挟み込むように対向して形成された可変容量コンデンサ50用の上電極11及び下電極12とを備える。さらに、可変容量素子2は、強誘電体層51を挟み込むように対向して形成されたバイアス除去用コンデンサ61の上電極53及び下電極54を備える。
可変容量コンデンサ50用の上電極11及びバイアス除去用コンデンサ61の上電極53は、強誘電体層51の上面51aに、所定間隔離れて形成される。また、可変容量コンデンサ50用の下電極12及びバイアス除去用コンデンサ61の下電極54は、強誘電体層51の下面51bに、所定間隔離れて形成される。すなわち、本実施形態では、可変容量コンデンサ50及びバイアス除去用コンデンサ61の誘電体層を共通にする。
また、可変容量コンデンサ50用の上電極11とバイアス除去用コンデンサ61の上電極53とはリード線55等で接続される。なお、可変容量コンデンサ50用の上電極11とバイアス除去用コンデンサ61の上電極53とを接続するための所定の電線パターンを強誘電体層51の上面51aに形成して両者を接続してもよい。
可変容量コンデンサ50用の上電極11及びバイアス除去用コンデンサ61の上電極53は、リード線56により、電流制限抵抗62を介して制御電圧の入力端子64に接続される(図25及び26参照)。可変容量コンデンサ50用の下電極12は、リード線57により、交流信号の他方の入出力端子65及び制御電圧の出力端子66に接続される。そして、バイアス除去用コンデンサ61の下電極54は、リード線58により、交流信号の一方の入出力端子63に接続される。このように接続することにより、図25の回路構成と同様に、信号電流(交流信号)がバイアス除去用コンデンサ61及び可変容量コンデンサ50を流れ、制御電流(直流バイアス電流)は、電流制限抵抗62を介して可変容量コンデンサ50のみを流れる。
なお、可変容量コンデンサ50用の上電極11及び下電極12は、上記第1及び第2の実施形態並びに変形例1及び2の可変容量コンデンサで用いた上電極及び下電極と同様の形状で構成することができる。一方、バイアス除去用コンデンサ61の上電極53及び下電極54は、従来のコンデンサと同様の形状で形成することができる。
本実施形態のように、可変容量コンデンサ50と、バイアス除去用コンデンサ61とを一体化することにより、本発明の可変容量コンデンサを適用する装置の寸法を小さくすることができる。また、部品点数を減らすことができるので、装置のコストを低減することができる。
<3.第3の実施形態>
上記第1及び第2の実施形態並びに変形例1〜3では、2端子タイプの可変容量コンデンサに本発明を適用した例を説明したが、本発明はこれに限定されない。上記特許文献2で提案されているような容量を制御する制御用バイアス信号を加えるための専用端子を有する4端子タイプの可変容量コンデンサにも適用可能である。本実施形態では、本発明を4端子タイプの可変容量コンデンサに適用した例を説明する。
[可変容量コンデンサの構成]
図27に、本実施形態の4端子タイプの可変容量コンデンサの一例を示す。なお、本実施形態の4端子タイプの可変容量コンデンサ3の構成は、電極形状以外は、特許文献2で提案されている可変容量素子(図61(a)及び(b)参照)と同様とする。それゆえ、本実施形態の可変容量コンデンサ3の外観は、図61(a)と同様であり、図27では、本実施形態の可変容量コンデンサ3の概略断面図のみを示す。
本実施形態の可変容量コンデンサ3は、5つの制御電極71〜75と、各制御電極間に設けられた4つの信号電極76〜79と、隣り合う制御電極及び信号電極間にそれぞれ設けられた強誘電体層70とで構成される。すなわち、本実施形態の可変容量コンデンサ3は、5つの制御電極71〜75及び4つの信号電極76〜79が、強誘電体層70を介して交互に積層された構造となる。なお、以下では、図27面上で最上に位置する制御電極71から最下に位置する制御電極75までの制御電極をそれぞれ第1制御電極71〜第5制御電極75という。また、図27面上で最上に位置する信号電極76から最下に位置する信号電極79までの信号電極をそれぞれ第1信号電極76〜第4信号電極79という。
本実施形態では、第1制御電極71、第3制御電極73及び第5制御電極75は、制御電源81のプラス端子に接続され、第2制御電極72及び第4制御電極は、制御電源81のマイナス端子に接続される。一方、第1信号電極76及び第3信号電極78は、信号電源80(交流電源)の一方の入出力端子に接続され、第2信号電極77及び第4信号電極79は、信号電源80の他方の入出力端子に接続される。
[電極構成]
図28(a)〜(d)に、本実施形態の各制御電極及び各信号電極の構成の一例を示す。なお、図28(a)〜(d)では、図27に示す可変容量コンデンサ3の図面上で上から4つの電極の構成を、その配置順で示す。図28(a)は、第1制御電極71の電極構成であり、図28(b)は、第1信号電極76の電極構成である。また、図28(c)は、第2制御電極72の電極構成であり、図28(d)は、第2信号電極77の電極構成である。
各電極は、図28(a)〜(d)に示すように、T字状の形状を有する。また、各電極は、リード線等を介して信号電源80または制御電源81に接続される端子部と、端子部の中央から端子部の延在方向に直交する方向に延在する電極部とで構成される。そして、強誘電体層70を介して隣り合う電極部の延在方向が互いに直交するように各電極が形成されている。
より具体的に説明すると、図28(a)〜(d)の例では、第1制御電極71の端子部71bは、強誘電体層70の表面の一方の短辺(図面上では左側短辺)に沿って形成される。そして、第1制御電極71の電極部71aは、端子部71bの中央から端子部71bの延在方向(図面上ではy方向)に直交する方向(x方向)に延在して形成される。
強誘電体層70を間に介在して第1制御電極71の隣に形成される第1信号電極76では、その端子部76bは、強誘電体層70の表面の一方の長辺(図面上では上側長辺)に沿って形成される。そして、第1信号電極76の電極部76aは、端子部76bの中央から端子部76bの延在方向(図面上ではx方向)に直交する方向(y方向)に延在して形成される。これにより、第1制御電極71の電極部71aと第1信号電極76の電極部76aとが直交する。
また、強誘電体層70を間に介在して第1信号電極76の隣に形成される第2制御電極72では、その端子部72bは、強誘電体層70の表面の他方の短辺(図面上では右側短辺)に沿って形成される。そして、第2制御電極72の電極部72aは、端子部72bの中央から端子部72bの延在方向(図面上ではy方向)に直交する方向(x方向)に延在して形成される。これにより、第1信号電極76の電極部76aと第2制御電極72の電極部72aとが直交する。
また、強誘電体層70を間に介在して第2制御電極72の隣に形成される第2信号電極77では、その端子部77bは、強誘電体層70の表面の他方の長辺(図面上では下側長辺)に沿って形成される。そして、第2信号電極77の電極部77aは、端子部77bの中央から端子部77bの延在方向(図面上ではx方向)に直交する方向(y方向)に延在して形成される。これにより、第2制御電極72の電極部72aと第2信号電極77の電極部77aとが直交する。
また、本実施形態では、第3制御電極73、第3信号電極78、第4制御電極74及び第4信号電極79の電極構成をそれぞれ図28(a)〜(d)に示す電極構成とする。さらに、第5制御電極75の電極構成は、図28(a)に示す電極構成とする。このように構成することにより、強誘電体層70を介して隣り合う全ての制御電極及び信号電極間において電極部の延在方向が互いに直交するように形成することができる。
なお、各電極の形状は、隣り合う制御電極及び信号電極間に位置ずれがx方向及び/又はy方向に生じても、該制御電極及び信号電極間の対向電極領域(重なり領域)の面積が変化しないように、各制御電極及び各信号電極の形状を設計する。また、各電極の寸法は、必要とする容量値、抵抗値及び想定される電極間の最大の位置ずれ量を考慮して設計する。例えば、第1の実施形態で説明した設計概要と同様にして各電極の寸法を設定する。
上述のようにして各電極の形状を設定することにより、隣り合う制御電極及び信号電極間に位置ずれがx方向及び/又はy方向に生じても、該隣り合う制御電極及び信号電極間の対向電極領域の面積が変化せず、可変容量コンデンサ3の容量も変化しない。それゆえ、本実施形態によれば、第1の実施形態と同様の効果が得られる。さらに、本実施形態の可変容量コンデンサ3は、4端子タイプの可変容量素子であるので、バイアス除去用コンデンサが不要になる。
なお、本実施形態では、x及びy方向の両方向の位置ずれを考慮した例を説明したが、本発明はこれに限定されない。第2の実施形態と同様に、x方向またはy方向に、すなわち一方向に位置ずれが顕著である場合にも適用可能である。その場合には、例えば、隣り合う制御電極及び信号電極間の形状を、図21(a)及び(b)に示すような形状にすればよい。
また、本実施形態では、信号電源80により信号電極間に発生する電界方向と、制御電圧により制御電圧間に発生する電界方向が平行になる4端子タイプの可変容量コンデンサ3について説明したが、本発明はこれに限定されない。例えば、信号電源により信号電極間に発生する電界方向と、制御電圧により制御電圧間に発生する電界方向とが直交する4端子タイプの可変容量コンデンサ(不図示)にも適用可能である。この場合、信号電極と制御電極は、本実施形態のように交互に形成されない。それゆえ、このような4端子タイプの可変容量コンデンサでは、隣り合う信号電極間の電極形状に対して本発明を適用すればよい。
<4.第4の実施形態>
上述した第1の実施形態で説明したように、本発明の可変容量素子では、強誘電体層を挟んで対向する電極(上電極及び下電極)の位置ずれに関係なく、pFオーダーの小容量の可変容量コンデンサを安定して作製することができる。ただし、低電圧で可変容量素子を駆動するには、強誘電体層を一層薄くして電極間の電界強度を増大させる必要がある。このためには、強誘電体層を挟んで対向する電極間の対向電極面積をより小さくしなければならない。すなわち、可変容量素子の低電圧駆動を実現するために、厚さの薄い強誘電体層を用い、且つ、非常に小さい容量Cの可変容量素子を作製しなければならない。
例えば、可変容量素子を約3Vで駆動させる場合、強誘電体層の厚さは約2μm程度となり、対向電極領域は約100μm×100μm程度となる。このような場合、可変容量素子の電極全体の抵抗値Rが大きくなり、Q値(=1/ωCR:Quality of factor)が小さくなるという問題が生じる。そこで、本実施形態では、2端子タイプの可変容量素子において、電極抵抗(ESR:Equivalent Series Resistance)をさらに小さくすることができる可変容量素子の構成例を説明する。
図29(a)及び(b)に、本実施形態に係る可変容量コンデンサ(可変容量素子)の一構成例を示す。なお、図29(a)は、本実施形態の可変容量コンデンサの上面図であり、上電極の構成を示す図である。一方、図29(b)は、本実施形態の可変容量コンデンサの下面図であり、下電極の構成を示す図である。本実施形態では、上電極及び下電極の構成(形状)を変えたこと以外は、上記第1の実施形態(図6並びに7(a)及び(b))の可変容量コンデンサ1と同様の構成とする。なお、図29(a)及び(b)において、上記第1の実施形態(図7(a)及び(b))と同様の構成には、同じ符号を付して示す。
上電極101(第1電極)は、略三角状の形状(第1形状)を有し、電極部101aと、端子部101bとで構成される。電極部101aは、強誘電体層10(誘電体層)の上面10aの長辺に沿う方向(図29(a)中のx方向)に対して斜め方向(直交しない方向)に延在して形成される。具体的には、図29(a)の図面上では、電極部101aは、強誘電体層10の上面10aの左上の角部からそれに対向する右下の角部に向かう方向に延在する。
端子部101bは、第1端子部101c及び第2端子部101dで構成される。第1端子部101cは、強誘電体層10の上面10aの一方の長辺(図面上では下側長辺)に沿って、その長辺近傍に形成される。そして、第1端子部101cの一方の端部が、電極部101aの一方の端部に接続される。
また、第2端子部101dは、強誘電体層10の上面10aの長辺に沿う方向(図29(a)中のx方向)に対して斜め方向(直交しない方向)に延在し且つ電極部101aの延在方向と交差する方向に延在して形成される。図29(a)の図面上では、第2端子部101dは、強誘電体層10の上面10aの右上の角部からそれに対向する左下の角部に向かう方向に延在する。そして、第2端子部101dの一方の端部は、電極部101aの他方の端部(第1端子部101cと接続されていない側の端部)に接続され、他方の端部は、第1端子部101cの他方の端部に接続される。
電極部101a、第1端子部101c及び第2端子部101dを上述のように構成することにより、上電極101内には、これらの部により三角状の開口部101eが画成される。なお、開口部101eの形状はこれに限定されず、任意の形状にすることができる。
下電極102(第2電極)は、V字状の形状(第2形状)を有し、電極部102aと、端子部102bとで構成される。本実施形態の下電極102は、上記変形例2で説明した下電極32(図17(b))と同様の構成である。なお、下電極102の電極部102aの延在方向は、上電極101の電極部101aの延在方向と略直交する。
図30に、本実施形態の可変容量コンデンサの上電極101を強誘電体層10の下面10bに投影した上電極投影パターン101pと、下電極102との重なり状態を示す。なお、図30には、上電極101が下電極102に対して位置ずれしていない場合の上電極投影パターン101pと、下電極32との重なり状態を示す。本実施形態では、上電極投影パターン101pの電極部101paと、下電極102の電極部102aとを交差させ、その交差領域に対向電極領域Sa(第1領域)を形成する。
本実施形態では、想定される内部電極(上電極及び下電極)間の最大の位置ずれ量を考慮して、上電極101及び下電極102の形状及び寸法が設計される。具体的には、内部電極間に位置ずれが生じても、下電極102の電極部102aの先端が上電極投影パターン101p内の開口部101pe内に位置するように、上電極101及び下電極102の形状及び寸法が設計される。これにより、上電極101及び下電極102間の位置ずれに関係なく、上電極101及び下電極102間の対向電極領域Saの面積は一定となる。
また、本実施形態では、第1の実施形態と同様に、内部電極間の位置ずれ量だけでなく、必要とする容量値及び電極抵抗値等を考慮して、上電極101及び下電極102の形状及び寸法を設計する。特に、上電極101の設計においては、電極部101aの幅は対向電極領域Saの面積を小さくするために狭くするが、端子部101bの領域(面積)は、電極抵抗をより下げるために、できる限り広くすることが好ましい。
なお、本実施形態の可変容量コンデンサは、例えば、上述した第1の実施形態の製造方法と同様にして作製することができる。また、本実施形態では、強誘電体層10が1層の構成例を説明したが、本発明はこれに限定されず、複数の強誘電体層10を、電極を介して積層してもよい。
上述のように、本実施形態では、上電極101及び下電極102間に位置ずれが生じても、上電極101及び下電極102間の対向電極領域Saの面積が一定となるように、両内部電極が構成される。それゆえ、本実施形態では、第1の実施形態と同様の効果が得られる。
また、本実施形態では、上電極101の端子部101bの領域(面積)を広くすることができるので、可変容量コンデンサの電極抵抗の値を小さくすることができる。その結果、本実施形態では、Q値の低下を抑制することができる。
[変形例4]
電極抵抗をより小さくすることができる可変容量コンデンサの構成例は、上記第4の実施形態に限定されない。ここでは、電極抵抗をより小さくすることのできる可変容量コンデンサの別の構成例(変形例4)を説明する。
図31(a)及び(b)に、変形例4の可変容量コンデンサの電極構成例を示す。なお、図31(a)は、変形例4の可変容量コンデンサの上面図であり、上電極の構成を示す図である。一方、図31(b)は、変形例4の可変容量コンデンサの下面図であり、下電極の構成を示す図である。この例では、上電極及び下電極の構成(形状)を変えたこと以外は、上記第4の実施形態の可変容量コンデンサと同様の構成とする。なお、図31(a)及び(b)において、上記第4の実施形態(図29(a)及び(b))と同様の構成には、同じ符号を付して示す。
上電極111は、電極部111aと、端子部111bとで構成される。電極部111aは、強誘電体層10の上面10aの長辺に沿う方向(図31(a)中のx方向)に対して斜め方向(直交しない方向)に延在して形成される。具体的には、図31(a)の図面上では、電極部111aは、強誘電体層10の上面10aの左上の角部からそれに対向する右下の角部に向かう方向に延在する。
端子部111bは、略L字状の形状を有し、その底辺部が強誘電体層10の上面10aの一方の長辺(図面上では下側長辺)に沿って、その近傍に形成される。そして、略L字状の端子部111bの一方の端部に電極部111aの一方の端部が接続され、他方の端部に電極部111aの他方の端部が接続される。その結果、上電極111内には、電極部111a及び端子部111bにより、矩形状の開口部111dが画成される。
また、下電極112は、電極部112aと、端子部112bとで構成される。電極部112aは、強誘電体層10の上面10aの長辺に沿う方向(図31(b)中のx方向)に対して斜め方向(直交しない方向)に延在して形成される。具体的には、図31(b)の図面上では、電極部112aは、強誘電体層10の上面10aの右上の角部からそれに対向する左下の角部に向かう方向に延在する。なお、下電極112の電極部112aの延在方向は、上電極111の電極部111aの延在方向と略直交する。
端子部112bは、略L字状の形状を有し、その底辺部が強誘電体層10の上面10aの他方の長辺(図面上では上側長辺)に沿って、その近傍に形成される。そして、略L字状の端子部112bの底辺部に対向する側に位置する端部に、電極部112aの一方の端部が接続される。なお、この例では、上記第4の実施形態に比べて、下電極112の端子部112bの領域(面積)をより広くすることができ、且つ、下電極112の電極部112aの延在方向の長さをより短くすることができる。それゆえ、この例では、第4の実施形態に比べて、下電極112の抵抗値をより小さくすることができる。
図32に、この例の可変容量コンデンサの上電極111を強誘電体層10の下面10bに投影した上電極投影パターン111pと、下電極112との重なり状態を示す。なお、図32は、上電極111が下電極112に対して位置ずれしていない場合の上電極投影パターン111pと、下電極112との重なり状態を示す図である。この例では、上電極投影パターン111pの電極部111paと、下電極112の電極部112aとを交差させ、その交差領域に対向電極領域Saを形成する。
この例では、上記第4の実施形態と同様に、必要とする容量値、電極抵抗値、及び、想定される電極間の最大の位置ずれ量を考慮して、上電極111及び下電極112の形状及び寸法を設計する。この際、上電極111及び下電極112間に位置ずれが生じても、上電極111及び下電極112間の対向電極領域Saの面積が一定となるように、上電極111及び下電極112の形状及び寸法を設計する。
なお、この例の可変容量コンデンサは、例えば、上述した第1の実施形態の製造方法と同様にして作製することができる。また、この例では、強誘電体層10が1層の構成例を説明したが、本発明はこれに限定されず、複数の強誘電体層10を、電極を介して積層してもよい。
上述のように、この例では、上電極111及び下電極112間に位置ずれが生じても、上電極111及び下電極112間の対向電極領域Saの面積が一定となるように、両内部電極が構成される。それゆえ、本実施形態では、第1の実施形態と同様の効果が得られる。
この例では、上電極111だけでなく、下電極112の領域(面積)も広くし、且つ、下電極112の電極部112aの長さをより短くすることができる。それゆえ、この例では、可変容量コンデンサの電極抵抗の値をより一層小さくすることができ、Q値の低下を一層抑制することができる。
なお、上記第4の実施形態及び変形例4では、可変容量コンデンサを構成する上電極に開口部を設ける例を説明したが、本発明はこれに限定されない。下電極に開口部を設けてもよい。また、第2の実施形態で説明したように上電極及び下電極間の位置ずれが主に一方向であるような場合には、上電極及び下電極の両方を、開口部を有する電極で構成してもよい。
上記第4の実施形態及び変形例4では、静電容量素子として可変容量素子(可変容量コンデンサ)を例に挙げ説明したが、本発明はこれに限定されない。上記第4の実施形態及び変形例4で説明した上電極及び下電極の構成は、入力信号の種類及びその信号レベルに関係なく容量がほとんど変化しない定容量素子に対しても同様に適用可能である。ただし、この場合、誘電体層は比誘電率の低い常誘電体材料で形成される。なお、常誘電体材料としては、上記第1の実施形態で説明した常誘電体材料と同様の材料を用いることができる。
上記第4の実施形態で説明した問題、すなわち、上電極及び下電極をより小さくした場合に、静電容量素子全体の抵抗値Rが大きくなり、Q値が低下するという問題は、定容量素子においても同様に生じる。それゆえ、上記第4の実施形態で説明した上電極及び下電極の構成を定容量素子に適用した場合にも、上記問題を解消することができ、第4の実施形態と同様の効果が得られる。
<5.第5の実施形態>
上述した第1〜第4の実施形態並びに変形例1〜4で説明した可変容量コンデンサは、内部電極と外部の回路素子とを電気的に接続する外部端子を備える。図33並びに34(a)及び(b)に、変形例2で説明した電極構成の可変容量コンデンサのより具体的な構成例を示す。なお、図33は、可変容量コンデンサ120の外観斜視図である。また、図34(a)は、可変容量コンデンサ120の上面図であり、図34(b)は、図34(a)中のA−A断面図である。なお、図33並びに34(a)及び(b)において、変形例2(図17(a)及び(b))と同様の構成には、同じ符号を付して示す。
変形例2の電極構成を有する可変容量コンデンサ120は、例えば直方体状の強誘電体部材121と、その長辺に沿った一対の側面121a及び121bにそれぞれ設けられた上側外部端子122及び下側外部端子123とで構成される。
強誘電体部材121は、図34(b)に示すように、強誘電体層10と、その上面10a及び下面10bにそれぞれ形成された上電極31及び下電極32と、上電極31及び下電極32上にさらに形成された強誘電体層124とを備える。なお、強誘電体層124は、強誘電体層10と同じ材料で形成される。
上側外部端子122は、側面が略C字状の金属部材であり、強誘電体部材121の長辺側の一方の側面121aのほぼ全体及び上下面の一部を覆うように設けられる。上側外部端子122は、上電極31の端子部31bに接続される。また、下側外部端子123は、側面が略C字状の金属部材であり、強誘電体部材121の長辺側の他方の側面121bのほぼ全体及び上下面の一部を覆うように設けられる。そして、下側外部端子123は、下電極32の端子部32bに接続される。なお、可変容量コンデンサ120が、例えばpFオーダーのコンデンサである場合には、上側外部端子122及び下側外部端子123間の距離は、約0.5mm程度になる。
上述のような構成の可変容量コンデンサ120では、上側外部端子122及び下側外部端子123間に浮遊容量C0が発生する。ここで、図35に、可変容量コンデンサ120の実質的な等価回路を示す。上述のような構成の可変容量コンデンサ120では、その等価回路は、上電極31及び下電極32間の可変容量コンデンサ125と、上側外部端子122及び下側外部端子123間の容量一定のコンデンサ126とを並列接続した回路となる。
pFオーダーの小容量の可変容量コンデンサでは、上述のように上側外部端子122及び下側外部端子123間の距離が短く、また、外部端子間の対向面積も大きい。それゆえ、外部端子間の浮遊容量C0は、上電極31及び下電極32間に形成される可変容量コンデンサの容量C1に対して無視できないほどの大きさになる。例えば、強誘電体部材121の比誘電率を3500程度とし、上側外部端子122及び下側外部端子123間の距離を約0.5mm程度とした場合、この外部端子間の浮遊容量C0は約30pF程度となる。それに対して、例えば、強誘電体層10の比誘電率を3500程度とし、上電極31及び下電極32間の距離を約2μm程度とした場合、上電極31及び下電極32間の容量C1は数十〜100pF程度になる。
すなわち、本発明の電極構成を用いてpFオーダーの小容量の可変容量コンデンサを作製する場合、上電極31及び下電極32(内部電極)間の容量C1と、外部端子間の浮遊容量C0とは、同オーダーの値となる。この場合、浮遊容量C0の影響により、可変容量コンデンサ120の容量値が設計値からずれるという問題が生じる。また、外部端子間のコンデンサ126は、容量一定の固定コンデンサとして作用するため、可変容量コンデンサ120における容量の可変幅が狭くなるという問題が生じる。そこで、本実施形態では、上述した外部端子間の浮遊容量C0の影響を低減することができる2端子タイプの可変容量コンデンサの構成例を説明する。
[可変容量コンデンサの構成]
図36(a)及び(b)に、本実施形態に係る可変容量コンデンサの概略構成例を示す。図36(a)は、可変容量コンデンサ135の外観斜視図であり、図36(b)は、可変容量コンデンサ135の上面図である。なお、図36(a)及び(b)において、第1の実施形態(図7(a)及び(b))と同様の構成には、同じ符号を付して示す。また、図36(a)及び(b)では、強誘電体部材136内部に形成される上電極131及び下電極132を破線で示す。
可変容量コンデンサ135(可変容量素子)は、例えば直方体状の強誘電体部材136と、その長辺側の一対の側面136a及び136bにそれぞれ設けられた上側外部端子137及び下側外部端子138とで構成される。
強誘電体部材136は、強誘電体層10(誘電体層)と、その上面10a及び下面10bにそれぞれ形成された上電極131及び下電極132と、上電極131及び下電極132上にさらに設けられた強誘電体層139とを備える。なお、強誘電体層139は、強誘電体層10と同じ材料で形成される。また、強誘電体部材136は、これらの層を積層した状態で例えば焼結等により一体化される。
上側外部端子137(第1外部端子)は、側面が略C字状の金属部材であり、強誘電体部材136の長辺側の一方の側面136a(第1側面)の一部及び上下面の一部を覆うように設けられる。なお、上側外部端子137の幅は、強誘電体部材136の長辺長さの約半分程度にする。また、上側外部端子137は、それが配置された強誘電体部材136の側面136aにおいて、上電極131の端子部131bが形成される短辺側の近傍に配置される。そして、上側外部端子137は、上電極131の端子部131bに接続される。
一方、下側外部端子138(第2外部端子)は、上側外部端子137と同様に、側面が略C字状の金属部材であり、強誘電体部材136の長辺側の他方の側面136b(第2側面)の一部及び上下面の一部を覆うように設けられる。なお、下側外部端子138の幅は、強誘電体部材136の長辺長さの約半分程度にする。また、下側外部端子138は、それが配置された強誘電体部材136の側面136bにおいて、下電極132の端子部132bが形成される短辺側(上側外部端子137が形成される短辺側とは反対側)の近傍に配置される。そして、下側外部端子138は、下電極132の端子部132bに接続される。
なお、本実施形態では、外部端子が、側面が略C字状の金属部材である例を説明したが、本発明はこれに限定されず、内部電極に接続可能な形状及び寸法を有していれば、任意の形状の外部端子を用いることができる。
上述のように、本実施形態では、上側外部端子137及び下側外部端子138を、強誘電体部材136を挟んで対角線上に配置する。すなわち、上側外部端子137及び下側外部端子138の配置方向が、強誘電体部材136の長辺側の側面136a及び136b間の対向方向(図36(a)及び(b)中のy方向)と交差するように、上側外部端子137及び下側外部端子138を配置する。このように両外部端子を配置することにより、端子幅の短縮と相まって上側外部端子137及び下側外部端子138間の対向面積を、図33で説明した例より小さくすることができる。この結果、可変容量コンデンサ135における外部端子間の浮遊容量を小さくすることができる。なお、本明細書でいう、外部端子間の「配置方向」とは、一方の外部端子の中心から他方の外部端子の中心に向かう方向を意味する。
なお、図36(a)及び(b)の例では、上側外部端子137及び下側外部端子138が、強誘電体部材136の短辺に沿う方向(y方向)において対向しない例を示すが、本発明は、これに限定されない。上側外部端子137及び下側外部端子138間の浮遊容量が、上電極131及び下電極132間に形成される可変容量コンデンサの容量に対して無視できる程度であれば、上側外部端子137及び下側外部端子138の間に対向する領域があってもよい。
例えば、上側外部端子137及び下側外部端子138間の浮遊容量は、上電極131及び下電極132間に形成される可変容量コンデンサの容量の約1/10以下にすることが好ましい。
[電極構成]
次に、本実施形態の可変容量コンデンサ135の電極構成の一例を説明する。図37(a)及び(b)に、本実施形態の可変容量コンデンサ135の電極構成例を示す。なお、図37(a)は、本実施形態における強誘電体層10の上面図であり、上電極131の構成を示す図である。一方、図37(b)は、本実施形態における強誘電体層10の下面図であり、下電極132の構成を示す図である。
なお、本実施形態では、上電極131及び下電極132の構成(形状)を変えたこと以外は、上記第1の実施形態の可変容量コンデンサと同様の構成とする。すなわち、本実施形態では、第1の実施形態と同様に、図面中のx及びy方向の両方向における位置ずれを考慮した電極構成の例を説明する。なお、図37(a)及び(b)において、上記第1の実施形態(図7(a)及び(b))と同様の構成には、同じ符号を付して示す。
上電極131(第1電極)は、電極部131aと、端子部131bとで構成される。電極部131aは、強誘電体層10の上面10aの長辺に沿う方向(図37(a)中のx方向)に対して斜め方向(直交しない方向)に延在して形成される。具体的には、図37(a)の図面上では、電極部131aは、強誘電体層10の上面10aの右下の角部からそれに対向する左上の角部に向かう方向に延在する。
端子部131bは、強誘電体層10の上面10aの一方の短辺付近から長辺に沿う方向に延在して形成され、矩形状の形状を有する。なお、本実施形態では、端子部131bの延在長さは、強誘電体層10の長辺長さの約半分程度にする。また、端子部131bは、強誘電体層10の上面10aの一方の長辺近傍(図面上では下側長辺近傍)に配置される。すなわち、端子部131bは、強誘電体層10の上面10aの一つの角部付近(図面上では右下角部付近)に配置される。そして、強誘電体層10の上面10aの中心側に位置する端子部131bの角部に、電極部131aの一方の端部が接続される。
また、下電極132(第2電極)は、変形例2の下電極32(図17(b))と同様に、V字状の形状を有し、電極部132aと、端子部132bとで構成される。本実施形態では、端子部132bの延在長さを、強誘電体層10の長辺長さの約半分程度にする。それ以外は、変形例2の下電極32(図17(b))と同様の構成である。なお、下電極132の電極部132aの延在方向は、上電極131の電極部131aの延在方向と略直交する。
図38に、本実施形態の可変容量コンデンサ135において、上電極131を強誘電体層10の下面10bに投影した上電極投影パターン131pと、下電極132との重なり状態を示す。なお、図38には、上電極131が下電極132に対して位置ずれしていない場合の上電極投影パターン131pと、下電極132との重なり状態を示す。本実施形態では、上電極投影パターン131pの電極部131paと、下電極132の電極部132aとを交差させ、その交差領域に対向電極領域Sa(第1領域)を形成する。
本実施形態では、上電極131及び下電極132間に位置ずれが生じても、上電極131及び下電極132間の対向電極領域Saの面積が一定となるように上電極131及び下電極132の形状及び寸法を設計する。また、上記第1の実施形態と同様に、必要とする容量値及び電極抵抗値等を考慮して、上電極131及び下電極132の形状及び寸法を設計する。
また、本実施形態の可変容量コンデンサ135は、例えば、上述した第1の実施形態の製造方法と同様にして作製することができる。なお、本実施形態では、強誘電体層10が1層の構成例を説明したが、本発明はこれに限定されず、複数の強誘電体層10を、電極を介して積層してもよい。
上述のように、本実施形態では、上電極131及び下電極132間に位置ずれが生じても、上電極131及び下電極132間の対向電極領域Saの面積が一定となるように、両内部電極が構成される。それゆえ、本実施形態では、第1の実施形態と同様の効果が得られる。
また、本実施形態では、上側外部端子137及び下側外部端子138間の対向面積を、より小さくすることができる。それゆえ、両外部端子間の浮遊容量を小さくすることができ、上述した浮遊容量の影響により発生する問題を解消することができる。具体的には、本実施形態の可変容量コンデンサ135では、ほぼ設計値通りの容量値が得られ、その容量の可変幅への浮遊容量の影響を低減することができる。
なお、上記本実施形態では、図37(a)及び(b)中のx及びy方向の両方向において位置ずれを考慮した電極構成の例を説明したが、本発明はこれに限定されない。上記本実施形態における外部端子の配置形態は、第2の実施形態で説明したx方向またはy方向の一方向の位置ずれが顕著である場合に対しても適用可能である。
[変形例5]
外部端子間の浮遊容量を小さくすることができる可変容量コンデンサの構成例は、上記第5の実施形態の例に限定されない。ここでは、外部端子間の浮遊容量を低減可能な可変容量コンデンサの別の構成例(変形例5)を説明する。
[可変容量コンデンサの構成]
図39(a)及び(b)に、変形例5の可変容量コンデンサの概略構成例を示す。図39(a)は、可変容量コンデンサ145の外観斜視図であり、図39(b)は、可変容量コンデンサ145の上面図である。なお、図39(a)及び(b)において、第5の実施形態(図36(a)及び(b))と同様の構成には、同じ符号を付して示す。また、図39(a)及び(b)では、強誘電体部材146内部に形成される上電極141及び下電極142を破線で示す。
可変容量コンデンサ145は、例えば直方体状の強誘電体部材146と、その短辺側の一対の側面146a及び146bにそれぞれ設けられた上側外部端子147及び下側外部端子148とで構成される。
強誘電体部材146は、強誘電体層10と、その上面10a及び下面10bにそれぞれ形成された上電極141及び下電極142と、上電極141及び下電極142上にさらに設けられた強誘電体層139とを備える。この例の強誘電体部材146は、上電極141及び下電極142の形状を変えたこと以外は、上述した第5の実施形態の強誘電体部材136(図36(a))と同様の構成である。
上側外部端子147は、側面が略C字状の金属部材であり、強誘電体部材146の短辺側の一方の側面146aの一部及び上下面の一部を覆うように設けられる。なお、上側外部端子147の幅は、強誘電体部材146の短辺長さの約半分程度にする。また、上側外部端子147は、それが配置された強誘電体部材146の側面146aにおいて、上電極141の端子部141bが形成される長辺側の近傍に配置される。そして、上側外部端子147は、上電極141の端子部141bに接続される。
一方、下側外部端子148は、上側外部端子147と同様に、側面が略C字状の金属部材であり、強誘電体部材146の短辺側の他方の側面146bの一部及び上下面の一部を覆うように設けられる。なお、下側外部端子148の幅は、強誘電体部材146の短辺長さの約半分程度にする。また、下側外部端子148は、それが配置された強誘電体部材146の側面146bにおいて、下電極142の端子部142bが形成される長辺側(上側外部端子147が形成される長辺側とは反対側)の近傍に配置される。そして、下側外部端子148は、下電極142の端子部142bに接続される。
上述のように、この例においても、上記第5の実施形態と同様に、上側外部端子147及び下側外部端子148は、強誘電体部材146を挟んで対角線上に配置される。それゆえ、この例においても、第5の実施形態と同様に、上側外部端子147及び下側外部端子138間の対向面積を、より小さくすることができ、外部端子間の浮遊容量を小さくすることができる。
なお、図39(a)及び(b)の例では、上側外部端子147及び下側外部端子148が、強誘電体部材146の長辺に沿う方向(x方向)において対向しない例を示すが、本発明は、これに限定されない。上側外部端子147及び下側外部端子148間の浮遊容量が、上電極141及び下電極142間に形成される可変容量コンデンサの容量に対して無視できる程度であれば、上側外部端子147及び下側外部端子148の間に対向する領域があってもよい。
[電極構成]
図40(a)及び(b)に、この例の可変容量コンデンサ145の電極構成例を示す。なお、図40(a)は、この例の強誘電体層10の上面図であり、上電極141の構成を示す図である。一方、図40(b)は、この例の強誘電体層10の下面図であり、下電極142の構成を示す図である。なお、図40(a)及び(b)において、上記第5の実施形態(図37(a)及び(b))と同様の構成には、同じ符号を付して示す。
上電極141は、上記第5の実施形態の上電極131(図37(a))と同様の形状を有し、電極部141aと、端子部141bとで構成される。この例では、端子部141bを、強誘電体層10の上面10aの一方の短辺(図40(a)では右側短辺)から延在して形成する。すなわち、端子部141bの延在方向の長さを、第5の実施形態のそれより長くする。この例の上電極141の構成は、端子部141bの形状を変えたこと以外は、上述した第5の実施形態の上電極131と同様である。
また、下電極142は、上記第5の実施形態の下電極142(図37(b))と同様の形状を有し、電極部142aと、端子部142bとで構成される。この例では、端子部142bを、強誘電体層10の下面10bの他方の短辺(図40(b)では左側短辺)から延在して形成する。すなわち、端子部142bの延在方向の長さを、第5の実施形態のそれより長くする。この例の下電極142の構成は、端子部142bの形状を変えたこと以外は、上述した第5の実施形態の下電極132と同様である。なお、この例では、下電極142の電極部142aの延在方向は、上電極141の電極部141aの延在方向と略直交する。
図41に、この例の可変容量コンデンサ145において、上電極141を強誘電体層10の下面10bに投影した上電極投影パターン141pと、下電極142との重なり状態を示す。なお、図41は、上電極141が下電極142に対して位置ずれしていない場合の上電極投影パターン141pと、下電極142との重なり状態を示す。この例では、上電極投影パターン141pの電極部141paと、下電極142の電極部142aとを交差させ、その交差領域に対向電極領域Saを形成する。
この例では、上電極141及び下電極142間に位置ずれが生じても、上電極141及び下電極142間の対向電極領域Saの面積が一定となるように上電極141及び下電極142の形状及び寸法を設計する。また、上記第1の実施形態と同様に、必要とする容量値及び電極抵抗値等を考慮して、上電極141及び下電極142の形状及び寸法を設計する。
また、この例の可変容量コンデンサ145は、例えば、上述した第1の実施形態の製造方法と同様にして作製することができる。なお、この例では、強誘電体層10が1層の構成例を説明したが、本発明はこれに限定されず、複数の強誘電体層10を、電極を介して積層してもよい。
上述のように、この例では、上電極141及び下電極142間に位置ずれが生じても、上電極141及び下電極142間の対向電極領域Saの面積が一定となるように、両内部電極が構成される。それゆえ、この例では、第1の実施形態と同様の効果が得られる。
また、この例では、上側外部端子147及び下側外部端子148間の対向面積を、より小さくすることができる。また、この例では、上側外部端子147及び下側外部端子148を強誘電体部材146の短辺側の両側面にそれぞれ配置するので、上側外部端子147及び下側外部端子148間の距離が第5の実施形態のそれに比べて大きくなる。それゆえ、この例では、両外部端子間の浮遊容量をより一層小さくすることができ、浮遊容量の影響をより低減することができる。
上記第5の実施形態及び変形例5では、静電容量素子として可変容量素子(可変容量コンデンサ)を例に挙げ説明したが、本発明はこれに限定されない。上記第5の実施形態及び変形例5で説明した上側外部端子及び下側外部端子の構成は、静電容量素子が定容量素子の場合であっても同様に適用可能である。ただし、この場合、誘電体層は比誘電率の低い常誘電体材料で形成される。なお、常誘電体材料としては、上記第1の実施形態で説明した常誘電体材料と同様の材料を用いることができる。
上記第5の実施形態で説明した問題、すなわち、上側外部端子及び下側外部端子間の浮遊容量C0の問題は、定容量素子においても同様に生じる。それゆえ、上記第5の実施形態及び変形例5で説明した上側外部端子及び下側外部端子の構成を定容量素子に適用した場合にも、両外部端子間の浮遊容量をより一層小さくすることができ、第5の実施形態と同様の効果が得られる。
<6.第6の実施形態>
第6の実施形態では、外部端子間の浮遊容量を低減可能な可変容量素子の別の構成例を説明する。
[可変容量コンデンサの構成]
図42(a)及び(b)に、本実施形態に係る可変容量コンデンサの概略構成例を示す。図42(a)は、可変容量コンデンサ155の外観斜視図であり、図42(b)は、可変容量コンデンサ155の上面図である。なお、図42(a)及び(b)において、第5の実施形態(図36(a)及び(b))と同様の構成には、同じ符号を付して示す。また、図42(a)及び(b)では、強誘電体部材156内部に形成される上電極151及び下電極152は破線で示す。
可変容量コンデンサ155(可変容量素子)は、例えば直方体状の強誘電体部材156と、その長辺側の一つの側面156aに所定距離離して設けられた上側外部端子157及び下側外部端子158とで構成される。なお、上側外部端子157及び下側外部端子158間の間隔は、これらの外部端子間の浮遊容量が、上電極151及び下電極152間の容量に比べて無視できる程度の大きさとなるような距離に設定することが好ましい。
強誘電体部材156は、強誘電体層10(誘電体層)と、その上面10a及び下面10bにそれぞれ形成された上電極151及び下電極152と、上電極151及び下電極152上にさらに設けられた強誘電体層139とを備える。本実施形態の強誘電体部材156は、上電極151及び下電極152の形状を変えたこと以外は、上述した第5の実施形態の強誘電体部材136(図36(a))と同様の構成である。
上側外部端子157(第1外部端子)及び下側外部端子158(第2外部端子)は、ともに側面が略C字状の金属部材であり、それらが配置された強誘電体部材156の側面156aの一部及び上下面の一部を覆うように設けられる。なお、本実施形態では、上側外部端子157及び下側外部端子158の幅は、強誘電体層10の長辺長さの半分未満にする。
また、上側外部端子157は、それが配置された強誘電体部材156の側面156aにおいて、上電極151の端子部151bが形成される一方の短辺側の近傍に配置される。そして、上側外部端子157は、上電極151の端子部151bに接続される。一方、下側外部端子158は、強誘電体部材156の側面156aにおいて、下電極152の端子部152bが形成される他方の短辺側の近傍に配置される。そして、下側外部端子158は、下電極152の端子部152bに接続される。
上述のように、本実施形態の可変容量コンデンサ155では、上側外部端子157及び下側外部端子158を強誘電体部材156の同一側面上に配置する。それゆえ、本実施形態では、上側外部端子157と下側外部端子158とが強誘電体部材156を挟んで対向しないので、外部端子間の浮遊容量を大幅に低減することができる。
[電極構成]
図43(a)及び(b)に、本実施形態の可変容量コンデンサ155の電極構成例を示す。なお、図43(a)は、本実施形態の強誘電体層10の上面図であり、上電極151の構成を示す図である。一方、図43(b)は、本実施形態の強誘電体層10の下面図であり、下電極152の構成を示す図である。なお、図43(a)及び(b)において、上記第5の実施形態(図37(a)及び(b))と同様の構成には、同じ符号を付して示す。
上電極151(第1電極)は、電極部151aと、端子部151bとで構成される。電極部151aは、強誘電体層10の上面10aの長辺に沿う方向(図43(a)中のx方向)に対して斜め方向(直交しない方向)に延在して形成される。具体的には、図43(a)の図面上では、電極部151aは、強誘電体層10の上面10aの右下の角部からそれに対向する左上の角部に向かう方向に延在する。
端子部151bは、強誘電体層10の上面10aの一方の短辺付近から長辺に沿う方向に延在して形成され、矩形状の形状を有する。なお、本実施形態では、端子部151bの延在方向の長さは、強誘電体層10の長辺長さの半分未満にする。また、端子部151bは、強誘電体層10の上面10aにおいて、一方の長辺近傍(図面上では下側長辺近傍)に配置され、且つ、上電極151の端子部151bが形成される一方の短辺側の近傍に配置される。すなわち、端子部151bは、図43(a)上では、強誘電体層10の上面10aの右下角部付近に配置される。そして、強誘電体層10の上面10aの中心側に位置する端子部151bの角部に、電極部151aの一方の端部が接続される。
一方、下電極152は、強誘電体層10の下面10bの短辺に沿う方向(図43(b)中のy方向)に対して、上電極151と線対称の形状を有し、上電極151と線対称の位置に形成される。すなわち、下電極152は、図43(b)上では、強誘電体層10の下面10bの左下角部付近に配置される。なお、本実施形態では、下電極152の電極部152aの延在方向は、上電極151の電極部151aの延在方向と略直交する。
図44に、本実施形態の可変容量コンデンサ155において、上電極151を強誘電体層10の下面10bに投影した上電極投影パターン151pと、下電極152との重なり状態を示す。なお、図44には、上電極151が下電極152に対して位置ずれしていない場合の上電極投影パターン151pと、下電極152との重なり状態を示す。本実施形態では、上電極投影パターン151pの電極部151paと、下電極152の電極部152aとを交差させ、その交差領域に対向電極領域Sa(第1領域)を形成する。
本実施形態では、上電極151及び下電極152間に位置ずれが生じても、上電極151及び下電極152間の対向電極領域Saの面積が一定となるように上電極151及び下電極152の形状及び寸法を設計する。また、上記第1の実施形態と同様に、必要とする容量値及び電極抵抗値等を考慮して、上電極151及び下電極152の形状及び寸法を設計する。
また、本実施形態の可変容量コンデンサ155は、例えば、上述した第1の実施形態の製造方法と同様にして作製することができる。なお、本実施形態では、強誘電体層10が1層の構成例を説明したが、本発明はこれに限定されず、複数の強誘電体層10を、電極を介して積層してもよい。
上述のように、本実施形態では、上電極151及び下電極152間に位置ずれが生じても、上電極151及び下電極152間の対向電極領域Saの面積が一定となるように、両内部電極が構成される。それゆえ、本実施形態では、第1の実施形態と同様の効果が得られる。
また、本実施形態では、上側外部端子157と下側外部端子158とが対向しないので、外部端子間の浮遊容量を大幅に低減することができ、上述した浮遊容量の影響により発生する問題を解消することができる。具体的には、本実施形態の可変容量コンデンサ155では、ほぼ設計値通りの容量値が得られ、容量の可変幅への浮遊容量の影響を低減することができる。
上記第6の実施形態では、静電容量素子として可変容量素子を例に挙げ説明したが、本発明はこれに限定されない。上記第6の実施形態で説明した上側外部端子及び下側外部端子の構成は、静電容量素子が定容量素子である場合でも同様に適用可能であり、同様の効果が得られる。ただし、この場合、誘電体層は、比誘電率の低い常誘電体材料で形成される。なお、常誘電体材料としては、上記第1の実施形態で説明した常誘電体材料と同様の材料を用いることができる。
<7.第7の実施形態>
上記第5及び第6の実施形態では、一つの強誘電体部材に一対の外部端子(一つの可変容量コンデンサ)を形成する例を説明したが、本発明はこれに限定されない。例えば、強誘電体部材に複数対の外部端子を設け、一つの可変容量素子内に複数の可変容量コンデンサを設ける(配列する)構成にしてもよい。本実施形態では、そのような構成を有する可変容量素子について説明する。
[可変容量素子の構成]
図45(a)及び(b)に、本実施形態の可変容量素子の概略構成を示す。図45(a)は、本実施形態の可変容量素子165の外観斜視図であり、図45(b)は、可変容量素子165の上面図である。なお、図45(a)及び(b)において、第6の実施形態(図42(a)及び(b))と同様の構成には、同じ符号を付して示す。また、図45(a)及び(b)には、強誘電体部材166内部に形成される第1上電極161、第1下電極162、第2上電極163及び第2下電極164を破線で示す。
可変容量素子165は、強誘電体部材166と、その一方の長辺側の側面166a(第1側面)に設けられた第1上側外部端子167(第1外部端子)及び第1下側外部端子168(第2外部端子)とを備える。さらに、可変容量素子165は、強誘電体部材166の他方の長辺側の側面166b(第2側面)に設けられた第2上側外部端子169(第3外部端子)及び第2下側外部端子170(第4外部端子)を備える。
本実施形態の可変容量素子165では、第1上側外部端子167及び第1下側外部端子168間、並びに、第2上側外部端子169及び第2下側外部端子170間でそれぞれ一つの可変容量コンデンサを構成する。すなわち、本実施形態では、一つの可変容量素子165内に2つの可変容量コンデンサを配列する。
強誘電体部材166は、例えば直方体状の形状を有し、強誘電体層10(誘電体層)と、その上面に形成された第1上電極161(第1電極)及び第2上電極163(第3電極)と、それらの上電極上に形成された強誘電体層139とを備える。また、強誘電体部材166は、強誘電体層10の下面に形成された第1下電極162(第2電極)及び第2下電極164(第4電極)と、それらの下電極上に形成された強誘電体層139とを備える。本実施形態の強誘電体部材166は、電極構成をアレイ化したこと以外は、上記第6の実施形態と同様の構成である。
第1上側外部端子167(第1外部端子)及び第2上側外部端子169(第3外部端子)は、上記第6の実施形態で説明した上側外部端子157(図42(a))と同様の構成である。
第1上側外部端子167は、それが配置される強誘電体部材166の一方の側面166aにおいて、第1上電極161の端子部161bが形成されている短辺側近傍に配置され、その端子部161bに接続される。一方、第2上側外部端子169は、それが配置される強誘電体部材166の他方の側面166bにおいて、第2上電極163の端子部163bが形成されている短辺側近傍に配置され、その端子部163bに接続される。すなわち、第1上側外部端子167及び第2上側外部端子169は、強誘電体部材166を挟んで対角線上に配置される。
また、第1下側外部端子168(第2外部端子)及び第2下側外部端子170(第4外部端子)は、上記第6の実施形態で説明した下側外部端子158(図42(a))と同様の構成である。
第1下側外部端子168は、それが配置される強誘電体部材166の一方の側面166aにおいて、第1上側外部端子167と所定距離離れて配置され、且つ、第1下電極162の端子部162bが形成されている短辺側近傍に配置される。そして、第1下側外部端子168は、第1下電極162の端子部162bに接続される。一方、第2下側外部端子170は、それが配置される強誘電体部材166の他方の側面166bにおいて、第2上側外部端子169と所定距離離れて配置され、且つ、第2下電極164の端子部164bが形成されている短辺側近傍に配置される。そして、第2下側外部端子170は、第2下電極164の端子部164bに接続される。
すなわち、第1下側外部端子168及び第2下側外部端子170は、強誘電体部材166を挟んで対角線上に配置される。なお、第1上側外部端子167及び第2上側外部端子169の配置方向と、第1下側外部端子168及び第2下側外部端子170の配置方向とは交差する。
上述のように、本実施形態では、第6の実施形態と同様に、各可変容量コンデンサを構成する一対の外部端子が強誘電体部材166の同一側面に設けられるので、一対の外部端子は対向しない。それゆえ、本実施形態においても、各可変容量コンデンサの外部端子間の浮遊容量を大幅に低減することができる。
[電極構成]
図46(a)及び(b)に、本実施形態の可変容量素子165の電極構成例を示す。なお、図46(a)は、強誘電体層10の上面図であり、第1上電極161及び第2上電極163の構成を示す図である。一方、図46(b)は、強誘電体層10の下面図であり、第1下電極162及び第2下電極164の構成を示す図である。なお、図46(a)及び(b)において、上記第6の実施形態(図43(a)及び(b))と同様の構成には、同じ符号を付して示す。
第1上電極161は、上記第6の実施形態で説明した上電極151と同様の形状を有する。第1上電極161は、強誘電体層10の上面10aにおいて、一つの角部付近(図46(a)上では右下角部付近)に配置される。第2上電極163は、強誘電体層10の上面10aにおいて、第1上電極161の対角方向の角部付近(図46(a)上では左上角部付近)に配置され、その対角方向と直交する方向に対して第1上電極161と線対称の位置に配置される。また、第2上電極163は、対角方向と直交する方向に対して第1上電極161と線対称の形状を有する。
一方、第1下電極162は、上記第6の実施形態で説明した下電極152と同様の形状を有する。第1下電極162は、強誘電体層10の下面10bにおいて、その短辺方向に対して第1上電極161と線対称となる位置の角部付近(図46(b)上では左下角部付近)に配置される。第2下電極164は、強誘電体層10の下面10bにおいて、第1下電極162の対角方向の角部付近(図46(b)上では右上角部付近)に配置され、その対角方向と直交する方向に対して第1下電極162と線対称の位置に配置される。また、第2下電極164は、対角方向と直交する方向に対して第1下電極162と線対称の形状を有する。
図47に、本実施形態において、第1上電極161及び第2上電極163を強誘電体層10の下面10bに投影した第1上電極投影パターン161p及び第2上電極投影パターン163pと、第1下電極162及び第2下電極164との重なり状態を示す。なお、図47には、各上電極が対応する下電極に対して位置ずれしていない場合の各上電極投影パターン及び下電極間の重なり状態を示す。本実施形態では、第1上電極投影パターン161pの電極部161paと、第1下電極162の電極部162aとを交差させ、その交差領域に第1対向電極領域SA1(第1領域)を形成する。また、第2上電極投影パターン163pの電極部163paと、第2下電極164の電極部164aとを交差させ、その交差領域に第2対向電極領域SA2(第2領域)を形成する。
そして、本実施形態では、各上電極が対応する下電極に対して位置ずれしても、上電極及び下電極間の対向電極領域(SA1及びSA2)の面積が一定となるように各上電極及び下電極の形状及び寸法が設計される。また、本実施形態では、上記第1の実施形態と同様に、必要とする容量値及び電極抵抗値等を考慮して、各上電極及び各下電極の形状及び寸法が設計される。
なお、本実施形態のように、一つの強誘電体層に2つの可変容量コンデンサを配列する場合、2つの可変容量コンデンサ間の浮遊容量を各可変容量コンデンサの容量に対して無視できる程度にすることが好ましい。例えば、2つの可変容量コンデンサ間の浮遊容量が各可変容量コンデンサの容量に対して約1/10以下になるようにすることが好ましい。これを実現するためには、第1対向電極領域SA1と第2対向電極領域SA2との間隔をできる限り広くすることが好ましい。
また、図48に、本実施形態の可変容量素子165の等価回路を示す。なお、図48中の容量C2の可変容量コンデンサ171は、第1上側外部端子167及び第1下側外部端子168間に形成される可変容量コンデンサである。また、図48中の容量C3の可変容量コンデンサ172は、第2上側外部端子169及び第2下側外部端子170間に形成される可変容量コンデンである。上述のように、本実施形態では、一つの強誘電体部材166に対して、2つの可変容量コンデンサを独立して形成しているので、その等価回路は、4端子素子で表される。
なお、本実施形態の可変容量素子165は、例えば、上述した第1の実施形態の製造方法と同様にして作製することができる。また、本実施形態では、強誘電体層10が1層の構成例を説明したが、本発明はこれに限定されず、複数の強誘電体層10を、電極を介して積層してもよい。
上述のように、本実施形態では、各上電極及び下電極間に位置ずれが生じても、内部電極間の対向電極領域(SA1及びSA2)の面積が一定となるように構成される。それゆえ、本実施形態では、第1の実施形態と同様の効果が得られる。
本実施形態では、第1上側外部端子167は、第1下側外部端子168に対向しない。また、第2上側外部端子169は、第2下側外部端子170に対向しない。それゆえ、各外部端子間の浮遊容量を大幅に低減することができ、上述した浮遊容量の影響により発生する問題を解消することができる。
さらに、本実施形態のように、4つの外部端子を強誘電体部材166の4つの角部に設けた場合、可変容量素子165をプリント基板上に実装する際に次のような利点がある。図49に、本実施形態の可変容量素子165をプリント基板上に実装した際の概略構成を示す。
通常、可変容量素子165をプリント基板173の銅配線174上に固定する際、はんだ175を用いて、各外部端子と対応する銅配線174とをはんだ付けする。ただし、この際、はんだ175は固化すると収縮するので、これにより可変容量素子が銅配線174側に引っ張られる。それゆえ、可変容量素子の外部端子が強誘電体部材166の一方の側面の角部に設けられている場合には、はんだ175の収縮により、可変容量素子のはんだ付けされていない側が持ち上がり、はんだ付け不良が生じる可能性がある。それに対して、本実施形態のように4つの外部端子をそれぞれ強誘電体部材166の4つの角部に設けた場合には、はんだ175が収縮しても可変容量素子が均等に引っ張られるので、上述のようなはんだ付け不良を低減することができる。
[変形例6]
上記第7の実施形態では、一つの強誘電体層10に形成した2つの可変容量コンデンサの各対向電極領域(SA1及びSA2)を、強誘電体層10の短辺方向に沿って配置する例を説明したが、本発明はこれに限定されない。2つの可変容量コンデンサの各対向電極領域(SA1及びSA2)を、強誘電体層10の対角線方向に配置してもよい。図50に、その一構成例(変形例6)を示す。
図50は、この例の可変容量素子185の上面図である。なお、図50では、強誘電体部材186内に形成される第1上電極181、第1下電極182、第2上電極183及び第2下電極184を破線で示す。
この例の可変容量素子185では、上記第7の実施形態の可変容量素子165(図45(a)及び(b))において、各内部電極の端子部の延在方向の長さを変えた。具体的には、この例では、第1上電極181の端子部181b及び第2上電極183の端子部183bの各延在方向の長さを、第7の実施形態のそれより長くする。また、第1下電極182の端子部182b及び第2下電極184の端子部184bの各延在方向の長さを第7の実施形態のそれより短くする。
そして、この例では、各内部電極の端子部の長さの変更に伴い、各端子部に接続する外部端子の幅も変更する。具体的には、第1上側外部端子187及び第2上側外部端子189の各幅を、第7の実施形態のそれより広くする。また、第1下側外部端子188及び第2下側外部端子190の各幅を、第7の実施形態のそれより狭くする。この例の可変容量素子185の構成は、各内部電極の端子部の延在方向の長さ及び各外部端子の幅を変えたこと以外は、第7の実施形態の構成と同様である。
各内部電極を上述のように構成することにより、第1上電極181及び第1下電極182間に画成される第1対向電極領域SA1と、第2上電極183及び第2下電極184間に画成される第2対向電極領域SA2とが強誘電体層の対角線方向に配置される。この結果、強誘電体層の面内方向における第1対向電極領域SA1と、第2対向電極領域SA2との間隔を、第7の実施形態のそれに比べて広げることができる。
それゆえ、この例では、第1上電極181及び第1下電極182間で形成される可変容量コンデンサと、第2上電極183及び第2下電極184間で形成される可変容量コンデンサとの間の浮遊容量をより小さくすることができる。例えば、この例の可変容量素子185における第1対向電極領域SA1及び第2対向電極領域SA2間の距離を第7の実施形態のそれの2倍にすると、浮遊容量は、第7の実施形態のそれの1/2になる。
[変形例7]
変形例7では、一つの可変容量素子内に複数の可変容量コンデンサを配列する別の構成例を説明する。
[可変容量コンデンサの構成]
図51(a)及び(b)に、変形例7の可変容量素子の概略構成を示す。図51(a)は、この例の可変容量素子195の外観斜視図であり、図51(b)は、可変容量素子195の上面図である。なお、図51(a)及び(b)において、第7の実施形態(図45(a)及び(b))と同様の構成には、同じ符号を付して示す。また、図51(a)及び(b)では、強誘電体部材196内部に形成される上電極191、第1下電極192及び第2下電極193を破線で示す。
可変容量素子195は、例えば直方体状の形状を有する強誘電体部材196と、その一方の長辺側の側面196aに設けられた上側外部端子197と、他方の長辺側の側面196bに設けられた第1下側外部端子198及び第2下側外部端子199とを備える。この例の可変容量素子195では、上側外部端子197及び第1下側外部端子198間、並びに、上側外部端子197及び第2下側外部端子199間でそれぞれ一つの可変容量コンデンサを構成する。すなわち、この例では、上側外部端子197を、2つの可変容量コンデンサの共通外部端子とする。
強誘電体部材196は、強誘電体層10と、その上面に形成された上電極191と、上電極191上に形成された強誘電体層139とを備える。また、強誘電体部材196は、強誘電体層10の下面に形成された第1下電極192及び第2下電極193と、それらの下電極上に形成された強誘電体層139とを備える。この例の強誘電体部材196は、上電極を共通電極にしたこと、及び、各内部電極の形状を変えたこと以外は、上記第7の実施形態と同様の構成である。
上側外部端子197は、上記第7の実施形態で説明した第1上側外部端子167と同様の構成である。上側外部端子197は、強誘電体部材196の長辺側の一方の側面196aの中央付近に配置される。なお、上側外部端子197は、上電極191の端子部に接続される。
第1下側外部端子198及び第2下側外部端子199は、上記第7の実施形態で説明した第1下側外部端子168と同様の構成である。第1下側外部端子198及び第2下側外部端子199は、強誘電体部材196の他方の長辺側の側面196bにおいて、所定距離だけ離して配置される。また、第1下側外部端子198及び第2下側外部端子199は、強誘電体部材196の側面196bにおいて、それぞれ一方及び他方の短辺側近傍に配置される。
上述のように、この例では、上側外部端子197と第1下側外部端子198及び第2下側外部端子199とは、強誘電体部材196の長辺側の側面196a及び196b間の対向方向(図51(a)及び(b)中のy方向)と交差するように配置される。それゆえ、各可変容量コンデンサを構成する2つの外部端子間の対向面積が小さくなり、各可変容量コンデンサにおいて、外部端子間の浮遊容量をより小さくすることができる。
[電極構成]
図52(a)及び(b)に、この例の可変容量素子195の電極構成例を示す。なお、図52(a)は、この例の強誘電体層10の上面図であり、上電極191の構成を示す図である。一方、図52(b)は、この例の強誘電体層10の下面図であり、第1下電極192及び第2下電極193の構成を示す図である。なお、図52(a)及び(b)において、上記第7の実施形態(図46(a)及び(b))と同様の構成には、同じ符号を付して示す。
上電極191(第1電極)は、Y字状の電極であり、第1電極部191aと、第2電極部191cと、端子部191bとで構成される。端子部191bは、強誘電体層10の上面10aの長辺に沿う方向に延在して形成され、矩形状の形状を有する。そして、端子部191bは、強誘電体層10の上面10aの一方の長辺近傍(図52(a)の図面上では下側の長辺近傍)に配置され且つその長辺の中央付近に配置される。
第1電極部191a及び第2電極部191cは、強誘電体層10の上面10aの長辺に沿う方向(図52(a)中のx方向)に対して斜め方向(直交しない方向)に延在して形成される。そして、端子部191bの4つの角部のうち、強誘電体層10の上面10aの中心側に位置する一方の角部に、第1電極部191aが接続され、強誘電体層10の上面10aの中心側に位置する他方の角部に、第2電極部191cが接続される。また、第1電極部191a及び第2電極部191c間の距離は、端子部191bから遠ざかるにつれて広がるように配置される。
第1下電極192(第2電極)及び第2下電極193(第3電極)は、ともにV字状の形状を有し、第5の実施形態で説明した下電極132(図37(b))と同様の構成である。ただし、この例では、第1下電極192の端子部192b及び第2下電極193の端子部193bの各延在方向の長さを、強誘電体層10の長辺長さの半分未満にする。
そして、この例では、第1下電極192及び第2下電極193は、強誘電体層10の下面10bにおいて、上電極191が形成される長辺側とは反対側の長辺近傍に、所定距離だけ離して配置される。この際、第1下電極192及び第2下電極193の各電極部側の端部が互いに対向するように配置する。すなわち、第1下電極192及び第2下電極193は、強誘電体層10の下面10bの短辺に沿う方向(図52(b)中のy方向)に対して線対称に配置される。
図53に、この例の可変容量素子195において、上電極191を強誘電体層10の下面10bに投影した上電極投影パターン191pと、第1下電極192及び第2下電極193との重なり状態を示す。なお、図53には、上電極が下電極に対して位置ずれしていない場合の上電極投影パターン191pと、第1下電極192及び第2下電極193との重なり状態を示す。この例では、上電極投影パターン191pの電極部191paと、第1下電極192の電極部192aとを交差させ、その交差領域に第1対向電極領域SA1(第1領域)を形成する。また、上電極投影パターン191pの電極部191paと、第2下電極193の電極部193aとを交差させ、その交差領域に第2対向電極領域SA2(第2領域)を形成する。
そして、この例では、上電極191が第1下電極192及び第2下電極193に対して位置ずれしても、第1対向電極領域SA1及び第2対向電極領域SA2の面積が一定となるように、各内部電極の形状及び寸法が設計される。また、この例では、上記第1の実施形態と同様に、必要とする容量値及び電極抵抗値等を考慮して、各上電極及び下電極の形状及び寸法が設計される。
図54に、この例の可変容量素子195の等価回路を示す。なお、図54中の容量C4の可変容量コンデンサ201は、上側外部端子197及び第1下側外部端子198間に形成される可変容量コンデンサである。また、図54中の容量C5の可変容量コンデンサ202は、上側外部端子197及び第2下側外部端子199間に形成される可変容量コンデンである。上述のように、この例では、一つの強誘電体部材196に対して、2つの可変容量コンデンサ201及び202を形成するが、上側外部端子197(上電極)を共通端子とする。それゆえ、その等価回路は、3端子素子で表され、2つの可変容量コンデンサ201及び202が直列接続した回路となる。
なお、この例の可変容量素子195は、例えば、上述した第1の実施形態の製造方法と同様にして作製することができる。また、この例では、強誘電体層10が1層の構成例を説明したが、本発明はこれに限定されず、複数の強誘電体層10を、電極を介して積層してもよい。
上述のように、この例では、上電極191と第1下電極192及び第2下電極193との間に位置ずれが生じても、内部電極間の対向電極領域(SA1及びSA2)の面積が一定となるように構成される。それゆえ、この例では、第1の実施形態と同様の効果が得られる。
また、この例では、上側外部端子197及び第1下側外部端子198間、並びに、上側外部端子197及び第2下側外部端子199間の対向面積をより小さくすることができる。それゆえ、各外部端子間の浮遊容量をより低減することができ、上述した浮遊容量の影響により発生する問題を解消することができる。
さらに、この例では、3つの外部端子が強誘電体部材196を挟んで三角状に配置されているので、第7の実施形態と同様に、可変容量素子195をプリント基板の銅配線上等に固定する際のはんだ付け不良を低減することができる。
[変形例8]
3端子タイプの可変容量素子の構成例は上記変形例7に限定されない。図55に、3端子タイプの可変容量素子の別の構成例(変形例8)を示す。なお、図55は、この例の可変容量素子の上面図であり、変形例7(図51(b))と同様の構成には、同じ符号を付して示す。また、図55では、強誘電体部材216内部に形成される上電極211、第1下電極212及び第2下電極213を破線で示す。
この例では、上電極211を略T字状の電極で構成し、第1下電極212及び第2下電極213をL字状の電極で構成する。そして、上電極211の端子部が上側外部端子197に接続され、第1下電極212の端子部212bが第1下側外部端子198に接続され、そして、第2下電極213の端子部213bが第2下側外部端子199に接続される。それ以外の構成は、変形例7の可変容量素子195(図51(a)及び(b))と同様の構成である。
この例の可変容量素子215では、上電極211及び第1下電極212間、並びに、上電極211及び第2下電極213間にそれぞれ可変容量コンデンサが形成される。この例においても、変形例7と同様に、上電極211を2つの可変容量コンデンサの共通電極に用いるので、3端子の可変容量素子を構成することができる。
図56(a)及び(b)に、この例の可変容量素子215の電極構成例を示す。なお、図56(a)は、この例の強誘電体層10の上面図であり、上電極211の構成を示す図である。一方、図56(b)は、この例の強誘電体層10の下面図であり、第1下電極212及び第2下電極213の構成を示す図である。なお、図56(a)及び(b)において、上記変形例7(図52(a)及び(b))と同様の構成には、同じ符号を付して示す。
上電極211は、電極部211aと、端子部211bとで構成される。端子部211bは、強誘電体層10の上面10aの一方の長辺近傍(図56(a)上では下側の長辺近傍)から短辺に沿う方向に延在して形成され、略矩形状の形状を有する。そして、端子部211bは、強誘電体層10の上面10aの一方の長辺の中央付近に配置される。
電極部211aは、強誘電体層10の上面10aの長辺に沿う方向(図56(a)中のx方向)に延在して形成される。そして、電極部211aの中央部が端子部211bの一方の端部に接続される。
第1下電極212は、強誘電体層10の下面10bの長辺に沿う方向(図56(b)中のx方向)に延在する端子部212bと、その一方の端部から端子部212bと直交する方向に延在する電極部212aとで構成される。一方、第2下電極213は、第1下電極212と同様の構造を有する。なお、この例では、第1下電極212の端子部212b及び第2下電極213の端子部213bの各延在方向の長さは、強誘電体層10の長辺長さの半分未満にする。
そして、この例では、第1下電極212及び第2下電極213は、強誘電体層10の下面10bにおいて、上電極211が形成される長辺側とは反対側の長辺近傍に、所定距離だけ離して配置される。この際、第1下電極212及び第2下電極213の各電極部側の端部が互いに対向するように配置する。すなわち、第1下電極212及び第2下電極213は、強誘電体層10の下面10bの短辺に沿う方向(図56(b)中のy方向)に対して線対称に配置される。
図57に、この例の可変容量素子215において、上電極211を強誘電体層10の下面10bに投影した上電極投影パターン211pと、第1下電極212及び第2下電極213との重なり状態を示す。なお、図57には、上電極が下電極に対して位置ずれしていない場合の上電極投影パターン211pと、第1下電極212及び第2下電極213との重なり状態を示す。この例では、上電極投影パターン211pの電極部211paと、第1下電極212の電極部212aとを交差させ、その交差領域に第1対向電極領域SA1を形成する。また、上電極投影パターン211pの電極部211paと、第2下電極213の電極部213aとを交差させ、その交差領域に第2対向電極領域SA2を形成する。
そして、この例では、上電極211が第1下電極212及び第2下電極213に対して位置ずれしても、第1対向電極領域SA1及び第2対向電極領域SA2の面積が一定となるように、各内部電極の形状及び寸法が設計される。また、この例では、上記第1の実施形態と同様に、必要とする容量値及び電極抵抗値等を考慮して、各内部電極の形状及び寸法が設計される。
なお、この例の可変容量素子215は、例えば、上述した第1の実施形態の製造方法と同様にして作製することができる。また、この例では、強誘電体層10が1層の構成例を説明したが、本発明はこれに限定されず、複数の強誘電体層10を、電極を介して積層してもよい。
上述のように、この例では、上電極211と第1下電極212及び第2下電極213との間に位置ずれが生じても、内部電極間の対向電極領域(SA1及びSA2)の面積が一定となるように構成される。それゆえ、この例では、第1の実施形態と同様の効果が得られる。
また、この例では、上側外部端子197及び第1下側外部端子198間、並びに、上側外部端子197及び第2下側外部端子199間の対向面積をより小さくすることができる。それゆえ、各外部端子間の浮遊容量をより低減することができ、上述した浮遊容量の影響により発生する問題を解消することができる。
また、この例では、3つの外部端子が強誘電体部材216を挟んで三角状に配置されているので、第7の実施形態と同様に、可変容量素子215をプリント基板の銅配線上等に固定する際のはんだ付け不良を低減することができる。
さらに、この例の可変容量素子215における電極構成では、変形例7の電極構成(図52(a)及び(b))に比べて、各内部電極の電極部の長さをより短くすることができるので、可変容量素子215全体の抵抗値をさらに低減することができる。
上記第7の実施形態及び変形例6〜8の可変容量素子では、一つの強誘電体層に2つの可変容量コンデンサを配列する例を説明したが、本発明はこれに限定されない。一つの強誘電体層に3つ以上の可変容量コンデンサを配列する構成にしてもよい。また、上記第7の実施形態及び変形例6〜8の可変容量素子では、強誘電体部材の長辺側の側面に外部端子を設けるような内部電極の構成例を説明したが、本発明はこれに限定されない。強誘電体部材の短辺側の側面に外部端子を設けるような内部電極の構成にしてもよい。
[変形例9]
上記第4の実施形態では、可変容量素子全体の抵抗値をより低減するための構成例を説明し、第5〜第7の実施形態では、可変容量素子の外部端子間の浮遊容量をより低減するための構成例を説明したが、本発明はこれに限定されない。第4の実施形態の構成例と、第5〜第7の実施形態のいずれかの構成例を組み合わせても良い。図58に、そのような可変容量コンデンサの一構成例(変形例9)を示す。
図58は、この例の可変容量素子225の上面図である。図58において、上記第4の実施形態(図30)と同様の構成には、同じ符号を付して示す。また、図58では、強誘電体部材216内部に形成される上電極221及び下電極222を破線で示す。
この例では、上電極221を第5の実施形態で説明した上電極131(図37(a))で構成し、下電極222を第4の実施形態で説明した上電極101(図29(a))で構成する。そして、上電極221と下電極222とを、強誘電体部材226の対角線上に配置し、上電極221の電極部221aと、下電極222の電極部222aとが交差するように配置する。そして、上電極221の端子部221bが上側外部端子137に接続され、下電極222の端子部222bが下側外部端子138に接続される。それ以外の構成は、第5の実施形態の可変容量コンデンサ135(図36(a)及び(b))と同様の構成である。
なお、この例においても、上電極221が下電極222に対して位置ずれしても、上電極221及び下電極222間の対向電極領域(Sa)の面積が一定となるように上電極221及び下電極222の形状及び寸法が設計される。また、この例においても、上記第1の実施形態と同様に、必要とする容量値及び電極抵抗値等を考慮して、上電極221及び下電極222の形状及び寸法が設計される。それゆえ、この例においても、第1の実施形態と同様の効果が得られる。
また、上述のように、この例の可変容量素子225は、第4及び第5の実施形態の構成例を組み合わせたものであるので、可変容量素子全体の抵抗値をより低減することができ、且つ、可変容量素子の外部端子間の浮遊容量をより低減することができる。
上記第7の実施形態及び変形例6〜9では、静電容量素子として可変容量素子(可変容量コンデンサ)を例に挙げ説明したが、本発明はこれに限定されない。上記第7の実施形態及び変形例6〜9で説明した上側外部端子及び下側外部端子の構成は、静電容量素子が定容量素子である場合であっても同様に適用可能であり、同様の効果が得られる。ただし、この場合、誘電体層は比誘電率の低い常誘電体材料で形成される。なお、常誘電体材料としては、上記第1の実施形態で説明した常誘電体材料と同様の材料を用いることができる。
<8.第8の実施形態>
第8の実施形態では、上述した本発明の静電容量素子を備える非接触受信装置の構成例を説明する。
[非接触受信装置の構成]
本実施形態では、非接触受信装置として、非接触ICカードを例に挙げ説明する。図59に、本実施形態の非接触ICカードの受信系(復調系)回路部のブロック構成を示す。なお、図59では、説明を簡略するために、信号の送信系(変調系)回路部は省略している。送信系回路部の構成は、従来の非接触ICカード等と同様に構成することができる。
非接触ICカード260は、受信部261(アンテナ)と、整流部262と、信号処理部263とを備える。
受信部261は、共振コイル264及び共振コンデンサ265からなる共振回路を備え、非接触ICカード260のリーダライター(不図示)から送信される信号をこの共振回路で受信する。なお、図59では、共振コイル264をそのインダクタンス成分264a(L)と抵抗成分264b(r:数オーム程度)とに分けて図示している。また、受信部261は、共振コンデンサ265内の後述する可変容量コンデンサ267の制御電源270と、可変容量コンデンサ267及び制御電源270間に設けられた2つの電流制限抵抗271及び272とを備える。
共振コンデンサ265は、容量Coの定容量コンデンサ266と、可変容量コンデンサ267と、可変容量コンデンサ267の両端子にそれぞれ接続された2つのバイアス除去用コンデンサ268及び269とで構成される。そして、定容量コンデンサ266と、可変容量コンデンサ267並びに2つのバイアス除去用コンデンサ268及び269からなる直列回路とは、共振コイル264に並列接続される。
定容量コンデンサ266は、上述した種々の実施形態及び種々の変形例で説明した電極及び外部端子の構成を有する2端子タイプの定容量コンデンサ(定容量素子)のいずれかで構成される。定容量コンデンサ266を構成する誘電体層は、第1の実施形態で説明した比誘電率の低い誘電体材料(常誘電体材料)で形成されており、入力信号の種類(交流または直流)及びその信号レベルに関係なく、その容量はほとんど変化しない。
なお、実際の回路上では、共振コイル264のインダクタンス成分Lのばらつきや信号処理部263内の集積回路の入力端子の寄生容量などによる受信部261の容量変動(数pF程度)が存在し、その変動量は非接触ICカード260毎に異なる。それゆえ、本実施形態では、これらの影響を抑制(補正)するために、定容量コンデンサ266内の内部電極の電極パターンをトリミングして容量Coを適宜調整する。
可変容量コンデンサ267もまた、上述した種々の実施形態及び種々の変形例で説明した2端子タイプの可変容量コンデンサ(可変容量素子)のいずれかで構成される。なお、可変容量コンデンサ267を構成する誘電体層は、第1の実施形態で説明した比誘電率の大きな強誘電体材料で形成される。なお、本発明はこれに限定されず、可変容量コンデンサ267を上記第3の実施形態(図27)で説明した4端子タイプの可変容量コンデンサで構成してもよい。
また、可変容量コンデンサ267は、電流制限抵抗271及び272を介して制御電源270に接続される。そして、可変容量コンデンサ267の容量Cvは、制御電源270から印加される制御電圧に応じて変化する。
なお、バイアス除去用コンデンサ268及び269、並びに、電流制限抵抗271及び272は、制御電源から流れる直流バイアス電流(制御電流)と、受信信号電流との干渉による影響を抑制するために設けられる。具体的には、バイアス除去用コンデンサ268及び269は、信号回路の保護及び/又は分離のために設けられ、電流制限抵抗271及び272は、制御回路の保護及び/又は分離のために設けられる。
整流部262は、整流用ダイオード273と整流用コンデンサ274とからなる半波整流回路で構成され、受信部261で受信した交流電圧を直流電圧に整流して出力する。
信号処理部263は、主に半導体素子の集積回路(LSI:Large Scale Integration)で構成され、受信部261で受信した交流信号を復調する。信号処理部263内のLSIは整流部262から供給される直流電圧により駆動される。なお、LSIとしては、従来の非接触ICカードと同様のものを用いることができる。
本実施形態の非接触ICカード260において、可変容量コンデンサ267は、過大な受信信号により耐電圧性の低い半導体素子からなる制御回路が破壊されないようにするために用いられる。具体的には、受信信号が過大な場合に、制御電圧により可変容量コンデンサ267の容量Cvを小さくする。これにより、可変容量コンデンサ267の容量低下分に対応した周波数Δfだけ、受信部261の共振周波数が高域にシフトする。これにより、容量可変前の共振周波数fにおける受信信号のレスポンスは、容量可変前より低くなり、受信信号のレベルが抑制される。その結果、制御回路に過大な電流信号が流れないようにすることができ、制御回路の破壊を防止することができる。
本実施形態の非接触ICカード260では、定容量コンデンサ266及び可変容量コンデンサ267に、本発明の電極構成を有する静電容量素子を用いているので、より高性能の非接触ICカードを提供することができる。また、可変容量コンデンサ267に、本発明の電極構成を有する静電容量素子を用いているので、より低い駆動電圧で非接触ICカードを駆動することができる。
なお、本実施形態では、定容量コンデンサ266及び可変容量コンデンサ267の両方を本発明の電極構成を有する静電容量素子で構成する例を説明したが、本発明はこれに限定されず、いずれか一方を本発明の静電容量素子で構成してもよい。また、本実施形態では、定容量コンデンサ266を備えない構成としてもよい。
また、本実施形態の非接触ICカード260では、可変容量コンデンサ267の制御電源270を設ける例を説明したが、本発明はこれに限定されない。例えば、特許文献1(図60)等と同様に、整流部262から出力された直流電圧から、例えば抵抗分割等の手法により所望の制御電圧を抽出するような構成にしてもよい。
さらに、本実施形態では、非接触受信装置の一例として、非接触ICカードを例にとり説明したが、本発明はこれに限定されない。本発明は、共振コイル及び共振コンデンサからなる共振回路を用いて非接触で情報及び/または電力を受信する任意の装置に適用可能であり、同様の効果が得られる。例えば、携帯電話等や、ワイアレス電力伝送装置にも適用可能である。なお、ワイアレス電力伝送装置では、電力を非接触で伝送する装置であるので、非接触ICカードのように受信信号を復調する信号処理部を備えなくてもよい。
1…2端子タイプの可変容量コンデンサ、2,165…可変容量素子、3…4端子タイプの可変容量コンデンサ、10…強誘電体層(誘電体層)、11,21,31,41,101,131,151…上電極(第1電極)、11a,21a,31a,41a,101a,131a,151a…電極部(第1電極部)、11b,21b,31b,41b,101b,131b,151b…端子部、11p,21p,31p,41p,101p,131p,151p…上電極の投影パターン、12,22,32,42,102,132,152…下電極(第2電極)、12a,22a,32a,42a,42c,102a,132a,152a…電極部(第2電極部)、12b,22b,32b,42b,102b,132b,152b…端子部、70…強誘電体層、71〜75…制御電極、76〜79…信号電極、135,155…可変容量コンデンサ、136,156,166…強誘電体部材、137,157…上側外部端子、138,158…下側外部端子、161…第1上電極、162…第1下電極、163…第2上電極、164…第2下電極、167…第1上側外部端子、168…第1下側外部端子、169…第2上側外部端子、170…第2下側外部端子、260…非接触ICカード、261…受信部、264…共振コイル、265…共振コンデンサ、266…定容量コンデンサ、267…可変容量コンデンサ、270…制御電源、Sa,Sa1,Sa2…対向電極領域(第1領域)、SA1…第1対向電極領域(第1領域)、SA2…第2対向電極領域(第2領域)

Claims (16)

  1. 誘電体層と、
    前記誘電体層の所定面上に、所定の第1形状で形成された第1電極と、
    前記誘電体層の前記所定面とは反対側の面上に形成され、前記第1電極を前記反対側の面に投影した際の投影パターンと重なる第1領域を有し、且つ、前記第1電極が前記所定面内の所定方向に相対的に位置ずれを起こしても、前記第1領域の面積が変化しない第2形状で形成された第2電極と
    を備える静電容量素子。
  2. 前記第1電極が、前記第1領域に対応する電極領域を含み且つ前記所定面内で第1方向に延在する第1電極部を有し、前記第2電極が、前記第1領域に対応する電極領域を含み且つ前記反対側の面内で前記第1方向と交差する第2方向に延在する第2電極部を有し、
    前記第1及び第2電極部が、前記第1電極が前記所定面内で前記所定方向及びそれに直交する方向に前記第2電極に対して相対的に位置ずれを起こしても前記第1領域の面積が変化しない形状でそれぞれ形成されている
    請求項1に記載の静電容量素子。
  3. 前記第1方向と前記第2方向とが直交する
    請求項2に記載の静電容量素子。
  4. 前記第1電極の前記第1形状と、前記第2電極の前記第2形状とが、前記所定面内の前記所定方向及びそれに直交する方向のうちの一方の方向に対して対称形状である
    請求項2に記載の静電容量素子。
  5. 前記第1電極が、前記第1領域に対応する電極領域を含み且つ前記所定面内で前記所定方向に直交する方向に延在する第1電極部を有し、前記第2電極が、前記第1領域に対応する電極領域を含み且つ前記反対側の面内で前記所定方向に直交する方向に延在する第2電極部を有し、前記第1領域を複数有する
    請求項1に記載の静電容量素子。
  6. 前記誘電体層の前記第1及び第2電極がそれぞれ形成される面の形状が長方形であり、第1及び第2電極が前記第1及び第2電極部と外部とを電気的に接続するための第1及び第2端子部をそれぞれ有し、前記第1及び第2端子部が前記面の長辺に沿って長辺近傍に設けられる
    請求項1に記載の静電容量素子。
  7. 複数の前記誘電体層を備え、
    前記複数の前記誘電体層が電極を介して積層されており、各誘電体層を挟み込む2つの電極のうち、一方の電極が他方の電極に対して所定方向に相対的に位置ずれを起こしても、一方の電極を他方の電極側に投影した際の投影パターンと前記他方の電極との重なる領域の面積が変化しない形状で、それぞれ前記2つの電極が形成されている
    請求項1に記載の静電容量素子。
  8. 前記第1及び第2電極の少なくとも一方が、電極部と、該電極部と外部とを電気的に接続するための端子部とを有し、前記電極部及び前記端子部により開口部が画成されている
    請求項1に記載の静電容量素子。
  9. さらに、前記誘電体層の第1側面に設けられ、前記第1電極に接続される第1外部端子と、
    前記誘電体層の前記第1側面と対向する第2側面に設けられ、前記第2電極に接続される第2外部端子とを備え、
    前記第1及び第2外部端子の配置方向が、前記第1及び第2側面の対向方向と交差する
    請求項1に記載の静電容量素子。
  10. さらに、前記誘電体層の一つの側面に設けられ、前記第1電極に接続される第1外部端子と、
    前記誘電体層の前記側面に前記第1外部端子と所定距離離れて設けられ、前記第2電極に接続される第2外部端子とを備える
    請求項1に記載の静電容量素子。
  11. さらに、前記誘電体層の前記所定面上に、所定の第3形状で形成された第3電極と、
    前記誘電体層の前記所定面とは反対側の面上に形成され、前記第3電極を前記反対側の面に投影した際の投影パターンと重なる第2領域を有し、且つ、前記第3電極が前記所定面内の所定方向に相対的に位置ずれを起こしても、前記第2領域の面積が変化しない第4形状で形成された第4電極とを備える
    請求項1に記載の静電容量素子。
  12. さらに、前記誘電体層の第1側面に設けられ、前記第1電極に接続される第1外部端子と、
    前記誘電体層の前記第1側面に前記第1外部端子と所定距離離れて設けられ、前記第2電極に接続される第2外部端子と、
    前記誘電体層の前記第1側面と対向する第2側面に設けられ、前記第3電極に接続される第3外部端子と、
    前記誘電体層の前記第2側面に前記第3外部端子と所定距離離れて設けられ、前記第4電極に接続される第4外部端子とを備える
    請求項11に記載の静電容量素子。
  13. さらに、前記誘電体層の前記所定面とは反対側の面上に形成され、前記第1電極を前記反対側の面に投影した際の投影パターンと重なる第2領域を有し、且つ、前記第1電極が前記所定面内の所定方向に相対的に位置ずれを起こしても、前記第2領域の面積が変化しない第3形状で形成された第3電極とを備える
    請求項1に記載の静電容量素子。
  14. さらに、前記誘電体層の第1側面に設けられ、前記第1電極に接続される第1外部端子と、
    前記誘電体層の前記第1側面と対向する第2側面に設けられ、前記第2電極に接続される第2外部端子と、
    前記誘電体層の前記第2側面に前記第2外部端子と所定距離離れて設けられ、前記第3電極に接続される第3外部端子とを備える
    請求項13に記載の静電容量素子。
  15. 前記誘電体層が強誘電体材料で形成され、外部から印加される制御信号に応じて容量が変化する
    請求項1に記載の静電容量素子。
  16. 誘電体層、前記誘電体層の所定面上に所定の第1形状で形成された第1電極、及び、前記誘電体層の前記所定面とは反対側の面上に形成され、前記第1電極を前記反対側の面に投影した際の投影パターンと重なる第1領域を有し且つ前記第1電極が前記所定面内の所定方向に相対的に位置ずれを起こしても前記第1領域の面積が変化しない第2形状で形成された第2電極を有する静電容量素子を含む共振コンデンサと、
    前記共振コンデンサに接続された共振コイルと
    を備える共振回路。
JP2009208353A 2008-09-26 2009-09-09 静電容量素子及び共振回路 Pending JP2010258402A (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2009208353A JP2010258402A (ja) 2008-09-26 2009-09-09 静電容量素子及び共振回路
RU2011110426/07A RU2523065C2 (ru) 2008-09-26 2009-09-24 Емкостный прибор и резонансная схема
CN2009801376940A CN102165541B (zh) 2008-09-26 2009-09-24 电容装置及谐振电路
BRPI0918551A BRPI0918551A2 (pt) 2008-09-26 2009-09-24 dispositivo de capacitância, e, circuito de ressonância
US13/063,624 US8736401B2 (en) 2008-09-26 2009-09-24 Capacitance device and resonance circuit
CN201210597224.6A CN103123868B (zh) 2008-09-26 2009-09-24 电容装置及谐振电路
PCT/JP2009/067116 WO2010035879A1 (ja) 2008-09-26 2009-09-24 静電容量素子及び共振回路
US14/251,191 US9337796B2 (en) 2008-09-26 2014-04-11 Capacitance device and resonance circuit
RU2014116666/07A RU2014116666A (ru) 2008-09-26 2014-04-25 Емкостный прибор и резонансная схема

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008249242 2008-09-26
JP2009090423 2009-04-02
JP2009208353A JP2010258402A (ja) 2008-09-26 2009-09-09 静電容量素子及び共振回路

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015112882A Division JP6067783B2 (ja) 2008-09-26 2015-06-03 静電容量素子及び共振回路

Publications (1)

Publication Number Publication Date
JP2010258402A true JP2010258402A (ja) 2010-11-11

Family

ID=42059866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009208353A Pending JP2010258402A (ja) 2008-09-26 2009-09-09 静電容量素子及び共振回路

Country Status (6)

Country Link
US (2) US8736401B2 (ja)
JP (1) JP2010258402A (ja)
CN (2) CN103123868B (ja)
BR (1) BRPI0918551A2 (ja)
RU (2) RU2523065C2 (ja)
WO (1) WO2010035879A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102190A1 (ja) * 2011-01-27 2012-08-02 ソニー株式会社 容量素子、容量素子の製造方法、共振回路、通信システム、ワイヤレス充電システム、電源装置及び電子機器
KR20150081108A (ko) * 2014-01-03 2015-07-13 삼성전자주식회사 알에프 코일 구조물
US10199173B2 (en) 2012-08-09 2019-02-05 Dexerials Corporation Variable capacitance element, packaged circuit, resonant circuit, communication apparatus, communication system, wireless charging system, power supply apparatus, and electronic apparatus

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10717781B2 (en) 2008-06-05 2020-07-21 National Cancer Center Neuroinvasion inhibitor
JP4737253B2 (ja) * 2008-08-29 2011-07-27 ソニー株式会社 非接触受信装置
WO2012086280A1 (ja) 2010-12-24 2012-06-28 株式会社村田製作所 ワイヤレス電力伝送システム
JP5057001B2 (ja) 2011-02-16 2012-10-24 株式会社村田製作所 電子部品
EP2551250B1 (en) * 2011-07-28 2016-12-07 General Electric Company Dielectric materials for power tranfer system
EP2551988A3 (en) * 2011-07-28 2013-03-27 General Electric Company Dielectric materials for power transfer system
JP5904735B2 (ja) * 2011-09-20 2016-04-20 株式会社東芝 磁界共鳴方式回路
US9438129B2 (en) 2011-10-06 2016-09-06 Cesar Ladron de Guevara Input/output power and signal transfer isolator device
US9508488B2 (en) * 2012-01-10 2016-11-29 Samsung Electronics Co., Ltd. Resonant apparatus for wireless power transfer
CN103597709B (zh) 2012-05-09 2015-11-25 株式会社村田制作所 无线电力输送系统
US20140147579A1 (en) * 2012-11-26 2014-05-29 Jacob Conner Analysis of stimulus by rfid
FR3001070B1 (fr) * 2013-01-17 2016-05-06 Inside Secure Systeme d'antenne pour microcircuit sans contact
WO2015060045A1 (ja) * 2013-10-24 2015-04-30 株式会社村田製作所 配線基板およびその製造方法
CN107251178B (zh) * 2015-02-27 2019-03-22 株式会社村田制作所 可变电容元件
CN107408459A (zh) * 2015-02-27 2017-11-28 株式会社村田制作所 可变电容元件
JP6547569B2 (ja) * 2015-10-08 2019-07-24 Tdk株式会社 電子部品
CN109119248A (zh) * 2017-06-23 2019-01-01 北京北方华创微电子装备有限公司 可调电容及阻抗匹配装置
CN108490286A (zh) * 2018-03-06 2018-09-04 沈阳变压器研究院股份有限公司 强电流试验中非对称电流的补偿方法及装置
CN113271078B (zh) * 2021-05-19 2023-10-24 上海鸿晔电子科技股份有限公司 一种滤波器的制造方法
EP4358686A1 (en) * 2022-10-17 2024-04-24 QuantWare Holding B.V. Josephson travelling wave parametric amplifier and manufacturing method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5475935U (ja) * 1977-11-10 1979-05-30
JPH07240339A (ja) * 1994-02-28 1995-09-12 Kyocera Corp 積層セラミックコンデンサ
JPH09129493A (ja) * 1995-10-27 1997-05-16 Taiyo Yuden Co Ltd 積層コンデンサ
JPH10223475A (ja) * 1997-01-31 1998-08-21 Mitsubishi Materials Corp コンデンサ容量の調整方法
JP2000106322A (ja) * 1998-09-29 2000-04-11 Kyocera Corp 積層セラミックコンデンサ
JP2000138127A (ja) * 1998-10-30 2000-05-16 Kyocera Corp 積層セラミックコンデンサ
JP2003282357A (ja) * 2002-03-27 2003-10-03 Kyocera Corp コンデンサアレイ
JP2004047707A (ja) * 2002-07-11 2004-02-12 Murata Mfg Co Ltd 積層セラミックコンデンサアレイ
JP2006190774A (ja) * 2005-01-05 2006-07-20 Murata Mfg Co Ltd 積層セラミック電子部品
WO2007031061A1 (de) * 2005-09-16 2007-03-22 Epcos Ag Abstimmbarer kondensator und schaltung mit einem solchen kondensator
JP2007220874A (ja) * 2006-02-16 2007-08-30 Murata Mfg Co Ltd 積層型セラミック電子部品及びlcノイズフィルタ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536601A (en) 1978-07-31 1980-03-14 Ckd Corp Spool valve
JPS5536601U (ja) * 1978-08-29 1980-03-08
RU2047925C1 (ru) * 1990-12-07 1995-11-10 Научно-исследовательский институт "ГИРИКОНД" Сегнетокерамический полупроводниковый чип-конденсатор
RU2082258C1 (ru) * 1991-08-14 1997-06-20 Сименс АГ Схемная структура с по меньшей мере одним конденсатором и способ ее изготовления
US5412358A (en) * 1992-02-28 1995-05-02 Ngk Insulators, Ltd. Layered stripline filter
JPH087059A (ja) 1994-06-21 1996-01-12 Sony Chem Corp 非接触情報カード
JPH08181035A (ja) 1994-12-26 1996-07-12 Sumitomo Metal Ind Ltd 積層チップコンデンサ
US6690251B2 (en) * 2001-04-11 2004-02-10 Kyocera Wireless Corporation Tunable ferro-electric filter
RU2266585C2 (ru) * 2003-08-19 2005-12-20 Займидорога Олег Антонович Электрический конденсатор
JP2005244456A (ja) * 2004-02-25 2005-09-08 Sharp Corp 回路装置
JP2007096272A (ja) * 2005-09-02 2007-04-12 Sanyo Electric Co Ltd 電気素子および電気回路
JP4915130B2 (ja) 2006-04-18 2012-04-11 ソニー株式会社 可変コンデンサ
JP2012060030A (ja) * 2010-09-10 2012-03-22 Sony Corp 静電容量素子、静電容量素子の製造方法、及び共振回路

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5475935U (ja) * 1977-11-10 1979-05-30
JPH07240339A (ja) * 1994-02-28 1995-09-12 Kyocera Corp 積層セラミックコンデンサ
JPH09129493A (ja) * 1995-10-27 1997-05-16 Taiyo Yuden Co Ltd 積層コンデンサ
JPH10223475A (ja) * 1997-01-31 1998-08-21 Mitsubishi Materials Corp コンデンサ容量の調整方法
JP2000106322A (ja) * 1998-09-29 2000-04-11 Kyocera Corp 積層セラミックコンデンサ
JP2000138127A (ja) * 1998-10-30 2000-05-16 Kyocera Corp 積層セラミックコンデンサ
JP2003282357A (ja) * 2002-03-27 2003-10-03 Kyocera Corp コンデンサアレイ
JP2004047707A (ja) * 2002-07-11 2004-02-12 Murata Mfg Co Ltd 積層セラミックコンデンサアレイ
JP2006190774A (ja) * 2005-01-05 2006-07-20 Murata Mfg Co Ltd 積層セラミック電子部品
WO2007031061A1 (de) * 2005-09-16 2007-03-22 Epcos Ag Abstimmbarer kondensator und schaltung mit einem solchen kondensator
JP2009508340A (ja) * 2005-09-16 2009-02-26 エプコス アクチエンゲゼルシャフト 調整可能なコンデンサおよび調整可能なコンデンサを有する回路
JP2007220874A (ja) * 2006-02-16 2007-08-30 Murata Mfg Co Ltd 積層型セラミック電子部品及びlcノイズフィルタ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102190A1 (ja) * 2011-01-27 2012-08-02 ソニー株式会社 容量素子、容量素子の製造方法、共振回路、通信システム、ワイヤレス充電システム、電源装置及び電子機器
US10199173B2 (en) 2012-08-09 2019-02-05 Dexerials Corporation Variable capacitance element, packaged circuit, resonant circuit, communication apparatus, communication system, wireless charging system, power supply apparatus, and electronic apparatus
KR20150081108A (ko) * 2014-01-03 2015-07-13 삼성전자주식회사 알에프 코일 구조물
KR102145001B1 (ko) * 2014-01-03 2020-08-14 삼성전자주식회사 알에프 코일 구조물

Also Published As

Publication number Publication date
CN102165541B (zh) 2013-02-06
BRPI0918551A2 (pt) 2015-12-08
CN102165541A (zh) 2011-08-24
US20140247097A1 (en) 2014-09-04
CN103123868B (zh) 2016-10-19
RU2014116666A (ru) 2015-10-27
US8736401B2 (en) 2014-05-27
RU2523065C2 (ru) 2014-07-20
WO2010035879A1 (ja) 2010-04-01
CN103123868A (zh) 2013-05-29
US9337796B2 (en) 2016-05-10
RU2011110426A (ru) 2012-09-27
US20110163827A1 (en) 2011-07-07

Similar Documents

Publication Publication Date Title
WO2010035879A1 (ja) 静電容量素子及び共振回路
JP5628494B2 (ja) 共振回路
JP6282388B2 (ja) 静電容量素子、及び共振回路
JP2012060030A (ja) 静電容量素子、静電容量素子の製造方法、及び共振回路
JP5666123B2 (ja) 可変容量デバイス
JP4743222B2 (ja) 可変容量素子及び、電子機器
JP6319758B2 (ja) 静電容量デバイス、共振回路及び電子機器
WO2013061730A1 (ja) 静電容量素子、及び共振回路
JP2010251426A (ja) 可変容量素子及び電子機器
JP6067783B2 (ja) 静電容量素子及び共振回路
JP5126374B2 (ja) 可変容量素子及び、電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120824

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120927

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150310