JP5391723B2 - トナー、画像形成方法および画像形成装置 - Google Patents

トナー、画像形成方法および画像形成装置 Download PDF

Info

Publication number
JP5391723B2
JP5391723B2 JP2009039506A JP2009039506A JP5391723B2 JP 5391723 B2 JP5391723 B2 JP 5391723B2 JP 2009039506 A JP2009039506 A JP 2009039506A JP 2009039506 A JP2009039506 A JP 2009039506A JP 5391723 B2 JP5391723 B2 JP 5391723B2
Authority
JP
Japan
Prior art keywords
toner
alumina
particles
fine particles
developing roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009039506A
Other languages
English (en)
Other versions
JP2010197480A (ja
Inventor
英樹 岡田
友洋 有賀
友隆 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2009039506A priority Critical patent/JP5391723B2/ja
Publication of JP2010197480A publication Critical patent/JP2010197480A/ja
Application granted granted Critical
Publication of JP5391723B2 publication Critical patent/JP5391723B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

本発明は、トナー、画像形成方法および画像形成装置に関する。
従来、画像形成装置として、潜像担持体である感光体ドラムや感光体ベルト等の感光体を画像形成装置の本体に回転可能に支持し、画像形成動作時には感光体における感光層に静電潜像を形成した後、この潜像をトナーによって接触方式または非接触方式で可視像化し、次いでその可視像をコロナ転写や転写ローラを使用して転写材に直接転写する方式や、また、転写ドラムまたは転写ベルト等の中間転写媒体に可視像を一旦転写した後、転写材に再転写する方式がある。
これらの画像形成装置にあって、トナーとしては一般的には二成分トナーが知られ、比較的安定した現像を可能とするが、現像剤と磁性キャリアとの混合比の変動が発生しやすく、その維持管理をする必要がある。また、一成分磁性トナーは、磁性材料の不透明性から鮮明なカラー画像を得られないという問題がある。
トナーにおいては、上記のごとき工程を繰り返して高品位の記録画像を得るためには高い流動性を有すると共に如何にトナーを均一帯電させるかが課題となっている。特に、非接触AC現像方式への適用に際しては、飛翔性の向上の観点からもトナーの流動性を向上させてトナーにおける現像ローラへの粘着力を弱めることが必要であり、また、現像電界による飛翔性を高める観点からもトナーに蓄積する過剰な摩擦電荷を放出することが必要である。従来のトナーにおいては、流動性向上剤としてシリカ微粒子を外添することが知られているが、シリカ微粒子は1015Ω・cm以上の高抵抗のために帯電に際してチャージアップ現象が生じ、画像形成工程の繰り返しにより画像濃度が低下するという問題がある。
そこで、トナー母粒子にアルミナ微粒子を外添して、その微弱な電荷リーク作用により、トナーに蓄積する過剰な摩擦電荷を放出してトナーの摩擦帯電の安定化作用を図り、現像電界による飛翔性を高め、また、その研磨作用により感光体表面をリフレッシュして感光体の帯電性能の安定化を図ることが試みられている。
アルミナ微粒子としては、α−アルミナ、γ−アルミナ、θ−アルミナ、また、その混合体等の種々の形態が知られており、また、ナノ・サイズ アルミナの製法としては(1)低ソーダ法アルミナ微粒子:昭和電工製、太平洋ランダム製、(2)ドーソナイト法アルミナ微粒子:大明化学製、ヒノモト製、(3)火花放電法アルミナ:岩谷化学製、(4)火炎加水分解法アルミナ:日本アエロジル製等が知られている。また、トナー外添用アルミナとしては、例えばα−アルミナ微粒子は、明確な結晶構造を有するので、電荷リーク作用発現の起点となる酸素欠陥(格子欠陥)を形成し難く、摩擦帯電を安定化させる機能に乏しい。さらに、α−アルミナ微粒子は粒子径が大きく、且つ硬度が高いので研磨作用が過剰に発現しやすい欠点があり、感光体表面に生じる研磨痕が画像欠陥の起点となったり、感光層を過剰に削り取ることでその寿命を短くする等の問題がある。
また、γ−アルミナ微粒子、また、シリコーンオイルにより被覆したアルミナ微粒子、また、カップリング剤により表面処理を施したアルミナ微粒子等が提案(特許文献1〜3)されている。遷移アルミナの代表であるγ−アルミナは、その製造方法によっては酸素欠陥(格子欠陥)を形成し易く、さらに粒子表面の活性Al−OH基に化学吸着する構造
水を多く含むので、電荷リーク作用を発現しやすくなる特徴がある。しかし、それら過剰なリーク作用により摩擦帯電電荷の減衰が制御し難くなったり、大気中の水分量に依存する環境安定性が損なわれる課題も存在する。さらに、γ−アルミナは粒子径を小さくできる反面、粒子表面の活性Al−OH基の影響で二次凝集体を形成し易い特徴があり、トナー母粒子の表面に付着するように処理を施した場合に、分散不良の状態で存在するアルミナ遊離外添剤は、下記のような様々な弊害を引き起こしている。
第1には、多数枚印字にともなって摩擦帯電の立ち上がりが低下し、特にトナーを補給する方式にあってはトナー補給カブリの現象が生じる。現像装置内のトナーは現像操作を多数回繰り返した場合に、その表面から電荷リーク作用を有する外添剤のアルミナ微粒子がトナー母粒子に埋没または遊離により徐々に失われ、摩擦帯電の立ち上がりが低下する。現像装置がトナーを補給可能とするトナー補給形式である場合には、残留トナーに加えて現像に使用されるトナーが新たに補給されて、もしくは現像装置がトナーを補給可能としないトナー使い切り形式である場合には、再生現像装置として残留トナーに加えてトナーが新たに充填されて、現像装置内でダメージを受けた劣化トナーと新トナーとの間に摩擦帯電時での帯電能力差が生じる。一成分現像法ではトナー担持体である現像ローラとトナー間の摩擦帯電が摩擦帯電能力差が生じた場合、新トナー補給後若しくは再充填後の画像形成時に現像ローラ上のトナー層の規制通過モレ、現像ローラ上のトナー層の上シール飛散、感光体上の非画像形成部のカブリ等が発生するという不具合が生じる。また、二成分現像法ではキャリアとトナー間の摩擦帯電が新旧トナー間で帯電能力差が生じた場合、マグネットローラ上での現像剤層の規制通過飛散、感光体上の非画像形成部のカブリ等が発生するという不具合が生じる。
この現像のメカニズムは、劣化トナーと新トナーが現像装置内で共存する状況下では、摩擦帯電の立ち上がりが良好である新トナーがトナー担持体(現像ローラ)上に形成するトナー層の下層側、摩擦帯電の立ち上がりに劣る旧トナーが表層側として分離する様に層形成することで、帯電の劣る表層側の旧トナーが現像動作時にトナー担持体から離脱しやすくなることが原因となる。
第2には、感光体メモリーの現象が生じる。現像動作時にトナーと同期して感光体上に移行する外添剤のアルミナ微粒子は、その一部が転写動作時にトナーと同期して転写体上に移行し、遊離状態のアルミナ微粒子の一部はトナーと同期して転写体上に移行することなく感光体上に残留しやすくなる。感光体上に残留したアルミナ微粒子は、更にその一部がクリーニング動作で感光体上から除去されるが、サイズがトナーと比較して著しく小さいことからその多くが感光体上に残留し続ける。感光体上に残留するアルミナ微粒子は静電潜像を形成する際の画像輪郭部に集中しやすい傾向があり、一様帯電もしくは書き込み露光時にクリーニング工程でリセットできずに残留したアルミナ微粒子が、その動作における阻害要因となり、そこで生じた表面電位変動としての履歴(感光体メモリー)が画像形成時に一工程前の画像形成履歴となり残像が出現する。
トナー外添用アルミナ微粒子として、特許文献1には疎水性γ晶アルミナ研磨物質を記載するが、帯電性に関してアルミナ遊離外添剤による課題を記載するものではなく、また、特許文献2には、アルミニウムドウソナイト法により得られるトナー外添用アルミナ微粒子を記載するが、多数枚印字にともなう摩擦帯電の立ち上がりの低下に伴う課題を記載するものではなく、また、特許文献3には、非晶質のアルミナ微粒子とすることにより得られるトナー外添用アルミナ微粒子を記載するが、結晶質のアルミナ微粒子とするものではない。
特開平3−191363号公報 特開平3−240068号公報 特開平8−184988号公報
本発明は、摩擦帯電安定性、感光体帯電安定性に優れると共にトナー補給カブリや感光体メモリーの生じないトナーとするのに適した外添用アルミナ微粒子およびトナーの提供、トナー補給カブリや感光体メモリーの生じない画像形成方法および画像形成装置の提供を課題とする。
本発明のトナー外添用アルミナ微粒子は、γ−アルミナ相を主相とすると共に少なくとも少量のα−アルミナ相を含む結晶性で、かつ球形状であり、BET比表面積が20m2 /g〜80m2 /gであることを特徴とする。
上記のアルミナ微粒子は、平均粒径が20nm〜100nmであることを特徴とする。
上記のアルミナ微粒子は、X線回折分析におけるγ−アルミナ由来スペクトルの半値幅が1.0°以下であることを特徴とする。
上記のアルミナ微粒子が、金属アルミニウムを直流アークプラズマで蒸発させ、その蒸気を酸化して得られるものであることを特徴とする。
本発明のトナーは、少なくとも結着樹脂、着色剤及び離型剤を含むトナー母粒子と、γ−アルミナ相を主相とすると共に少なくとも少量のα−アルミナ相を含む結晶性で、BET比表面積が20m2 /g〜80m2 /gである球状アルミナ微粒子を外添剤として含むことを特徴とする。
上記のトナー母粒子が、体積平均粒径(D50)が2.0〜12.0μmで、転相乳化合一法により得られることを特徴とする。
本発明の画像形成方法は、静電潜像を担持した感光体と、該感光体と非接触の状態で対向配置される現像装置とを有し、該現像装置が前記感光体に担持された静電潜像をトナーを担持して現像する現像ローラと、該現像ローラに圧接対向配置され、該現像ローラに前記トナーを供給する供給ローラとを有し、該現像装置に前記トナーとして少なくとも結着樹脂、着色剤及び離型剤を含むトナー母粒子と、γ−アルミナ相を主相とすると共に少なくとも少量のα−アルミナ相を含む結晶性で、BET比表面積が20m2 /g〜80m2 /gである球状アルミナ微粒子を外添剤として含むトナーを供給して前記感光体に担持された静電潜像を現像することを特徴とする。
本発明の画像形成装置は、静電潜像を担持した感光体と、該感光体と非接触の状態で対向配置され、前記感光体に担持された静電潜像を、少なくとも結着樹脂、着色剤及び離型剤を含むトナー母粒子と、γ−アルミナ相を主相とすると共に少なくとも少量のα−アルミナ相を含む結晶性で、BET比表面積が20m2 /g〜80m2 /gである球状アルミナ微粒子を外添剤として含むトナーにより現像する現像ローラと、該現像ローラに圧接対向配置され、前記トナーを供給する供給ローラとを有する現像装置とを含むことを特徴とする。
本発明の画像形成方法および画像形成装置における現像装置はトナーを補給可能とする
場合には、残留トナーに加えて新たに補給されるトナーにより現像することを特徴とし、もしくは、トナーを補給可能としない場合には、残留トナーに加えて新たに充填されるトナーにより現像するものである。
図1は、本発明におけるアルミナ微粒子のX線回折図である。 図2は、本発明のアルミナ微粒子の走査電子顕微鏡写真(10万倍)である。 図3(a)(b)は、本発明におけるアルミナ微粒子の製造方法を説明するための図である。 図4は、本発明の画像形成装置の概要を説明するための図である。 図5は、現像装置の主要構成要素を説明するための図である。 図6(a)は比較例1のアルミナ微粒子のX線回折図であり、(b)は比較例2のアルミナ微粒子のX線回折図である。 図7(a)は比較例1のアルミナ微粒子の走査電子顕微鏡写真(10万倍)であり、(b)は比較例2のアルミナ微粒子の走査電子顕微鏡写真(10万倍)である。
本発明のトナー外添用アルミナ微粒子の製造装置を図3(a)(b)に示す。図3に示すトナー外添用アルミナ微粒子の製造装置は、特開2002−253953に記載される超微粒子製造装置を使用するものであり、(a)は装置を上方から見た状態を示す図であり、(b)は側面から見た状態を示す図である。
トナー外添用アルミナ微粒子製造装置は、外部の雰囲気を遮断するチャンバ1と、プラズマトーチ4および電源5を有するプラズマアーク発生手段6と、プラズマトーチ4に供給するアルゴンガス等の作用ガスが充填された作用ガスタンク7と、反応・冷却ガスタンク8に充填された酸素ガス等の反応・冷却ガスを原料体(金属アルミニウム)3が蒸発して発生した蒸発ガスに吹き付ける反応・冷却ガス吹き付けノズル9と、チャンバ1と連設し、原料体3が蒸発した蒸発ガスを膨張させて冷却し、かつ蒸発ガスと生成した微粒子(アルミナ微粒子)を分離する蒸発ガス冷却タンク10とを有するものである。この装置において、プラズマトーチ4は、発生したプラズマアークの軸方向が、原料体3の蒸発面に対して斜め方向に配置される。また、反応・冷却ガス吹き付けノズル9は、プラズマトーチ4との間に原料体3が配置されるように設けられる。さらに、原料体3をチャンバ1の外から保持し、原料体3を送り出す原料体保持・送り出し装置12と、原料体3が蒸発している位置を検出し、その情報を解析し、信号を原料体保持・送り出し装置12に出力して原料体3の送り出し速度を決定する蒸発面位置検出装置13とを有している。
原料体として金属アルミニウムを使用し、上記公報における実施例1、実施例2と同様にして、中心電極22と移行型プラズマトーチ4bの電極24との間にV字状プラズマアークCを形成させる。このV字状プラズマアークCのV字先端付近のアーク高温部Hを、蒸発用るつぼ中の金属アルミニウムにあてて金属アルミニウムを蒸発させる。金属アルミニウムから発生したアルミニウム蒸気をプラズマアークのガス圧によってプラズマアークの前方に流すと共にアルミニウム蒸気を横切るように、反応・冷却ガス吹き付けノズル9から酸素ガスを吹き付け、アルミニウム蒸気を急速に酸化させてAl2 3 超微粒子を形成させる。形成したAl2 3 超微粒子および酸化された蒸発ガスを蒸発ガス冷却タンク10に移動して冷却した後に、コレクタ11によりAl2 3 超微粒子と気体とに分離する。分離したAl2 3 超微粒子を蒸発ガス冷却タンク10下部に設置された捕集容器で捕集する。
本発明のトナー外添用アルミナ微粒子は、このように、金属アルミニウムを直流アーク
プラズマで蒸発させ、その蒸気を酸化して得られるものであり、この方法により、アルミナ純度は99.9%以上のアルミナ微粒子が得られる。本発明のトナー外添用アルミナ微粒子としては、上記方法により得られるBET比表面積が20m2 /g〜80m2 /gのアルミナ微粒子が好ましく、個数平均粒径としては20nm〜100nmのものが好ましい。
個数平均粒径が20nmより小さく、BET比表面積が80m2 /gより大きいと、後述する比較例1、2のごとく、本発明の効果を奏しなく、また、個数平均粒径が100nmを超え、BET比表面積が20m2 /gがより小さいと、トナー母粒子から遊離するという問題が生じ、本発明の効果を奏しない。市販品としてはシーアイ化成社製「Nano・Tek、Al2 3 、一次粒径30nm、BET比表面積49.3m2 /g」が例示される。本発明のアルミナ微粒子の走査電子顕微鏡写真(10万倍)を、図2に示す。図2からわかるように、本発明のアルミナ微粒子は球形状微粒子であり、その各微粒子の粒子径も看取されるものである。
また、図1に本発明のトナー外添用アルミナ微粒子のX線回折データを示す。図1から明らかなように、本発明のトナー外添用アルミナ微粒子は、γ−アルミナ結晶特有のピーク(例えば2θが45.9°、67.0°等)を有し、しかも、それぞれのピークの半値幅は0.314、0.415である。X線スペクトルを、例えば特許文献3のごとくCPS強度比Ia-max /Ia-min で表現する場合には、γ−アルミナが結晶質であるのか非晶質であるのかについて比較することが容易になるが、本発明のトナー外添用アルミナ微粒子においては、図1から2θが45.9°にピーク値を有し、そのIa-max =略4500CPS、そのIa-min =略250CPSと看取されることから、Ia-max /Ia-min =18と算出されるものであり、本発明のトナー外添用アルミナ微粒子は結晶性であることがわかる。
また、その半値幅{ピーク値の高さの1/2高さ、すなわち、Ia-min +(Ia-max −Ia-min )/2に対応するそれぞれの2θ値の差}は、結晶粒(結晶子)の不完全さを示す場合に用いられる一般的な表現方法であるが、2θが45.9°のピークにおいては0.314°と測定され、2θが67.0°のピークにおいては0.405°と測定される。ちなみに、図6(a)(b)に後述する比較例1、2の市販のγ−アルミナ微粒子についてのX線回折データを示すように、半値幅は、比較例1では2θが45.9°のピークにおいては1.756°と測定され、67.0°のピークにおいては1.496°と測定され、また、比較例2では2θが45.9°のピークにおいては1.673°と測定され、67.0°のピークにおいては1.784°と測定される。
比較例1、2のものは半値幅が大きく、結晶子の不完全さが大きいことがわかる。半値幅が小さいと結晶子の不完全さが小さくなり、半値幅が大きいと結晶子の不完全さが大きくなるように、半値幅は結晶子の不完全さとの対応を示すものである。結晶子との不完全さは酸素欠陥(格子欠陥)の程度を反映していると考えられ、さらには電荷リーク作用発現の程度を反映していると考えられる。本発明のトナー外添用アルミナ微粒子にあっては、γ−アルミナ特有のピークである例えば2θが45.9°や67.0°のピークにあって、その半値幅が1.0°以下、好ましくは0.1°〜0.8°のものであり、半値幅がこれより大きいと本発明の効果を示さない。
また、図1には、α−アルミナ結晶特有のピーク(例えば2θが35°等)も示しており、γ−アルミナ相とα−アルミナ相とが混在し、しかも、強度比を考慮すると、本発明のトナー外添用アルミナ微粒子はγ−アルミナ相が大部分で、γ−アルミナを主相とするものであること、また、少量のα−アルミナ相を含むものであることがわかる。また、X線回折データから結晶構造を有するものである。これに対して後述する比較例1のトナー
外添用アルミナ微粒子は、そのX線回折データから、γ−アルミナ相と共にδ−アルミナ相を1/3程度含まれるものである。
本明細書においては、BET比表面積は、(株)マウンテック社製「全自動比表面積計Macsorb HM model−1201」を使用して求められ、また、アルミナ微粒子の粒径は、透過電子顕微鏡で観察し、視野中の100個の粒子径を測定して平均粒子径を求める。また、X線構造回折は、リガク社製「RINT−1400(ゴニオ半径185mm)」を使用して測定するもので、半値幅等の測定等のスペクトル分析を可能とするものであり、その測定条件は
発散スリット: 1/2deg
散乱スリット: 1/2deg
受光スリット: 0.3mm
スキャンステップ:0.02°
である。
本発明のトナー外添用アルミナ微粒子は、(1)トナー母粒子表面に付着したアルミナ微粒子が所定の電荷リーク作用を発現し、トナーの摩擦帯電を安定化させる効果を有する、(2)アルミナ微粒子の研磨作用により感光体表面をリフレッシュして感光体の帯電性能を安定化させる効果がある、(3)さらに、現像装置がトナーを補給可能とする場合には、残留トナーに加えて新たに補給されるトナーであるトナー補給形式の現像装置において、もしくは、現像装置がトナーを補給可能としない場合は、残留トナーに加えて新たに充填されるトナーであるトナー使い切り方式の現像装置において、トナー補給カブリを低減したり、(4) 感光体上に残留する遊離外添剤に起因して発生する残留メモリーを低減することができる。
(1)のトナーの摩擦帯電を安定化するのは、本発明のトナー外添用アルミナ微粒子が、γ−アルミナ相を主相としα−アルミナ相を含む遷移アルミナでありながら、明確な結晶形態を有するためと考えられる。明確な結晶形態を有することにより、電荷リーク作用発現の起点となる酸素欠陥(格子欠陥)を適度に形成しながら、粒子表面のAl−OH基が少ないことで化学吸着する構造水を低減でき、その結果、摩擦帯電電荷の制御が容易になり、大気中の水分量に依存することなく、環境安定性が向上するものと考えられる。
特に、X線回折データにおけるγ−アルミナ由来スペクトルの半値幅を1.0°以下とするのは、アルミナ微粒子のγ−アルミナ相の結晶子の不完全さを小さくするためであり、γ−アルミナ相の不完全さが小さくなることで、微弱な電荷リーク作用の発現を安定化させることに効果がある。
(2)の感光体の帯電性能を安定化するのは、本発明のトナー外添用アルミナ微粒子が、γ−アルミナ相を主相としα−アルミナ相を含む遷移アルミナでありながら、明確な結晶形態を有するためと考えられる。アルミナ微粒子がγ−アルミナ相を主相とすることで感光体表面をリフレッシュするに適した適度な研磨作用を発現するものと考えられる。また、粒子表面の活性基が少ないことにより、二次凝集体を形成することなく容易に分散する球状の一次粒子を構成するので、感光体表面に研磨痕を発生させることなく適度な研磨作用を持続させることができるものと考えられる。
特に、X線回折データにおけるγ−アルミナ由来スペクトルの半値幅を1.0°以下とするのは、アルミナ微粒子のγ−アルミナ相の結晶子の不完全さを小さくするためであり、γ−アルミナ相の不完全さが小さくなることで、研磨作用を制御しうるのではないかと考えられる。
(3)のトナー補給カブリを低減するのは、本発明のトナー外添用アルミナ微粒子が、γ−アルミナ相を主相としα−アルミナ相を含む遷移アルミナであるため適度な電荷リーク作用を発現し、粒子表面の活性基が少ない理由により、二次凝集体を形成することなく容易に分散する球状の一次粒子を構成するので、トナー表面に付着するアルミナ微粒子が埋没もしくは遊離が抑制されると共に摩擦帯電の立ち上がり性能が維持されるものと考えられる。その結果、劣化トナーと新トナーが現像装置内において共存する状況下で、摩擦帯電の立ち上がりにトナー差が発生しなくなり、新トナー補給後の画像形成時に感光体上の非画像形成部にカブリが発生しなくなるものと考えられる。
特に、X線回折データにおけるγ−アルミナ由来スペクトルの半値幅を1.0°以下とするのは、アルミナ微粒子のγ−アルミナ相の結晶子の不完全さを小さくするためであり、γ−アルミナ相の不完全さが小さくなることで、摩擦帯電の立ち上がり性能を維持しうるものと考えられる。
(4)の感光体メモリーを低減するのは、本発明のトナー外添用アルミナ微粒子においては、粒子表面の活性基が少ない理由により、二次凝集体を形成することなく容易に分散する球状の一次粒子を構成するためと考えられる。トナー表面にアルミナ微粒子を外添処理する際に、一次粒子の形態で均一に分散した状態で付着させることができるので、トナー表面から遊離して振る舞う非同期成分の発生を抑えることができる。その結果、現像動作から転写動作時に感光体上に残留する外添剤が発生しないので、感光体メモリーを低減できるものと考えられる。
特に、X線回折データにおけるγ−アルミナ由来スペクトルの半値幅を1.0°以下とするのは、アルミナ微粒子のγ−アルミナ相の結晶子の不完全さを小さくするためであり、γ−アルミナ相の不完全さが小さくなることで、二次凝集体を形成することなく、容易に分散する球形状の一次粒子を構成しうるものと考えられる。
本発明のトナー外添用アルミナ微粒子は、トナー母粒子100質量部に対して、0.2質量部〜5.0質量部、好ましくは0.5質量部〜2.0質量部の割合で外添処理させるとよい。トナー母粒子に対する処理量がこれより多いと電荷リーク作用が過剰に発現したり、遊離外添剤が発生する問題があり、また、少ないと所望の研磨効果が得られない。
アルミナ微粒子は、後述する実施例においては、疎水化処理をしていないものを使用したが、アルキルアルコキシシラン、シロキサン、シラン、シリコーンオイル等のシラン系有機化合物で疎水化処理をしてもよい。特にアルキルアルコキシシランを用いるのが好ましく、例えばビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−メタクリルオキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、イソブチルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルメトキシシラン、ヒドロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、n−ヘキサデシルトリメトキシシラン、n−オクタデシルトリメトキシシラン等が挙げられる。
また、トナー外添剤として、アルミナ微粒子の他に(1)疎水性小シリカ粒子(以下、疎水性小シリカ粒子)、(2)疎水性単分散球形大シリカ粒子、(3)正帯電性シリカ粒子をしようするとよい。
(1) 疎水性小シリカ粒子は、個数平均一次粒子径としては7〜16nm、好ましくは10〜12nm、かつ、嵩比重が0.1〜0.2g/cm3 で、2成分帯電量(5min値)が−20〜−80μC/gのものであり、日本アエロジル(株)製の「R8200」、また、「RX200(嵩比重が0.02〜0.06g/cm3 、2成分帯電量(5m
in値)−100〜−300μC/g)」が例示される。共に、ケイ素ハロゲン化合物の蒸気相酸化(乾式法)により得られるもので、嵩比重、2成分帯電量(5min値)において相違するものである。
疎水性小シリカ粒子は、個数平均一次粒子径が小さい程、得られるトナーの流動性が高くなるが、個数平均一次粒子径が7nmより小さいと、外添に際してシリカ微粒子がトナー母粒子に埋没してしまう虞があり、逆に、個数平均一次粒子径が16nmを超えると、流動性が悪くなる虞がある。疎水性小シリカ粒子は、トナー母粒子100質量部に対して0.5〜3.0質量部、好ましくは1.0〜2.0質量部添加されることにより、疎水性小シリカ粒子の低帯電性・高流動化により、ゴム薄層規制部における圧縮凝集塊の形成を抑制することができる。
なお、嵩比重は、100mlのメスシリンダーにロートを通して粉体を注ぎ、100mlに達した時点で注入を止め、この時の重量を計測し、次式に代入して得られる。
嵩比重(g/cm3 )={(サンプル注入後の重量)−(サンプル注入前の重量)}/{メスシリンダーの容量(100ml)}。
次に、(2) 疎水性単分散球形大シリカ粒子は、個数平均一次粒子径が50〜250nm、好ましくは80〜150nmである。疎水性単分散球形大シリカ粒子は、形状としてはWadellの球形度が0.6以上、好ましくは0.8以上の球形である。単分散球形シリカ微粒子は、湿式法であるゾルゲル法により得られ、比重が1.3〜2.1のものである。疎水性単分散球形大シリカ粒子は、平均粒径が50nmより小さいと、小粒径のシリカ微粒子のトナー母粒子表面への埋没を防止して流動性や帯電安定性を維持することができなくなったり、また、スペーサ効果が得られず、また、250nmより大きいと、トナー母粒子に付着しにくくなると共にトナー母粒子表面から脱離しやすくなる。
疎水性単分散球形大シリカ粒子としては、(株)日本触媒製の「シーホスターKE−P10S2」(個数平均一次粒子径100nm)等が例示され、結晶形は一部結晶質とも考えられるアモルファス、球状、個数平均一次粒子径は100nm、シリコーンオイルにより疎水化(表面)処理され、真比重が2.2、嵩比重が0.25〜0.35、BET比表面積10〜14m2 /g、2成分帯電量(5min値)0〜−50μC/gである。
疎水性単分散球形大シリカ粒子は、トナー母粒子100質量部に対して0.2〜2.0質量部、好ましくは0.5〜1.5質量部添加される。疎水性単分散球形大シリカ粒子の添加量が0.2質量部より少ないと、トナー充填密度が上昇し、現像ローラ回転時に規制ブレードでトナー層を薄層規制する際、トナーの薄層化が困難となり、規制モレや飛散する問題が生じる。また、2.0質量部より多く添加すると、トナー層充填密度が低下しすぎ、現像ローラ回転時に規制ブレードをトナー層が通過する際、トナーの一部が現像ローラに保持されず漏洩したり、また、トナー層の現像ローラ周期で発生する層厚形成ムラにより、全面ベタ画像を出力すると用紙送り方向に対する濃度均一性が損なわれ、現像ローラ周期ムラが出現するという問題が発生する。
(2)の大粒子径のシリカ:(1)の小粒子径のシリカの添加比(質量比)は、1:4〜4:1、好ましくは2:3〜3:2とするとよく、トナーに流動性を付与し、かつ帯電の長期安定性を得る上で好ましい。大粒子径シリカと小粒子径シリカは、両者の混合比率を考慮しつつトナー母粒子100質量部に対して合計量で1.25〜5.0質量部、好ましくは2.0〜3.0質量部添加される。
シリカ微粒子は疎水化処理されていることが好ましい。負帯電性シリカ微粒子の表面を
疎水性にすることにより、トナーの流動性および帯電性がさらに向上する。シリカ微粒子の疎水化は、ヘキサメチルジシラザン、ジメチルジクロロシランなどのシラン化合物;あるいはジメチルシリコーン、メチルフェニルシリコーン、フッ素変性シリコーンオイル、アルキル変性シリコーンオイル、エポキシ変性シリコーンオイル等のシリコーンオイルを用いて、例えば、湿式法、乾式法など当業者が通常使用する方法により行われる。
(3) 正帯電性シリカ粒子は、個数平均一次粒子径としては20nm〜40nmである。正帯電性シリカ微粒子は、疎水化処理されていることが好ましく、外部環境の変化に対する帯電性の変化を小さく、安定な帯電性を維持し、かつトナーの流動性を良好にするために添加される。正帯電性シリカ微粒子の疎水化は、アミノシランカップリン剤やアミノ変性シリコンオイル等を使用して行われる。疎水性正帯電性シリカ微粒子としては、市販の日本アエロジル(株)製のNA50H(結晶形はアモルファス、球状、個数平均一次粒子径は30nm、ヘキサメチルジシラザンとアミノシランにより疎水化(表面)処理され、真比重が2.2、嵩比重が0.0671、BET比表面積44.17m2 /g、炭素量2%以下、2成分帯電量(5min値)40μC/g)や、キャボット(株)製のTG820Fなどが例示される。
次に、本発明におけるトナー母粒子は、小粒径の着色粒子とするものであり、転相乳化合一法や乳化凝集法で得られるものとするとよいが、粉砕法で得られるものでもよい。
転相乳化合一法としては、ポリエステル系樹脂、着色顔料等の有機溶媒溶液を水性媒体中で転相乳化して得られる(乳化分散法)ものとするとよい。
ポリエステル樹脂としては、多塩基酸と多価アルコールとが脱水縮合されることによって合成される。多塩基酸としては、例えばテレフタル酸、イソフタル酸、無水フタル酸、無水トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸のごとき芳香族カルボン酸類;無水マレイン酸、フマール酸、コハク酸、アルケニル無水コハク酸、アジピン酸などの脂肪族カルボン酸類;シクロヘキサンジカルボン酸などの脂環式カルボン酸類などが挙げられる。これらの多塩基酸は、単独で用いることもでき、2種類以上を併用して用いることもできる。これらの多塩基酸の中でも、芳香族カルボン酸を使用するのが好ましい。
多価アルコールとしては、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトールのごとき脂肪族ジオール類;シクロヘキサンジオール、シクロヘキサンジメタノール、水添ビスフェノールAのごとき脂環式ジオール類;ビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物のごとき芳香族ジオール類などが挙げられる。これらの多価アルコールは、単独で用いることもでき、2種以上を併用して用いることもできる。これらの多価アルコールの中でも、芳香族ジオール類、脂環式ジオール類が好ましく、芳香族ジオール類がより好ましい。
なお、多価カルボン酸と多価アルコールとの縮重合によって得られたポリエステル樹脂に、さらにモノカルボン酸、及び/又はモノアルコールを加えて、重合末端のヒドロキシル基、及び/又はカルボキシル基をエステル化し、ポリエステル樹脂の酸価を調整することができる。このような目的で用いるモノカルボン酸としては、例えば酢酸、無水酢酸、安息香酸、トリクロル酢酸、トリフルオロ酢酸、無水プロピオン酸などが挙げられる。また、モノアルコールとしては、例えばメタノール、エタノール、プロパノール、オクタノール、2−エチルヘキサノール、トリフルオロエタノール、トリクロロエタノール、ヘキサフルオロイソプロパノール、フェノールなどが挙げられる。
ポリエステル樹脂は、上記多価アルコールと多価カルボン酸とを常法に従って縮合反応させることにより製造することができる。例えば、上記多価アルコールと多価カルボン酸とを、温度計、攪拌器、流下式コンデンサを備えた反応容器に配合し、窒素等の不活性ガスの存在下で150〜250℃で加熱し、副生する低分子化合物を連続的に反応系外に除去し、所定の物性値に達した時点で反応を停止させ、冷却することにより目的とする反応物を得ることができる。
このようなポリエステル樹脂の合成は、触媒を添加して行うこともできる。使用するエステル化触媒としては、例えばジブチル錫ジラウレート、ジブチル錫オキサイドのごとき有機金属や、テトラブチルチタネートのごとき金属アルコキシドなどが挙げられる。また、使用するカルボン酸成分が低級アルキルエステルである場合には、エステル交換触媒を使用することができる。エステル交換触媒としては、例えば、酢酸亜鉛、酢酸鉛、酢酸マグネシウムのごとき金属酢酸塩;酸化亜鉛、酸化アンチモンのごとき金属酸化物;テトラブチルチタネートのごとき金属アルコキシドなどが挙げられる。触媒の添加量については、原材料の総量に対して0.01〜1重量%の範囲とするのが好ましい。
また、このような縮重合反応において、特に分岐、または架橋ポリエステル樹脂を製造するためには、1分子中に3個以上のカルボキシル基を有する多塩基酸またはその無水物、及び/又は、1分子中に3個以上の水酸基を有する多価アルコールを必須の合成原料として用いればよい。
ポリエステル樹脂としては、高分子量で高粘性となる架橋型のポリエステル樹脂と、低分子量の低粘性となる分岐型、或いは直鎖型ポリエステル樹脂をブレンドしたものが好ましい。また、カルボキシル基、スルホン基、リン酸基等の酸性基を有するとよく、中でも、カルボキシル基含有ポリエステル樹脂が好ましい。酸価が3〜20mgKOH/gのポリエステル樹脂とするとよく、2官能カルボン酸類及びジオール類との反応率を調整するか、または多塩基酸成分として無水トリメリット酸を使用して調整される。カルボキシル基含有ポリエステル樹脂は分散安定性に優れ、また、トナー母粒子化した際に負帯電性とできるので好ましい。
ポリエステル樹脂(バインダー樹脂)には着色剤、離型剤、荷電制御剤等が添加されてトナー母粒子とされる。フルカラー用着色剤としては、カーボンブラック、ランプブラック、マグネタイト、チタンブラック、クロムイエロー、群青、アニリンブルー、フタロシアニンブルー、フタロシアニングリーン、ハンザイエローG、ローダミン6G、カルコオイルブルー、キナクリドン、ベンジジンイエロー、ローズベンガル、マラカイトグリーンレーキ、キノリンイエロー、C.I.ピグメント・レッド48:1、C.I.ピグメント・レッド57:1、C.I.ピグメント・レッド122、C.I.ピグメント・レッド184、C.I.ピグメント・イエロー12、C.I.ピグメント・イエロー17、C.I.ピグメント・イエロー97、C.I.ピグメント・イエロー180、C.I.ソルベント・イエロー162、C.I.ピグメント・ブルー5:1、C.I.ピグメント・ブルー15:3等の染料および顔料を単独あるいは混合して使用できる。
離型剤としては、パラフィンワックス、マイクロワックス、マイクロクリスタリンワックス、キャデリラワックス、カルナウバワックス、ライスワックス、モンタンワックス、ポリエチレンワックス、ポリプロピレンワックス、酸化型ポリエチレンワックス、酸化型ポリプロピレンワックス等が挙げられる。中でもポリエチレンワックス、ポリプロピレンワックス、カルナウバワックス、エステルワックス等を使用することが好ましい。
トナー母粒子における成分比としては、バインダー樹脂100質量部に対して、着色剤
は0.5〜15質量部、好ましくは1〜10質量部であり、また、離型剤は1〜10質量部、好ましくは2.5〜8質量部である。
トナー母粒子は、上述したポリエステル樹脂(バインダー樹脂)と着色剤、必要により離型剤や電荷制御剤とを有機溶媒中に溶解・分散した後、該溶解・分散液に水性媒体を徐々に投入して転相乳化して微粒子とし、さらに得られた微粒子を凝集させて所望の大きさの着色剤含有樹脂微粒子に造粒し、分離・洗浄・乾燥の各工程を経てトナー母粒子とするもので、乳化と会合を制御しながらトナー母粒子を製造することが可能である。なお、詳細については特開2003−140380に記載の乳化分散法が例示される。有機溶媒中への溶解・分散工程においては、バインダー樹脂を有機溶媒に溶解させた後、予備分散させておいた着色剤を追加投入して有機溶媒中への溶解・分散液を調製するとよい。
転相乳化工程においては、溶解・分散液に塩基性中和剤を添加した後、イオン交換水(水性媒体)を徐々に添加して懸濁・乳化液の形成を行うとよく、有機溶媒と添加した水の合計量に対する水の比率が35〜65質量%となるように水を添加するとよい。転相乳化に際して使用される塩基性中和剤としては、水酸化ナトリウム、水酸化カリウム、アンモニア、ジエチルアミン、トリエチルアミン等の無機塩基、有機塩基類が例示される。また、有機溶媒としては、炭化水素類、ハロゲン化炭化水素、エーテル、ケトン類、エステル類であり、具体的にはヘキサン、ヘプタン、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサン、塩化メチル、ジクロロメタン、塩化エチル、塩化プロピル、ジオキサン、テトラヒドロフラン、アセトン、メチルエチルケトン、酢酸エチル、酢酸プロピル等の単独、または2種以上混合して用いられる。また、転相乳化工程においては、ホモミキサー、スラッシャ、ホモジナイザー、コロイドミル、メディアミル、キャビトロンなどの乳化分散機が使用できる。
また、乳化凝集法においては、単量体、重合開始剤、乳化剤(界面活性剤)などを水中に分散させて重合を行い、形成された樹脂粒子からなる分散液と、着色剤、離型剤、必要に応じて荷電制御剤等と凝集剤(電解質)等の分散液とを混合し、凝集、加熱融着させた着色粒子を得る。このようにして得られる着色粒子は、更に樹脂粒子からなる分散液を混合し、着色粒子をコアとして樹脂粒子を付着・加熱融合して被膜(シェル)を形成してコアシェル構造とするとよく、離型剤成分の着色粒子表面への露出を防止して現像ローラ等への機器へのワックス(離型剤)成分の付着をより防止することができ、フィルミング防止に優れるトナー母粒子とできる。
本発明におけるトナー母粒子やトナー粒径は、ベックマンコールター社製「マルチサイザーIII 」型による測定でその50%体積平均粒径(D50)が2.0〜12.0μm、好ましくは3.0〜9.0μmである。体積平均粒径が12.0μmよりも大きいトナー粒子では、600dpi以上の高解像度で潜像を形成してもその解像度の再現性が小粒径のトナーに比して低下し、また、2.0μmより小さいと現像効率が低下することでトナーによる隠蔽性が低下するとともに、流動性を高めるために外添剤の使用量が増大し、その結果、定着性能が低下する傾向がある。
また、トナー母粒子の個数基準での粒度分布において、1μm以下の平均粒径を有する粒子の積算値が1%以下、好ましくは2μm以下の平均粒径を有する粒子の積算値を1%以下とするとよい。平均粒径が1μm以下の積算値が1%を超えると、トナー層規制部材による帯電付与が不十分となり、逆極性トナーの発生、潜像担持体上でのフィルミングの発生、画像形成工程におけるダストの発生リスクが高まるので好ましくない。また、本発明においてトナー母粒子やトナーの個数平均粒径、粒度分布、また、平均円形度はフロー式粒子像分析装置(シスメックス製 FPIA2100)で測定した値である。
トナー母粒子形状としては、真球に近い形状のトナー粒子が好ましい。具体的には、トナー母粒子は下記式
R=L0 /L1
{但し、式中、L1(μm)は、測定対象のトナー粒子の投影像の周囲長、L0(μm)は、測定対象のトナー粒子の投影像の面積に等しい面積の真円(完全な幾何学的円)の周囲長を表す。}
で表される平均円形度(R)が0.95〜0.99、好ましくは0.96〜0.98とするとよい。これにより、転写効率が高く、連続印字しても転写効率の変動が少なく、帯電量の安定すると共に、クリーニング性にも優れるトナーとできる。
トナー母粒子への外添剤の添加方法としては、ヘンシェルミキサー(三井三池社製)、Q型ミキサー(三井鉱山社製)、メカノフュージョンシステム(細川ミクロン社製)、メカノミル(岡田精工社製)等より行うとよい。ヘンシェルミキサーを使用して多段処理がなされる場合、各段階の処理操作条件は、回転周速度30〜50m/s、処理時間2分〜15分の範囲から適宜選択される。
また、外添剤の添加順序として3段階からなる多段処理するとよく、トナー母粒子にまず、1段目としてアルミナ微粒子をまず処理し、2段処理として疎水性単分散球形大シリカ粒子と共に疎水性小シリカ粒子を処理・付着させ、3段目として正帯電性シリカ微粒子を処理するとよい。これにより、薄層規制に際し帯電分布調整を可能とし、チャージアップ現象による静電凝集塊の形成を抑制できる負帯電性一成分非磁性トナーとできる。
なお、本発明においては、上述した外添剤粒子の添加趣旨を損なわない範囲で、他の疎水化処理された外添剤、例えば疎水性中シリカ粒子{ヒュームドシリカ、日本エアロジル社製「RX50」真比重2.2、体積平均粒径D50=40nm(標準偏差=20nm)}、金属石けん粒子である高級脂肪酸の亜鉛、マグネシウム、カルシウム、アルミウムから選ばれる金属塩であり、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸モノアルミニウム、ステアリン酸トリアルミニウム等を外添処理してもよく、また、酸化亜鉛、酸化ストロンチウム、酸化錫、酸化ジルコニア、酸化マグネシウム、酸化インジウム、酸化チタン、酸化セリウム等の金属酸化物の微粒子、また、窒化珪素等窒化物の微粒子、炭化珪素等の炭化物の微粒子、樹脂粒子、硫酸カルシウム、硫酸バリウム、炭酸カルシウム、チタン酸ストロンチウム等の金属塩の微粒子、並びに、これらの複合物等の無機微粒子等を添加してもよい。
本発明のトナーは、フロー軟化温度(Tf1/2)が90℃〜140℃であり、また、ガラス転移温度(Tg)が40℃〜70℃の範囲にある。フロー軟化温度(Tf1/2)は、島津製作所製フローテスタ(CFT−500)を用いて、ノズル径1.0mmΦ×1.0mm、単位面積(cm2 )当たりの荷重10kg、毎分6℃の昇温速度で測定した値である。更に、ガラス転移温度(Tg)は、セイコーインスツルメンツ社製「示差走査熱量計(DSC−220C)」を用い、セカンドラン法により毎分10℃の昇温速度で測定した値である。
次に、本発明の画像形成方法、画像形成装置について説明する。
図4は、本発明の画像形成装置の概要を説明するための図で、図中、プリンタ10は、感光体20の回転方向に沿って、帯電ユニット30、露光ユニット40、現像器保持ユニット50、一次転写ユニット60、中間転写体70、クリーニングユニット75を有し、さらに、二次転写ユニット80、定着ユニット90等を有している。
感光体20は、円筒状の導電性基材とその外周面に形成された感光層を有し、中心軸を中心に回転可能であり、矢印で示すように時計回りに回転する。帯電ユニット30は、感
光体20を帯電するための装置であり、露光ユニット40は、レーザを照射することによって帯電された感光体20上に潜像を形成する装置である。この露光ユニット40は、画像信号に基づいて、変調されたレーザビームを帯電された感光体20上に照射する。そして、所定のタイミングにてレーザビームがON/OFFされて、所定の速度で回転する感光体20上の格子状に区画された領域にドット状潜像が形成される。
現像器保持ユニット50は、感光体20上に形成された潜像を、ブラック現像器51に収容されたブラック(K)トナー、マゼンタ現像器52に収容されたマゼンタ(M)トナー、シアン現像器53に収容されたシアン(C)トナー及びイエロー現像器54に収容されたイエロー(Y)トナーを用いて現像するための装置である。この現像器保持ユニット50は、回転することにより、前記4つの現像器51、52、53、54の位置を動かすことを可能としている。そして、感光体20が1回転する毎に、4つの現像器51、52、53、54のうちの1つを選択的に感光体20と対向させ、対向された現像器51、52、53、54に収容されているトナーにより感光体20上に形成された潜像を順次現像する。
一次転写ユニット60は、感光体20に形成された単色トナー像を中間転写体70に転写するための装置であり、4色のトナーが順次重ねて転写されると、中間転写体70にフルカラートナー像が形成される。この中間転写体70は、エンドレスのベルトであり、感光体20とほぼ同じ周速度にて回転駆動される。二次転写ユニット80は、中間転写体70上に形成された単色トナー像やフルカラートナー像を紙、フィルム、布等の記録媒体に転写するための装置である。
定着ユニット90は、記録媒体上に転写された単色トナー像やフルカラートナー像を紙等の記録媒体に融着させて永久像とするための装置である。クリーニングユニット75は、一次転写ユニット60と帯電ユニット30との間に設けられ、感光体20の表面に当接されたゴム製のクリーニングブレード76を有し、一次転写ユニット60によって中間転写体70上にトナー像が転写された後に、感光体20上に残存するトナーTをクリーニングブレード76により掻き落として除去するための装置である。
次に、図5は、シアン現像器に代表させて現像器を説明するための図で、現像器の主要構成要素を示した断面図である。現像器54は、トナーTを収容するハウジング540、現像ローラ510、現像ローラ510にトナーを供給するためのトナー供給ローラ550、現像ローラ510に担持されたトナーの層厚を規制するための層厚規制ブレード560、ハウジング540と現像ローラ510との上方側の間隙をシールするための上シール520、ハウジング540と現像ローラ510との端部側の間隙をシールするための端部シール527等を有している。
ハウジング540の内部に、トナー収容部530が形成されている。トナー収容部530は、仕切り壁545により、第一トナー収容部530aと第二トナー収容部530bとに分けられている。現像器保持ユニット50が回転する際には、第一トナー収容部530aと第二トナー収容部530bとに収容されていたトナーが、現像位置における上部側の連通している部位側に一旦集められ、図5に示す状態に戻るときには、それらのトナーが混合されて第一トナー収容部530a及び第二トナー収容部530bに戻されることになる。すなわち、現像器保持ユニット50が回転することにより現像器内のトナーTは撹拌されることになる。このため、トナー収容部530に攪拌部材を設けていないが、トナー収容部530に収容されたトナーTを攪拌するための攪拌部材を設けてもよい。図5に示すように、ハウジング540は下部に開口572を有しており、後述する現像ローラ510が、この開口572に臨ませて設けられている。
トナー供給ローラ550におけるローラ部は、弾性を有する例えば発泡ウレタンにて形成されている。そして、トナー供給ローラ550は、回転自在に支持されて、第一トナー収容部530aに収容されており、トナーTを現像ローラ510に供給し、現像後に現像ローラ510に残存している余剰なトナーTを、現像ローラ510から剥ぎ取る。
トナー供給ローラ550と金属表面を有する現像ローラ510とは、互いに押圧された状態にてハウジング540に組み付けられている。トナー供給ローラにおけるローラ部は、アスカーF硬度70°の発泡部材で構成されており、接触深さ0.7mm〜1.3mmで弾性変形された状態で現像ローラ510に当接するとよい。トナー供給ローラの接触深さを大きくするほど消費部に供給されるトナーの帯電立ち上がりを向上させることができる。そして、トナー供給ローラ550は、現像ローラ510の回転方向(図5において反時計方向)と逆の方向(図5において時計方向)、すなわちトナー供給ローラ550を現像ローラ510に対してウイズ回転方向で回転させる。
また、現像装置は、トナーを補給可能とする場合には、残留トナーに加えて新たに補給されるトナーとの混合トナーとされ、もしくはトナーを補給可能としない場合には、残留トナーに加えて新たに充填されるトナーとの混合トナーとされる。
本発明のトナーにおける帯電性を十分なものとするためには、現像ローラ上で規制部材による薄層規制により帯電させる必要があるが、乳化凝集法や転相乳化合一法で得られる着色粒子は、薄層規制時のストレスにより部分欠損(凝集粒子の部分的欠落)し易い。そのため、内包されたワックス成分が露出して、現像ローラ510、規制部材560、上シール520のフィルミングの発生の原因ともなる。
本発明の外添処理の順序として、アルミナ微粒子の外添処理後に疎水性単分散球形大シリカ粒子を外添処理することにより、着色粒子表面において疎水性単分散球形大シリカ粒子が移動し易くなるものと考えられる。多数枚印字での耐久時においては、発生する欠損部に疎水性単分散球形大シリカ粒子が移動し、トラップされて欠損部を埋めるように再配置され、ワックス部を被覆してフィルミングが抑制されるものと考えられる。
現像ローラ510の周速度は250〜400mm/sとするとよく、周速度が大きいほど大シリカの再配列がしやすい。また、トナー供給ローラ550の周速度は400〜600mm/sとするとよく、大きいほど現像室内でのトナー流動を活性化させて、トナーの摩擦帯電状態を均質化させることができる。また、疎水性単分散球形大シリカ粒子の着色粒子表面での移動を促進するのは、現像ローラと供給ローラの周速度と周速差であるが、同時に現像ローラ上トナーのリセット性(剥離・供給)が高まり、トナー消費部/トナー未消費部に対応した摩擦帯電コントラスト差が生じにくくなる。供給ローラ周速度/現像ローラ周速度で示される周速差(周速度比)は1.4〜1.7とするとよい。周速度比が大きいほど大シリカの再配列がしやすく、同時に現像ローラ上トナーのリセット性(剥離・供給)が高まり、現像ローラ上トナーの入れ替わりを促進させることができる。
本発明においては、現像ローラ510は、トナーTを担持して感光体20と対向する現像位置に搬送する。この現像ローラ510は、金属製であり、5056アルミ合金や6063アルミ合金等のアルミ合金、STKM等の鉄合金等により製造されており、必要に応じて、ニッケルメッキ、クロムメッキ等が施されていてもよい。現像ローラ510の表面は、サンドブラストによる粗面化処理により、その表面粗さ(Rz)は5〜8μmとされる。
また、現像ローラ510は、中心軸を中心として回転可能であり、感光体20の回転方向(図5において時計方向)と逆の方向(図5において反時計方向)に回転する。また、
図5に示すように、現像器54は、感光体20上に形成された潜像を非接触状態で現像する。
規制ブレード560は、現像ローラ510に担持されたトナーTに電荷を付与し、また、現像ローラ510に担持されたトナーTの層厚を規制する。この規制ブレード560は、ゴム部560aと、ゴム支持部560bとを有している。ゴム部560aは、シリコンゴム、ウレタンゴム等からなり、(株)レスカ製のタッキング試験機「TAC−II」により下記の測定条件でのタック力が60〜80gfを有するゴムとするものである。
測定プローブ:φ5
押込み荷重:10g
押込み速度:30mm/min
引剥がし速度:600mm/min
測定温度24℃(室内温度)。
本実施例の規制ブレード用ゴム{EPSON(LP−9000C)熱硬化性ウレタンゴム}についてタック力を測定した結果、標準プローブ71〜72gf、プローブ先端にトナー貼付けでは110〜130gfであった。
ゴム支持部560bは、リン青銅、ステンレス等のバネ性を有する薄板である。ゴム部560aは、ゴム支持部560bの長手方向に沿わされてゴム支持部560bの短手方向の一端側に支持されており、ゴム支持部560bは、その他端側がブレード支持板金562に支持された状態で当該ブレード支持板金562を介してハウジング540に取り付けられている。また、規制ブレード560の現像ローラ510側とは逆側にはモルトプレーン等からなるブレード裏部材570が設けられている。
ここで、ゴム支持部560bの撓みによる弾性力によって、ゴム部560aが現像ローラ510の中央部から両端部に亘って押しつけられている。また、ブレード裏部材570は、ゴム支持部560bとハウジング540との間にトナーTが入り込むことを防止して、ゴム支持部560bの撓みによる弾性力を安定させるとともに、ゴム部560aの真裏からゴム部560aを現像ローラ510の方向へ付勢することによって、ゴム部560aを現像ローラ510に押しつけている。したがって、ブレード裏部材570は、ゴム部560aの現像ローラ510への均一当接性を向上させている。
規制ブレード560の、ブレード支持板金562に支持されている側とは逆側の端、すなわち、先端は、現像ローラ510に接触しておらず、該先端から所定距離だけ離れた部分が、現像ローラ510に幅を持って接触している。換言すると、規制ブレード560は、現像ローラ510にエッジにて当接しておらず、ゴム部560aが有する平面にて腹当たりにて当接している。また、規制ブレード560は、その先端が現像ローラ510の回転方向の上流側に向くように配置されており、いわゆるカウンタ当接している。
また、ゴム支持部560bは、ゴム部560aより現像ローラ510の軸方向に長く設けられており、ゴム部560aの両端より外側にそれぞれ延出されている。ゴム支持部560bの延出された部位には、ゴム部560aより厚い厚みを有する例えば不織布製の端部シール527が、ゴム部と560aと同一面に貼着されている。このとき、ゴム部560aの軸方向の端面は端部シール527の側面に当接されている。
端部シール527は、現像ローラ510を取り付けた際に、現像ローラ510の表面における溝部が設けられていない両端部に当接するように設けられ、現像ローラ510の端部より外側に至る幅を有している。また、端部シール527は、規制ブレード560のゴ
ム部560aの先端より十分に長く延出されている。規制ブレード560がハウジング540に取り付けられると、端部シール527は、現像ローラ510外周面と対向するように形成されたハウジング540の部位に沿わされ、ハウジング540と現像ローラ510との間隙を閉塞する。
上シール520は、現像器54内のトナーTが器外に漏れることを防止するとともに、現像位置を通過した現像ローラ510上のトナーTを、掻き落とすことなく現像器内に回収する。この上シール520は、ポリエチレンフィルム等からなるシールである。上シール520は、シール支持板金522によって支持されており、シール支持板金522を介してハウジング540に取り付けられている。また、上シール520の現像ローラ510側とは逆側には、モルトプレーン等からなるシール付勢部材524が設けられており、上シール520は、シール付勢部材524の弾性力によって、現像ローラ510に押しつけられている。
このように構成された現像器54において、トナー供給ローラ550がトナー収容部530に収容されているトナーTを現像ローラ510に供給する。現像ローラ510に供給されたトナーTは、現像ローラ510の回転に伴って、規制ブレード560の当接位置に至り、該当接位置を通過する際に、電荷が付与されるとともに層厚が規制される。
帯電された現像ローラ510上のトナーTは、現像ローラ510のさらなる回転によって、感光体20に対向する現像位置に至り、該現像位置にて交番電界下で感光体20上に形成された潜像の現像に供される。さらに、現像ローラ510の回転によって現像位置を通過した現像ローラ510上のトナーTは、上シール520を通過して、上シール520によって掻き落とされることなく現像器内に回収される。未だ現像ローラ510に残存しているトナーTは、トナー供給ローラ550によって剥ぎ取られる。
以下、本発明を実施例を用いてさらに詳細に説明する。
(実施例1)
トナー母粒子の製造方法について説明する。以下、「部」は質量部である。
(トナー母粒子の製造例)
・重縮合ポリエステル樹脂{三洋化成工業(株)製、ハイマーES801、非架橋成分と架橋成分の質量比(45/55)} ・・・ 110質量部
・カルナバワックス ・・・ 55質量部
・シアン顔料(フタロシアニンα型) ・・・ 55質量部。
を加圧ニーダーで溶融混練した。溶融混練物を冷却後、1〜2mm角のサイズに粗粉砕し、(株)日本精機製作所製のコロイドミルを用い、溶融混練粉砕物200質量部と、前述の重縮合ポリエステル樹脂800質量部及びメチルエチルケトン820質量部を混合攪拌し、原料液体とした。
次に、この原料液体500質量部に対し、1規定のアンモニア水を加えて十分に攪拌した後、イオン交換水122質量部を加え、更に30℃で1時間攪拌した。そして、122質量部のイオン交換水を滴下して転相乳化により微粒子分散物を調製した。次に、イオン交換水400質量部を加えた後、メチルエチルケトンの沸点以上の温度に加熱し、脱溶剤を行い、最終的に固形分含有量を約34%に調整した。
そして、得られた微粒子分散物235質量部をイオン交換水で希釈し、固形分含有量を
約20%に調整した後、20%の食塩水60質量部を加え、温度を68℃に昇温し、60分間攪拌し、その後、ノニオン型乳化剤NL−250(第一工業製薬(株)製)0.6質量部を添加し、70℃、4時間攪拌し、造粒を完結させた。
得られたスラリーを遠心分離機で分離し、洗浄し、次いで、中央化工機(株)製の振動流動層装置を使用して、トナー母粒子中の水分量が質量比で0.5%以下となるまで乾燥し、トナー母粒子を得た。
得られたトナー母粒子は、ベックマンコールター社製「マルチサイザーIII 」型による測定でその50%体積平均粒径(D50)は6.9μmであり、また、シスメックス社製「フロー式粒子像分析装置 FPIA−2100」により測定した個数基準での平均粒子径は6.9μm、平均円形度は0.975であった。
(トナーの調製)
上記で得たトナー母粒子2kgをヘンシェルミキサー(20L)に投入した後、トナー母粒子100gあたりの添加量で、アルミナ微粒子(シーアイ化成社製「Nano・Tek、Al2 3 、一次粒径30nm、BET比表面積49.3m2 /g」)2.0g(以下、同様)を投入して、周速40m/sで2分間処理した。
ついで、疎水性単分散球形大シリカ粒子(日本触媒社製「KEP10S2」一次粒子サイズ100nm、シリコンオイル処理品)0.5gと、疎水性小シリカ粒子(日本アエロジル社製「RX200」一次粒子サイズ12nm、HMDS(ヘキサメチルシラザン)処理品)2.0gを投入して、周速40m/sで2分間処理した。
処理後、63μm目開きの金属メッシュを用いて音波フルイで粗大粒子を除去し、本発明におけるトナーとした。
(比較例1)
実施例1のトナーの調製において、アルミナ微粒子を日本アエロジル製「AEROXIDE C805、結晶系(割合):γ相2/3、δ相1/3、一次粒径13nm、BET比表面積100m2 /g」を1.0gに代えた以外は実施例1と同様にして、比較例1のトナーとした。
(比較例2)
実施例1のトナーの調製において、アルミナ微粒子を大明化学社製「ダイミクロン TM−300、結晶系:γ相約90%、純度99.99%、一次粒径7nm、BET比表面積225m2 /g」0.5gに代えた以外は実施例1と同様にして、比較例2のトナーとした。
(画像形成)
得られた各トナーを図4に示す画像形成装置(LP9000C、セイコーエプソン社製)に搭載した。現像ローラは外径φ18の鉄製中空素管の表面をサンドブラスト処理後にNi−Pメッキを施したRz=7μmの表面粗さに形成した。規制部材の突出量は0.76mmとした。また、供給ローラは外径φ19でアスカーF硬度70°のウレタンスポンジからなり、現像ローラに接触深さ1.0mmで圧接した。また、プロセス速度210mm/sとし、現像ローラの周速度は336mm/s、供給ローラの周速度は504mm/sであり、供給ローラ周速度/現像ローラ周速度で示される周速差(周速度比)は1.5とした。また、感光体との現像ギャップ100μm、直流バイアス−150v、周波数3.0kHzの交流バイアス1000v(p−p)、Duty60%の条件下で、ACジャンピング現像法によりカラー画像を形成した。なお、各プロセスユニットのバイアス電位
設定値はデフォルト設定した固定バイアス電位を採用し、トナー量調整用パッチセンサの動作無しとした。また、試験環境は22〜24℃/45〜55%RHであった。
次に、実施例、比較例1、2の各トナーについての実機での評価項目と評価方法について説明すると共に、その評価結果を表1に示す。
(1) 規制通過モレ
現像ローラ上のトナー層が規制ブレードを通過する際、トナーの一部が現像ローラに保持されずに漏洩する現象をいい、次の4段階で目視評価した。下記の判定基準で3以上を可とする。
Lv4(○):規制ブレードから現像ローラ上へのトナー漏れが全くなく、トナーによる汚れのない状態。
Lv3(△):トナー漏れが現像ローラ回転時に間欠的に発生し、ゴマ粒大より少ないトナー量が下地が見える程度に付着した状態。
Lv2(×):トナー漏れが現像ローラ回転時に間欠的に発生し、トナー量が下地が見えない程度に付着して堆積した状態。
Lv1(×):トナー漏れが現像ローラ回転時に間欠的に発生し、トナーが制限なく漏れ続ける状態。
(2) 上シール飛散
現像ローラ上のトナー層が上シールを通過する際、トナーの一部が現像ローラに保持されずに飛散する状態をいい、次の4段階で目視判定。判定基準は下記の通りである。
Lv4(○):上シール回収部で現像ローラ上のトナー飛散が全く生じなく、トナーによる汚れのない状態
Lv3(△):飛散したトナーがホルダー/ハウジング上の一部に下地が見える程度に薄く付着した状態
Lv2(×):飛散したトナーがホルダー/ハウジング上の一部に下地が見えなくなるまで堆積した状態
Lv1(×):飛散したトナーがホルダー/ハウジング上の半分以上の面積に下地が見えなくなるまで堆積した状態。
(3) 飛翔性(OD値)
全面ベタ(ソリッド)画像を形成する際の現像能力の高さを示し、画像濃度の大きさとその均一性で表す。画像の先端/中央/後端の3箇所、画像の左側/中央/右側の3箇所を組み合わせた合計9点の平均OD値と最低OD値を用いる。
Lv4(○):平均OD値が1.30以上、最低OD値が1.20以上の状態
Lv3(△):平均OD値が1.20以上、最低OD値が1.10以上の状態
Lv2(×):平均OD値が1.10以上、1.20未満の状態
Lv1(×):平均OD値が1.10未満の状態。
(4) カブリ(OD値)
感光体(OPC)上でのカブリ量は、白ベタパターン印字時に画像形成プロセスを強制的に途中停止して、感光体上に残留する白ベタ(背景部)のカブリトナーをメンディングテープ(住友スリーエム社製)で転写・回収する。転写回収後のテープをJ紙(富士ゼロックス社製)に貼り付けた後、そのテープ濃度の変化をマクベス濃度計でOD値(光学反射濃度)を測定する。テープ単体でのOD値は0.1程度を示し、そのOD値差引分をカブリトナー濃度とした。
Lv4(○):カブリトナー分のOD値が0.10以下である状態
Lv3(△):カブリトナー分のOD値が0.15以下、0.10超えである状態
Lv2(×):カブリトナー分のOD値が0.20以下、0.15超えである状態
Lv1(×):カブリトナー分のOD値が0.20超えである状態。
(5) 供給遅れ
ベタ(ソリッド)画像先端である現像ローラ周期1周目に対して、現像ローラ2周目以降から後端まで用紙送り方向(露光副走査方向)の画像濃度の均一性が低下し、濃度低下(カスレ)が発生する現象をいい、目視判定した。
Lv4(○):画像先端である現像ローラ周期1周目から画像後端までの領域で濃度低下が全くない状態(透かしても判別不能)
Lv3(○):画像先端である現像ローラ周期1周目から画像後端までの領域で濃度低下がない状態(透かすと判別可能)
Lv2(△):供給遅れ起因の濃度低下が現像ローラ周期2周目以降の一部に発生した状態
Lv1(△):供給遅れ起因の濃度低下が現像ローラ周期2周目以降の半域以上に発生した状態。
(6) 総合判定
Lv4(○):全ての項目が○判定である状態
Lv3(○):△判定が2項目以下であり、それ以外の項目が○判定である状態
Lv2(×):×判定の項目がなく、総合判定Lv3、Lv4に該当しない状態
Lv1(×):×判定の項目が1項目以上該当する状態。
Figure 0005391723
課題との対応についての評価基準を以下に示すと共に評価結果について表2に示す。
(1) トナー帯電安定性
上記の(1) 規制通過モレ、(2) 上シール飛散、(3) 飛翔性、(4) カブリの4項目について、不具合なく成立している状態
Lv4(○):(1) 〜(4) において、すべての項目が○判定である状態
Lv3(○):(1) 〜(4) において、△判定が1項目以下であり、上記Lv4に該当しない状態
Lv2(△):(1) 〜(4) において、×判定を含まず、上記Lv3、Lv4に該当しない状態
Lv1(×):(1) 〜(4) において、×判定が1項目以上該当する状態。
(2) 感光体帯電安定(感光体フィルミング)
感光体(OPC)表面に放電生成物やトナー組成物の一部が固着して一様帯電が阻害される感光体のフィルミング現象をみるもので、感光体フィルミングのレベルの定量化は予め作製する顕微鏡拡大像の固着限度見本と照らし合わせてスコアを決める。
Lv4(○):感光体表面の顕微鏡拡大像の一視野内に固着が全く認められない状態
Lv3(○):感光体表面の顕微鏡拡大像の一視野内に100μm以下の固着が20箇所以下である状態
Lv2(△):感光体表面の顕微鏡拡大像の一視野内に500μm以下の固着が50箇所以下である状態
Lv1(×):感光体表面の顕微鏡拡大像の一視野内の固着が上記に該当しない状態。
(3) トナー補給規制通過モレ
白ベタ画像をA4サイズ6千枚相当形成してカブリトナー量を消費後に、新トナーを残トナー重量の10相当分だけ現像装置に補給する。新トナーを現像装置に補給した直後に現像ローラ上のトナー層の規制通過モレか一時的に増加する現象をみるもので、トナー補給規制通過モレの判定は通常カブリの規制通過モレの判定方法と同一手順で実施する。
Lv4(○):規制ブレードから現像ローラ上へのトナー漏れが全くなく、トナーによる汚れのない状態。
Lv3(△):トナー漏れが現像ローラ回転時に間欠的に発生し、ゴマ粒大より少ないトナー量が下地が見える程度に付着した状態。
Lv2(×):トナー漏れが現像ローラ回転時に間欠的に発生し、トナー量が下地が見えない程度に付着して堆積した状態。
Lv1(×):トナー漏れが現像ローラ回転時に連続的に発生し、トナーが制限なく漏れ続ける状態。
(4) トナー補給上シール飛散
白ベタ画像をA4サイズ6千枚相当形成してカブリトナー量を消費後に新トナーを残トナー重量の10相当分だけ現像装置に補給する。新トナーを現像装置に補給した直後に現像ローラ上のトナー層の上シール飛散が一時的に増加する現象をみるもので、トナー補給上シール飛散の判定は、通常カブリの規制通過モレの判定方法と同一手順で実施する。
Lv4(○):上シール回収部で現像ローラ上のトナー飛散が全く生じなく、トナーによる汚れのない状態
Lv3(△):飛散したトナーがホルダー/ハウジング上の一部に下地が見える程度に薄く付着した状態
Lv2(×):飛散したトナーがホルダー/ハウジング上の一部に下地が見えなくなるまで堆積した状態
Lv1(×):飛散したトナーがホルダー/ハウジング上の半分以上の面積に下地が見えなくなるまで堆積した状態。
(5) トナー補給カブリ
白ベタ画像をA4サイズ6千枚相当形成してカブリトナー量を消費後に新トナーを残トナー重量の10%相当分だけ現像装置に補給する。新トナーを現像装置に補給した直後に形成する白ベタ画像に発生するカブリが一時的に増加する現象をみるもので、トナー補給カブリ量の判定は、通常カブリの判定方法と同一手順で実施する。
Lv4(○):カブリトナー分のOD値が0.10以下である状態
Lv3(△):カブリトナー分のOD値が0.15以下、0.10超えである状態
Lv2(×):カブリトナー分のOD値が0.20以下、0.15超えである状態
Lv1(×):カブリトナー分のOD値が0.20超えである状態。
(6) 感光体メモリー
白ベタ画像内に孤立するベタ画像を形成した直後の感光体1周期内に低いハーフの濃度画像を形成する際、ハーフ濃度画像にベタ画像の履歴が残像として出現する現象を見る。トナー表面の外添剤の一部が感光体上のベタ画像輪郭に集中して残留しやすく、クリーニングにより除去できない残留外添剤が露光を遮ることでハーフ画像の潜像電位にムラが発生することで出現する。残像レベルの定量化は予め作成する画像限度見本と照らし合わせてスコアを決める。
Lv4(○):ハーフ画像内に残像が全く認められない状態
Lv3(△):ハーフ画像内に不鮮明な輪郭の残像が薄っすらと認められる状態
Lv2(×):ハーフ画像内に鮮明な輪郭の残像が薄っすらと認められる状態
Lv1(×):ハーフ画像内に鮮明な輪郭の残像が明らかに周囲の濃度以上(OD値0.1以上)で認められる状態。
実施例、比較例1、2の各トナーについて、課題との対応の評価結果を表2に示す。
Figure 0005391723
表1、2から明かなように、本発明のトナー外添用アルミナ微粒子は摩擦帯電安定性、
感光体帯電安定性に優れると共に、トナー補給規制通過モレやトナー補給上シール飛散やトナー補給カブリや感光体メモリーの生じないトナーとするのに適していることがわかる。
本発明は、摩擦帯電安定性、感光体帯電安定性に優れると共にトナー補給規制通過モレやトナー補給上シール飛散やトナー補給カブリや感光体メモリーの生じないトナー外添用アルミナ微粒子およびトナー、また画像形成方法、画像形成装置を提供できる。
10はプリンタ、20は感光体、30は帯電ユニット、40は露光ユニット、50は現像器保持ユニット、60は一次転写ユニット、70は中間転写体、75はクリーニングユニット、80は二次転写ユニット、90は定着ユニット、510は現像ローラ、520は上シール、530はトナー収容部、540はハウジング、550はトナー供給ローラ、560は規制ブレード、Tはトナーである。

Claims (5)

  1. 少なくとも結着樹脂、着色剤及び離型剤を含むトナー母粒子と、γ−アルミナ相を主相とすると共に少なくとも少量のα−アルミナ相を含む結晶性で、BET比表面積が20m2 /g〜80m2 /gである球状アルミナ微粒子を外添剤として含み、
    前記アルミナ微粒子は、平均粒径が20nm〜100nmであり、
    前記トナー母粒子は、体積平均粒径(D50)が2.0〜12.0μmで、転相乳化合一法により得られることを特徴とするトナー。
  2. 静電潜像を担持した感光体と、該感光体と非接触の状態で対向配置される現像装置とを有し、該現像装置が前記感光体に担持された静電潜像をトナーを担持して現像する現像ローラと、該現像ローラに圧接対向配置され、該現像ローラに前記トナーを供給する供給ローラとを有し、該現像装置に前記トナーとして少なくとも結着樹脂、着色剤及び離型剤を含むトナー母粒子と、γ−アルミナ相を主相とすると共に少なくとも少量のα−アルミナ相
    を含む結晶性で、BET比表面積が20m2 /g〜80m2 /gである球状アルミナ微粒子を外添剤として含むトナーを供給して前記感光体に担持された静電潜像を現像し、
    前記アルミナ微粒子は、平均粒径が20nm〜100nmであり、
    前記トナー母粒子は、体積平均粒径(D50)が2.0〜12.0μmで、転相乳化合一法により得られることを特徴とする画像形成方法。
  3. 現像装置がトナーを補給可能とするトナー補給形式である場合には、残留トナーに加えて新たに補給されるトナーにより現像するものであり、現像装置がトナーを補給可能としないトナー使い切り形式である場合には、残留トナーに加えて新たに充填されるトナーにより現像するものである請求項記載の画像形成方法。
  4. 静電潜像を担持した感光体と、該感光体と非接触の状態で対向配置され、前記感光体に担持された静電潜像を、少なくとも結着樹脂、着色剤及び離型剤を含むトナー母粒子と、γ−アルミナ相を主相とすると共に少なくとも少量のα−アルミナ相を含む結晶性で、BE
    T比表面積が20m2 /g〜80m2 /gである球状アルミナ微粒子を外添剤として含むトナーにより現像する現像ローラと、該現像ローラに圧接対向配置され、前記トナーを供給する供給ローラとを有する現像装置とを含み、
    前記アルミナ微粒子は、平均粒径が20nm〜100nmであり、
    前記トナー母粒子は、体積平均粒径(D50)が2.0〜12.0μmで、転相乳化合一法により得られることを特徴とする画像形成装置。
  5. 現像装置がトナーを補給可能とするトナー補給形式である場合には、残留トナーに加えて新に補給されるトナーにより現像するものであり、現像装置がトナーを補給可能としないトナー使い切り形式である場合には、残留トナーに加えて新たに充填されるトナーにより現像するものである請求項4記載の画像形成装置。
JP2009039506A 2009-02-23 2009-02-23 トナー、画像形成方法および画像形成装置 Expired - Fee Related JP5391723B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009039506A JP5391723B2 (ja) 2009-02-23 2009-02-23 トナー、画像形成方法および画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009039506A JP5391723B2 (ja) 2009-02-23 2009-02-23 トナー、画像形成方法および画像形成装置

Publications (2)

Publication Number Publication Date
JP2010197480A JP2010197480A (ja) 2010-09-09
JP5391723B2 true JP5391723B2 (ja) 2014-01-15

Family

ID=42822289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009039506A Expired - Fee Related JP5391723B2 (ja) 2009-02-23 2009-02-23 トナー、画像形成方法および画像形成装置

Country Status (1)

Country Link
JP (1) JP5391723B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6134548B2 (ja) * 2013-03-21 2017-05-24 株式会社トクヤマ 球状アルミナ粒子の粉体とその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH117149A (ja) * 1997-06-16 1999-01-12 Toyo Ink Mfg Co Ltd 静電荷像現像用トナー
JP2001199718A (ja) * 2000-01-17 2001-07-24 C I Kasei Co Ltd α−アルミナ超微粒子とその製造方法
JP2002253953A (ja) * 2001-02-28 2002-09-10 C I Kasei Co Ltd 超微粒子の製造装置および製造方法
JP4810415B2 (ja) * 2006-12-06 2011-11-09 キヤノン株式会社 トナー
JP4941660B2 (ja) * 2007-07-09 2012-05-30 セイコーエプソン株式会社 一成分非磁性トナーおよび該トナーを使用した画像形成装置

Also Published As

Publication number Publication date
JP2010197480A (ja) 2010-09-09

Similar Documents

Publication Publication Date Title
JP6910805B2 (ja) トナー、画像形成装置及び画像形成方法
KR101588545B1 (ko) 자성 토너
US7838193B2 (en) Toner and image forming method using the toner
JP6069990B2 (ja) 静電潜像現像用キャリア、現像剤、及び画像形成装置
JP6289432B2 (ja) トナー及びトナーの製造方法
US8852837B2 (en) Toner, method for forming image, and image forming apparatus
US20100261113A1 (en) Toner, method for forming image, and image forming apparatus
JP2009098194A (ja) 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ及び画像形成装置
JP5935424B2 (ja) 静電荷像現像用キャリア、静電荷像現像用現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置、及び画像形成方法
JP6102561B2 (ja) 画像形成装置、画像形成方法、静電潜像現像用のトナー、及び静電潜像現像用の回収トナー
JP2010191355A (ja) 静電潜像現像用透明トナー、静電潜像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法
JP2009025744A (ja) 静電荷像現像用トナー、並びに、これを用いた静電荷像現像用現像剤、静電荷像現像用現像剤カートリッジ、画像形成装置、及びプロセスカートリッジ
JP5391722B2 (ja) トナー、画像形成方法および画像形成装置
US20100261112A1 (en) Toner, method for forming image, and image forming apparatus
JP2005062818A (ja) トナー
JP5391723B2 (ja) トナー、画像形成方法および画像形成装置
JP5641120B2 (ja) トナー外添用アルミナ微粒子、トナー、画像形成方法および画像形成装置
JP2009015257A (ja) 画像形成方法
JP2010204237A (ja) トナー外添用アルミナ微粒子の製造方法およびトナーの製造方法
JP2010249902A (ja) トナー、画像形成方法および画像形成装置
JP2000066439A (ja) トナー及び電子写真装置
JP6896545B2 (ja) トナー
JP2008304725A (ja) トナー及び画像形成装置
US20230098242A1 (en) Toner for developing electrostatic charge image and electrostatic charge image developer
JP6064818B2 (ja) 画像形成装置、及びプロセスカートリッジ

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111026

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111026

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees