JP2010203790A - 車載二次電池の過充電検出装置 - Google Patents

車載二次電池の過充電検出装置 Download PDF

Info

Publication number
JP2010203790A
JP2010203790A JP2009046605A JP2009046605A JP2010203790A JP 2010203790 A JP2010203790 A JP 2010203790A JP 2009046605 A JP2009046605 A JP 2009046605A JP 2009046605 A JP2009046605 A JP 2009046605A JP 2010203790 A JP2010203790 A JP 2010203790A
Authority
JP
Japan
Prior art keywords
voltage
diagnosis
self
secondary battery
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009046605A
Other languages
English (en)
Other versions
JP5187234B2 (ja
Inventor
Kiyohito Machida
清仁 町田
Atsushi Yamada
篤志 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009046605A priority Critical patent/JP5187234B2/ja
Publication of JP2010203790A publication Critical patent/JP2010203790A/ja
Application granted granted Critical
Publication of JP5187234B2 publication Critical patent/JP5187234B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】車載二次電池に設けられた過充電検出装置の異常検出のための自己診断の機会を適切に確保することによって、過充電検知の確実性を高める。
【解決手段】車両運転終了時に自己診断トリガが発生されると(S100)、セル電圧が自己診断可能な電圧範囲内であるか否かが判定される(S110)。セル電圧が自己診断可能な電圧範囲よりも低いケースが所定回数Nthを超えているか否かが判定され(S150)、セル電圧に起因して自己診断の機会が失われている場合には、次回の車両運転時におけるバッテリのSOC目標値SOCrを変更要求が発生される(S160)。これにより、次回の運転終了時におけるセル電圧を、自己診断可能な電圧範囲内とすることができる。
【選択図】図12

Description

この発明は、車載二次電池の過充電検出装置に関し、より特定的には、自己診断機能を有する過充電検出装置に関する。
従来より、車載二次電池(以下、バッテリとも称する)の蓄積電力を用いて走行する電気自動車やハイブリッド自動車等の電動車両が用いられている。車載二次電池としては、ニッケル水素電池やリチウムイオン電池が実用あるいは検討されている。特に、リチウムイオン電池では、過充電を厳密に回避する必要があるため、バッテリの過充電検出回路を設けることが行なわれている。
たとえば、特開2003−079059号公報(特許文献1)には、各電池セルに対してセル個々の過充電を検出する過充電検出手段を設けた車載組電池制御装置が記載されている。特に、特許文献1では、各セルの電圧と所定基準値とをセルごとに比較する複数の比較部を設けるとともに、各比較部における基準値を高レベルの判定用の第1しきい値と中間低レベル判定用の第2のしきい値との間で切換えることが可能な構成が記載されている。
また、特開2004−248406号公報(特許文献2)および特許第4118035号公報(特許文献3)には、過充電状態の検出時に車載二次電池の充放電制御を変更することが記載されている。特開2000−175306号公報(特許文献4)にも、蓄電装置の充放電バランスを回復させるように充放電制御を修正する制御が記載されている。あるいは、特開2007−171044号公報(特許文献5)には、SOC(State Of Charge)の算出精度の低下を抑制するために、電流積算に基づく推定SOCと二次電池の充放電履歴に基づく推定SOCとの誤差が大きくなった場合に、SOCの変動幅を増加させるように充放電制御することで、SOCの推定精度を向上することが記載されている。
特開2003−079059号公報 特開2004−248406号公報 特許第4118035号公報 特開2000−175306号公報 特開2007−171044号公報
近年では、電池性能面からリチウムイオン電池をハイブリッド車両の車載二次電池に適用することが試みられている。一方で、リチウムイオン電池については、過充電時における発熱特性から、過充電を厳密に回避することの重要性がよく知られている。このため、特許文献1に記載されるように、電池セルごとに過充電検出回路を適用することが好ましい。
その一方で、過充電検出回路そのものに特性のずれ等が発生するケースも想定されるため、正確に過充電を検知するためには、過充電検出回路の自己診断についても適切に実行する必要がある。言い換えれば、この自己診断の機会を適切に確保できなければ、二次電池の過充電を検知し損ねるおそれがある。
この発明は、このような問題点を解決するためになされたものであって、この発明の目的は、車載二次電池に設けられた過充電検出装置の異常検出のための自己診断の機会を適切に確保することによって、過充電検知の確実性を高めることである。
本発明による車載二次電池の過充電検出装置は、車両の運転中に充電制御目標値に従って充放電制御される車載二次電池の過充電検出装置であって、第1の過電圧検出回路と、第2の過電圧検出回路と、自己診断部とを備える。第1の過電圧検出回路は、二次電圧の過充電を検出するように構成される。第2の過電圧検出回路は、第1の過電圧検出回路と並列に設けられて、二次電圧の過充電を検出するように構成される。自己診断部は、車両の運転終了時に第1および第2の過電圧検出回路の異常を検出するための自己診断を実行するように構成される。そして、自己診断部は、診断開始判定部と、要求変更部とを含む。診断開始判定部は、自己診断の要求時に、二次電池の電圧が第1および第2の過電圧検出回路を自己診断可能な所定電圧範囲内であることを条件に、自己診断の実行を指示するように構成される。要求変更部は、診断開始判定部によって自己診断の要求時における二次電池の電圧が所定電圧範囲よりも低いと判定されたときに、次回の車両運転中の充電制御目標値を現在値よりも高く変更するように要求する。
上記車載二次電池の過充電検出装置によれば、所定の電圧範囲内で自己診断可能な第1および第2の過電圧検出回路を二次電池に二重に設けた過充電検出装置において、自己診断の要求時(代表的には、車両運転終了時)における電池電圧が自己診断可能な当該所定電圧範囲外であるときには、充電制御目標値を現在値よりも高く変更することによって、次回の運転終了時における電池電圧を自己診断可能な当該所定電圧範囲内とすることができる。
この結果、通常、運転中を通じてSOCを満充電の50〜60%程度に維持する通常のハイブリッド車両と異なり、車両外部の電源によって充電可能な二次電池を搭載するために運転終了時に電力を使い切るような走行制御を志向する、いわゆるプラグイン型のハイブリッド車両においても、過電圧充電装置の自己診断の機会を適切に確保することによって、過充電検知の確実性を高めることができる。さらには、自己診断可能な所定電圧範囲を広げることによるコスト上昇を招くことなく、通常のハイブリッド自動車(SOC目標が50〜60%で運転終了)と、プラグイン型ハイブリッド車両(SOC下限近傍で運転終了)との間で汎用化可能な過電圧検出装置を提供することも可能となる。
好ましくは、第1の過電圧検出回路は、所定範囲内で可変に制御可能な第1の分圧比に従って、二次電池の電圧を分圧した第1の分圧電圧を出力するように構成された第1の分圧部と、第1の分圧電圧と所定電圧との比較結果を出力するように構成された第1の電圧比較部とを含む。第2の過電圧検出回路は、所定範囲内で可変に制御可能な第2の分圧比に従って、二次電池の電圧を分圧した第2の分圧電圧を出力するように構成された第2の分圧部と、第2の分圧電圧と所定電圧との比較結果を出力するように構成された第2の電圧比較部とを含む。そして、自己診断部は、診断制御部と、異常判定部とをさらに含む。診断制御部は、自己診断の実行時に、第1および第2の分圧比を同期させて段階的に変化させるように第1および第2の分圧部を制御するように構成される。異常判定部は、診断制御部によって第1および第2の分圧部が制御されているときに、第1および第2の電圧比較部の出力が一致するか否かを判定するように構成される。
さらに好ましくは、自己診断実行時を除く通常動作時において、第1および第2の分圧比は、二次電池の過電圧検出のためのそれぞれ異なる値に固定的に制御される。
このようにすると、第1および第2の過電圧検出回路の各々での分圧比を同期させて段階的に変化させている状態での出力比較によって、自己診断を簡易に実行することができる。特に、自己診断実行時以外の通常動作時においては、二重化された第1および第2の過電圧検出回路でそれぞれ異なるレベルの過充電を検出することによって、過電圧検出装置を効率的に構成できる。
さらに好ましくは、通常動作時において、第1の分圧比は第2の分圧比よりも高く設定される。そして、車両は、第1の過電圧検出回路において第1の分圧電圧が所定電圧よりも高いことが検知されたときに、二次電池への充電を禁止するように充放電制御を行う一方で、第2の過電圧検出回路において第2の分圧電圧が所定電圧よりも高いことが検知されたときには、開閉器によって二次電池への充電経路を遮断するように構成される。
このようにすると、過充電のレベルに応じて、二次電池の充電経路の機械的な遮断および、制御による二次電池の充電禁止を適切に使い分けた異常時対応が可能となる。
好ましくは、二次電池は、直列接続されたN個(N:2以上の整数)の電池セルを有する電池ブロックを複数個含む組電池によって構成され、過充電検出装置は、各電池セルに対応して設けられる。そして、診断開始判定部は、各電池ブロックに対応して配置された電圧検出器による検出値をNで除算した電圧が、所定電圧範囲内であるか否かを判定する。
このようにすると、組電池として設けられた車載二次電池について、電圧検出器の配置個数を著しく増加させることなく、各電池セルの過充電を確実に検知可能である実用的な構成が実現できる。
また好ましくは、変更要求部は、所定の複数回累積して、自己診断の要求時における二次電池の電圧が所定電圧範囲よりも低いと診断開始判定部によって判定されたときに、次回の車両運転中の充電制御目標値を変更するように要求する。
このようにすると、語検出に起因して車両運転中の充電制御目標が無用に修正されることを防止できる。
あるいは好ましくは、二次電池は、車両外部の電源によって充電可能に構成されたリチウムイオン電池により構成される。
このようにすると、過充電を厳密に防止することが必要なリチウムイオン電池に対応して設けられた過充電検出装置について、自己診断の機会を適切に確保することによって、過充電を確実に検知することが可能となる。
本発明によれば、車載二次電池に設けられた過充電検出装置の異常検出のための自己診断の機会を適切に確保することによって、過充電検知の確実性を高めることができる。
本発明の実施の形態による車載二次電池の過充電検出装置が適用されるハイブリッド車両の概略構成を説明するブロック図である。 図1に示した電力管理ECU100による車両制御を説明する機能ブロック図である。 本実施の形態による車載二次電池の過充電検出装置の構成を説明する機能ブロック図である。 図3に示した過充電検出機構の構成を説明する回路図である。 図4に示した過電圧検出回路の動作を説明する概念図である。 正常時における過電圧検出装置の自己診断の結果を説明する概念図である。 異常発生時における過電圧検出装置の自己診断の結果を説明する概念図である。 プラグイン型ハイブリッド車両におけるSOC推移を説明する波形図である。 プラグイン型ハイブリッド車両における過電圧検出装置の自己診断が不能となる例を説明する概念図である。 図3に示した自己診断部の構成を説明する機能ブロック図である。 SOC目標値を修正したときのプラグイン型ハイブリッド車両のSOC推移を説明する波形図である。 本発明の実施の形態による車載二次電池の過充電検出装置による自己診断の処理手順を説明するフローチャートである。
以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、以下では図中の同一または相当部分には同一符号を付してその説明は原則として繰返さないものとする。
図1は、本発明の実施の形態による車載二次電池の過充電検出装置が適用されるハイブリッド車両の概略構成を説明するブロック図である。
図1を参照して、ハイブリッド車両5は、二次電池によって構成されるメインバッテリ10と、システムメインリレー22,24と、電力制御ユニット(PCU)30と、モータジェネレータ41,42と、エンジン50と、動力分割機構60と、駆動軸70と、車輪80とを備える。
メインバッテリ10は、ニッケル水素またはリチウムイオン等の二次電池から構成される。なお、以下の説明で明らかになる通り、本願発明は、過充電を確実に検知することが要求される二次電池、たとえば、リチウムイオン電池への適用が好ましい。
なお、メインバッテリ10は、図示しない外部充電構成によって、ハイブリッド車両5の外部の電源(外部電源)によって充電可能に構成されてもよい。代表的には、図示しない充電ケーブルを用いて、車両外部の商用電源と充電インレット(図示せず)を接続することによって、外部電源によるメインバッテリ10の充電が実現される。あるいは、外部電源と車両とを非接触のまま電磁的に結合して電力を供給する構成、具体的には外部電源側に一次コイルを設けるとともに、車両側に二次コイルを設け、一次コイルと二次コイルとの間の相互インダクタンスを利用して電力供給を行なう構成によっても、外部充電を実現できる。
以下、本実施の形態では、メインバッテリ10が外部充電可能に構成されたハイブリッド車両について、外部充電構成を問わずに「プラグイン型」と総称することとする。すなわち、図1に示したハイブリッド車両5について、プラグイン型とすることも可能である。
エンジン50は、燃料の燃焼エネルギによって運動エネルギを出力するように構成される。動力分割機構60は、モータジェネレータ41,42およびエンジン50の出力軸と連結されて、モータジェネレータ42および/またはエンジン50の出力によって駆動軸70を駆動可能に構成される。そして、駆動軸70によって車輪80が回転される。このように、ハイブリッド車両5は、エンジン50および/またはモータジェネレータ42の出力によって走行可能に構成されている。
モータジェネレータ41,42は、発電機としても電動機としても機能し得るが、モータジェネレータ41が、主として発電機として動作し、モータジェネレータ42が、主として電動機として動作する。
詳細には、モータジェネレータ41は、加速時等のエンジン始動要求時において、エンジン50を始動する始動機として用いられる。このとき、モータジェネレータ41は、PCU30を介してメインバッテリ10からの電力供給を受けて電動機として駆動し、エンジンをクランキングして始動する。さらに、エンジン50の始動後において、モータジェネレータ41は、動力分割機構60を介して伝達されたエンジン出力によって回転されて発電可能である。
モータジェネレータ42は、メインバッテリ10に蓄えられた電力およびモータジェネレータ41の発電した電力の少なくともいずれか一方によって駆動される。モータジェネレータ42の駆動力は、駆動軸70に伝達される。これにより、モータジェネレータ42は、エンジン50をアシストしてハイブリッド車両5を走行させたり、自己の駆動力のみによってハイブリッド車両5を走行させたりする。
また、ハイブリッド車両5の回生制動時には、モータジェネレータ42は、車輪の回転力によって駆動されることによって発電機として動作する。このとき、モータジェネレータ42により発電された回生電力は、PCU30を介してメインバッテリ10に充電される。
PCU30は、メインバッテリ10およびモータジェネレータ41,42の間で双方向の電力変換を行ない、かつ、モータジェネレータ41,42がそれぞれの動作指令値(代表的にはトルク指令値)に従って動作するようにその電力変換を制御する。たとえば、PCU30は、メインバッテリ10からの直流電力を交流電力に変換してモータジェネレータ41に印加するインバータ(図示せず)と、メインバッテリ10からの直流電力を交流電力に変換してモータジェネレータ42に印加するインバータ(図示せず)とを含むように構成される。これらのインバータは、モータジェネレータ41,42の回生発電電力を直流電力に変換してメインバッテリ10の充電電力として出力することもできるように構成される。
システムメインリレー22,24は、PCU30とメインバッテリ10の間に介挿接続される。システムメインリレー22,24は、リレー制御信号SEに応じてオンオフされる。システムメインリレー22,24のオフ(開放)時には、メインバッテリ10の充放電経路が機械的に遮断される。
ハイブリッド車両5は、さらに、メインバッテリ10を監視するための電池監視ユニット20と、電力管理ECU(Electronic Control Unit)100と、MG(Motor Generator)ECU110とを備える。
電池監視ユニット20は、メインバッテリ10に設けられた温度センサ12、電圧センサ14および電流センサ16の出力に基づいて、メインバッテリ10の電池状態を示す値を電力管理ECU100に対して出力する。後述のように、電池監視ユニット20には過充電検出機構が内蔵されており、過充電検出機構の出力についても、電力管理ECU100へ出力される。
なお、温度センサ12、電圧センサ14および電流センサ16については、メインバッテリ10に設けられる温度センサ、電圧センサ、および電流センサのそれぞれを包括的に示すものである。すなわち、実際には、温度センサ12、電圧センサ14および電流センサ16の少なくとも一部については、複数個設けられることが一般的である点について確認的に記載する。
電力管理ECU100は、ハイブリッド車両5が運転者の操作(ペダル操作等)に応じた走行パワーを出力するための、エンジン50およびモータジェネレータ41,42の間の出力配分を通じて、ハイブリッド車両5全体での電力収支を管理するように構成される。そして、電力管理ECU100は、このような電力収支管理に基づいて決定された出力配分に基づいて、モータジェネレータ41,42へのトルク要求値を設定する。MGECU110は、このトルク要求値に従ってモータジェネレータ41,42が動作するように、PCU30による電力変換を制御する。具体的には、PCU30に内蔵されるインバータ(図示せず)によるモータジェネレータ41,42への印加電圧が、MGECU110によって制御されることになる。
なお、各ECUは、図示しないCPU(Central Processing Unit)およびメモリを内蔵した電子制御ユニットにより構成され、当該メモリに記憶されたマップおよびプログラムに基づいて、各センサによる検出値を用いた演算処理を行なうように構成される。あるいは、ECUの少なくとも一部は、電子回路等のハードウェアにより所定の数値・論理演算処理を実行するように構成されてもよい。また、図1では電力管理ECU100およびMGECU110を別個の要素として記載しているが、両ECUを統括して単一のECUを適用する構成としてもよい。
図2は、図1に示した電力管理ECU100による車両制御を説明する機能ブロック図である。
図2を参照して、電力管理ECU100は、電池制御部102と、走行制御部104と、システム制御部106とを含む。図2を始め、以下で説明する機能ブロック図中の各各ブロックは、各ECUによるソフトウェアあるいはハードウェア処理によって適宜実行可能であるものとする。
図2を参照して、電池制御部102は、温度センサ12、電圧センサ14および電流センサ16の検出値に基づく、電池温度Tb、電池電流Ibおよび電池電圧Vbと、過電圧検出回路(図示せず)からの検出信号S1,S2とを電池監視ユニット20から受ける。
電池制御部102は、電池状態を示す電池温度Tb,電池電流Ibおよび電池電圧Vbに基づいて、メインバッテリ10の全体的な残存容量を示すSOC、メインバッテリ10の充放電電力上限値を示すためのWin,Wout、および、車両運転中におけるSOCの制御中心値に相当するSOC目標値SOCrを算出する。
さらに、電池制御部102は、上述の過電圧検出回路を制御するための制御信号SDV1,SDV2を生成する。後述のように、制御信号SDV1,SDV2は、過電圧検出回路の異常検出(自己診断)の際に用いられる。また、過電圧検出回路からの検出信号S1,S2に基づいて、メインバッテリ10の過充電検出時には、システム制御部106に対してフェールセーフ要求を発生する。
システム制御部106は、ハイブリッド車両5の全体システムを制御する機能を有する。システム制御部106は、本発明の実施の形態に関連する機能として、電池制御部102からのフェールセーフ要求に応答して、図1に示したシステムメインリレー22,24を遮断するためのリレー制御信号SEを生成する。
走行制御部104は、運転者によるアクセル操作およびブレーキ操作に基づいて、ハイブリッド車両5全体で必要な車両駆動力や車両制動力を算出する。そして、走行制御部104は、メインバッテリ10の充放電可能範囲(Win〜Wout)の範囲内でメインバッテリ10の充放電が実行されるように制限した上で、要求された車両駆動力あるいは車両制動力を満足するように、モータジェネレータ41,42へのMG要求値およびエンジン50への出力要求値を生成する。そして、エンジン50は、図示しないエンジンECUによって上記出力要求値に従って動作するように制御される。
また、MG要求値は図1に示したMGECU110に送られ、MGECU110は、MG要求値(代表的にはトルク指令値)に従ってモータジェネレータ41,42が動作するようにPCU30(図1)を制御する。
なお、走行制御部104におけるMG要求値およびエンジン要求値の生成には、SOC目標値SOCrも反映される。具体的には、SOCがSOCrよりも高いときには、エンジン50の出力を抑制あるいは停止して、積極的にメインバッテリ10の電力を使用する車両走行を志向するようにMG要求値およびエンジン要求値が生成される。この場合には、エンジン50の作動が相対的に抑制される。
また、SOCがSOCrより低下した場合には、エンジン出力を用いたモータジェネレータ41の発電電力によってメインバッテリ10を充電するように、MG要求値およびエンジン要求値が生成される。この場合には、エンジン50が相対的に始動されやすくなる。このように、車両運転中におけるメインバッテリ10の充放電は、SOC目標値SOCrに従って制御される。
このように、SOC目標値SOCrに従って、ハイブリッド車両5の運転中におけるメインバッテリ10のSOC変化が制御されることになるので、ハイブリッド車両5の運転終了時におけるSOCは、SOCr近傍の値となる。そして、周知のように、SOCに応じて二次電池電圧は変化するので、運転終了時における電池電圧についても、SOCrの設定によってある程度制御できることが理解される。
次に、本実施の形態による車載二次電池の過充電検出装置の構成について説明する。
図3を参照して、図1に示したメインバッテリ10は、複数の電池ブロック11から構成されている。そして各電池ブロック11は、直列接続されたN個(N:2以上の整数)の電池セルによって構成される。図3には、8個の電池セル10♯によって1つの電池ブロックが構成される場合、すなわちN=8の場合の構成が例示されている。
電圧センサ14は、電池ブロック11ごとに設けられ、同一の電池ブロック11に属するN個の電池セル10♯による出力電圧Vbbを検出する。以下では、電池ブロック11ごとの電池電圧Vbbについて、ブロック電圧Vbbとも称する。
電池監視ユニット20(図1)は、各電池セル10♯に対応して設けられた過充電検出機構200を有する。詳細な構成については後述するが、過充電検出機構200は、二重系として設けられた過電圧発生回路を有し、各過充電検出機構から検出信号S1,S2が出力される。
電池制御部102は、自己診断部250および過充電検知部260を有する。自己診断部250および過充電検知部260は、電池制御部102(図2)のうちの、メインバッテリ10の過充電検知およびその自己診断機能に関連する機能部分102♯を示すものとする。過充電検知部260は、同一の電池ブロック11内の各電池セル10♯に係る検出信号S1,S2を受けて、過充電検知信号Foc1,Foc2を生成する。
基本的には、各電池セル10♯に対応する過充電検出機構200と、各過充電検出機構200に対する異常診断のための自己診断部250とによって、自己診断機能を具備する本実施の形態の車載二次電池の過充電検出装置が構成される。自己診断部250は、自己診断の実行要求時に発生される自己診断トリガTRGに応答して、過充電検出装置の自己診断を実行する。たとえば、自己診断トリガTRGは、ハイブリッド車両5の運転終了時に、車両運転開始・終了を指示するスイッチ(IGスイッチやパワースイッチ)のオフに応答して発生される。さらに、自己診断部250は、自己診断の実行時にはその診断結果を示す信号Fscを生成する。
さらに図4を用いて、過充電検出機構200の構成を詳細に説明する。
図4を参照して、過充電検出機構200は、各電池セル10♯に対応して並列に設けられた過電圧検出回路200Aおよび200Bを有する。
過電圧検出回路200Aは、分圧部202Aと、電圧比較部206Aとを含む。分圧部202Aは、分圧抵抗203Aと、分圧比制御部204Aとを有する。分圧抵抗203Aは、電池セル10♯の正極Npおよび負極Nnの間に直列接続された複数の抵抗素子によって構成される。分圧比制御部204Aは、分圧抵抗203Aの複数の抵抗素子間の接続ノードと、分圧電圧が出力されるノードNaとの間にそれぞれ接続されたスイッチ素子SW0〜SWkを有する。スイッチ素子SW0〜SWkは、制御信号SDV1に応じていずれか1個が選択的にオンされる。
電圧比較部206Aは、所定の基準電圧VrefとノードNaに出力された分圧電圧とを比較し、分圧電圧が基準電圧Vrefよりも高いときには検出信号S1をオンする一方で、そうでないときには検出信号S1をオフする。
制御信号SDV1に応じてスイッチ素子SW0〜SWkのオンを切換えることにより、分圧部202Aにおける分圧比、すなわち、電池セル10♯の出力電圧(セル電圧)Vcに対する分圧電圧の比(分圧電圧/セル電圧)を可変に制御することができる。このように分圧比を切換えることによって、基準電圧Vrefを固定したままで、電圧比較部206Aによって実質的にセル電圧Vcとの高低が比較される比較電圧を変化させることができる。
たとえば、図5に示すように、自己診断時以外の通常時には、Vc>V(k)となったときに検出信号S1がオンされる一方で、Vc≦V(k)のときには検出信号S1がオフされるように、分圧部202Aの分圧比が設定される。具体的には、制御信号SDV1によってスイッチ素子SWkが選択的にオンされた状態で、上記分圧比が実現されるように、分圧部202Aは設計される。
そして、スイッチ素子SWkに代えて、スイッチ素子SW0,SW1,SW2・・・をそれぞれオンしたときに、検出信号S1が、セル電圧Vcと電圧V(0),V(1),V(2)との高低を比較するような分圧比が実現されるように分圧部202Aは設計される。たとえば、制御信号SDV1によってスイッチ素子SW0を選択的にオンしたときには、Vc>V(1)となったときに検出信号S1がオンされる一方で、Vc≦V(1)のときには検出信号S1がオフされる。
図5に例示したように、スイッチ素子のオンを切換えることによって、検出信号S1がΔV刻みの比較電圧V(0),V(1),・・・,V(k−1),V(k)と、セル電圧Vcとの比較結果を順次示すように、分圧部202Aは設計される。この結果、過充電検出装置の自己診断時には、スイッチ素子SWkをオフする一方で、その他のスイッチのいずれをオンするによって、セル電圧Vcを、通常時とは異なる比較電圧V(0)〜V(k−1)と比較できるようになる。
再び図4を参照して、過電圧検出回路200Bは、基本的には過電圧検出回路200Aと同様に構成されて、分圧部202Bと、電圧比較部206Bとを含む。分圧部202Bは、分圧抵抗203Bと、分圧比制御部204Bとを有する。分圧抵抗203Aは、分圧抵抗203Bと同様に、電池セル10♯の正極Npおよび負極Nnの間に直列接続された複数の抵抗素子によって構成される。
分圧比制御部204Bは、分圧抵抗203Bの複数の抵抗素子間の接続ノードと、分圧電圧が出力されるノードNbとの間にそれぞれ接続されたスイッチ素子SW0〜SWk,Snを有する。スイッチ素子SW0〜SWk,SWnは、制御信号SDV2に応じていずれか1個が選択的にオンされる。
分圧部202Bは、分圧部202Aとは分圧比の範囲が異なり、スイッチ素子SWnのオン時には、図5に示すように、検出信号S2は、電圧V(k)よりも高いV(n)とセル電圧Vcとの比較結果を示す。一方で、スイッチ素子SW0〜SWkのそれぞれのオン時には、検出信号S2は、検出信号S1と同様に、比較電圧V(0)〜V(k)とセル電圧Vcとの比較結果を示す。
上記のように、過電圧検出回路200Aおよび200Bは、共通の電池セル10♯に対して並列に二重系を構成するように設けられる。さらに、図5に示されるように、通常時には、過電圧検出回路200Aからの検出信号S1によってセル電圧Vc>V(k)のレベルの過充電を検知できるとともに、過電圧検出回路200Bからの検出信号S2によってセル電圧Vc>V(n)のレベルの重度の過充電が検知できる。そして、図3に示した過充電検知部260は、各過充電検出機構200からの検出信号S1,S2に基づいて、いずれかの電池セル10♯において検出信号S1がオンされたときには過充電検知信号Foc1をオンするとともに、いずれかの電池セル10♯において検出信号S2がオンされたときには過充電検知信号Foc2をオンする。
たとえば、検出信号S1をオンさせる上限電圧V(k)については、リチウムイオン電池におけるリチウム析出領域の下限電圧に対応して定めることができる。このときには、過充電検知信号Foc1のオンに応答して、車両走行中における充電を禁止する(Win=0)ような充放電制御が実行される。
また、検出信号S2をオンさせる最上限電圧V(n)については、リチウムイオン電池の発熱領域の下限電圧に対応して設定することができる。このときには、過充電検知信号Foc2のオンに応答して、図1に示したシステムメインリレー22,24を遮断して、メインバッテリ10への充電経路を機械的に遮断するようにフェールセーフ要求が電池制御部102からシステム制御部106へ出力される。
しかしながら、過電圧検出回路200A,200Bの特性に誤差が生じることによって、上記過電圧検出に誤差が生じる可能性がある。たとえば、分圧部202A,202Bでの分圧比が変化することによって、図5に示されるように、スイッチ素子SW0〜SWkの切換によって検知可能な電圧範囲が、本来のV(0)〜V(k)から低電圧側あるいは高電圧側にシフトしてしまいようなオフセットが生じてしまうことが懸念される。このようなオフセットが発生すると、過電圧検出回路200Aおよび/または200Bによって、本来検知すべき過電圧を見逃してしまう状況や、過電圧の誤検出によって電池挙動(ひいては車両挙動)を不要に制限してしまう状況が発生するおそれがある。
したがって、過電圧検出回路200A,200Bの上記のような異常を検出するための過電圧検出装置の自己診断が以下のように実行される。
図6には、過電圧検出回路200Aおよび200Bの間に特性ずれ(オフセット)が存在しておらず、両者が正常に動作している場合における自己診断結果が示される。
自己診断時には、制御信号SDV1,SDV2は、過電圧検出回路200Aおよび200Bで同期して、スイッチ素子SW0〜SWkのうちの同一スイッチ素子を、選択的に順次オンするように生成される。これにより、分圧部202Aおよび202Bの分圧比は、同期して段階的に変化される。この結果、過電圧検出回路200Aおよび200Bは、同時並列に、セル電圧Vcと、比較電圧V(0)〜V(k)とを順次比較することができる。
図6に示すように、過電圧検出回路200A,200Bの間に特性ずれが発生していない場合には、分圧比を段階的に変化させて、セル電圧Vcとの比較電圧をV(k)から順次低下させていく過程で、過電圧検出回路200Aの検出信号S1および過電圧検出回路200Bの検出信号S2とは、同じタイミングでオフからオンに変化する。図6の例では、全部で8段階の分圧比が切換可能な構成において、3段階変化させた時点で、検出信号S1,S2ともオフからオンに切換わる。すなわち、検出信号S1,S2は常に一致しているときには、過電圧検出回路200A,200Bの間に特性ずれは発生しておらず、正常であるとの自己診断結果を得ることができる。
一方で、図7(a)には、過電圧検出回路200Bの特性が高電圧側にずれている場合の自己診断結果が示され、図7(b)には、過電圧検出回路200Bの特性が高電圧側にずれている場合の自己診断結果が示される。
これらの場合には、図6で説明したのと同様に制御信号SDV1,SDV2を設定して自己診断を行うと、検出信号S1,S2が不一致となる期間が生じることが理解できる。すなわち、実セル電圧Vcとの比較電圧をV(k)から順次低下させるように分圧比を変化させる過程で、図7(a)のケースでは、検出信号S1がオンである一方で検出信号S2がオフとなる不一致が発生し、図7(b)のケースでは、検出信号S1がオフである一方で検出信号S2がオンとなる不一致が発生する。
これらの現象が発生すると、図3に示した信号Fscがオンされて、過電圧検出回路200A,200Bの間に特性ずれが発生しており、正確な過電圧検出が実行できないおそれがあることが検知される。
再び図5を参照して、図6および図7で説明した自己診断の内容に鑑みると、自己診断の実行条件として、セル電圧Vcが、段階的に変化可能な分圧比範囲に対応する電圧範囲V(0)〜V(k)の内側であることが少なくとも必要であることが理解される。さらに、過電圧検出回路200A,200B間での比較を行う点を考慮すると測定誤差等を加味して、セル電圧Vcが、電圧V(1)〜V(k−1)の所定電圧範囲500内に入っていることが好ましい。言い換えると、自己診断の実行タイミングにおいて、セル電圧Vcが所定電圧範囲500内に入っていなければ、自己診断の機会が失われることになる。以下では、所定電圧範囲500について、自己診断可能となるダイナミックレンジ500とも称する。なお、測定誤差が完全に無視できるレベルであるとき等、条件に応じて電圧範囲V(0)〜V(k)をそのままダイナミックレンジ500とすることも可能である。
代表的には、ハイブリッド車両5の運転終了時において、上述のような、過電圧検出装置の自己診断の機会が設けられる。
ここで、車両外部の電源によるメインバッテリ10の充電を想定していない通常のハイブリッド車両では、モータジェネレータのみによる車両発進を可能としつつ、回生制動時に回生電力を受ける余裕を持つために、車両運転中のSOC目標値(SOCr)は満充電の50〜60%に設定される。したがって、自己診断が行なわれる車両運転終了時におけるSOCもほぼ同程度の値となる。
一方で、近年提案されているプラグイン型ハイブリッド車両では、外部充電不能な通常のハイブリッド車両とは異なり、運転終了後の外部充電に備えて、車両運転終了時点でメインバッテリ10の電力が使い切られるような走行制御が志向される。
したがって、図8に示すように、SOC目標値SOCrは、SOC下限値SOCl近傍に設定される。このため、運転終了時におけるSOCもSOCr近傍の値となる。
一方で、図5に示したダイナミックレンジ500の下限電圧V(1)に対応するSOC1から、ダイナミックレンジ500の上限電圧V(k−1)に対応するSOC2までのSOC範囲500♯が、過電圧検出装置の自己診断が可能であるSOC範囲となる。
図9に示されるように、ハイブリッド車両5の運転終了時のSOCがSOCr近傍の値となることによって、自己診断実行時の実セル電圧Vcが低くなり過ると、過電圧検出回路200A,200Bの分圧比を変化させても、検出信号S1,S2の両方がオフのままとなってしまう。この際には、図6(a)と同様の異常が発生していても、検出信号S1,S2が常に一致することとなるため、過電圧検出装置の異常を検出できない。すなわち、自己診断を正しく実行できないことになる。
一方、リチウムイオン電池のような厳密な過充電管理が必要とされる電池をメインバッテリ10に適用する場合には、過充電検知の確実性を高めるために、過充電検出装置(過電圧検出回路200A,200B)の自己診断の機会を適切に確保して、その異常発生時には速やかにユーザに知らせることが好ましい。なぜなら、図9に示すような状態が連続すると、電池セル10♯での過充電発生について検出漏れが発生するおそれがあるからである。
一方で、ダイナミックレンジ500の電圧範囲を広げるためには、過電圧検出回路200A,200Bの分圧比変更可能範囲を広げることが必要である。しかしながら、図4の構成から理解されるように、分圧比変更可能範囲の拡大は、スイッチ素子の配置個数増加等を招くため、コスト上昇を招いてしまう。すなわち、製造コストの面から部品汎用化を図る観点から、通常のハイブリッド車両とプラグイン型ハイブリッド車両との間で過電圧検出回路200A,200Bを共通化することを考慮すると、分圧比変更可能範囲を広げることは必ずしも好ましくない。
したがって、本発明の実施の形態では、図8で説明したような現象が発生し易いプラグイン型ハイブリッド車両に適用した場合にも、過電圧検出装置の自己診断の機会を適切に確保できるような制御構成を提供する。
図10は、図3に示した自己診断部250の詳細な構成を示すブロック図である。
図10を参照して、自己診断部250は、診断開始判定部252と、診断制御部254と、一致比較部256と、変更要求部258とを含む。
診断開始判定部252は、ハイブリッド車両5の運転終了に応答した自己診断トリガTRGに応答して、電池セル10♯のセル電圧Vcが自己診断可能なダイナミックレンジ500に入っているかどうかを判定する。具体的には、電池ブロック11のブロック電圧Vbbに基づいて推定したセル電圧(Vc=Vbb/N)に基づいて、自己診断の開始可否を判定することができる。そして、セル電圧がダイナミックレンジ500に入っているときには、自己診断の実行を指示する信号SJDをオンする。
診断制御部254は、診断開始判定部252によって信号SJDがオンされると、所定のパターンに従って制御信号SDV1,SDV2を段階的かつ共通に変化させる。これにより、図6,7で説明したように、過電圧検出回路200A,200Bでの分圧比を段階的に変化させることができる。
そして、一致比較部256は、診断制御部254によって制御信号SDV1,SDV2が順次変化される過程における、検出信号S1,S2の一致比較を行う。そして、両者が不一致となったときには、過電圧検出回路200A,200Bの間に特性ずれが発生していることを示すために、信号Fscがオンされる。
信号Fscがオンされると、ハイブリッド車両5のユーザに対して異常発生を知らせる所定の表示がなされるとともに、当該異常内容を示すダイアグコードが生成される。さらに、必要に応じて、メインバッテリ10の充放電範囲を制限するようなフェールセーフ制御がなされる。
一方、自己診断トリガTRGが発生されても、診断開始判定部252が信号SJDをオンしないとき、すなわち自己診断実行時(運転終了時)のセル電圧がダイナミックレンジ500より低いときには、変更要求部258は、SOC目標値SOCrを設定するSOC目標設定部270に対して、SOCrの変更要求を発生する。
なお、変更要求部258は、自己診断トリガTRGの発生時に信号SJDがオフされた回数を計数するカウンタ259を有するように構成されてもよい、そして、カウンタ259でのカウント回数が所定回数(2以上の整数)に達したときにのみ、SOC目標設定部270に対してSOCrの変更要求を発生するように構成されてもよい。このようにすると、誤検出によってSOCrの変更要求が無用に発生されることを防止できる。
図11を参照して、変更要求部258から修正要求が発生されると、SOC目標設定部270は、次回の車両運転中におけるSOC目標値SOCrを、図8に示した従来値(<SOC1)から、ダイナミックレンジ500に対応したSOC範囲500♯内にSOCrが設定されるように、通常よりも高い値に設定する。
これにより、次回の運転終了時には、SOCがSOC範囲500♯内となることによって、診断開始判定部252が信号SJDをオンする確率が高くなる。すなわち、過電圧検出装置の自己診断の機会を確保することが可能となる。
図12では、図10に示した本発明の実施の形態による車載二次電池の過充電検出装置による自己診断の処理手順について、フローチャートを用いて説明する。図12に示したフローチャートに従う制御処理は、基本的には電力管理ECU100に予め格納されたプログラムを所定周期で実行することによって実現される。なお、図10に示した各ステップの一部については、ハードウェア処理によって実現するように電力管理ECU100を構成してもよい。
図12を参照して、電力管理ECU100は、ステップS100により、自己診断トリガが発生されたかどうかを判定する。自己診断トリガの非発生時(ステップS100のNO判定時)には、以降の処理は非実行とされる。
自己診断トリガの発生時(ステップS100のYES判定時)には、電力管理ECU100は、ステップS110により、現在のセル電圧Vcが、自己診断可能な電圧領域内、すなわち図5に示したダイナミックレンジ500内に入っているかどうかを判定する。すなわち、ステップS110による処理は、図10に示した診断開始判定部252の機能に対応する。
電力管理ECU100は、S110のNO判定時、すなわち、セル電圧が自己診断可能な電圧領域でないときには、ステップS140により、自己診断不可累積回数N(NG)をカウントアップする。
一方、電力管理ECU100は、セル電圧が自己診断可能な電圧領域内のとき(S110のYES判定時)には、図10に示した診断制御部254による自己診断を実行して、その自己診断が正常に終了したか否かを、ステップS120により判定する。
そして、自己診断が正常に終了した場合には、自己診断不可累積回数N(NG)は0にクリアされる。一方、自己診断が何らかの原因で正常に終了しなかったとき(S110のNO判定時)には、ステップS130はステップされ、自己診断不可累積回数N(NG)はクリアされない。
なお、図示は省略しているが、正常終了した自己診断によって過充電検出装置(過電圧検出回路200A,200B)の異常が検知されると、上述のように、ユーザへの報知や、メインバッテリ10の充放電範囲制限等の処置がなされる。
ステップS110〜S140の処理によって、自己診断不可累積回数N(NG)は、前の自己診断が正常に終了してから、セル電圧がダイナミックレンジ500に入っていないことによって自己診断の機会を逃した回数の積算値を示すこととなる。
電力管理ECU100は、ステップS150では、今回の自己診断トリガ発生において、カウントアップ、クリアまたは維持された自己診断不可累積回数N(NG)を所定の判定回数Nthと比較する。判定回数Nthは、Nth≧1の任意の整数に設定できる。ただし、Nth≧2とすることにより、測定誤差等によって誤ってSOCrの変更要求が発せられるのを回避することができる。
そして、N(NG)が判定回数Nth以上となったとき(ステップS150のYES判定時)には、電力管理ECU100は、ステップS160により、次回の車両運転時におけるSOC目標値SOCrの変更要求を発生する。これにより、図11に示したように、ダイナミックレンジ500に対応するSOC範囲500♯に運転終了時のSOCが入るように、SOC目標値SOCrが通常時とは異なる値に変更される。すなわち、ステップS150,S160の処理は、図10の変更要求部258の機能に対応する。
一方、N(NG)が判定回数Nthに達していないとき(S150のNO判定時)には、電力管理ECU100は、ステップS170により、図8に示すような通常のSOCrの設定を行う。
以上説明したように本発明の実施の形態による車載二次電池の過充電検出装置によれば、電池セル(二次電池)に対して二重に設けられた過電圧検出回路間の特性ずれを検出するための自己診断の機会を設けることができるような車両制御を可能とできる。また、通常のハイブリッド自動車(SOC目標が50〜60%で運転終了)と、プラグイン型ハイブリッド車両(SOC下限近傍で運転終了)との間で、自己診断に係るコスト上昇を招くことなく過電圧検出装置を共通化することも可能となる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
この発明は、車載二次電池の過充電検出の自己診断に適用することができる。
5 ハイブリッド車両、10 メインバッテリ、10♯ 電池セル、11 電池ブロック、12 温度センサ、14 電圧センサ、16 電流センサ、20 電池監視ユニット、22,24 システムメインリレー、41,42 モータジェネレータ、50 エンジン、60 動力分割機構、70 駆動軸、80 車輪、100 電力管理ECU、102 電池制御部、102♯ 自己診断機能部分、104 走行制御部、106 システム制御部、110 MGECU、200 過充電検出機構、200A,200B 過電圧検出回路、202A,202B 分圧部、203A,203B 分圧抵抗、204A,204B 分圧比制御部、206A,206B 電圧比較部、250 自己診断部、252 診断開始判定部、254 診断制御部、256 一致比較部、258 変更要求部、260 過充電検知部、270 SOC目標設定部、500 ダイナミックレンジ、500♯ SOC範囲(ダイナミックレンジ対応)、Foc1,Foc2 過充電検知信号、Fsc 信号(自己診断結果)、Ib 電池電流、N(NG) 自己診断不可累積回数、Nth 判定回数、S1,S2 検出信号(過電圧検出回路)、SDV1,SDV2 制御信号(分圧比)、SE リレー制御信号、SJD 信号(自己診断開始可否)、SW0〜SWk,SWn スイッチ素子、Tb 電池温度、TRG 自己診断トリガ、V(0)〜V(k),V(n) 比較電圧、Vbb ブロック電圧、Vc セル電圧、Vref 基準電圧(電圧比較部)。

Claims (7)

  1. 車両の運転中に充電制御目標値に従って充放電制御される車載二次電池の過充電検出装置であって、
    前記二次電圧の過充電を検出するための第1の過電圧検出回路と、
    前記二次電圧の過充電を検出するための、前記第1の過電圧検出回路と並列に設けられた第2の過電圧検出回路と、
    前記車両の運転終了時に前記第1および前記第2の過電圧検出回路の異常を検出するための自己診断を実行するように構成された自己診断部とを備え、
    前記自己診断部は、
    前記自己診断の要求時に、前記二次電池の電圧が、前記第1および前記第2の過電圧検出回路を自己診断可能な所定電圧範囲内であることを条件に前記自己診断の実行を指示するように構成された診断開始判定部と、
    前記診断開始判定部によって、前記自己診断の要求時における前記二次電池の電圧が前記所定電圧範囲よりも低いと判定されたときに、次回の車両運転中の前記充電制御目標値を現在値よりも高く変更するように要求する変更要求部とを含む、車載二次電池の過充電検出装置。
  2. 前記第1の過電圧検出回路は、
    所定範囲内で可変に制御可能な第1の分圧比に従って、前記二次電池の電圧を分圧した第1の分圧電圧を出力するように構成された第1の分圧部と、
    前記第1の分圧電圧と所定電圧との比較結果を出力するように構成された第1の電圧比較部とを含み、
    前記第2の過電圧検出回路は、
    所定範囲内で可変に制御可能な第2の分圧比に従って、前記二次電池の電圧を分圧した第2の分圧電圧を出力するように構成された第2の分圧部と、
    前記第2の分圧電圧と前記所定電圧との比較結果を出力するように構成された第2の電圧比較部とを含む、
    前記自己診断部は、
    前記自己診断の実行時に、前記第1および前記第2の分圧比を同期させて段階的に変化させるように前記第1および前記第2の分圧部を制御するように構成された診断制御部と、
    前記診断制御部によって前記第1および前記第2の分圧部が制御されているときに、前記第1および前記第2の電圧比較部の出力が一致するか否かを判定するように構成された異常判定部とをさらに含む、請求項1記載の車載二次電池の過充電検出装置。
  3. 前記自己診断実行時を除く通常動作時において、前記第1および前記第2の分圧比は、前記二次電池の過電圧検出のためのそれぞれ異なる値に固定的に制御される、請求項2記載の車載二次電池の過充電検出装置。
  4. 前記通常動作時において、前記第1の分圧比は前記第2の分圧比よりも高く、
    前記車両は、
    前記第1の過電圧検出回路において前記第1の分圧電圧が前記所定電圧よりも高いことが検知されたときに、前記二次電池への充電を禁止するように前記充放電制御を行う一方で、前記第2の過電圧検出回路において前記第2の分圧電圧が前記所定電圧よりも高いことが検知されたときには、開閉器によって前記二次電池への充電経路を遮断するように構成される、請求項3記載の車載二次電池の過充電検出装置。
  5. 前記二次電池は、直列接続されたN個(N:2以上の整数)の電池セルを有する電池ブロックを複数個含む組電池によって構成され、
    前記過充電検出装置は、各前記電池セルに対応して設けられ、
    前記診断開始判定部は、各前記電池ブロックに対応して配置された電圧検出器による検出値を前記Nで除算した電圧が、前記所定電圧範囲内であるか否かを判定する、請求項1〜4のいずれか1項に記載の車載二次電池の過充電検出装置。
  6. 前記変更要求部は、所定の複数回累積して、前記自己診断の要求時における前記二次電池の電圧が前記所定電圧範囲よりも低いと前記診断開始判定部によって判定されたときに、次回の車両運転中の前記充電制御目標値を変更するように要求する、請求項1〜5のいずれか1項に記載の車載二次電池の過充電検出装置。
  7. 前記二次電池は、車両外部の電源によって充電可能に構成されたリチウムイオン電池により構成される、請求項1〜6のいずれか1項に記載の車載二次電池の過充電検出装置。
JP2009046605A 2009-02-27 2009-02-27 車載二次電池の過充電検出装置 Active JP5187234B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009046605A JP5187234B2 (ja) 2009-02-27 2009-02-27 車載二次電池の過充電検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009046605A JP5187234B2 (ja) 2009-02-27 2009-02-27 車載二次電池の過充電検出装置

Publications (2)

Publication Number Publication Date
JP2010203790A true JP2010203790A (ja) 2010-09-16
JP5187234B2 JP5187234B2 (ja) 2013-04-24

Family

ID=42965428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009046605A Active JP5187234B2 (ja) 2009-02-27 2009-02-27 車載二次電池の過充電検出装置

Country Status (1)

Country Link
JP (1) JP5187234B2 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167982A (ja) * 2011-02-14 2012-09-06 Toyota Motor Corp 蓄電装置の電圧検出回路および電圧検出装置、ならびにそれを搭載する車両
CN102735898A (zh) * 2011-03-30 2012-10-17 株式会社京滨 电池电压检测装置
WO2013094214A1 (ja) 2011-12-21 2013-06-27 トヨタ自動車株式会社 監視システムおよび車両
JP2013198400A (ja) * 2012-03-22 2013-09-30 Dr Ing Hcf Porsche Ag プラグイン車のバッテリの充電率を制御するための方法
WO2013153650A1 (ja) * 2012-04-12 2013-10-17 三菱電機株式会社 蓄電デバイス放電装置
WO2014141415A1 (ja) * 2013-03-14 2014-09-18 オートモーティブエナジーサプライ株式会社 異常診断装置
JP2014235113A (ja) * 2013-06-04 2014-12-15 トヨタ自動車株式会社 バッテリ劣化検出装置
WO2015012587A1 (ko) * 2013-07-25 2015-01-29 에스케이이노베이션 주식회사 배터리 과충전 방지 장치
WO2016174828A1 (ja) * 2015-04-27 2016-11-03 パナソニックIpマネジメント株式会社 電池管理装置、及び電源システム
JP2016192865A (ja) * 2015-03-31 2016-11-10 株式会社豊田自動織機 入力回路及びインバータ装置
KR101735738B1 (ko) * 2015-12-14 2017-05-24 현대오트론 주식회사 과충전 방지 장치 및 이의 고장 진단 방법
JP2019029236A (ja) * 2017-08-01 2019-02-21 株式会社豊田自動織機 電池パック
CN110912219A (zh) * 2018-09-18 2020-03-24 卡西欧计算机株式会社 充电保护电路、充电装置、电子设备以及充电保护方法
WO2020162292A1 (ja) * 2019-02-08 2020-08-13 株式会社デンソー 車両の駆動制御装置および駆動システム
WO2020162291A1 (ja) * 2019-02-08 2020-08-13 株式会社デンソー 車両の駆動制御装置および駆動システム
CN112793463A (zh) * 2020-12-29 2021-05-14 联合汽车电子有限公司 车载电池诊断方法及车载电池诊断装置
JP2021192583A (ja) * 2018-04-12 2021-12-16 トヨタ自動車株式会社 自動運転車両の制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159701A (ja) * 1995-12-04 1997-06-20 Nissan Motor Co Ltd 組電池の過電圧検出装置
JP2000067928A (ja) * 1998-08-26 2000-03-03 Sony Corp 電池保護回路及び電子装置
JP2001045670A (ja) * 1999-07-30 2001-02-16 Fujitsu Ltd バッテリパック

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159701A (ja) * 1995-12-04 1997-06-20 Nissan Motor Co Ltd 組電池の過電圧検出装置
JP2000067928A (ja) * 1998-08-26 2000-03-03 Sony Corp 電池保護回路及び電子装置
JP2001045670A (ja) * 1999-07-30 2001-02-16 Fujitsu Ltd バッテリパック

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167982A (ja) * 2011-02-14 2012-09-06 Toyota Motor Corp 蓄電装置の電圧検出回路および電圧検出装置、ならびにそれを搭載する車両
CN102735898A (zh) * 2011-03-30 2012-10-17 株式会社京滨 电池电压检测装置
JP2012208066A (ja) * 2011-03-30 2012-10-25 Keihin Corp 電池電圧検出装置
EP2799894A4 (en) * 2011-12-21 2015-06-10 Toyota Motor Co Ltd MONITORING SYSTEM AND VEHICLE
JPWO2013094214A1 (ja) * 2011-12-21 2015-04-27 トヨタ自動車株式会社 監視システムおよび車両
WO2013094214A1 (ja) 2011-12-21 2013-06-27 トヨタ自動車株式会社 監視システムおよび車両
CN103998946A (zh) * 2011-12-21 2014-08-20 丰田自动车株式会社 监视系统和车辆
US9551750B2 (en) 2011-12-21 2017-01-24 Toyota Jidosha Kabushiki Kaisha Monitoring system and vehicle
JP2013198400A (ja) * 2012-03-22 2013-09-30 Dr Ing Hcf Porsche Ag プラグイン車のバッテリの充電率を制御するための方法
CN104221208B (zh) * 2012-04-12 2016-08-17 三菱电机株式会社 蓄电设备放电装置
CN104221208A (zh) * 2012-04-12 2014-12-17 三菱电机株式会社 蓄电设备放电装置
WO2013153650A1 (ja) * 2012-04-12 2013-10-17 三菱電機株式会社 蓄電デバイス放電装置
US9564768B2 (en) 2012-04-12 2017-02-07 Mitsubishi Electric Corporation Discharge device for electricity storage device
WO2014141415A1 (ja) * 2013-03-14 2014-09-18 オートモーティブエナジーサプライ株式会社 異常診断装置
JP5945064B2 (ja) * 2013-03-14 2016-07-05 オートモーティブエナジーサプライ株式会社 異常診断装置
JPWO2014141415A1 (ja) * 2013-03-14 2017-02-16 オートモーティブエナジーサプライ株式会社 異常診断装置
JP2014235113A (ja) * 2013-06-04 2014-12-15 トヨタ自動車株式会社 バッテリ劣化検出装置
WO2015012587A1 (ko) * 2013-07-25 2015-01-29 에스케이이노베이션 주식회사 배터리 과충전 방지 장치
US10153646B2 (en) 2013-07-25 2018-12-11 Sk Innovation Co., Ltd. Battery overcharge preventing device
JP2016192865A (ja) * 2015-03-31 2016-11-10 株式会社豊田自動織機 入力回路及びインバータ装置
WO2016174828A1 (ja) * 2015-04-27 2016-11-03 パナソニックIpマネジメント株式会社 電池管理装置、及び電源システム
CN107709080B (zh) * 2015-04-27 2020-10-27 松下知识产权经营株式会社 电池管理装置以及电源系统
CN107709080A (zh) * 2015-04-27 2018-02-16 松下知识产权经营株式会社 电池管理装置以及电源系统
JPWO2016174828A1 (ja) * 2015-04-27 2018-03-29 パナソニックIpマネジメント株式会社 電池管理装置、及び電源システム
US20180093569A1 (en) * 2015-04-27 2018-04-05 Panasonic Intellectual Property Management Co., Ltd. Battery management device and power supply system
US11220183B2 (en) 2015-04-27 2022-01-11 Panasonic Intellectual Property Management Co., Ltd. Battery management device and power supply system
US10576827B2 (en) 2015-04-27 2020-03-03 Panasonic Intellectual Property Management Co., Ltd. Battery management device and power supply system
KR101735738B1 (ko) * 2015-12-14 2017-05-24 현대오트론 주식회사 과충전 방지 장치 및 이의 고장 진단 방법
JP2019029236A (ja) * 2017-08-01 2019-02-21 株式会社豊田自動織機 電池パック
JP2021192583A (ja) * 2018-04-12 2021-12-16 トヨタ自動車株式会社 自動運転車両の制御装置
JP7201040B2 (ja) 2018-04-12 2023-01-10 トヨタ自動車株式会社 自動運転車両の制御装置
CN110912219B (zh) * 2018-09-18 2023-11-14 卡西欧计算机株式会社 充电保护电路、充电装置、电子设备以及充电保护方法
CN110912219A (zh) * 2018-09-18 2020-03-24 卡西欧计算机株式会社 充电保护电路、充电装置、电子设备以及充电保护方法
JP2020129928A (ja) * 2019-02-08 2020-08-27 株式会社デンソー 車両の駆動制御装置および駆動システム
WO2020162292A1 (ja) * 2019-02-08 2020-08-13 株式会社デンソー 車両の駆動制御装置および駆動システム
JP7040477B2 (ja) 2019-02-08 2022-03-23 株式会社デンソー 車両の駆動制御装置および駆動システム
JP7088062B2 (ja) 2019-02-08 2022-06-21 株式会社デンソー 車両の駆動制御装置および駆動システム
JP2020129929A (ja) * 2019-02-08 2020-08-27 株式会社デンソー 車両の駆動制御装置および駆動システム
WO2020162291A1 (ja) * 2019-02-08 2020-08-13 株式会社デンソー 車両の駆動制御装置および駆動システム
US11912157B2 (en) 2019-02-08 2024-02-27 Denso Corporation Driving control device and driving system for vehicle
CN112793463A (zh) * 2020-12-29 2021-05-14 联合汽车电子有限公司 车载电池诊断方法及车载电池诊断装置

Also Published As

Publication number Publication date
JP5187234B2 (ja) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5187234B2 (ja) 車載二次電池の過充電検出装置
JP5159498B2 (ja) ハイブリッドカーの電源装置における電池の充放電制御方法
JP5221468B2 (ja) 電池監視装置
JP5647210B2 (ja) 電池セル用集積回路
JP3659068B2 (ja) バッテリ管理装置
JP5839047B2 (ja) 監視システムおよび車両
US20110198920A1 (en) Vehicle power supply apparatus
WO2010047046A1 (ja) 故障診断回路、電源装置、及び故障診断方法
JP2013094032A (ja) 電池システム監視装置およびこれを備えた蓄電装置
JP2007282375A (ja) ハイブリッド車両制御システム及びハイブリッド車両制御方法
JP5593553B2 (ja) 電池監視装置
JP2013099167A (ja) 蓄電システムを搭載した車両の制御装置及び制御方法
US9350186B2 (en) Battery pack
KR20090129212A (ko) 고전압 배터리시스템 전류센서의 고장진단방법
WO2016132895A1 (ja) 電池システム監視装置
JP6251136B2 (ja) 電池システム監視装置およびこれを備えた蓄電装置
JP6610507B2 (ja) 電池システム
KR101826645B1 (ko) 배터리 관리 시스템의 고장 진단 방법
JP5626190B2 (ja) 蓄電システム
US10024925B2 (en) Control system for battery
JP5544965B2 (ja) 電源装置制御システム
JP2013051764A (ja) 蓄電池監視装置
KR101735738B1 (ko) 과충전 방지 장치 및 이의 고장 진단 방법
US20190275889A1 (en) Electrified vehicle and control method for electrified vehicle
JP2013127440A (ja) 蓄電システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5187234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3