JP2010249901A - トナー、画像形成方法および画像形成装置 - Google Patents

トナー、画像形成方法および画像形成装置 Download PDF

Info

Publication number
JP2010249901A
JP2010249901A JP2009096735A JP2009096735A JP2010249901A JP 2010249901 A JP2010249901 A JP 2010249901A JP 2009096735 A JP2009096735 A JP 2009096735A JP 2009096735 A JP2009096735 A JP 2009096735A JP 2010249901 A JP2010249901 A JP 2010249901A
Authority
JP
Japan
Prior art keywords
toner
developing roller
particles
developing
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009096735A
Other languages
English (en)
Inventor
Hideki Okada
英樹 岡田
Tomotaka Mori
友隆 毛利
Tomohiro Ariga
友洋 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2009096735A priority Critical patent/JP2010249901A/ja
Priority to US12/757,577 priority patent/US8852837B2/en
Priority to CN 201010151100 priority patent/CN101859080B/zh
Publication of JP2010249901A publication Critical patent/JP2010249901A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/0806Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer on a donor element, e.g. belt, roller
    • G03G15/0818Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer on a donor element, e.g. belt, roller characterised by the structure of the donor member, e.g. surface properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0819Developers with toner particles characterised by the dimensions of the particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds

Abstract

【課題】 本発明は、現像ギャップ飛散が少なく、カブリの少ないものとできると共に、トナー補給にあっても現像ギャップ飛散が少なく、カブリの少ないトナーであり、ダスト発生の少ないトナー、画像形成方法、画像形成装置の提供を課題とする。
【解決手段】
本発明のトナーは、少なくとも結着樹脂、着色剤及び離型剤を含むトナー母粒子と、交流インピーダンス法での交流周波数1kHz〜10kHz区間における位相角(θ)が|80°|以下であるアルミナ微粒子を含有するものであり、また、画像形成方法、画像形成装置は、静電潜像を担持した感光体と、感光体と非接触の状態で対向配置される現像装置とを有し、現像装置がトナーを担持する表面に螺旋状の溝部を有する現像ローラからなり、本発明のトナーを供給して交流周波数1kHz〜10kHzの交流電界下で現像するものである。
【選択図】 図1

Description

本発明は、トナー、画像形成方法および画像形成装置に関する。
従来、画像形成装置として、潜像担持体である感光体ドラムや感光体ベルト等の感光体を画像形成装置の本体に回転可能に支持し、画像形成動作時には感光体における感光層に静電潜像を形成した後、この潜像をトナーによって接触方式または非接触方式で可視像化し、次いでその可視像をコロナ転写や転写ローラを使用して転写材に直接転写する方式や、また、転写ドラムまたは転写ベルト等の中間転写媒体に可視像を一旦転写した後、転写材に再転写する方式がある。これらの画像形成装置にあって、トナーとしては一般的には二成分トナーが知られ、比較的安定した現像を可能とするが、現像剤と磁性キャリアとの混合比の変動が発生しやすく、その維持管理をする必要がある。また、一成分磁性トナーは、磁性材料の不透明性から鮮明なカラー画像を得られないという問題がある。
トナーにおいては、上記のごとき工程を繰り返して高品位の記録画像を得るためには高い流動性を有すると共に如何にトナーを均一帯電させるかが課題となっている。特に、非接触AC現像方式への適用に際しては、飛翔性の向上の観点からもトナーの流動性を向上させてトナーにおける現像ローラへの粘着力を弱めることが必要であり、また、現像電界による飛翔性を高める観点からもトナーに蓄積する過剰な摩擦電荷を放出することが必要である。従来のトナーにおいては、流動性向上剤としてシリカ微粒子を外添することが知られているが、シリカ微粒子は1015Ω・cm以上の高抵抗のため、帯電に際してチャージアップ現象が生じ、画像形成工程の繰り返しにより画像濃度が低下するという問題がある。
そこで、トナー母粒子にアルミナ微粒子を外添して、その微弱な電荷リーク作用により、トナーに蓄積する過剰な摩擦電荷を放出してトナーの摩擦帯電の安定化作用を図り、現像電界による飛翔性を高め、また、その研磨作用により感光体表面をリフレッシュして感光体の帯電性能の安定化を図ることが試みられている。
ナノ・サイズ アルミナの製法としては(1)低ソーダ法アルミナ微粒子:昭和電工製、太平洋ランダム製、(2)ドーソナイト法アルミナ微粒子:大明化学製、ヒノモト製、(3)火花放電法アルミナ:岩谷化学製、(4)火炎加水分解法アルミナ:日本アエロジル製等が知られており、また、アルミナ微粒子としては、α−アルミナ、γ−アルミナ、θ−アルミナ、また、その混合体等の種々の形態が知られている。トナー外添用アルミナとして、例えばα−アルミナ微粒子は明確な結晶構造を有するので、電荷リーク作用発現の起点となる酸素欠陥(格子欠陥)を形成し難く、摩擦帯電を安定化させる機能に乏しい。さらに、α−アルミナ微粒子は粒子径が大きく、且つ硬度が高いので研磨作用が過剰に発現しやすい欠点があり、感光体表面に生じる研磨痕が画像欠陥の起点となったり、感光層を過剰に削り取ることでその寿命を短くする等の問題がある。
また、γ−アルミナ微粒子、また、シリコーンオイルにより被覆したアルミナ微粒子、また、カップリング剤により表面処理を施したアルミナ微粒子等が提案(特許文献1〜3)されている。遷移アルミナの代表であるγ−アルミナは、その製造方法によっては酸素欠陥(格子欠陥)を形成し易く、さらに粒子表面の活性Al−OH基に化学吸着する構造水を多く含むので、電荷リーク作用を発現しやすくなる特徴がある。しかし、それら過剰なリーク作用により摩擦帯電電荷の減衰が制御し難くなったり、大気中の水分量に依存する環境安定性が損なわれる課題も存在する。さらに、γ−アルミナは粒子径を小さくできる反面、粒子表面の活性Al−OH基の影響で二次凝集体を形成し易い特徴があり、トナー母粒子の表面に付着するように処理を施した場合に、分散不良の状態で存在するアルミナ遊離外添剤は、下記のような様々な弊害を引き起こしている。
第1には、多数枚印字にともなって摩擦帯電の立ち上がりが低下し、特にトナーを補給する方式にあってはトナー補給カブリの現象が生じる。現像装置内のトナーは現像操作を多数回繰り返した場合に、その表面から電荷リーク作用を有する外添剤のアルミナ微粒子がトナー母粒子に埋没または遊離により徐々に失われ、摩擦帯電の立ち上がりが低下する。(1)現像装置がトナーを補給可能とするトナー補給形式である場合には、残留トナーに加えて現像に使用されるトナーが新たに補給されて、もしくは(2)現像装置がトナーを補給可能としないトナー使い切り形式である場合には、再生現像装置として残留トナーに加えてトナーが新たに充填され、いずれの場合にも現像装置内でダメージを受けた劣化トナーと新トナーとの間に摩擦帯電時での帯電能力差が生じる。一成分現像法ではトナー担持体である現像ローラとトナー間の摩擦帯電が摩擦帯電能力差が生じた場合、新トナー補給後若しくは再充填後の画像形成時に現像ローラ上のトナー層の規制通過モレ、現像ローラ上のトナー層の上シール飛散、感光体上の非画像形成部のカブリ等が発生するという不具合が生じる。また、二成分現像法ではキャリアとトナー間の摩擦帯電が新旧トナー間で帯電能力差が生じた場合、マグネットローラ上での現像剤層の規制通過飛散、感光体上の非画像形成部のカブリ等が発生するという不具合が生じる。
この現像のメカニズムは、劣化トナーと新トナーが現像装置内で共存する状況下では、摩擦帯電の立ち上がりが良好である新トナーがトナー粒子担持ローラ(現像ローラ)上に形成するトナー層の下層側、摩擦帯電の立ち上がりに劣る旧トナーが表層側として分離する様に層形成することで、帯電の劣る表層側の旧トナーが現像動作時にトナー担持体から離脱しやすくなることが原因となる。
また、トナー粒子は現像ローラ表面に担持され、また、層厚規制部材に押圧されることにより、押圧を有する表面、層厚規制部材等にて摩擦されつつ帯電される。現像ローラには、トナー担持表面がサンドブラスト処理されて表面に細かな凹凸が設けられているものがあるが、凹凸における凹部の大きさ、深さ、形状、及び並び方が不均一である。このため、例えば深い凹部に入り込んだトナー粒子は、転動されないため良好に帯電されないおそれがある。このように、現像ローラ表面における凹凸部の不均一さに起因して、局所的にトナー粒子の帯電不良が発生したり、小さな凹部にトナー粒子がはまりこんで、フィルミングが発生するおそれがある。また、トナー粒子が良好に帯電されない場合には、トナー粒子が現像装置から漏れて画像形成装置内に飛散したり、画像にカブリが生じるおそれがある。
また、近年、電子写真方式の画像形成装置から機外に放出される冷却気流中にダストが含まれ、そのダストが人体に悪影響を及ぼすのではないかとの懸念が報告されている。大気中のダストを規制する基準としては、環境省が検討している微小粒子状物質(PM2.5)に関するものがあり、近々環境基準として法的な指針が開示されると伝えられているが、電荷リーク性を有する外添剤がトナー表面から遊離して、画像形成動作中に機外に放出されることが、ダスト発生リスクの一因となると予想されている。また、トナーにしても近年、画像の鮮明化を図る観点から小粒径化が進められ、特にカラー用画像形成装置においては体積平均粒径が5μm程度の小粒径トナーが主流となるものと考えられるが、現像ローラと感光体間にAC(交流)電界を印加して画像形成するシステムにおいては、現像電界中でトナーが往復運動しながら感光体上に移行するため、現像電界中でクラウド状に活性状態となるトナーの一部が画像形成装置内に流れる気流に乗じることでダスト化するというリスクも懸念される。
第2には、感光体メモリーの現象が生じる。現像動作時にトナーと同期して感光体上に移行する外添剤のアルミナ微粒子は、その一部が転写動作時にトナーと同期して転写体上に移行し、遊離状態のアルミナ微粒子の一部はトナーと同期して転写体上に移行することなく感光体上に残留しやすくなる。感光体上に残留したアルミナ微粒子は、更にその一部がクリーニング動作で感光体上から除去されるが、サイズがトナーと比較して著しく小さいことからその多くが感光体上に残留し続ける。感光体上に残留するアルミナ微粒子は静電潜像を形成する際の画像輪郭部に集中しやすい傾向があり、一様帯電もしくは書き込み露光時にクリーニング工程でリセットできずに残留したアルミナ微粒子が、その動作における阻害要因となり、そこで生じた表面電位変動としての履歴(感光体メモリー)が画像形成時に一工程前の画像形成履歴となり残像が出現する。
トナー外添用アルミナ微粒子としては、特許文献1には疎水性γ晶アルミナ研磨物質を記載するが、帯電性に関してアルミナ遊離外添剤による上記した課題を記載するものではなく、また、特許文献2には、アルミニウムドウソナイト法により得られるトナー外添用アルミナ微粒子を記載し、また、特許文献3には、非晶質のアルミナ微粒子とすることにより得られるトナー外添用アルミナ微粒子を記載するが、アルミナ微粒子にあって、特に上記した問題への対応について記載するものではない。
特開平3−191363号公報 特開平3−240068号公報 特開平8−184988号公報
本発明は、アルミナ微粒子を外添した小粒径トナーにあっても、現像に際して生じる飛翔性、供給遅れ、規制通過モレ、上シール飛散、カブリ、トナー補給規制通過モレ、トナー補給上シール飛散、トナー補給カブリ等における問題が解決されると共に、現像ギャップ飛散やトナー補給現像ギャップ飛散の抑制されたトナー、画像形成方法、画像形成装置の提供を課題とする。
本発明のトナーは、少なくとも結着樹脂、着色剤及び離型剤を含むトナー母粒子と、交流インピーダンス法での交流周波数1kHz〜10kHz区間における位相角(θ)が|80°|以下であるアルミナ微粒子を含有することを特徴とする。
上記のアルミナ微粒子が、金属アルミニウムを直流アークプラズマで蒸発させ、その蒸気を酸化して得られるものであるか、または、アンモニウムドウソナイトを熱分解して得られることを特徴とする。
上記のトナー母粒子が、体積平均粒径(D50)が2.0〜12.0μmで、転相乳化合一法により得られるものであることを特徴とする。
上記のアルミナ微粒子が、BET比表面積30m2 /g〜250m2 /gで、かつ個数平均粒径5nm〜80nmであることを特徴とする。
本発明の画像形成方法は、静電潜像を担持した感光体と、該感光体と非接触の状態で対向配置される現像装置とを有し、該現像装置が、前記感光体に担持された静電潜像を現像するためのトナーを担持する表面を有すると共に該表面には軸方向及び周方向に対し傾斜を有し軸方向に等ピッチに形成された螺旋状の溝部を有する現像ローラと、該現像ローラにトナーを供給するための供給ローラとを有し、該現像装置に前記トナーとして少なくとも結着樹脂、着色剤及び離型剤を含むトナー母粒子と、交流インピーダンス法での交流周波数1kHz〜10kHz区間における位相角(θ)が|80°|以下であるアルミナ微粒子とを含有するトナーを供給して前記感光体に担持された静電潜像を交流周波数1kHz〜10kHzの交流電界下で現像することを特徴とする。
本発明の画像形成装置は、静電潜像を担持した感光体と、該感光体と非接触の状態で対向配置され、前記感光体に担持された静電潜像を、少なくとも結着樹脂、着色剤及び離型剤を含むトナー母粒子と、交流インピーダンス法での交流周波数1kHz〜10kHz区間における位相角(θ)が|80°|以下であるアルミナ微粒子とを含有するトナーにより現像するためのトナーを担持する表面を有すると共に該表面には軸方向及び周方向に対し傾斜を有し軸方向に等ピッチに形成された螺旋状の溝部を有する現像ローラと、該現像ローラに圧接対向配置され、前記トナーを供給する供給ローラとを有する現像装置とを含み、前記感光体に担持された静電潜像を交流電界下で現像ローラにより現像することを特徴とする。
上記の画像形成方法、画像形成装置における現像装置が、トナーを補給可能とするトナー補給形式である場合には、残留トナーに加えて新に補給されるトナーにより現像するものであり、現像装置がトナーを補給可能としないトナー使い切り形式である場合には残留トナーに加えて新たに充填されるトナーにより現像するものであることを特徴とする。
本発明は、現像ギャップ飛散が少なく、カブリの少ないものとできると共に、トナー補給にあっても現像ギャップ飛散が少なく、カブリの少ないトナーであり、ダスト発生の少ないトナー、画像形成方法、画像形成装置を提供できる。
図1は、本発明のアルミナ微粒子(実施例1)における交流インピーダンス法で測定される周波数−位相角特性を示す図である。 図2は、本発明のアルミナ微粒子(実施例2)における交流インピーダンス法で測定される周波数−位相角特性を示す図である。 図3は、本発明のアルミナ微粒子(実施例3)における交流インピーダンス法で測定される周波数−位相角特性を示す図である。 図4は、本発明の画像形成装置の概要を説明するための図である。 図5は、現像装置の主要構成要素を説明するための図である。 図6は、現像ローラの表面形状を説明するための図である。 図7は、現像ローラを、軸を通る平面で切断した際の断面を説明するための図である。 図8は、現像ローラが転造により形成される様子を説明するための図である。 図9は、現像ローラが形成される手順を示す図である。 図10は、トナー粒子を担持した現像ローラに規制ブレードが当接された状態を説明するための図である。 図11は、比較用のアルミナ微粒子(比較例1)における交流インピーダンス法で測定される周波数−位相角特性を示す図である。 図12は、比較用のチタニア微粒子(比較例2)における交流インピーダンス法で測定される周波数−位相角特性を示す図である。
本発明におけるトナー母粒子は、少なくとも結着樹脂、着色剤及び離型剤を含むものであり、乳化凝集法で得られるものとしてもよいが、好ましくは転相乳化法によって得られるものである。本発明におけるトナー母粒子は、(1)少なくともポリエステル樹脂と有機溶剤とを含有する混合物を水性媒体中に塩基性化合物の存在下で乳化させ微粒子を形成させる第1工程、次いで、(2)分散安定剤を添加し、更に電解質を順次添加することで微粒子を合一させ、微粒子の凝集体を製造する第2工程、(3)凝集体中に含有される有機溶剤を脱溶剤した後、水性媒体から微粒子の凝集体を分離・洗浄し、乾燥させる第3工程を経て製造される。
ポリエステル樹脂としては、多塩基酸と多価アルコールとが脱水縮合されることによって合成される。多塩基酸としては、例えばテレフタル酸、イソフタル酸、無水フタル酸、無水トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸のごとき芳香族カルボン酸類;無水マレイン酸、フマール酸、コハク酸、アルケニル無水コハク酸、アジピン酸などの脂肪族カルボン酸類;シクロヘキサンジカルボン酸などの脂環式カルボン酸類などが挙げられる。これらの多塩基酸は、単独で用いることもでき、2種類以上を併用して用いることもできる。これらの多塩基酸の中でも、芳香族カルボン酸を使用するのが好ましい。
多価アルコールとしては、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトールのごとき脂肪族ジオール類;シクロヘキサンジオール、シクロヘキサンジメタノール、水添ビスフェノールAのごとき脂環式ジオール類;ビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物のごとき芳香族ジオール類などが挙げられる。これらの多価アルコールは単独で用いることもでき、2種以上を併用して用いることもできる。これらの多価アルコールの中でも、芳香族ジオール類、脂環式ジオール類が好ましく、芳香族ジオール類がより好ましい。
なお、多価カルボン酸と多価アルコールとの縮重合によって得られたポリエステル樹脂に、さらにモノカルボン酸、及び/又はモノアルコールを加えて、重合末端のヒドロキシル基、及び/又はカルボキシル基をエステル化し、ポリエステル樹脂の酸価を調整することができる。このような目的で用いるモノカルボン酸としては、例えば酢酸、無水酢酸、安息香酸、トリクロル酢酸、トリフルオロ酢酸、無水プロピオン酸などが挙げられる。また、モノアルコールとしては、例えばメタノール、エタノール、プロパノール、オクタノール、2−エチルヘキサノール、トリフルオロエタノール、トリクロロエタノール、ヘキサフルオロイソプロパノール、フェノールなどが挙げられる。
ポリエステル樹脂は、上記多価アルコールと多価カルボン酸とを常法に従って縮合反応させることにより製造することができる。例えば、上記多価アルコールと多価カルボン酸とを、温度計、攪拌器、流下式コンデンサを備えた反応容器に配合し、窒素等の不活性ガスの存在下で150〜250℃で加熱し、副生する低分子化合物を連続的に反応系外に除去し、所定の物性値に達した時点で反応を停止させ、冷却することにより目的とする反応物を得ることができる。
このようなポリエステル樹脂の合成は、触媒を添加して行うこともできる。使用するエステル化触媒としては、例えばジブチル錫ジラウレート、ジブチル錫オキサイドのごとき有機金属や、テトラブチルチタネートのごとき金属アルコキシドなどが挙げられる。また、使用するカルボン酸成分が低級アルキルエステルである場合には、エステル交換触媒を使用することができる。エステル交換触媒としては、例えば、酢酸亜鉛、酢酸鉛、酢酸マグネシウムのごとき金属酢酸塩;酸化亜鉛、酸化アンチモンのごとき金属酸化物;テトラブチルチタネートのごとき金属アルコキシドなどが挙げられる。触媒の添加量については、原材料の総量に対して0.01〜1質量%の範囲とするのが好ましい。
なお、このような縮重合反応において、特に分岐、または架橋ポリエステル樹脂を製造するためには、1分子中に3個以上のカルボキシル基を有する多塩基酸またはその無水物、及び/又は、1分子中に3個以上の水酸基を有する多価アルコールを必須の合成原料として用いればよい。
ヒートロール定着方式に用いるトナーとして、オフセット防止液を使用しないで良好な定着/オフセット温度幅を有するためには、上記ポリエステル樹脂が、定荷重押し出し形細管式レオメーター(以下、フローテスターという)による測定で以下の範囲となることが好ましい。すなわち、フローテスターによる流出開始温度(Tfb)が80℃〜120℃の範囲、T1/2温度が100℃〜160℃の範囲、流出終了温度(Tend)が110℃〜210℃の範囲である。このようなフローテスター値を有するポリエステル樹脂を用いることにより、良好なオイルレス定着性を有するようになる。また、ガラス転移温度(Tg)は40〜75℃であることが好ましい。
フローテスターによる流出開始温度Tfb、T1/2温度、流出終了温度Tendは、島津製作所製フローテスター(CFT−500)を用いて求められている。このフローテスターは、特開2003−122051の図1(a)に示されるようにノズル径Dが1.0mmΦでノズル長さ(深さ)Lが1.0mmのノズル1を有するシリンダー2に、樹脂3(重量1.5g)を充填し、ノズル1と反対の側から単位面積(cm2 )当たり10kgの荷重をかけ、その状態で毎分6℃の昇温速度で加熱したときの、荷重面4のストロークS(荷重面4の沈み値)を測定することによって得られる。すなわち、昇温した温度とストロークSとの関係を特開2003−122051の図1(b)に示すようにして求め、ノズル1からの樹脂3の流出が始まって急激にストロークSが大きくなり、カーブが立ち上がったときの温度をTfbとし、また、ノズル1からの樹脂3の流出がほぼ終了してカーブがねたときの温度をTendとする。そして、TfbのときのストロークSfbとTendのときのストロークSendとの中間値となるS1/2のときの温度をT1/2温度としている。この装置を用いた昇温法による測定は、試験時間の経過と共に一定の割合で昇温しながら試験することで、試料が固体域から遷移域、ゴム状弾性域を経て流動域に至るまでの過程を連続的に測定することができる。この装置により、流動域における各温度のせん断速度、粘度が簡便に測定できる。
流出開始温度Tfbは、ポリエステル樹脂のシャープメルト性、低温定着性の指標となるもので、あまり高温であると低温定着性が悪化し、コールドオフセットが発生しやすくなる。また、あまり低温であると保存安定性が低下し、ホットオフセットが発生しやすくなる。したがって、トナーの流出開始温度Tfbは85℃〜115℃であることがより好ましく、85〜110℃であることが特に好ましい。
また、1/2法によるトナーの溶融温度T1/2及び流出終了温度Tendは、耐ホットオフセット性の指標となるもので、いずれもがあまり高温すぎると溶液粘度が高くなるため粒子形成時の粒度分布が劣化する。また、いずれもが低温すぎるとオフセットが発生しやすくなり、実用性が低下する。そのため、1/2法による溶融温度T1/2は110℃〜160℃であることが必要であり、110〜150℃であることがより好ましく、流出終了温度Tendは110℃〜200℃が好ましく、110℃〜180℃がより好ましい。Tfb、T1/2、Tendを上記範囲内とすることで幅広い温度範囲で定着が可能となる。
また、前述したポリエステル樹脂としては、架橋ポリエステル樹脂を含有し、該結着樹脂のテトラヒドロフラン不溶分が0.1〜20質量%の範囲、さらに好ましくは、0.2〜10質量%の範囲、さらに好ましくは0.2〜6質量%の範囲である。このように結着樹脂をテトラヒドロフラン不溶分が0.1〜20質量%のポリエステル樹脂とすることにより、良好な耐ホットオフセット性を確保することができ好ましい。0.1質量%よりも少ないと、耐ホットオフセット改善効果が不足するため好ましくない。20質量%よりも多いと溶液粘度が高くなりすぎ、定着開始温度が高くなり、定着性のバランスがくずれるため、好ましくない。また、シャープメルト性が損なわれるため、カラー画像における透明性、色再現性、光沢が劣るため好ましくない。
結着樹脂のテトラヒドロフラン不溶分は、樹脂1gを精秤し、テトラヒドロフラン40ml中に加えて完全に溶解し、桐山濾紙(No.3)を置いたロート(直径40mm)の上にラヂオライト(昭和化学社製#700)2gを均一に敷いて濾過し、ケーキをアルミシャーレ上にあけて、その後140℃で1時間乾燥し、乾燥重量を測定する。そして、最初の樹脂サンプル量で乾燥重量中の残存樹脂量を割った値を百分率で算出し、この値を結着樹脂のテトラヒドロフラン不溶分とする。
また、結着樹脂としては、高粘性の架橋ポリエステル樹脂と低粘性の分岐型、あるいは直鎖型ポリエステル樹脂を含有しているのがより好ましい。すなわち、本発明のポリエステル樹脂においては、結着樹脂を1種類のポリエステル樹脂によって構成してもよいが、一般的に高分子量で高粘性となる架橋型のポリエステル樹脂(架橋ポリエステル樹脂)と、低分子量で低粘性となる分岐型、あるいは直鎖型ポリエステル樹脂とをブレンドして用いることが樹脂の製造上も、また良好な定着開始温度及び耐ホットオフセット性を得るためにも実際的であり好ましい。ブレンドして用いる場合には、ブレンドした樹脂のフローテスター値が上記数値範囲に入ればよい。本発明では、架橋ポリエステル樹脂はテトラヒドロフランに不溶な成分を有する樹脂を示し、分岐型、あるいは直鎖型ポリエステル樹脂は、上記ゲル分の測定でゲル分がなく、テトラヒドロフランに溶解する樹脂を示す。
本発明では、結着樹脂として溶融粘度の異なる複数のポリエステル樹脂を用いることができるが、たとえば、低粘性の分岐型あるいは直鎖型ポリエステル樹脂と高粘性の架橋ポリエステル樹脂との混合物を用いる場合、以下に示すような条件の分岐型あるいは直鎖状ポリエステル樹脂(A)と架橋型あるいは分岐型のポリエステル樹脂(B)との混合物とするのがより好ましい。この時、ブレンドした樹脂のフローテスター値は上記数値範囲内に入る様、樹脂(A)、樹脂(B)の溶融粘度及び配合量を適宜調節する。
すなわち、ポリエステル樹脂(A)としてフローテスターによるT1/2温度が80℃以上、120℃未満であり、ガラス転移温度Tgが40℃〜70℃の分岐型あるいは直鎖状ポリエステル樹脂、またポリエステル樹脂(B)として、フローテスターによるT1/2温度が120℃以上、210℃以下であり、ガラス転移温度Tgが50〜75℃の架橋型あるいは分岐型のポリエステル樹脂、さらに、これらポリエステル樹脂(A)とポリエステル樹脂(B)との重量比率が、(A)/(B)=20/80〜80/20であり、また、T1/2温度をそれぞれT1/2(A)、T1/2(B)としたとき、20℃<T1/2(B)−T1/2(A)<100℃の関係にあるものが好ましく用いられる。
フローテスターによる各温度特性を考えると、樹脂(A)の1/2法による溶融温度T1/2(A)はシャープメルト性、低温定着性を付与するための指標となるもので、T1/2(A)が80〜115℃の範囲であることがより好ましく、90〜110℃の範囲であることが特に好ましい。
これらの性能により規定される樹脂(A)は軟化温度が低く、ヒートロールによる定着プロセスにおいて、ヒートロールの低温化やプロセス速度の高速化により与えられる熱エネルギーが減少した場合でも、十分に溶融し、耐コールドオフセット及び低温定着性に優れた性能を発揮する。
樹脂(B)の1/2法による溶融温度T1/2(B)及び流出終了温度Tend(B)が共に低すぎる場合には、ホットオフセットが発生しやすくなり、また、高すぎる場合には粒子形成時の粒度分布が悪化して生産性が低下するため、T1/2(B)は125℃〜210℃であることがより好ましく、130℃〜200℃であることが特に好ましい。
これらの性能により規定される樹脂(B)は、ゴム弾性傾向が強く、かつ高い溶融粘度を持つため、定着プロセスにおける加熱溶融時でも溶融したトナー層の内部凝集力が維持され、ホットオフセットが発生しにくく、かつ定着後もその強靱さから優れた耐摩擦性を発揮する。
樹脂(A)と樹脂(B)をバランス良く配合することで、広い温度領域における耐オフセット性能と低温定着性能を十分に満足するトナーが提供できる。樹脂(A)と樹脂(B)の重量比率(A)/(B)が小さすぎる場合には定着性に影響を及ぼし、また、大きすぎる場合には耐オフセット性に影響を及ぼすため20/80〜80/20であることが好ましく、30/70〜70/30であることが更に好ましい。
また、樹脂(A)と樹脂(B)との1/2法による溶融温度をそれぞれT1/2(A)、T1/2(B)としたときに、低温定着性と耐オフセット性の両立の観点から、また、樹脂間の粘度の差からくる問題を生じることなく均一に混合しやすくためには、T1/2(B)−T1/2(A)の範囲は20℃を越え、90℃以下であることがより好ましく、20を越え80℃以下であることが特に好ましい。
ガラス転移温度(Tg)は、島津製作所製示差走査熱量計(DSC−50)を用いて、セカンドラン法で毎分10℃の昇温速度で測定して得られる値である。ポリエステル樹脂(A)のTgが40℃未満、あるいはポリエステル樹脂(B)のTgが50℃未満であると、得られるトナーが貯蔵中または現像機中でブロッキング(トナーの粒子が凝集して塊になる現象)を起こしやすくなり好ましくない。一方、ポリエステル樹脂(A)のTgが70℃を越えると、あるいはポリエステル樹脂(B)のTgが75℃を越えると、トナーの定着温度が高くなり好ましくない。このように、結着樹脂となるポリエステル樹脂として、上記の関係にあるポリエステル樹脂(A)およびポリエステル樹脂(B)を用いることにより、得られるトナーはより良好な定着性を有するようになり好ましい。
さらに、ポリエステル樹脂からなる結着樹脂としては、テトラヒドロフラン(THF)可溶分のゲルパーミュエーションクロマトグラフィー(GPC)法による分子量測定で、重量平均分子量が3万以上、好ましくは37,000以上、重量平均分子量(Mw)/数平均分子量(Mn)が12以上、好ましくは15以上、分子量60万以上の成分の面積比率が全体の0.3%以上、好ましくは0.5%以上、分子量1万以下の成分の面積比率が20〜80%、好ましくは30〜70%、の条件を満たすことが良好な定着性を得るうえで好ましい。複数の樹脂をブレンドする場合には、最終的な樹脂混合物のGPC測定結果が上記数値範囲内に入ればよい。
本発明におけるポリエステル樹脂において、分子量60万以上の高分子量成分は耐ホットオフセット性を確保する機能を有している。一方、分子量が1万以下の低分子量成分は樹脂の溶融粘度を下げ、シャープメルト性を発現させ定着開始温度を低下するために効果的であり、分子量1万以下の樹脂成分を含有することが好ましい。オイルレス定着方式における低温定着、耐ホットオフセット性、透明性等の良好な熱特性を得るには、結着樹脂がこのようにブロードな分子量分布を有することが好ましい。
結着樹脂のTHF可溶分の分子量は、THF可溶物を0.2μmのフィルターで濾過した後、東ソー製GPC・HLC−8120、東ソー製カラム「TSKgelSuperHM−M」(15cm)を3本使用し、THF溶媒(流速0.6ml/min、温度40℃)で測定し、単分散ポリスチレン標準試料で作成した分子量校正曲線を使用することにより分子量を算出したものである。
ポリエステル樹脂の酸価(樹脂1gを中和するのに必要なKOHのmg数)は、上記のような分子量分布を得やすいこと、乳化分散による微粒子の造粒性を確保しやすいこと、得られるトナーの環境安定性(温度・湿度が変化したときの帯電性の安定性)を良好なものに保ちやすいことなどから、1〜20mgKOH/gの範囲が好ましい。なお、ポリエステル樹脂の酸価は、前述したように多価カルボン酸と多価アルコールとの縮重合によって得られたポリエステル樹脂に、さらにモノカルボン酸、及び/又はモノアルコールを加える以外にも、原料の多塩基酸と多価アルコールの配合比と反応率により、ポリエステルの末端のカルボキシル基を制御することによって調整することができる。あるいは、多塩基酸成分として無水トリメリット酸を使用することにより、ポリエステルの主鎖中にカルボキシル基を有するものを形成することができる。
次に、トナー母粒子には、離型剤を含有させることができる。離型剤としてはポリプロピレンワックス、ポリエチレンワックス、フィーシャートロプシュワックス等の炭化水素系ワックス類、合成エステルワックス類、カルナバワックス、ライスワックス等の天然エステル系ワックス類の群の中から選ばれた離型剤が用いられる。中でも、カルナバワックス、ライスワックス等の天然系エステルワックス、多価アルコールと長鎖モノカルボン酸から得られる合成エステルワックス類が好適に用いられる。合成エステルワックスとしては、例えば、WEP-5(日本油脂社製)が好適に用いられる。離型剤の含有量は、1質量%未満であると離型性が不十分となりやすく、40質量%を越えるとワックスがトナー粒子表面に露出しやすくなり、帯電性や保存安定性が低下しやすくなるため、1〜40質量%の範囲内が好ましい。
また、電荷制御剤を含有させることができる。負帯電性電荷制御剤としてはトリメチルエタン系染料、サリチル酸の金属錯塩、ベンジル酸の金属錯塩、銅フタロシアニン、ペリレン、キナクリドン、アゾ系顔料、金属錯塩アゾ系染料、アゾクロムコンプレックス等の重金属含有酸性染料、カッリクスアレン型のフエノール系縮合物、環状ポリサッカライド、カルボキシル基および/またはスルホニル基を含有する樹脂等が挙げられる。電荷制御剤の含有量は0.01〜10質量%であることが好ましい。特に0.1〜6質量%であることが好ましい。
また、着色剤としては、特に制限はなく、公知慣用のものが用いられるが、特に顔料が好適に用いられる。黒色顔料としては、例えばカーボンブラック、シアニンブラック、アニリンブラック、フェライト、マグネタイト等が挙げられる。また、下記の有彩色顔料を黒色となるように配合したものを使用することもできる。
黄色顔料としては、例えば、黄鉛、亜鉛黄、カドミウムイエロー、黄色酸化鉄、黄土、チタン黄、ナフトールイエローS、ハンザイエロー10G、ハンザイエロー5G、ハンザイエローG、ハンザイエローGR、ハンザイエローA、ハンザイエローRN、ハンザイエローR、ピグメントイエローL、ベンジジンイエロー、ベンジジンイエローG、ベンジジンイエローGR、パーマネントイエローNCG、バルカンファーストイエロー5G、バルカンファーストイエローR、キノリンイエローレーキ、アンスラゲンイエロー6GL、パーマネントイエローFGL、パーマネントイエローH10G、パーマネントイエローHR、アンスラピリミジンイエロー、その他イソインドリノンイエロー、クロモフタルイエロー、ノボパームイエローH2G、縮合アゾイエロー、ニッケルアゾイエロー、銅アゾメチンイエロー等が挙げられる。
赤色顔料としては、例えば赤色黄鉛、モリブデンオレンジ、パーマネントオレンジGTR、ピラゾロンオレンジ、バルカンオレンジ、インダスレンブリリアントオレンジRK、インダスレンブリリアントオレンジGK、ベンジジンオレンジG、パーマネントレッド4R、パーマネントレッドBL、パーマネントレッドF5RK、リソールレッド、ピラゾロンレッド、ウォッチングレッド、レーキレッドC、レーキレッドD、ブリリアントカーミン6B、ブリリアントカーミン3B、ローダミンレーキB、アリザリンレーキ、パーマネントカーミンFBB、ベリノンオレンジ、イソインドリノンオレンジ、アンスアンスロンオレンジ、ピランスロンオレンジ、キナクリドンレッド、キナクリドンマゼンタ、キナクリドンスカーレット、ペリレンレッド等が挙げられる。
青色顔料としては、例えばコバルトブルー、セルリアンブルー、アルカリブルーレーキ、ピーコックブルーレーキ、ファナトーンブルー6G、ビクトリアブルーレーキ、無金属フタロシアニンブルー、銅フタロシアニンブルー、ファーストスカイブルー、インダスレンブルーRS、インダスレンブルーBC、インジコ等が挙げられる。
これら着色剤の使用量は、結着樹脂100質量部当たり1〜50質量部の範囲が好ましく、2〜15質量部の範囲が特に好ましい。
次に、トナー母粒子の製造方法を説明する。
第1工程では、有機溶剤中にポリエステル樹脂を投入して、樹脂を溶解分散することにより(必要に応じ加熱して)ポリエステル樹脂と有機溶剤とを含む混合物を調整する。この場合、トナー用原料として各種着色剤、離型剤または電荷制御剤、あるいはその他の添加物から選択される1種以上をポリエステル樹脂と共に用いることができる。本発明においては、着色剤をポリエステル樹脂と共に有機溶剤中に分散させることが好ましく、更に離型剤、電荷制御剤等の各種添加剤も同様に溶解あるいは分散させるのが特に好ましい。
有機溶剤中にポリエステル樹脂、及び、必要に応じて着色剤、離型剤、電荷制御剤等の各種添加剤を、溶解あるいは分散させる手段としては、以下の方法を用いることが好ましい。ポリエステル樹脂、着色剤、離型剤、電荷制御剤等の各種添加剤を含む混合物を加圧ニーダー、加熱2本ロール、2軸押し出し混練機などを用いて、使用するポリエステル樹脂を軟化点以上、且つ熱分解温度以下の温度に加熱して混練する。この時、着色剤等はマスターバッチとして溶融混練してもよい。その後、得られた混練チップをデスパー等の攪拌機により有機溶剤中に溶解、ないし分散して調製する。あるいは、ポリエステル樹脂と着色剤、離型剤、電荷制御剤等の各種添加剤を有機溶剤と混合し、これをボールミル等により湿式混練する。この場合、着色剤や離型剤等はあらかじめ別々に予備分散を行ってから混合しても良い。
上記のより具体的な手段としては、ボールミル、ビーズミル、サンドミル、連続式ビーズミル等のメディアを用いた混合・分散機中に、予め有機溶媒にポリエステル樹脂を溶解した樹脂溶液、及び着色剤や離型剤を加え、攪拌・分散させることによりマスターバッチとし、更に希釈用のポリエステル樹脂、追加の有機溶剤を混合することにより有機溶媒中に着色剤や離型剤等が微分散した樹脂溶液を製造する方法がある。このとき、着色剤や離型剤等を未処理のまま直接ボールミル等の混合・分散機に投入するよりも、あらかじめ、低粘度のポリエステル樹脂と着色剤、あるいは離型剤等を加圧ニーダー、加熱2本ロールで混練・分散してマスターバッチとしたものを用いるのが好ましい。以上のような製法によれば、ポリエステル樹脂の高分子成分(ゲル成分)が切断されないため、溶融混練により分散するの方法よりも好ましい。
ポリエステル樹脂と必要に応じて添加する着色剤や離型剤等とを溶解あるいは分散させるための有機溶剤としては、例えばペンタン、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、シクロヘキサン、石油エーテルのごとき炭化水素類;塩化メチレン、クロロホルム、ジクロロエタン、ジクロロエチレン、トリクロロエタン、トリクロロエチレン、四塩化炭素のごときハロゲン化炭化水素類;アセトン、メチルエチルケトン、メチルイソブチルケトンのごときケトン類;酢酸エチル、酢酸ブチルのごときエステル類、などが用いられる。これらの溶剤は、2種以上を混合して用いることもできるが、溶剤回収の点から、同一種類の溶剤を単独で使用することが好ましい。また、有機溶剤は、結着樹脂を溶解するものであり、毒性が比較的低く、かつ後工程で脱溶剤し易い低沸点のものが好ましく、そのような溶剤としてはメチルエチルケトンが最も好ましい。
次に、ポリエステル樹脂および有機溶剤を含む混合物を水性媒体中に乳化する方法としては、ポリエステル樹脂と必要に応じて添加される着色剤等と有機溶剤からなる上記の方法で調整された混合物を、塩基性中和剤の存在下に、水性媒体と混合して乳化するのが好ましい。この工程においては、ポリエステル樹脂と着色剤等と有機溶剤からなる混合物に水性媒体(水または水を主成分とする液媒体)を徐々に添加する方法が好ましい。その際には、前記混合物の有機連続相に水を徐々に添加することで、Water in Oilの不連続相が生成し、さらに水を追加して添加することで、Oil in Waterの不連続相に転相して、水性媒体中に前記混合物が粒子(液滴)として浮遊する懸濁・乳化液が形成される(以下、この方法を転相乳化という)。転相乳化においては、有機溶剤と添加した水の合計量に対する水の比率が30〜70%となるように水を添加する。より好ましくは35〜65%であり、特に40〜60%であることが好ましい。使用する水性媒体は水であることが好ましく、さらに好ましくは、脱イオン水である。
ポリエステル樹脂は、酸性基含有ポリエステル樹脂であることが好ましく、該酸性基を中和することにより自己水分散性となるポリエステル樹脂であることが好ましい。自己水分散型ポリエステル樹脂の酸価は1〜20mgKOH/gであることが好ましい。自己水分散性を有する樹脂は、酸性基が塩基性中和剤により中和されることによりアニオン型となる。その結果、樹脂の親水性が増加して水性媒体中に分散安定剤や界面活性剤を使用しなくとも安定に分散することができる(アニオン型自己水分散型ポリエステル樹脂)。酸性基としてはカルボキシル基、スルホン酸基、リン酸基等の酸性基が挙げられるが、中でもカルボキシル基がトナーの帯電特性の面から好ましい。また、中和用の塩基性物質としては、特に制限はなく、例えば水酸化ナトリウム、水酸化カリウム、アンモニアのごとき無機塩基や、ジエチルアミン、トリエチルアミン、イソプロピルアミンのごとき有機塩基が用いられる。中でも、アンモニア、水酸化ナトリウム、水酸化カリウムのごとき無機塩基が好ましい。ポリエステル樹脂を水性媒体中に分散するためには、懸濁安定剤や、界面活性剤等の分散安定剤を添加する方法があるが、懸濁安定剤や、界面活性剤を添加して乳化させる方法では高剪断力が必要となる。その結果、粗大粒子の発生、粒度分布がブロードになるため好ましくない。したがって、自己水分散性樹脂を用い、樹脂が有する酸性基を塩基性化合物により中和することが好ましい。
ポリエステル樹脂の酸性基(カルボキシル基)を塩基で中和する方法としては、例えば、(1)酸性基を有するポリエステル樹脂、着色剤、ワックスおよび有機溶剤を含有する混合物を製造した後、塩基で中和する方法、あるいは(2)水性媒体中に予め塩基性中和剤を混合しておき、転相乳化する際に前記混合物に含まれるポリエステル樹脂の酸性基を中和する方法が挙げられる。また、転相乳化の方法としては、(A)前記混合物を水性媒体中に加えて乳化する方法、あるいは(B)前記混合物中に水性媒体を添加する方法が挙げられる。前記の(1)と(B)を組み合わせた方法を採ることにより、粒度分布がシャープとなり好ましい。
転相乳化においては、ホモミクサー(特殊機化工業株式会社)、あるいはスラッシャー(三井鉱山株式会社)、キャビトロン(株式会社ユーロテック)、マイクロフルイダイザー(みづほ工業株式会社)、マントン・ゴーリンホモジナイザー(ゴーリン社)、ナノマイザー(ナノマイザー株式会社)、スタテイックミキサー(ノリタケカンパニー)などの高シェア乳化分散機機や連続式乳化分散機等が使用できる。しかし、このような高シェアがかかる分散機を用いるよりも、例えば、特開平9−114135号公報記載の攪拌装置、アンカー翼、タービン翼、ファウドラー翼、フルゾーン翼、マックスブレンド翼、半月翼等を使用することが好ましい。中でも、マックスブレンド翼やフルゾーン翼のような均一混合性に優れた大型翼がさらに好ましい。水性媒体中に前記混合物の微粒子を形成させるための乳化工程(転相乳化工程)においては、攪拌翼の周速は、0.2〜10m/sが好ましい。0.2〜8m/s未満の低シェアで攪拌しながら水を滴下する方法がより好ましい。特に好ましくは0.2〜6m/sである。攪拌翼の周速が10m/sよりも早いと、転相乳化時の分散径が大きくなり好ましくない。一方、周速が0.2m/sよりも遅いと、攪拌が不均一となり、転相が均一に起こらず、粗大粒子が発生する傾向となり好ましくない。また、転相乳化時の温度は、特に制限はないが、温度が高いほど粗大粒子の発生が多くなるため好ましくない。また、低温すぎるとポリエステル樹脂および有機溶剤を含む混合物の粘度が上昇し、やはり粗大粒子の発生が多くなるため好ましくない。転相乳化時の温度範囲としては10〜40℃が好ましい。さらに好ましくは20〜30℃の範囲である。
自己水分散性樹脂を用いて、低シェア下において転相乳化を行うことにより、微粉や粗大粒子の発生を抑えることができ、その結果、次の合一工程において均一な粒度分布の微粒子の凝集体を製造することが容易になる。また、更に、自己水分散性のないポリエステル樹脂を用いた場合や、高シェア下において転相乳化を行った場合には、粗大粒子の発生や樹脂の低分子量成分が微粉を発生させ、トナー粒子の粒度分布を広くし、さらには、低分子量成分を含む粒子が、その後の工程で行われる篩い分け等で除去されてしまい、トナーの低温定着性を悪化させてしまうといった不都合を引き起こすが、自己水分散性樹脂を用いたり、低シェア下において転相乳化を行うことによりそのような不都合が発生しない。
第1工程で製造する微粒子の50%体積平均粒径は、1μmを越えて6μm以下、より好ましくは1μmを越えて4μmの範囲である。1μm以下であると着色剤や、離型剤を用いた場合、ポリエステル樹脂により十分カプセル化されないため、帯電特性、現像特性に悪影響を及ぼし好ましくない。また、粒径が大きいと、得られるトナーの粒径が限定されるため、目的とするトナーの粒径よりも小粒径にする必要があるが、6μmよりも大きいと粗大粒子が発生しやすくなるため好ましくない。また、第1工程で製造する微粒子の粒度分布は、10μm以上の体積粒径の比率が2%以下、より好ましくは1%以下であり、5μm以上の体積粒径の比率が10%以下、より好ましくは6%以下である。
次に、第2工程では、第1工程で得られた微粒子を合一させることにより該微粒子の凝集体を生成させ、所望の粒径のトナー粒子を形成させる。第2工程では、溶剤量、温度、分散安定剤及び電解質の種類あるいは添加量、攪拌条件等を適宜制御することで、所望の凝集体を得ることができる。乳化重合により微粒子を製造し、その後、微粒子を凝集させた後、温度を上げて融着させることで会合体を製造する方法は良く知られている。本発明における製造方法は、上記のような凝集・融着の2段からなる工程を経て製造される会合体と異なり、凝集と同時に融着工程を含む1段の工程で凝集体を得る製造方法(合一による製造方法)であり、加温せずに、短時間で球形あるいは略球形の粒子を得ることができるという特徴を有している。
第2工程では、第1工程で得られた微粒子の分散液を水で希釈し溶剤量を調整する。その後、分散安定剤を添加し、分散安定剤の存在下に電解質の水溶液を滴下することで合一を進め、所定粒径の凝集体を得る。第1工程までで得られる自己水分散性樹脂から形成された微粒子は、カルボン酸塩による電気二重層の作用により水性媒体中で安定に分散している。第2工程では、微粒子が分散している水性媒体中に電気二重層を破壊、あるいは縮小させる電解質を添加することで、粒子を不安定化させる。
電解質としては、例えば塩酸、硫酸、リン酸、酢酸、シュウ酸などの酸性物質がある。また、硫酸ナトリウム、硫酸アンモニュウム、硫酸カリウム、硫酸マグネシウム、リン酸ナトリウム、リン酸二水素ナトリウム、塩化ナトリウム、塩化カリウム、塩化アンモニウム、塩化カルシュウム、酢酸ナトリウム等の有機、無機の水溶性の塩等も有効に用いることができる。合一させるために添加するこれらの電解質は、単独でも、あるいは2種類以上の物質を混合してもよい。中でも、硫酸ナトリウムや硫酸アンモニュウムのごとき1価のカチオンの硫酸塩が均一な合一を進める上で好ましい。第1工程で得られた微粒子は溶剤により膨潤しており、かつ電解質の添加により粒子の電気二重層が収縮した不安定な状態となっているため、低シェアー(低剪断力)の攪拌による粒子同士の衝突でも容易に合一が進行する。
しかし、電解質等の添加だけでは、系内の微粒子の分散安定性が不安定になっているため、合一が不均一となり粗大粒子や凝集物が発生する。電解質や酸性物質により生成した微粒子の凝集体が、再合一を繰り返して、目的とする粒子径以上の凝集体を形成するのを防止するためには、電解質等を添加する前に、ヒドロキシアパタイト等の無機分散安定剤やイオン性、あるいはノニオン性の界面活性剤を分散安定剤として添加する必要がある。使用する分散安定剤は、後から添加する電解質の存在下においても分散安定性を保持できる特性が必要である。そのような特性を有する分散安定剤としては、例えばポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル等、あるいは各種プルロニック系等のノニオン型の乳化剤、あるいはアルキル硫酸エステル塩型のアニオン性乳化剤、また、第四級アンモニウム塩型のカチオン型の分散安定剤等がある。中でも、アニオン型、ノニオン型の分散安定剤が少量の添加量であっても系の分散安定性に効果があり、好ましい。ノニオン型の界面活性剤の曇点は40℃以上であることが好ましい。以上に記載した界面活性剤は単独で用いても、2種類以上を混合して用いてもよい。分散安定剤(乳化剤)の存在下に電解質を添加することで、不均一な合一を防止することが可能となり、その結果、シャープな粒度分布が得られ、それに伴い、収率の向上が達成される。
また、均一な合一を進める上では、合一時の攪拌条件が重要である。例えば、特開平9−114135で開示されているような攪拌装置、アンカー翼、タービン翼、ファウドラー翼、フルゾーン翼、マックスブレンド翼、コーンケープ翼、ヘリカル翼、ダブルヘリカル翼、半月翼等から適宜選択して使用される。中でも、マックスブレンド翼やフルゾーン翼のような均一混合性に優れた大型翼が好ましい。溶剤により膨潤した微粒子同士が攪拌による衝突により合一して凝集する。そのため、ホモミキサーのようなステーターとローターからなる高剪断装置や、タービン翼のような局所的に高剪断がかかり、全体を均一に攪拌する能力の弱い攪拌翼では合一が不均一となり、粗大粒子の発生につながりやすい。そのため、攪拌条件としては、周速が0.2〜10m/sであることが好ましく、0.2〜8m/s未満がより好ましい。特に好ましくは0.2〜6m/sである。周速が10m/sよりも早いと、不均一な合一が発生して粗大粒子が発生しやすくなるので好ましくない。また、0.2m/sよりも遅いと、攪拌シェアが不足するため、やはり不均一な合一が発生し粗大粒子が発生する傾向となるため好ましくない。微粒子同士の衝突のみにより合一が進行し、合一した凝集体が再び解離・分散することはない。そのため、超微粒子の発生が少なく、かつシャープな粒度分布となるため収率の向上が達成できる。
第2工程においては、第1工程で転相乳化により得られた微粒子の分散液を必要に応じて水でさらに希釈することが好ましい。その後、分散安定剤、及び電解質を順次添加して合一を行う。あるいは、分散安定剤及び/又は電解質の水溶液を添加することで分散液中の溶剤量を調整し、所定粒径の粒子を得る手順を採ることが好ましい。電解質を添加した後の系中に含まれる溶剤量としては、5〜25質量%の範囲内であることが好ましい。また、5〜20質量%の範囲内がより好ましく、特に、5〜18質量%の範囲内が好ましい。溶剤量が5質量%よりも少ないと、合一に要する電解質量が多くなり好ましくない。また、溶剤量が25質量%よりも多いと不均一な合一による凝集物発生が多くなり、また、分散安定剤の添加量が多くなるため好ましくない。
溶剤量を調整することで合一後のトナー粒子の形状をコントロールすることができる。溶剤量が13〜25質量%の範囲では溶剤による微粒子の膨潤度が大きいため、合一により球形〜略球形の粒子を容易に得ることができる。一方、溶剤量を5〜13質量%の範囲にすると溶剤による微粒子の膨潤度が小さいため、異形〜略球形のトナー粒子が容易に得られる。
使用する分散安定剤の量は、例えば微粒子の固形分含有量に対し、0.5〜3.0質量%の範囲内が好ましい。0.5〜2.5質量%の範囲内がより好ましく、1.0〜2.5質量%の範囲内が特に好ましい。0.5質量%よりも少ないと、目的とする粗大粒子発生に対する防止効果が得られない。一方、3.0質量%よりも多いと、電解質の量を増加しても合一が十分に進行せず、所定粒径の粒子が得られなくなり、結果として、微粒子が残存してしまい収率を低下させるため好ましくない。
また、使用する電解質の量は、微粒子の固形分含有量に対し、0.5〜15質量%の範囲内であることが好ましい。1〜12質量%の範囲内であることがより好ましく、1〜10質量%の範囲内であることが特に好ましい。電解質の量が0.5質量%よりも少ないと、合一が十分に進行しないため好ましくない。また、電解質の量が15質量%よりも多いと、合一が不均一となり、凝集物の発生や、粗大粒子が発生し収率を低下させるため好ましくない。
また、合一時の温度は10〜50℃の範囲内が好ましい。より好ましくは20〜40℃の範囲内であり、20〜35℃であることが特に好ましい。温度が10℃よりも低いと、合一が進行しにくくなるため好ましくない。また、温度が50℃よりも高いと、合一速度が速くなり、凝集物や、粗大粒子が発生しやすくなるため好ましくない。20〜40℃の低温の条件で、合一による会合体の生成が可能である。
第1工程、及び第2工程では、種々の実施形態をとることが可能である。中でも、好ましい実施形態としては、以下の(1)〜(4)がある。(1)ポリエステル樹脂と着色剤、必要に応じて離型剤、電荷制御剤からなる樹脂溶液を用いて、上記の第1工程により微粒子を製造し、第2工程(合一工程)を行う方法、(2)ポリエステル樹脂と着色剤、必要に応じて離型剤からなる樹脂溶液を用いて、上記の第1工程により微粒子を製造し、電荷制御剤の分散液を混合して、第2工程(合一工程)を行う方法、(3)ポリエステル樹脂からなる微粒子を上記の第1工程により製造し、着色剤の分散液、及び、必要に応じて離型剤、電荷制御剤の各分散液の1種以上をそれぞれ別々に用意し、それらを混合した後に第2工程(合一工程)を行う方法、(4)ポリエステル樹脂と離型剤からなる樹脂溶液を用いて、上記の第1工程により微粒子を製造し、着色剤の分散液、必要に応じて電荷制御剤の分散液を混合して、第2工程(合一工程)を行う方法である。
ここで用いる着色剤分散液、電荷制御剤分散液、離型剤分散液等の各種分散液は、下記のようにして得ることができる。たとえば、それぞれの物質をポリオキシエチレンアルキルフェニルエーテル等で代表されるノニオン系の界面活性剤、アルキルベンゼンスルホン酸塩、アルキル硫酸エステル塩等で代表されるアニオン系の界面活性剤、あるいは4級アンモニュウム塩で代表されるカチオン系の界面活性剤等と水中に添加して、メディアによる機械的粉砕法により調製できる。あるいは、界面活性剤の代わりに、自己水分散性のポリエステル樹脂を用いて、塩基性中和剤の存在下に同様の分散手段で分散液を調製できる。また、ここで使用する着色剤、離型剤、電荷制御剤は、あらかじめポリエステル樹脂と溶融混練したものを用いてもよい。この場合、樹脂が吸着することで、各種材料が粒子表面に露出する程度が緩和され、帯電特性、現像特性において好ましい特性を与える。
摩擦帯電性能を良好に保持するためには、着色剤等がトナー母粒子表面に露出しないようにすること、すなわち着色剤等がトナー母粒子に内包されたトナー構造とするのが有効である。トナーの小粒径化に伴う帯電性の悪化は、含有する着色剤やその他の添加物(通常ワックスなど)の一部がトナー母粒子表面に露出することも原因になっている。すなわち、着色剤等の含有率(質量%)が同じであっても、小粒径化によりトナー母粒子の表面積が増大し、トナー母粒子表面に露出する着色剤やワックス等の比率が増大し、その結果、トナー母粒子表面の組成が大きく変化し、トナー母粒子の摩擦帯電性能が大きく変わり適正な帯電性が得られにくくなる。
トナー母粒子は、着色剤やワックス等が結着樹脂に内包されているのが望ましく、このように内包された構造となることにより、良好な印刷画像が得られる。積極的に着色剤や離型剤の内包を行うためには、前記の(1)あるいは(2)の方法が好ましい。トナー母粒子表面に着色剤やワックス等が露出していないことは、例えば、粒子の断面をTEM(透過型電子顕微鏡)で観察することにより容易に判定できる。より具体的には、トナー母粒子を樹脂包埋してミクロトームで切断した断面を、必要ならば酸化ルテニウム等で染色し、TEMで観察すると、着色剤やワックス等が粒子内に内包されてほぼ均一に分散していることが確認できる。また、電荷制御剤をトナー粒子表面に局在化させて、その機能を発現させるためには(2)の方法が好ましい。
第二工程で得られる微粒子の凝集体の形状は、合一の程度により不定形から球形まで変化させることができる。例えば、平均円形度で表現すれば、0.94〜0.99まで変化させることが可能である。なお、この平均円形度は、微粒子の凝集体を乾燥して得られたトナー粒子のSEM(走査型電子顕微鏡)写真を撮影し、それを測定し計算することなどによっても求められるが、フロー式粒子像分析装置(シスメックス製 FPIA2100)を使用すると容易に得られる。
トナー粒子の形状は、平均円形度が0.97以上の略球形あるいは球形の形状とすることで粉体流動性の向上、転写効率の向上がみられ、トナーとして用いる場合には上記範囲とすることが好ましい。球形から不定形に近づくと、外添処理に際して後述する混合処理槽内での流動性が悪く、攪拌羽根の周速を低下させても収率が低下し、また、正帯電トナー量が増え、帯電量分布が拡がるという問題がある。また、球形形状が真球に近づくと、トナー母粒子への外添剤粒子の均一付着が困難であり、そのため攪拌羽根の周速を上げざるを得ず、羽根先端や槽壁への溶着が発生し、収率が低下し、また、遊離外添剤量や正帯電トナー量も増え、帯電量分布が拡がる傾向がある。
第3工程は、第2工程で得られた微粒子の凝集体の分散液は、引き続き脱溶剤を行い、スラリー中から有機溶剤を除去する工程である。次いで、湿式振動ふるいを通すことで樹脂片等のゴミ、粗大粒子を除去し、遠心分離器、あるいはフィルタープレス、ベルトフィルター等の公知慣用の手段で固液分離を行うことができる。ついで粒子を乾燥させることによりトナー母粒子を得ることができる。乳化剤や分散安定剤を用いて製造されたトナー母粒子は、より十分に洗浄することが好ましい。
乾燥方法としては、公知慣用の方法がいずれも採用可能であるが、例えば、トナー母粒子が熱融着や凝集しない温度で、常圧下または減圧下で乾燥させる方法、凍結乾燥させる方法、などが挙げられる。また、スプレードライヤー等を用いて、水性媒体からのトナー母粒子の分離と乾燥とを同時に行う方法も挙げられる。特に、トナー母粒子が熱融着や凝集しない温度で加熱しながら、減圧下で、粉体を攪拌して乾燥させる方法や、加熱乾燥空気流を用いて瞬時に乾燥させるというフラッシュジェットドライヤー(セイシン企業株式会社)などを使用する方法が、効率的であり好ましい。
トナー母粒子の粒度分布については、ベックマンコールター社製マルチサイザー III型による測定で、50%体積粒径/50%個数粒径が1.25以下であることが好ましく、より好ましくは1.20以下である。1.25以下であると良好な画像を得られやすく好ましい。また、GSDは1.30以下が好ましく、1.25以下がより好ましい。なお、GSDは、ベックマンコールター社製マルチサイザー III型による測定で、(16%体積粒径/84%体積粒径)の平方根により求められる値である。GSDの値が小さいほど粒度分布がシャープになり、良好な画像が得られる。
トナー母粒子としては、その体積平均粒径として、得られる画像品質などの点から2〜12μmの範囲にあるものが好ましく、カラートナーにあっては、体積平均粒径が3〜8μm程度が好適である。体積平均粒径が小さくなると解像性や階調性が向上するだけでなく、印刷画像を形成するトナー層の厚みが薄くなり、ページあたりのトナー消費量が減少するという効果も発現され、好ましい。
以下に、ポリエステル樹脂の製造例と各物性、およびトナー母粒子の製造例を示す。なお、特に表示がない限り部は質量部、水は脱イオン水の意である。
(ポリエステル樹脂合成例)
2価カルボン酸としてテレフタル酸(TPA)、イソフタル酸(IPA)、芳香族ジオールとしてポリオキシプロピレン(2.4)−2,2−ビス(4−ヒドロキシフェニル)プロパン(BPA−PO)、ポリオキシエチレン(2.4)−2,2−ビス(4−ヒドロキシフェニル)プロパン(BPA−EO)、脂肪族ジオールとしてエチレングリコール(EG)、脂肪族トリオールとしてトリメチロールプロパン(TMP)を、下記表1に示す各モル組成比で用い、重合触媒としてテトラブチルチタネートを全モノマー量に対し0.3質量%でセパラブルフレスコに仕込み、該フラスコ上部に温度計、攪拌棒、コンデンサー及び窒素導入管を取り付け電熱マントルヒーター中で、常圧窒素気流下にて220℃で15時間反応させた後、順次減圧し、10mmHgで反応を続行した。反応は、ASTM・E28−517に準じる軟化点により追跡し、軟化点が所定の温度となったところで真空を停止して反応を終了した。合成した樹脂の組成および物性値(特性値)を表1に示す。
Figure 2010249901
表中、>60万;分子量60万以上の成分の面積比率
<1万;分子量1万以下の成分の面積比率
TPA;テレフタル酸
IPA;イソフタル酸
BPA−PO;ポリオキシプロピレン(2.4)−2,2−ビス(4−ヒドロキ シフェニル)プロパン
BPA−EO;ポリオキシエチレン(2.4)−2,2−ビス(4−ヒドロキシ フェニル)プロパン
EG;エチレングリコール
TMP;トリメチロールプロパン
FT値;フローテスター値
表1において「T1/2温度」は、前述したように島津製作所製フローテスタ(CFT−500)を用いて、ノズル径1.0mmΦ×1.0mm、単位面積(cm2 )当たりの荷重10kg、毎分6℃の昇温速度で測定した値である。また、ガラス転移温度である「Tg」(℃)は、島津製作所製示差走査熱量計(DSC−50)を用い、セカンドラン法により毎分10℃の昇温速度で測定した値である。
(離型剤分散液の調製例)
カルナバワックス「カルナバワックス1号」(加藤洋行輸入品)50部とポリエステル樹脂(表1中、R1)50部とを加圧ニーダーで混練後、該混練物とメチルエチルケトン185部とをボールミルに仕込み、6時間攪拌した後取り出し、固形分含有量を20質量%に調整し、離型剤の微分散液(W1)を得た。
(着色剤マスターチップの調製、及び着色剤分散液の調製例)
下記の表2の配合にてカラー顔料を樹脂と50/50の重量比率で混練し着色剤マスターチップを作製した。カラー顔料と樹脂は二本ロールで混練し、固形分含有量が40質量%となるようにメチルエチルケトンとともにボールミル中に仕込み、36時間攪拌した後取り出し、固形分含有量を20質量%に調整し、着色剤分散液とした。
Figure 2010249901
表2に示した着色剤は以下の通りである。
シアン顔料:ファーストゲンブルーTGR(大日本インキ化学工業社製)
(湿式混練ミルベースの調製)
上記離型剤分散液、着色剤分散液、希釈樹脂(追加樹脂)、メチルエチルケトンをデスパーで混合し、固形分含有量を55%に調整してミルベースを作製した。作製したミルベースの配合を表3に示す。
Figure 2010249901
表3で使用したブレンド樹脂の特性を表4に示した。樹脂のブレンドは200メッシュを通過した樹脂粒子を上記重量比でブレンドして各物性値を測定した。
Figure 2010249901
表中、>60万;分子量60万以上の成分の面積比率
<1万;分子量1万以下の成分の面積比率
(トナー母粒子の製造)
攪拌翼としてマックスブレンド翼を有する円筒型の2Lセパラブルフラスコにミルベースを545.5部、1規定アンモニア水23.8部を加えて、スリーワンモーターにより350rpmにて十分に攪拌した後、脱イオン水133部を加え、さらに攪拌を行い、温度を30℃に調製した。ついで、同条件下で133部の脱イオン水を滴下して転相乳化により微粒子分散体を作製した。この時の攪拌翼の周速は1.19m/sであった。次に、脱イオン水333部を加えて溶剤量を調整した。
次いで、ノニオン型乳化剤であるエパン450(第一工業製薬社製)の4.1部を水に希釈して添加した後、温度を30℃に、また回転数を250rpmに調整し、3%の硫酸アンモニュウムの水溶液410部を滴下して、分散液中の溶剤量を15.5質量%とした。その後、同条件で70分間攪拌を続け合一操作を終了した。この時の攪拌翼の周速は0.85m/sであった。得られたスラリーは、遠心分離機で固液分離、洗浄を行い、その後、真空乾燥機で乾燥を行い、トナー母粒子を得た。得られたトナー母粒子の特性を表5に示す。
Figure 2010249901
Figure 2010249901
Figure 2010249901
表6の粒径・粒度分布は、ベックマンコールター社製マルチサイザー III型により100ミクロンアパーチャーチューブを用いて測定した。Dv50は50%体積平均径であり、Dv50/Dn50は体積、及び個数の50%平均径の比である。また、GSDは、84%体積平均径を16%体積平均径で割った値の平方根である。
円形度分布は、フロー式粒子像分析装置(シスメックス製 FPIA2100)を用いて測定した。トナー母粒子形状としては、真球に近い形状のトナー粒子が好ましい。具体的には、トナー母粒子は下記式
R=L0 /L1
{但し、式中、L1(μm)は、測定対象のトナー粒子の投影像の周囲長、L0(μm)は、測定対象のトナー粒子の投影像の面積に等しい面積の真円(完全な幾何学的円)の周囲長を表す。}
で表される平均円形度(R)が0.95〜0.99、好ましくは0.96〜0.98とするとよい。これにより、転写効率が高く、連続印字しても転写効率の変動が少なく、帯電量の安定すると共に、クリーニング性にも優れるトナーとできる。
また、収率は、得られたトナー母粒子の分散液を脱溶剤した後、530メッシュのふるいに通し、下記式
収率(%)={(仕込んだミルベースの固形分量)−(ふるい上残さの固形分量)}×100/(仕込んだミルベースの固形分量)
で求めた値で、90−100%のものを○とした。
次に、本発明の特徴をなすアルミナ微粒子について説明する。
アルミナ微粒子は、外添剤として機能させるものであり、交流インピーダンス法での交流周波数1kHz〜10kHz区間における位相角(θ)が絶対値で80°以下、すなわち|80°|以下のものである。通常、導電性は電流電圧計を用いて伝導率として定量的に図るのが一般的であるが、アルミナ微粒子等の粉体をサンプルとし、電極間に挟んで測定する場合には、抵抗成分としては、(1)粒子バルクに由来するもの、(2)粒子と粒子の接触界面(粒界)に由来するもの、(3)電極と粒子サンプル界面での抵抗に由来するもの等が考えられ、直流ではこれらの抵抗成分を区別することができない。そのため、直流の代わりに交流を使う交流インピーダンス法を使用して、粒子のバルク抵抗に関するインピーダンスを測定することが提唱されているが、本発明にあっては、AC電界が印加された状態でのアルミナ微粒子における電荷リーク性(導電性)の指標として、交流インピーダンス法での測定により得られる交流周波数毎の位相角(θ)を利用するものである。
本発明のアルミナ微粒子は、交流インピーダンス法での交流周波数1kHz〜10kHz区間における位相角(θ)が|80°|以下のものとするが、例えば位相角(θ)が−80°を超えて−90°に近づくと、後述する比較例1、2のごとく、現像ギャップからの飛散やカブリが生じ好ましくないものとなる。位相角(θ)が|90°|ずれることは、交流周波数の変化にアルミナ微粒子内における電荷の移動が追随できないことを示すものと考えられ、また、位相角(θ)が0°であれば、交流周波数の変化にアルミナ微粒子内における電荷の移動が追随している状態と考えられる。アルミナ微粒子としては、交流周波数1kHz〜10kHz区間における位相角(θ)は最小でも|40°|程度であり、−40°〜−80°、または+40°〜+80°である。
交流周波数を1kHz〜10kHz区間と特定するのは、感光体と現像ローラ間に印加する現像電界の交流成分が、感光体と現像ローラ間ギャップの大きさに反比例してギャップが小さい場合は周波数を大きく設定し、ギャップが大きい場合は周波数を小さく設定するのが好ましいことに起因する。例えば、平均体積粒径が小さい2μm程度のトナーを用いる場合はギャップを小さく設定して交流周波数を10kHz程度にするのが好ましい。また、平均体積粒径が大きい12μm程度のトナーを用いる場合はギャップ量を大きく設定して交流周波数を1kHz程度に設定するのが好ましい。
アルミナ微粒子としては、種々の製法で作成されているが、交流周波数1kHz〜10kHz区間における位相角(θ)が|80°|以下のものとしては、例えば、アンモニウムドウソナイトを熱分解して得られるもので、特開昭63−100017号公報、特開昭58−26029号公報、特開平51−139810号公報に記載の製造方法によるものが例示され、アルミナ純度は99.99%以上で、BET比表面積が100m2 /g〜300m2 /g、個数平均粒径としては5nm〜20nmのものである。市販品としては大明化学社製「タイミクロンTM−100、Al2 3 、θ−アルミナ相を主相とし、一次粒径14nm、BET比表面積132m2 /g」、大明化学社製「タイミクロンTM−300、Al2 3 、γ−アルミナ相を主相とし、一次粒径7nm、BET比表面積225m2 /g」が例示される。
アルミナ微粒子(タイミクロンTM−100)の交流インピーダンス法で測定される周波数−位相角特性を図1に示す。図において横軸の周波数(Hz)の表示において1E+03は1×103 (1kHz)、また、縦軸のtheta(deg)は、θ(°)を意味する。図1からわかるように、位相角は1kHzでは約|65°|であり、10kHzでは|79°|と連続的に大きくなっていることがわかる。また、アルミナ微粒子(タイミクロンTM−300)では、図2に示すように、位相角は1kHzでは約|43°|であり、10kHzでは|70°|と連続的に大きくなっていることがわかる。
また、特開2002−253953に記載の製造方法により作成されるアルミナ微粒子で、金属アルミニウムを直流アークプラズマで蒸発させ、その蒸気を酸化して得られるアルミナ微粒子が例示される。このアルミナ微粒子は、アルミナ純度が99.9%以上で、BET比表面積が20m2 /g〜80m2 /g、個数平均粒径としては20nm〜100nmのものである。市販品としてはシーアイ化成社製「Nano・Tek、Al2 3 、γ−アルミナ相を主相とし、少量のα−アルミナ相を含む結晶性の球形状微粒子で、一次粒径30nm、BET比表面積49.3m2 /g」が例示される。
市販のアルミナ微粒子(Nano・Tek)の周波数−位相角特性を図3に示す。図3からわかるように、位相角は1kHzでは約|58°|であり、10kHzでは|48°|と1kHz→10kHzに向けて連続的に小さくなっていることがわかる。
これに対して、同様に一般的には導電性微粒子とされるアルミナ微粒子(日本アエロジル社製「C805、粒径13nm」)の周波数−位相角特性を図11に示す。図11に示すように、位相角は1kHzでは約|86°|であり、10kHzでは|88°|と略90°に近い値であり、また、チタニア(チタン工業社製「STT30S」、粒径20〜50nm、BET比表面積135〜155m2 /g」)においては、図12に示すように、位相角は1kHzでは約|85°|であり、10kHzでは約|88°|と略90°に近い値であることがわかる。
なお、交流インピーダンス法における位相角(θ)は、誘電体測定システム(英国ソーラトロン社製「126096W」)を使用し、下記の条件で測定した。
室温固体用サンプルホルダ 12962A
サンプル形状 φ11mm×1mmの錠剤形状(プレス圧2ton)
導電性ペーストを介して金属アルミ電極によりサンプル両面を挟み込んだ状態でサンプルホルダにセッティング
印加電圧 0.1V
測定周波数 1mHz〜1MHz。
本発明におけるアルミナ微粒子は、AC電界の下で電荷リーク作用を発現し、トナーの摩擦帯電を安定化させる効果を有する。また、アルミナ微粒子の研磨作用により感光体表面をリフレッシュして感光体の帯電性能を安定化させる効果がある、さらに、現像装置がトナーを補給可能とする場合には、残留トナーに加えて新たに補給されるトナーであるトナー補給形式の現像装置において、もしくは、現像装置がトナーを補給可能としない場合は、残留トナーに加えて新たに充填されるトナーであるトナー使い切り方式の現像装置において、トナー補給カブリを低減したり、感光体上に残留する遊離外添剤に起因して発生する残留メモリーを低減することができる。
本発明のアルミナ微粒子は、トナー母粒子100質量部に対して、0.2質量部〜5.0質量部、好ましくは0.5質量部〜2.0質量部の割合で外添処理させるとよい。トナー母粒子に対する処理量がこれより多いと電荷リーク作用が過剰に発現したり、遊離外添剤が発生する問題があり、また、少ないと所望の研磨効果が得られない。
アルミナ微粒子は、後述する実施例においては、疎水化処理をしていないものを使用したが、アルキルアルコキシシラン、シロキサン、シラン、シリコーンオイル等のシラン系有機化合物で疎水化処理をしてもよい。特にアルキルアルコキシシランを用いるのが好ましく、例えばビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−メタクリルオキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、イソブチルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルメトキシシラン、ヒドロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、n−ヘキサデシルトリメトキシシラン、n−オクタデシルトリメトキシシラン等が挙げられる。
また、トナー外添剤として、アルミナ微粒子の他に(1)疎水性小シリカ粒子(以下、疎水性小シリカ粒子)、(2)疎水性単分散球形大シリカ粒子、(3)正帯電性シリカ粒子をしようするとよい。
(1) 疎水性小シリカ粒子は、個数平均一次粒子径としては7〜16nm、好ましくは10〜12nm、かつ、嵩比重が0.1〜0.2g/cm3 で、2成分帯電量(5min値)が−20〜−80μC/gのものであり、日本アエロジル(株)製の「R8200」、また、「RX200(嵩比重が0.02〜0.06g/cm3 、2成分帯電量(5min値)−100〜−300μC/g)」が例示される。共に、ケイ素ハロゲン化合物の蒸気相酸化(乾式法)により得られるもので、嵩比重、2成分帯電量(5min値)において相違するものである。
疎水性小シリカ粒子は、個数平均一次粒子径が小さい程、得られるトナーの流動性が高くなるが、個数平均一次粒子径が7nmより小さいと、外添に際してシリカ微粒子がトナー母粒子に埋没してしまう虞があり、逆に、個数平均一次粒子径が16nmを超えると、流動性が悪くなる虞がある。疎水性小シリカ粒子は、トナー母粒子100質量部に対して0.5〜3.0質量部、好ましくは1.0〜2.0質量部添加されることにより、疎水性小シリカ粒子の低帯電性・高流動化により、ゴム薄層規制部における圧縮凝集塊の形成を抑制することができる。
なお、嵩比重は、100mlのメスシリンダーにロートを通して粉体を注ぎ、100mlに達した時点で注入を止め、この時の重量を計測し、次式に代入して得られる。
嵩比重(g/cm3 )={(サンプル注入後の重量)−(サンプル注入前の重量)}/{メスシリンダーの容量(100ml)}。
次に、(2) 疎水性単分散球形大シリカ粒子は、個数平均一次粒子径が50〜250nm、好ましくは80〜150nmである。疎水性単分散球形大シリカ粒子は、形状としてはWadellの球形度が0.6以上、好ましくは0.8以上の球形である。単分散球形シリカ微粒子は、湿式法であるゾルゲル法により得られ、比重が1.3〜2.1のものである。疎水性単分散球形大シリカ粒子は、平均粒径が50nmより小さいと、小粒径のシリカ微粒子のトナー母粒子表面への埋没を防止して流動性や帯電安定性を維持することができなくなったり、また、スペーサ効果が得られず、また、250nmより大きいと、トナー母粒子に付着しにくくなると共にトナー母粒子表面から脱離しやすくなる。
疎水性単分散球形大シリカ粒子としては、(株)日本触媒製の「シーホスターKE−P10S2」(個数平均一次粒子径100nm)等が例示され、結晶形は一部結晶質とも考えられるアモルファス、球状、個数平均一次粒子径は100nm、シリコーンオイルにより疎水化(表面)処理され、真比重が2.2、嵩比重が0.25〜0.35、BET比表面積10〜14m2 /g、2成分帯電量(5min値)0〜−50μC/gである。
疎水性単分散球形大シリカ粒子は、トナー母粒子100質量部に対して0.2〜2.0質量部、好ましくは0.5〜1.5質量部添加される。疎水性単分散球形大シリカ粒子の添加量が0.2質量部より少ないと、トナー充填密度が上昇し、現像ローラ回転時に規制ブレードでトナー層を薄層規制する際、トナーの薄層化が困難となり、規制モレや飛散する問題が生じる。また、2.0質量部より多く添加すると、トナー層充填密度が低下しすぎ、現像ローラ回転時に規制ブレードをトナー層が通過する際、トナーの一部が現像ローラに保持されず漏洩したり、また、トナー層の現像ローラ周期で発生する層厚形成ムラにより、全面ベタ画像を出力すると用紙送り方向に対する濃度均一性が損なわれ、現像ローラ周期ムラが出現するという問題が発生する。
(2)の大粒子径のシリカ:(1)の小粒子径のシリカの添加比(質量比)は、1:4〜4:1、好ましくは2:3〜3:2とするとよく、トナーに流動性を付与し、かつ帯電の長期安定性を得る上で好ましい。大粒子径シリカと小粒子径シリカは、両者の混合比率を考慮しつつトナー母粒子100質量部に対して合計量で1.25〜5.0質量部、好ましくは2.0〜3.0質量部添加される。
シリカ微粒子は疎水化処理されていることが好ましい。負帯電性シリカ微粒子の表面を疎水性にすることにより、トナーの流動性および帯電性がさらに向上する。シリカ微粒子の疎水化は、ヘキサメチルジシラザン、ジメチルジクロロシランなどのシラン化合物;あるいはジメチルシリコーン、メチルフェニルシリコーン、フッ素変性シリコーンオイル、アルキル変性シリコーンオイル、エポキシ変性シリコーンオイル等のシリコーンオイルを用いて、例えば、湿式法、乾式法など当業者が通常使用する方法により行われる。
(3) 正帯電性シリカ粒子は、個数平均一次粒子径としては20nm〜40nmである。正帯電性シリカ微粒子は、疎水化処理されていることが好ましく、外部環境の変化に対する帯電性の変化を小さく、安定な帯電性を維持し、かつトナーの流動性を良好にするために添加される。正帯電性シリカ微粒子の疎水化は、アミノシランカップリン剤やアミノ変性シリコンオイル等を使用して行われる。疎水性正帯電性シリカ微粒子としては、市販の日本アエロジル(株)製のNA50H(結晶形はアモルファス、球状、個数平均一次粒子径は30nm、ヘキサメチルジシラザンとアミノシランにより疎水化(表面)処理され、真比重が2.2、嵩比重が0.0671、BET比表面積44.17m2 /g、炭素量2%以下、2成分帯電量(5min値)40μC/g)や、キャボット(株)製のTG820Fなどが例示される。
外添剤微粒子の粒径は、透過電子顕微鏡で観察し、視野中の100個の粒子径を測定して平均粒子径を求める。
また、BET比表面積は、(株)マウンテック社製「全自動比表面積計Macsorb HM model−1201」を使用して求められる。
トナー母粒子への外添剤の添加方法としては、ヘンシェルミキサー(三井三池社製)、Q型ミキサー(三井鉱山社製)、メカノフュージョンシステム(細川ミクロン社製)、メカノミル(岡田精工社製)等より行うとよい。ヘンシェルミキサーを使用して多段処理がなされる場合、各段階の処理操作条件は、回転周速度30〜50m/s、処理時間2分〜15分の範囲から適宜選択される。
また、外添剤の添加順序として3段階からなる多段処理するとよく、トナー母粒子にまず、1段目としてアルミナ微粒子をまず処理し、2段処理として疎水性単分散球形大シリカ粒子と共に疎水性小シリカ粒子を処理・付着させ、3段目として正帯電性シリカ微粒子を処理するとよい。これにより、薄層規制に際し帯電分布調整を可能とし、チャージアップ現象による静電凝集塊の形成を抑制できる負帯電性一成分非磁性トナーとできる。
なお、本発明においては、上述した外添剤粒子の添加趣旨を損なわない範囲で、他の疎水化処理された外添剤、例えば疎水性中シリカ粒子{ヒュームドシリカ、日本エアロジル社製「RX50」真比重2.2、体積平均粒径D50=40nm(標準偏差=20nm)}、金属石けん粒子である高級脂肪酸の亜鉛、マグネシウム、カルシウム、アルミウムから選ばれる金属塩であり、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸モノアルミニウム、ステアリン酸トリアルミニウム等を外添処理してもよく、また、酸化亜鉛、酸化ストロンチウム、酸化錫、酸化ジルコニア、酸化マグネシウム、酸化インジウム、酸化チタン、酸化セリウム等の金属酸化物の微粒子、また、窒化珪素等窒化物の微粒子、炭化珪素等の炭化物の微粒子、樹脂粒子、硫酸カルシウム、硫酸バリウム、炭酸カルシウム、チタン酸ストロンチウム等の金属塩の微粒子、並びに、これらの複合物等の無機微粒子等を添加してもよい。
本発明のトナーは、フロー軟化温度(Tf1/2)が90℃〜140℃であり、また、ガラス転移温度(Tg)が40℃〜70℃の範囲にある。フロー軟化温度(Tf1/2)は、島津製作所製フローテスタ(CFT−500)を用いて、ノズル径1.0mmΦ×1.0mm、単位面積(cm2 )当たりの荷重10kg、毎分6℃の昇温速度で測定した値である。更に、ガラス転移温度(Tg)は、セイコーインスツルメンツ社製「示差走査熱量計(DSC−220C)」を用い、セカンドラン法により毎分10℃の昇温速度で測定した値である。
次に、本発明の画像形成方法、画像形成装置について説明する。
図4は、本発明の画像形成装置の概要を説明するための図で、図中、プリンタ10は、感光体20の回転方向に沿って、帯電ユニット30、露光ユニット40、現像器保持ユニット50、一次転写ユニット60、中間転写体70、クリーニングユニット75を有し、さらに、二次転写ユニット80、定着ユニット90等を有している。
感光体20は、円筒状の導電性基材とその外周面に形成された感光層を有し、中心軸を中心に回転可能であり、矢印で示すように時計回りに回転する。帯電ユニット30は、感光体20を帯電するための装置であり、露光ユニット40は、レーザを照射することによって帯電された感光体20上に潜像を形成する装置である。この露光ユニット40は、画像信号に基づいて、変調されたレーザビームを帯電された感光体20上に照射する。そして、所定のタイミングにてレーザビームがON/OFFされて、所定の速度で回転する感光体20上の格子状に区画された領域にドット状潜像が形成される。
現像器保持ユニット50は、感光体20上に形成された潜像を、ブラック現像器51に収容されたブラック(K)トナー、マゼンタ現像器52に収容されたマゼンタ(M)トナー、シアン現像器53に収容されたシアン(C)トナー及びイエロー現像器54に収容されたイエロー(Y)トナーを用いて現像するための装置である。この現像器保持ユニット50は、回転することにより、前記4つの現像器51、52、53、54の位置を動かすことを可能としている。そして、感光体20が1回転する毎に、4つの現像器51、52、53、54のうちの1つを選択的に感光体20と対向させ、対向された現像器51、52、53、54に収容されているトナーにより感光体20上に形成された潜像を順次現像する。
一次転写ユニット60は、感光体20に形成された単色トナー像を中間転写体70に転写するための装置であり、4色のトナーが順次重ねて転写されると、中間転写体70にフルカラートナー像が形成される。この中間転写体70は、エンドレスのベルトであり、感光体20とほぼ同じ周速度にて回転駆動される。二次転写ユニット80は、中間転写体70上に形成された単色トナー像やフルカラートナー像を紙、フィルム、布等の記録媒体に転写するための装置である。
定着ユニット90は、記録媒体上に転写された単色トナー像やフルカラートナー像を紙等の記録媒体に融着させて永久像とするための装置である。クリーニングユニット75は、一次転写ユニット60と帯電ユニット30との間に設けられ、感光体20の表面に当接されたゴム製のクリーニングブレード76を有し、一次転写ユニット60によって中間転写体70上にトナー像が転写された後に、感光体20上に残存するトナーTをクリーニングブレード76により掻き落として除去するための装置である。
現像器保持ユニット50には、ブラック(K)トナーを収容したブラック現像器51、マゼンタ(M)トナーを収容したマゼンタ現像器52、シアン(C)トナーを収容したシアン現像器53、及び、イエロー(Y)トナーを収容したイエロー現像器54が設けられているが、各現像器の構成は同様であるので、以下、シアン現像器53について説明する。
図5は、シアン現像器53に代表させて現像器を説明するための図であり、現像器の主要構成要素を示した断面図てある。現像器53は、トナーTを収容するハウジング540、トナーを担持するためのトナー粒子担持ローラの一例としての現像ローラ510、現像ローラ510にトナーを供給するためのトナー供給ローラ550、現像ローラ510に担持されたトナーの層厚を規制するための層厚規制部材の一例としての規制ブレード560、ハウジング540と現像ローラ510との上方側の間隙をシールするための上シール520、ハウジング540と現像ローラ510との端部側の間隙をシールするための端部シール527等を有している。
ハウジング540は、一体成型された樹脂製の上ハウジング部542と下ハウジング部544とを溶着して製造されたものであり、その内部に、トナーTを収容するための収容部としてのトナー収容部530が形成されている。トナー収容部530は、内壁から内方へ(図5の上下方向)突出させたトナーTを仕切るための仕切り壁545により、二つのトナー収容部、すなわち、第一トナー収容部530aと第二トナー収容部530bと、に分けられている。
そして、第一トナー収容部530aと第二トナー収容部530bとは、上部が連通されているが、図4に示す状態では、仕切り壁545によりトナーTの移動が規制されている。しかしながら、現像器保持ユニット50が回転する際には、第一トナー収容部530aと第二トナー収容部530bとに収容されていたトナーが、現像位置における上部側の連通している部位側に一旦集められ、図5に示す状態に戻るときには、それらのトナーが混合されて第一トナー収容部530a及び第二トナー収容部530bに戻されることになる。すなわち、現像器保持ユニット50が回転することにより現像器内のトナーTは撹拌されることになる。このため、本実施の形態では、トナー収容部530に攪拌部材を設けていないが、トナー収容部530に収容されたトナーTを攪拌するための攪拌部材を設けてもよい。図5に示すように、ハウジング540は下部に開口572を有しており、後述する現像ローラ510が、この開口572に臨ませて設けられている。
トナー供給ローラ550は、弾性を有する例えば発泡ウレタンにて形成されたローラ部550aと、ローラ部550aの回転中心となる軸体550bとで構成されている。そして、トナー供給ローラ550は、軸体550bの両端側にてハウジング540に支持されることにより、軸体550bまわりに回転自在に支持されている。前記ローラ部550aは、ハウジング540の前述した第一トナー収容部530a(ハウジング540内)に収容されており、第一トナー収容部530aに収容されたトナーTを現像ローラ510に供給する。トナー供給ローラ550は、第一トナー収容部530aの鉛直下方に設けられている。第一トナー収容部530aに収容されたトナーTは、該第一トナー収容部530aの下部にてトナー供給ローラ550によって現像ローラ510に供給される。また、トナー供給ローラ550は、現像後に現像ローラ510に残存している余剰なトナーTを、現像ローラ510から剥ぎ取る。
トナー供給ローラ550と、現像ローラ510とは、互いに押圧された状態にてハウジング540に組み付けられている。このため、トナー供給ローラ550のローラ部550aは、弾性変形された状態で現像ローラ510に当接している。そして、トナー供給ローラ550は、現像ローラ510の回転方向(図5において反時計方向)と逆の方向(図4において時計方向)に回転する。軸体550bは、現像ローラ510の回転中心軸よりも下方にある。
現像ローラ510は、トナーTを担持して感光体20と対向する現像位置に搬送する。この現像ローラ510は、金属製であり、5056アルミ合金や6063アルミ合金等のアルミ合金、STKM等の鉄合金等により製造されており、必要に応じて、ニッケルメッキ、クロムメッキ等が施されていてもよい。現像ローラ510の表面には、現像ローラ510の軸方向における中央部に螺旋状の溝部が設けられている。現像ローラ510の表面形状については後で詳述する。
また、現像ローラ510は、その長手方向両端部で支持されており、中心軸を中心として回転可能である。図5に示すように、現像ローラ510は、感光体20の回転方向(図5において時計方向)と逆の方向(図5において反時計方向)に回転する。その中心軸は、感光体20の中心軸よりも下方にある。
また、図5に示すように、イエロー現像器54が感光体20と対向している状態では、現像ローラ510と感光体20との間には空隙が存在する。すなわち、イエロー現像器54は、感光体20上に形成された潜像を非接触状態で現像する。なお、感光体20上に形成された潜像を現像する際には、現像ローラ510と感光体20との間に交番電界が形成される。
規制ブレード560は、現像ローラ510に担持されたトナーTに電荷を付与し、また、現像ローラ510に担持されたトナーTの層厚を規制する。この規制ブレード560は、ゴム部560aと、ゴム支持部560bとを有している。ゴム部560aは、シリコンゴム、ウレタンゴム等からなり、ゴム支持部560bは、リン青銅、ステンレス等のバネ性を有する薄板である。ゴム部560aは、ゴム支持部560bの長手方向に沿わされてゴム支持部560bの短手方向の一旦側に支持されており、ゴム支持部560bは、その他端側がブレード支持板金562に支持された状態で当該ブレード支持板金562を介してハウジング540に取り付けられている。また、規制ブレード560の現像ローラ510側とは逆側には、モルトプレーン等からなるブレード裏部材570が設けられている。
ここで、ゴム支持部560bの撓みによる弾性力によって、ゴム部560aが現像ローラ510の中央部から両端部に亘って押しつけられている。また、ブレード裏部材570は、ゴム支持部560bとハウジング540との間にトナーTが入り込むことを防止して、ゴム支持部560bの撓みによる弾性力を安定させるとともに、ゴム部560aの真裏からゴム部560aを現像ローラ510の方向へ付勢することによって、ゴム部560aを現像ローラ510に押しつけている。したがって、ブレード裏部材570は、ゴム部560aの現像ローラ510への均一当接性を向上させている。
規制ブレード560の、ブレード支持板金562に支持されている側とは逆側の端、すなわち、先端は、現像ローラ510に接触しておらず、該先端から所定距離だけ離れた部分が、現像ローラ510に幅を持って接触している。換言すると、規制ブレード560は、現像ローラ510にエッジにて当接しておらず、ゴム部560aが有する平面にて腹当たりにて当接している。また、規制ブレード560は、その先端が現像ローラ510の回転方向の上流側に向くように配置されており、いわゆるカウンタ当接している。なお、規制ブレード560が現像ローラ510に当接する当接位置は、現像ローラ510の中心軸よりも下方であり、かつ、トナー供給ローラ550の中心軸よりも下方である。
また、ゴム支持部560bは、ゴム部560aより現像ローラ510の軸方向に長く設けられており、ゴム部560aの両端より外側にそれぞれ延出されている。ゴム支持部560bの延出された部位には、ゴム部560aより厚い厚みを有する例えば不織布製の端部シール527が、ゴム部と560aと同一面に貼着されている。このとき、ゴム部560aの軸方向の端面は端部シール527の側面に当接されている。
端部シール527は、現像ローラ510を取り付けた際に、現像ローラ510の表面における溝部が設けられていない両端部に当接するように設けられ、現像ローラ510の端部より外側に至る幅を有している。また、端部シール527は、規制ブレード560のゴム部560aの先端より十分に長く延出されている。規制ブレード560がハウジング540に取り付けられると、端部シール527は、現像ローラ510外周面と対向するように形成されたハウジング540の部位に沿わされ、ハウジング540と現像ローラ510との間隙を閉塞する。
上シール520は、イエロー現像器54内のトナーTが器外に漏れることを防止するとともに、現像位置を通過した現像ローラ510上のトナーTを、掻き落とすことなく現像器内に回収する。この上シール520は、ポリエチレンフィルム等からなるシールである。上シール520は、シール支持板金522によって支持されており、シール支持板金522を介してハウジング540に取り付けられている。また、上シール520の現像ローラ510側とは逆側には、モルトプレーン等からなるシール付勢部材524が設けられており、上シール520は、シール付勢部材524の弾性力によって、現像ローラ510に押しつけられている。なお、上シール520が現像ローラ510に当接する当接位置は、現像ローラ510の中心軸よりも上方である。
(シアン現像器53の動作)
このように構成されたシアン現像器53において、トナー供給ローラ550がトナー収容部530に収容されているトナーTを現像ローラ510に供給する。現像ローラ510に供給されたトナーTは、現像ローラ510の回転に伴って、規制ブレード560の当接位置に至り、該当接位置を通過する際に、電荷が付与されると共に、層厚が規制される。
帯電された現像ローラ510上のトナーTは、現像ローラ510のさらなる回転によって、感光体20に対向する現像位置に至り、該現像位置にて交番電界下で感光体20上に形成された潜像の現像に供される。現像ローラ510のさらなる回転によって現像位置を通過した現像ローラ510上のトナーTは、上シール520を通過して、上シール520によって掻き落とされることなく現像器内に回収される。さらに、未だ現像ローラ510に残存しているトナーTは、前記トナー供給ローラ550によって剥ぎ取られうる。
(現像ローラの表面形状)
図6は、現像ローラの表面形状を説明するための概念図である。図7は、現像ローラを、軸を通る平面で切断した際の断面を説明するための断面図である。図6では現像ローラ510の表面の溝部が便宜上直線にて示されているが、溝部は螺旋状に形成されているため、正確には曲線に見えるように形成されている。
現像ローラ510は、軸方向における中央部510aにトナー粒子を担持するための凹凸部が設けられ、両端部510bには前記端部シール527が密着するように滑らかな周面とを備えている。
図6に示すように、本実施形態における現像ローラ510の中央部510aには、現像ローラ510の軸方向及び周方向に対し傾斜を有し軸方向に等ピッチに形成された螺旋状の溝部511が形成されている。この溝部511は、現像ローラ510の軸方向及び周方向に対する傾斜の角度を異ならせて2種類形成されている。前記2種類の溝部511は、互いに交差して格子状をなし、前記2種類の前記溝部511に囲まれた凸部512の頂面512aがほぼ正方形となるように形成されている。また、2種類の前記溝部511は、凸部512の頂面512aの正方形が有する2本の対角線の一方が周方向に沿うように形成されている。
すなわち、2種類の溝部511のうち一方は、現像ローラ510の軸と時計回り方向に45°の角度をなすように螺旋状に形成されており、他方は、現像ローラ510の軸と反時計回り方向に45°の角度をなすように螺旋状に形成されている。このため一方の溝部511aと他方の溝部511bとの交差する角度は90°となる。また、一方の溝部511a及び他方の溝部511bの、現像ローラ510の軸方向におけるピッチは、等しく形成されているため、2種類の溝部に囲まれた凸部512の頂面512aの形状はほぼ正方形となる。
2種類の溝部511は、図7に示すように、各々現像ローラ510の軸方向に80μmの間隔にて形成されており、凸部512の頂面512aから溝部511の底面511cに至る傾斜部分511dの角度は、溝部511を形成する2つの斜面を軸心C方向に延長した仮想面の交差角度αが90°になるように形成されている。
また、溝部511の深さ、すなわち、凸部512の頂面512aから溝部511の底面511cまでの距離は、約7μmで一定になるように形成されている。ここで、溝部511の深さは、トナーの平均体積粒径の1.5倍以上3.0倍以下と設定するのが好ましく、トナーの体積平均粒径が4μmである場合には、6μm以上12μm以下となるように設定されている。
このような現像ローラ510は、転造により形成される。図8は、現像ローラ510が転造により形成される様子を説明するための図である。図9は、現像ローラが形成される手順を示す図である。
現像ローラ510は、円筒状の中空の素材から形成される。円筒状の素材は、まず、現像ローラ510としてトナーを担持するための中央部510aと端部シール527が当接される端部510bとを形成可能な長さに切断されて円筒部材515が切り出される(S001)。円筒部材515には、両端部の内周部に現像ローラ510の軸を有するフランジ513を嵌入するための段部510c(図6)が切削加工により形成される(S002)。ここで、フランジ513は、形成された段部510cに圧入される直径を有する円盤状のフランジ本体513aと、その中心から円盤面に垂直となるように凸設された軸部513bとを有している。
次に、両端部の内側に段部510cが形成された円筒部材515に軸部513bを有するフランジ513が、その軸部513bが円筒部材の外方に突出するようにそれぞれ嵌入される(S003)。
その後、フランジ513が嵌入された円筒部材515は両端の軸部513bが支持されて軸を中心として回転され、円筒部材515の外周面が全周に亘って僅かに切削されることにより、表面の全領域が軸と同心、すなわちから一定の距離Lとなるように円筒部材515の表面が研磨されて未転造加工現像ローラ509が形成される(S004)。
表面が研磨された円筒部材515は、図8に示すような2種類の加工工具としてのダイス900を備えた装置により転造にて、表面に2種類の溝部511a,511bが形成される(S005)。転造装置は、対向する位置に配置された2種類のダイス900が同方向に回転している間にワーク(ここでは、未転造加工現像ローラ509)を配置し、2種類のダイス900を未転造加工現像ローラ509に押圧させ、未転造加工現像ローラ509をダイス900と反対方向に回転させつつ軸方向に搬送する。ダイス900には、上述した溝部511a,511bを形成するための刃900aが、各々設けられており、互いの刃900aは、未転造加工現像ローラ509の表面に互いの刃にて形成された溝部511a、511bが直行するように傾斜が設けられている。ここで、ダイス900が未転造加工現像ローラ509の表面に当接される部位を刃900aとしているが、転造においてはワークを積極的に切削するものではなく、押圧力によりワークを押し潰して窪みを形成するように作用する。また、この転造の際には、未転造加工現像ローラ509には、その両端部510bにてダイス900が当接されないようにして、両端部510bには凹凸のない滑らかな面を残しておく。すなわち、現像ローラ510の中央部510aにてダイス900が接触しなかった凸部512の頂面512aと、転造による加工対象とされない両端部510bとは、軸心Cからの距離Lが一定になるように切削されたままなので、軸心Cから等距離に位置している。そして、現像ローラ510の表面510dは、ダイス900が接触して凹設された溝部511a,511bの底面511cと、ダイス900が接触しなかった非加工面とで、ほぼ覆われている。転造にて形成した現像ローラ510には必要に応じて、例えば無電解Ni−Pめっき、電気めっき、硬質クロームめっき等を施してもよい。
このような現像ローラ510には、両端部510bにてそれぞれ当接された端部シール527間にトナー供給ローラ550からトナーが供給され、規制ブレード560の押圧位置にてトナー層の層厚が規制される。このとき、規制ブレード560は、現像ローラ510の両端部510bと中央部510aとに亘って押圧されるが現像ローラ510の両端部510bと凸部512の頂面512aは軸心Cからの距離Lが等しいので、規制ブレード560は大きく屈曲することなくほぼ平坦な状態にて現像ローラ510を押圧する。このため、例えば、両端部510bと中央部510aとの境界付近であっても現像ローラ510の表面510dと規制ブレード560との間に極端に大きな間隙は生じない。
さらに、溝部511の深さは、トナー粒子の体積平均粒径の3倍以下なので、溝部511に入り込んだトナー粒子は溝部511内のいずれの位置においても、深さ方向に3つ以上重なることはない。すなわち、溝部511に多量のトナー粒子が入り込むことはなく、規制ブレード560に押圧された際には、ほとんどのトナーの粒子が現像ローラ510の表面510d及び規制ブレード560の表面のいずれかと接触する。よって、各トナー粒子Tは転動され易く、また、溝部511内にてトナー粒子が滞留しにくいのでトナー粒子Tを良好に帯電させることが可能である。このため、トナー粒子は現像ローラ510に確実に担持されて現像に供されるとともに、現像ローラ510の表面510dと規制ブレード560との間に極端に大きな間隙が生じないことと相俟って、現像器51,52,53,54外にトナー粒子Tが漏れることを防止することが可能である。
図10は、トナー粒子を担持した現像ローラに規制ブレードが当接された状態を説明するための図である。特に、本実施形態の現像ローラ510の溝511は深さが7μmであり、トナー粒子Tの体積平均粒径(4μm)と比較すると、1.5倍以上3.0倍以下に設定されている。このため、規制ブレード560がゴム製であり現像ローラ510の表面510dの凹凸に沿わされるので、各々のトナー粒子Tを中央部510aの凸部512と溝部511とを含む全域にて確実に帯電させることが可能であり、現像ローラ510に確実に担持させて、現像時における転写性を向上させ、さらには現像器外へのトナーの漏れも防止することが可能である。
すなわち、現像ローラ510の表面510dに大きさ、深さ、形状等が不均一な凹凸が形成されていると担持されたトナー粒子のうち深い凹部に入り込んだトナー粒子は転動されにくく帯電されにくい。また、軸方向に所定の間隔を隔てて周方向に沿った溝部が形成されている場合には、感光体20が回転しても溝部と対向する感光体20の軸方向における位置が変化しないため、現像されたトナー像は溝部と対向していた部位のみが濃度が高くなる畏れがある。一方、軸方向に沿って溝部が形成されている場合には、トナー粒子担持ローラの回転方向と溝部との向きがほぼ直交するので、担持されたトナー粒子は転動されにくく帯電されにくい。
本実施形態の現像器51,52,53,54及び現像ローラ510によれば、現像ローラ510の表面510dに、軸方向及び周方向に対し傾斜を有し軸方向に等ピッチに螺旋状の溝部511が形成されているので、現像ローラ510の回転に伴ってトナー粒子Tを転動させつつ移動させるため、トナー粒子Tを良好に帯電させることが可能である。また、現像ローラ510の回転に伴って感光体20と溝部511とが対向する位置が軸方向及び周方向に順次変化していくので、現像されたトナー像に濃度ムラが生じることを抑えることが可能である。
また、本実施形態の現像ローラ510は、傾斜の角度が異なる2種類の溝部511a、511bが形成されているので、トナー粒子Tは、溝部511a、511bに沿って2種類の方向に移動されることになる。このため、トナー粒子Tが所定の一方向のみに移動して偏ることを防止することが可能である。さらに、2種類の前記溝部511a、511bは、互いに交差して格子状をなしているので、一旦は一方の溝部511a(511b)に沿って転動し始めたトナー粒子Tが、途中から他方の溝部511b(511a)に沿って転動することが可能である。このため、トナー粒子Tの移動方向が偏ることを、より効果的に抑えることが可能である。
さらに、2種類の溝部511に囲まれた凸部512の頂面512aが正方形であり、その正方形が有する一方の対角線が周方向に沿わされているので、凸部512は周方向に沿って位置する2つの頂角、及び、軸方向に沿って位置する2つの頂角がいずれも直角となり、2種類の溝部511a,511bは周方向及び軸方向に対して同角度の傾斜を有することになる。このため、トナー粒子Tが周方向及び軸方向に向かって同様に移動し易い構成とすることが可能である。このため、トナー粒子をより均一に転動させて均一に帯電させることが可能である。
また、現像ローラ510の表面に担持されたトナー粒子Tは、規制ブレード560が有するゴム部560aの平面にて、その層厚が規制されるので、現像ローラ510の表面、特に凸部512に担持されたトナー粒子Tが規制ブレード560によって完全に掻き取られることはない。すなわち、現像ローラ510の溝部511にも、凸部512にもトナー粒子Tを担持させた状態にてトナー粒子Tの層厚を規制することが可能である。また、表面510dに担持されたトナー粒子Tは、規制ブレード560が有する平面により押圧されているので、現像ローラ510の表面、規制ブレード560、及び、トナー粒子同士のいずれかとトナー粒子Tとを互いに摩擦させることにより良好に帯電させることが可能である。
また、現像装置は、トナーを補給可能とする場合には、残留トナーに加えて新たに補給されるトナーとの混合トナーを用いるものとされ、もしくはトナーを補給可能としない場合には、残留トナーに加えて新たに充填されるトナーとの混合トナーを用いるものである。
以下、本発明を実施例を用いてさらに詳細に説明する。
(実施例1)
(トナーの調製)
上記の転相乳化法で得たトナー母粒子2kgをヘンシェルミキサー(20L)に投入した後、トナー母粒子100gあたりの添加量(以下、同様)で、アルミナ微粒子(大明化学社製「タイミクロンTM−100、Al2 3 、θ−アルミナ相を主相とし、一次粒径14nm、BET比表面積132m2 /g」)2.0gを投入して、周速40m/sで2分間処理した。
ついで、疎水性単分散球形大シリカ粒子(日本触媒社製「KEP10S2」、一次粒子サイズ100nm、シリコンオイル処理品)2.0gと、疎水性小シリカ粒子(日本アエロジル社製「RX200」一次粒子サイズ12nm、HMDS(ヘキサメチルシラザン)処理品)2.0gを投入して、周速40m/sで2分間処理した。
処理後、63μm目開きの金属メッシュを用いて音波フルイで粗大粒子を除去し、本発明におけるトナーとした。
(実施例2)
実施例1のトナーの調製において、アルミナ微粒子を大明化学社製「タイミクロンTM−300、Al2 3 、γ−アルミナ相を主相とし、一次粒径7nm、BET比表面積225m2 /g」0.5gに代えた以外は実施例1と同様にして、実施例2のトナーとした。
(実施例3)
実施例1のトナーの調製において、アルミナ微粒子をシーアイ化成社製「Nano・Tek、Al2 3 、一次粒径30nm、BET比表面積49.3m2 /g」2.0gに代えた以外は実施例1と同様にして、実施例3のトナーとした。
(比較例1)
実施例1のトナーの調製において、アルミナ微粒子を日本アエロジル製「AEROXIDE C805、結晶系(割合):γ相2/3、δ相1/3、一次粒径13nm、BET比表面積100m2 /g」1.0gに代えた以外は実施例1と同様にして、比較例1のトナーとした。
(比較例2)
実施例1のトナーの調製において、アルミナ微粒子をチタニア微粒子(チタン工業社製「STT30S」)2.0gに代えた以外は実施例1と同様にして、比較例2のトナーとした。
(画像形成)
得られた各トナーを図4に示す画像形成装置(LP9000C、セイコーエプソン社製)に搭載した。
現像ローラは、転造形成品であり、φ=18mm、長さ370mmの鉄製中空素管の表面を図6、図7に示す形状、すなわち、軸方向、周方向に角度45°でピッチ80μmで形成された螺旋状溝を有するもので、その溝形状は頂部幅30μm、非頂部幅50μm、深さ7μmの形状を有する。
そして、層厚規制部材は、厚みが2mmであり、かつ、ゴム硬度がJIS−Aで65度のシリコンゴム、ウレタンゴム等からなり、層厚規制部材支持部材により支持されている。層厚規制部材支持部材は、薄板と薄板支持部材とから構成されており、その短手方向−端部で層厚規制部材を支持する。薄板は0.15mmの厚みを有するリン青銅、ステンレス等からなり、バネ性を有している。薄板は、層厚規制部材を直接的に支持しており、その付勢力によって層厚規制部材を現像ローラに押しつけている。層厚規制部材の規制形態としては、層厚規制部材の短手方向及び厚み方向における先端が所定幅をもった当接ニップ内に位置する規制形態(所謂エッジ規制)を採用する。また、供給ローラは外径φ19でアスカーF硬度70°のウレタンスポンジからなり、現像ローラに接触深さ1.0mmで圧接した。
また、プロセス速度(感光体周速)210mm/sとし、感光体暗電位は−550V、感光体明電位は−50V、現像ローラの周速度は336mm/s、供給ローラの周速度は504mm/sであり、感光体−現像ローラ周速比は1.6、現像ローラ−供給ローラ周速比は1.5とすると共に、
感光体−現像ローラギャップ 100μm
感光体−現像ローラ交流バイアス成分Vpp:1100V
感光体−現像ローラ直流バイアス成分Vdc:−300V
感光体−現像ローラ交流周波数(f):6kHz
感光体−現像ローラ交流Duty(引き剥がし側印加時間比率):60%
の条件下で、ACジャンピング現像法によりカラー画像を形成した。なお、トナー量調整用パッチセンサの動作無しとした。また、試験環境は22〜24℃/45〜55%RHであった。
次に、実施例〜3、比較例1、2の各トナーについての実機での評価項目と評価方法について説明すると共に、その評価結果を下記表8、9に示す。
(1) 飛翔性(OD値)
全面ベタ(ソリッド)画像を形成する際の現像能力の高さを示し、画像濃度の大きさとその均一性で表す。画像の先端/中央/後端の3箇所、画像の左側/中央/右側の3箇所を組み合わせた合計9点の平均OD値と最低OD値を用いる。
Lv4(○):平均OD値が1.30以上、最低OD値が1.20以上の状態
Lv3(△):平均OD値が1.20以上、最低OD値が1.10以上の状態
Lv2(×):平均OD値が1.10以上、1.20未満の状態
Lv1(×):平均OD値が1.10未満の状態。
(2) 供給遅れ
ベタ(ソリッド)画像先端である現像ローラ周期1周目に対して、現像ローラ2周目以降から後端まで用紙送り方向(露光副走査方向)の画像濃度の均一性が低下し、濃度低下(カスレ)が発生する現象をいい、目視判定した。
Lv4(○):画像先端である現像ローラ周期1周目から画像後端までの領域で濃度低下が全くない状態(透かしても判別不能)
Lv3(○):画像先端である現像ローラ周期1周目から画像後端までの領域で濃度低下がない状態(透かすと判別可能)
Lv2(△):供給遅れ起因の濃度低下が現像ローラ周期2周目以降の一部に発生した状態
Lv1(△):供給遅れ起因の濃度低下が現像ローラ周期2周目以降の半域以上に発生した状態。
(3) 規制通過モレ
現像ローラ上のトナー層が規制ブレードを通過する際、トナーの一部が現像ローラに保持されずに漏洩する現象をいい、次の4段階で目視評価した。下記の判定基準で3以上を可とする。
Lv4(○):規制ブレードから現像ローラ上へのトナー漏れが全くなく、トナーによる汚れのない状態。
Lv3(△):トナー漏れが現像ローラ回転時に間欠的に発生し、ゴマ粒大より少ないトナー量が下地が見える程度に付着した状態。
Lv2(×):トナー漏れが現像ローラ回転時に間欠的に発生し、トナー量が下地が見えない程度に付着して堆積した状態。
Lv1(×):トナー漏れが現像ローラ回転時に間欠的に発生し、トナーが制限なく漏れ続ける状態。
(4) 上シール飛散
現像ローラ上のトナー層が上シールを通過する際、トナーの一部が現像ローラに保持されずに飛散する状態をいい、次の4段階で目視判定。判定基準は下記の通りである。
Lv4(○):上シール回収部で現像ローラ上のトナー飛散が全く生じなく、トナーによる汚れのない状態
Lv3(△):飛散したトナーがホルダー/ハウジング上の一部に下地が見える程度に薄く付着した状態
Lv2(×):飛散したトナーがホルダー/ハウジング上の一部に下地が見えなくなるまで堆積した状態
Lv1(×):飛散したトナーがホルダー/ハウジング上の半分以上の面積に下地が見えなくなるまで堆積した状態。
(5) 現像ギャップ飛散
感光体と現像ローラ間に印加される交流電界により、現像ローラ上のトナーが感光体に移行する際に、交流電界中の往復運動により活性化したトナーの一部が、現像電界に捕捉されずに周囲の気流に乗って、周囲に飛散する現象。飛散の定量化は感光体と現像ローラ間の最近接点から両中心軸を結ぶ線の鉛直方向に10mm移動した点を稜線として位置する1cm角の粘着テープ面に捕捉されるトナーの付着状態を予め作成する顕微鏡拡大像の限度見本と照らし合わせて下記のスコアを決める。
Lv4(○):粘着面に捕捉されたトナーが5個/1cm2 以下の状態
Lv3(△):粘着面に捕捉されたトナーが5個/1cm2 より多く、20個/1cm2 以下の状態
Lv2(×):粘着面に捕捉されたトナーが20個/1cm2 より多く、100個/1cm2 以下の状態
Lv1(×):粘着面に捕捉されたトナーが100個/1cm2 を超える状態。
(6) カブリ(OD値)
感光体(OPC)上でのカブリ量は、白ベタパターン印字時に画像形成プロセスを強制的に途中停止して、感光体上に残留する白ベタ(背景部)のカブリトナーをメンディングテープ(住友スリーエム社製)で転写・回収する。転写回収後のテープをJ紙(富士ゼロックス社製)に貼り付けた後、そのテープ濃度の変化をマクベス濃度計でOD値(光学反射濃度)を測定する。テープ単体でのOD値は0.1程度を示し、そのOD値差引分をカブリトナー濃度とした。
Lv4(○):カブリトナー分のOD値が0.10以下である状態
Lv3(△):カブリトナー分のOD値が0.15以下、0.10超えである状態
Lv2(×):カブリトナー分のOD値が0.20以下、0.15超えである状態
Lv1(×):カブリトナー分のOD値が0.20超えである状態。
(7) トナー補給規制通過モレ
白ベタ画像をA4サイズ6千枚相当形成してカブリトナー量を消費後に、新トナーを残トナー重量の10相当分だけ現像装置に補給する。新トナーを現像装置に補給した直後に現像ローラ上のトナー層の規制通過モレか一時的に増加する現象をみるもので、トナー補給規制通過モレの判定は通常カブリの規制通過モレの判定方法と同一手順で実施する。
Lv4(○):規制ブレードから現像ローラ上へのトナー漏れが全くなく、トナーによる汚れのない状態。
Lv3(△):トナー漏れが現像ローラ回転時に間欠的に発生し、ゴマ粒大より少ないトナー量が下地が見える程度に付着した状態。
Lv2(×):トナー漏れが現像ローラ回転時に間欠的に発生し、トナー量が下地が見えない程度に付着して堆積した状態。
Lv1(×):トナー漏れが現像ローラ回転時に連続的に発生し、トナーが制限なく漏れ続ける状態。
(8) トナー補給上シール飛散
白ベタ画像をA4サイズ6千枚相当形成してカブリトナー量を消費後に新トナーを残トナー重量の10相当分だけ現像装置に補給する。新トナーを現像装置に補給した直後に現像ローラ上のトナー層の上シール飛散が一時的に増加する現象をみるもので、トナー補給上シール飛散の判定は、通常カブリの規制通過モレの判定方法と同一手順で実施する。
Lv4(○):上シール回収部で現像ローラ上のトナー飛散が全く生じなく、トナーによる汚れのない状態
Lv3(△):飛散したトナーがホルダー/ハウジング上の一部に下地が見える程度に薄く付着した状態
Lv2(×):飛散したトナーがホルダー/ハウジング上の一部に下地が見えなくなるまで堆積した状態
Lv1(×):飛散したトナーがホルダー/ハウジング上の半分以上の面積に下地が見えなくなるまで堆積した状態。
(9) トナー補給・現像ギャップ飛散
白ベタ画像をA4サイズ6千枚相当形成してカブリトナー量を消費後に新トナーを残トナー重量の10%相当分だけ現像装置に補給する。新トナーを現像装置に補給した直後に形成する白ベタ画像に発生する現像ギャップ飛散が一時的に増加する現象。トナー補給・現像ギャップ飛散の判定は通常カブリの判定方法と同一手順で実施する。
Lv4(○):粘着面に捕捉されたトナーが5個/1cm2 以下の状態
Lv3(△):粘着面に捕捉されたトナーが5個/1cm2 より多く、20個/1cm2 以下の状態
Lv2(×):粘着面に捕捉されたトナーが20個/1cm2 より多く、100個/1cm2 以下の状態
Lv1(×):粘着面に捕捉されたトナーが100個/1cm2 を超える状態。
(10) トナー補給カブリ
白ベタ画像をA4サイズ6千枚相当形成してカブリトナー量を消費後に新トナーを残トナー重量の10%相当分だけ現像装置に補給する。新トナーを現像装置に補給した直後に形成する白ベタ画像に発生するカブリが一時的に増加する現象をみるもので、トナー補給カブリ量の判定は、通常カブリの判定方法と同一手順で実施する。
Lv4(○):カブリトナー分のOD値が0.10以下である状態
Lv3(△):カブリトナー分のOD値が0.15以下、0.10超えである状態
Lv2(×):カブリトナー分のOD値が0.20以下、0.15超えである状態
Lv1(×):カブリトナー分のOD値が0.20超えである状態。
Figure 2010249901
Figure 2010249901
表から明かなように、本発明のトナーは、現像ギャップ飛散が少なく、カブリの少ないものとできると共に、トナー補給にあっても現像ギャップ飛散が少なく、カブリの少ないものとできる。
本発明は、現像ギャップ飛散が少なく、カブリの少ないものとできると共に、トナー補給にあっても現像ギャップ飛散が少なく、カブリの少ないトナーであり、ダスト発生の少ないトナー、画像形成方法、画像形成装置を提供できる。
10プリンタ、20感光体、30帯電ユニット、40露光ユニット、50現像器保持ユニット、60一次転写ユニット、70中間転写体、75クリーニングユニット、80二次転写ユニット、90定着ユニット、509未転造加工現像ローラ、510現像ローラ、510a中央部、510b端部(両端部)、510c段部、510d表面、511溝部、
511a一方の溝部、511b他方の溝部、511c底面、511d傾斜部分、512凸部、512a頂面、513フランジ、513aフランジ本体、513b軸部、515円筒部材、520上シール、522シール支持板金、524シール付勢部材、527端部シール、530トナー収容部、530a第一トナー収容部、530b第二トナー収容部、540ハウジング、542上ハウジング部、544下ハウジング部、545仕切り壁、550トナー供給ローラ、550aローラ部、550b軸体、560規制ブレード、560aゴム部、560bゴム支持部、562ブレード支持板金、570ブレード裏部材、572開口、Tはトナー

Claims (8)

  1. 少なくとも結着樹脂、着色剤及び離型剤を含むトナー母粒子と、交流インピーダンス法での交流周波数1kHz〜10kHz区間における位相角(θ)が|80°|以下であるアルミナ微粒子を含有することを特徴とするトナー。
  2. アルミナ微粒子が、金属アルミニウムを直流アークプラズマで蒸発させ、その蒸気を酸化して得られるものであるか、または、アンモニウムドウソナイトを熱分解して得られる請求項1記載のトナー。
  3. トナー母粒子が、体積平均粒径(D50)が2.0〜12.0μmで、転相乳化合一法により得られるものである請求項1に記載のトナー。
  4. アルミナ微粒子が、BET比表面積30m2 /g〜250m2 /gで、かつ個数平均粒径5nm〜80nmである請求項1記載のトナー。
  5. 静電潜像を担持した感光体と、該感光体と非接触の状態で対向配置される現像装置とを有し、該現像装置が、前記感光体に担持された静電潜像を現像するためのトナーを担持する表面を有すると共に該表面には軸方向及び周方向に対し傾斜を有し軸方向に等ピッチに形成された螺旋状の溝部を有する現像ローラと、該現像ローラにトナーを供給するための供給ローラとを有し、該現像装置に前記トナーとして少なくとも結着樹脂、着色剤及び離型剤を含むトナー母粒子と、交流インピーダンス法での交流周波数1kHz〜10kHz区間における位相角(θ)が|80°|以下であるアルミナ微粒子とを含有するトナーを供給して前記感光体に担持された静電潜像を交流周波数1kHz〜10kHzの交流電界下で現像することを特徴とする画像形成方法。
  6. 現像装置がトナーを補給可能とするトナー補給形式である場合には、残留トナーに加えて新たに補給されるトナーにより現像するものであり、現像装置がトナーを補給可能としないトナー使い切り形式である場合には、残留トナーに加えて新たに充填されるトナーにより現像するものである請求項5記載の画像形成方法。
  7. 静電潜像を担持した感光体と、該感光体と非接触の状態で対向配置され、前記感光体に担持された静電潜像を、少なくとも結着樹脂、着色剤及び離型剤を含むトナー母粒子と、交流インピーダンス法での交流周波数1kHz〜10kHz区間における位相角(θ)が|80°|以下であるアルミナ微粒子とを含有するトナーにより現像するためのトナーを担持する表面を有すると共に該表面には軸方向及び周方向に対し傾斜を有し軸方向に等ピッチに形成された螺旋状の溝部を有する現像ローラと、該現像ローラに圧接対向配置され、前記トナーを供給する供給ローラとを有する現像装置とを含み、前記感光体に担持された静電潜像を交流電界下で現像ローラにより現像することを特徴とする画像形成装置。
  8. 現像装置がトナーを補給可能とするトナー補給形式である場合には、残留トナーに加えて新に補給されるトナーにより現像するものであり、現像装置がトナーを補給可能としないトナー使い切り形式である場合には、残留トナーに加えて新たに充填されるトナーにより現像するものである請求項7記載の画像形成装置。
JP2009096735A 2009-04-13 2009-04-13 トナー、画像形成方法および画像形成装置 Withdrawn JP2010249901A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009096735A JP2010249901A (ja) 2009-04-13 2009-04-13 トナー、画像形成方法および画像形成装置
US12/757,577 US8852837B2 (en) 2009-04-13 2010-04-09 Toner, method for forming image, and image forming apparatus
CN 201010151100 CN101859080B (zh) 2009-04-13 2010-04-13 调色剂、图像形成方法及图像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009096735A JP2010249901A (ja) 2009-04-13 2009-04-13 トナー、画像形成方法および画像形成装置

Publications (1)

Publication Number Publication Date
JP2010249901A true JP2010249901A (ja) 2010-11-04

Family

ID=42934667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009096735A Withdrawn JP2010249901A (ja) 2009-04-13 2009-04-13 トナー、画像形成方法および画像形成装置

Country Status (3)

Country Link
US (1) US8852837B2 (ja)
JP (1) JP2010249901A (ja)
CN (1) CN101859080B (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101756837B1 (ko) * 2010-12-29 2017-07-11 에스프린팅솔루션 주식회사 정전하상 현상용 토너, 이를 이용한 화상 형성 장치 및 화상 형성 방법
JP2013109142A (ja) * 2011-11-21 2013-06-06 Ricoh Co Ltd トナー並びにこれを用いた画像形成方法及びプロセスカートリッジ
CN104206017B (zh) * 2012-04-06 2017-03-08 住友化学株式会社 涂布系统和发光装置的制造方法
JP5836328B2 (ja) * 2013-07-22 2015-12-24 京セラドキュメントソリューションズ株式会社 静電潜像現像用トナー
CN104062861A (zh) * 2014-06-05 2014-09-24 湖北鼎龙化学股份有限公司 静电荷显影用彩色碳粉的制备方法
US9857707B2 (en) * 2014-11-14 2018-01-02 Canon Kabushiki Kaisha Toner
US9658546B2 (en) 2014-11-28 2017-05-23 Canon Kabushiki Kaisha Toner and method of producing toner
CN104698779A (zh) * 2015-02-13 2015-06-10 珠海思美亚碳粉有限公司 非磁性色调剂及其制备方法
JP2019138987A (ja) * 2018-02-08 2019-08-22 コニカミノルタ株式会社 静電潜像現像用二成分現像剤
US11112719B2 (en) * 2019-10-18 2021-09-07 Canon Kabushiki Kaisha Process cartridge and electrophotographic apparatus capable of suppressing lateral running while maintaining satisfactory potential function
CN114585975B (zh) * 2019-10-18 2023-12-22 佳能株式会社 电子照相导电性构件、处理盒和电子照相图像形成设备
CN112694653B (zh) * 2020-12-16 2023-01-24 河北雄安程禹科技有限公司 一种环保型高分子预分散颜料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03240068A (ja) * 1990-02-19 1991-10-25 Nippon Paint Co Ltd 正帯電性トナー
JP2000131873A (ja) * 1998-10-26 2000-05-12 Canon Inc トナー
JP2003280248A (ja) * 2002-03-22 2003-10-02 Seiko Epson Corp 負帯電性トナー
JP2007147979A (ja) * 2005-11-28 2007-06-14 Seiko Epson Corp 負帯電性一成分トナー、その製造方法およびカラー画像形成装置
JP2009015251A (ja) * 2007-07-09 2009-01-22 Seiko Epson Corp 一成分非磁性トナーおよび該トナーを使用した画像形成装置
JP2009015259A (ja) * 2007-07-09 2009-01-22 Seiko Epson Corp 画像形成装置及び画像形成方法
JP2009031811A (ja) * 2008-09-30 2009-02-12 Seiko Epson Corp 現像方法およびこれを用いた画像形成装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826029A (ja) 1981-08-10 1983-02-16 Denki Kagaku Kogyo Kk γ−アルミナの製法
JPS63100017A (ja) 1986-10-16 1988-05-02 Shikoku Chem Corp アンモニウムド−ソナイトの製造法
JPH03191363A (ja) 1989-12-20 1991-08-21 Shindengen Electric Mfg Co Ltd 電子写真感光体用現像剤
IT1268121B1 (it) * 1993-10-15 1997-02-20 Seiko Epson Corp Apparecchiatura per la formazione di immagini
EP1050782B1 (en) * 1993-11-30 2013-02-20 Canon Kabushiki Kaisha Developer for developing electrostatic image, process for production thereof and image forming method
US5607806A (en) 1994-12-28 1997-03-04 Canon Kabushiki Kaisha Toner with organically treated alumina for developing electrostatic image
JP3030603B2 (ja) 1994-12-28 2000-04-10 キヤノン株式会社 静電荷像現像用トナー
JPH09114135A (ja) 1995-10-16 1997-05-02 Dainippon Ink & Chem Inc 電子写真用トナーの製造法
SG73592A1 (en) * 1997-12-05 2000-06-20 Canon Kk Toner having negative triboelectric chargeability and developing method
JP4069510B2 (ja) * 1998-08-20 2008-04-02 松下電器産業株式会社 トナー及び電子写真装置
JP2002253953A (ja) 2001-02-28 2002-09-10 C I Kasei Co Ltd 超微粒子の製造装置および製造方法
JP3867893B2 (ja) 2001-10-18 2007-01-17 大日本インキ化学工業株式会社 静電荷像現像用トナーの製造方法
EP1497700B2 (en) * 2002-04-10 2013-10-09 FUJIFILM Imaging Colorants Limited Chemically produced toner and process therefor
JP2005292468A (ja) * 2004-03-31 2005-10-20 Sharp Corp 静電潜像現像用トナー、画像形成方法および画像形成装置
JP2006011137A (ja) * 2004-06-28 2006-01-12 Seiko Epson Corp トナーの製造方法
US7444093B2 (en) * 2005-02-10 2008-10-28 Seiko Epson Corporation Liquid toner concentration detecting device and method with window in toner container for light passage
JP4533268B2 (ja) * 2005-07-07 2010-09-01 キヤノン株式会社 トナー及び画像形成方法
US8771914B2 (en) * 2007-03-23 2014-07-08 Ricoh Company, Ltd. Toner for developing latent electrostatic image, two-component developer, image forming method and image forming apparatus
WO2009020155A1 (ja) * 2007-08-08 2009-02-12 Kao Corporation 電子写真用トナーの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03240068A (ja) * 1990-02-19 1991-10-25 Nippon Paint Co Ltd 正帯電性トナー
JP2000131873A (ja) * 1998-10-26 2000-05-12 Canon Inc トナー
JP2003280248A (ja) * 2002-03-22 2003-10-02 Seiko Epson Corp 負帯電性トナー
JP2007147979A (ja) * 2005-11-28 2007-06-14 Seiko Epson Corp 負帯電性一成分トナー、その製造方法およびカラー画像形成装置
JP2009015251A (ja) * 2007-07-09 2009-01-22 Seiko Epson Corp 一成分非磁性トナーおよび該トナーを使用した画像形成装置
JP2009015259A (ja) * 2007-07-09 2009-01-22 Seiko Epson Corp 画像形成装置及び画像形成方法
JP2009031811A (ja) * 2008-09-30 2009-02-12 Seiko Epson Corp 現像方法およびこれを用いた画像形成装置

Also Published As

Publication number Publication date
CN101859080B (zh) 2012-06-20
CN101859080A (zh) 2010-10-13
US20100261109A1 (en) 2010-10-14
US8852837B2 (en) 2014-10-07

Similar Documents

Publication Publication Date Title
JP2010249988A (ja) トナー、画像形成方法および画像形成装置
JP2010249901A (ja) トナー、画像形成方法および画像形成装置
US20120264048A1 (en) Toner, image forming method, image forming apparatus, and process cartridge
CA2833501C (en) Toner and image forming apparatus
US10126669B2 (en) Electrostatic latent image developing toner
JP4662058B2 (ja) 負帯電性トナーの製造方法
JP2010249989A (ja) トナー、画像形成方法および画像形成装置
JP6272020B2 (ja) トナーの製造方法
JP4716014B2 (ja) 負帯電性トナー、および画像形成装置
JP2010249987A (ja) トナー、画像形成方法および画像形成装置
JP2002351139A (ja) 静電荷像現像用トナーの製造方法及び該トナーを用いた画像形成方法
JP4716015B2 (ja) 負帯電性トナー、その製造方法および画像形成装置
JP2009015257A (ja) 画像形成方法
JP2009015259A (ja) 画像形成装置及び画像形成方法
JP5196202B2 (ja) 負帯電性トナーおよびその製造方法
JP5099389B2 (ja) 負帯電性トナーおよびその製造方法
JP4769607B2 (ja) トナー、画像形成装置及びプロセスカートリッジ
JP5099388B2 (ja) 負帯電性トナーの製造方法、負帯電性トナー、および画像形成方法
JP6896545B2 (ja) トナー
JP2010249902A (ja) トナー、画像形成方法および画像形成装置
JP5391723B2 (ja) トナー、画像形成方法および画像形成装置
JP4716021B2 (ja) 負帯電性トナーの製造方法
JP2010204237A (ja) トナー外添用アルミナ微粒子の製造方法およびトナーの製造方法
JP4048943B2 (ja) 正帯電性トナーの製造方法
JP2010249908A (ja) トナー、トナーの製造方法およびそれを用いた画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130828

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20131007