JP2010191364A - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP2010191364A
JP2010191364A JP2009038055A JP2009038055A JP2010191364A JP 2010191364 A JP2010191364 A JP 2010191364A JP 2009038055 A JP2009038055 A JP 2009038055A JP 2009038055 A JP2009038055 A JP 2009038055A JP 2010191364 A JP2010191364 A JP 2010191364A
Authority
JP
Japan
Prior art keywords
shake amount
latent image
amount measurement
development
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009038055A
Other languages
English (en)
Inventor
Masaaki Imahori
雅明 今堀
Masayoshi Nakayama
政義 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2009038055A priority Critical patent/JP2010191364A/ja
Priority to US12/709,034 priority patent/US8301047B2/en
Publication of JP2010191364A publication Critical patent/JP2010191364A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/065Arrangements for controlling the potential of the developing electrode
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/55Self-diagnostics; Malfunction or lifetime display
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/55Self-diagnostics; Malfunction or lifetime display
    • G03G15/553Monitoring or warning means for exhaustion or lifetime end of consumables, e.g. indication of insufficient copy sheet quantity for a job
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/01Apparatus for electrophotographic processes for producing multicoloured copies
    • G03G2215/0103Plural electrographic recording members
    • G03G2215/0119Linear arrangement adjacent plural transfer points
    • G03G2215/0122Linear arrangement adjacent plural transfer points primary transfer to an intermediate transfer belt
    • G03G2215/0125Linear arrangement adjacent plural transfer points primary transfer to an intermediate transfer belt the linear arrangement being horizontal or slanted
    • G03G2215/0129Linear arrangement adjacent plural transfer points primary transfer to an intermediate transfer belt the linear arrangement being horizontal or slanted horizontal medium transport path at the secondary transfer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Developing For Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)

Abstract

【課題】装置のダウンタイムを増加させたり、トナー消費量を増加させたりすることなく、潜像担持体及び現像剤担持体の振れによる現像ギャップの変動に起因する濃度ムラを従来よりも効果的に抑制する。
【解決手段】感光体の外周の振れ量を示す感光体振れ量測定情報に含まれる2以上の振れ量に対応した振れ量測定地点と現像スリーブの外周の振れ量を示すスリーブ振れ量測定情報に含まれる2以上の振れ量に対応した振れ量測定地点とが互いに現像領域で対向するときの各現像電界強度を求め、求めたすべての現像電界強度を目標電界強度の許容範囲内とする現像電界強度制御の内容を決定し(S802)、決定した制御内容に従って現像電界強度制御を行う(S803)。
【選択図】図1

Description

本発明は、潜像担持体上の静電潜像と現像剤担持体の表面との間に形成される現像電界によってトナーを静電潜像に付着させることで現像を行う、複写機、プリンタ、ファクシミリ等の画像形成装置に関するものである。
一般に、電子写真方式の画像形成装置では、所定のタイミングで、帯電目標電位や現像バイアスなどの各種電位を調整する電位設定値調整制御を行い、画像濃度等の画質調整を行う(特許文献1)。この電位設定値調整制御では、通常、予め決められた調整用トナーパターンである基準トナー像を感光体等の潜像担持体の表面に複数個形成した後、その基準トナー像のトナー付着量を検知する。そして、基準トナー像形成時の現像ポテンシャルと基準トナー像のトナー付着量との直線近似式から、所望のトナー付着量が得られる現像ポテンシャルを求め、その現像ポテンシャルが得られるような各種電位を求める。現像ポテンシャルとは、潜像担持体表面の静電潜像部分の電位と、現像バイアスが印加される現像剤担持体の表面電位との電位差を意味する。
このような画像形成装置では、一般に、円筒状の現像剤担持体と円筒状の潜像担持体とが、所定の間隙(以下「現像ギャップ」という。)をもって対向し、それぞれ独自に回転駆動する。そして、現像ポテンシャルに応じた現像電界により、潜像担持体上の静電潜像に現像剤担持体上のトナーが移動することで、現像が行われる。このような構成において、現像剤担持体及び潜像担持体は、通常、各々の回転駆動軸に対してその外周が振れを有する。
ここで、現像ギャップをd[m]、上述した電位設定値調整制御により求まる現像ポテンシャルをVpot[V]とすれば、現像電界強度E[V/m]は、次の式(1)により求まる。
E=Vpot/d ・・・(1)
現像剤担持体及び潜像担持体が回転駆動すると、各々が有する外周の振れにより現像ギャップが変動して現像電界強度Eが変動し、現像電界強度Eが変動すると、これに応じて潜像担持体上の静電潜像に移動するトナー量も変動する。よって、現像剤担持体及び潜像担持体の外周の振れによる現像ギャップの変動に起因して、出力画像には濃度ムラが生じる。この濃度ムラを解消するためには、現像剤担持体及び潜像担持体の振れ精度の向上が必要となるが、近年、電子写真方式の画像形成装置の高速化対応に伴い、現像剤担持体及び潜像担持体は大径化する傾向にあり、振れ精度の向上は容易ではない。また、振れ精度が向上できたとしても、精度向上に伴う装置のコストアップが問題となる。
従来から、現像ギャップの変動に起因する濃度ムラを改善する目的で、種々の技術が提案されている。例えば、特許文献2には、現像剤担持体の振れに起因する濃度ムラを、現像剤担持体の回転速度を制御することで解消する技術が開示されている。
ところが、上記特許文献2に記載された技術では、潜像担持体の振れが考慮されておらず、現像ギャップの変動に起因する濃度ムラを十分に抑制できているとは言えない。また、特許文献2に記載された技術は、発生している濃度ムラ情報を得る必要があり、そのために、従来の電位設定値調整制御時に形成する複数の基準トナー像に加えて、新たに潜像担持体上に別の基準トナー像を形成しなければならない。よって、電位設定値調整制御に要する時間が長期化することに伴う装置のダウンタイムの増加や、トナー消費量の増加が問題となる。
本発明は、以上の問題点に鑑みなされたものであり、その目的は、装置のダウンタイムを増加させたり、トナー消費量を増加させたりすることなく、潜像担持体及び現像剤担持体の振れによる現像ギャップの変動に起因する濃度ムラを従来よりも効果的に抑制することが可能な画像形成装置を提供することである。
上記目的を達成するために、請求項1の発明は、表面が周回移動する潜像担持体と、該潜像担持体の表面電位を変化させることで該潜像担持体上に静電潜像を形成する潜像形成手段と、表面が周回移動する現像剤担持体の表面を該潜像担持体の表面に対向させ、該潜像担持体上の静電潜像と該現像剤担持体の表面との間に形成される現像電界によって、該現像剤担持体上のトナーを静電潜像に付着させることで現像を行う現像手段とを備え、現像により得られた潜像担持体上のトナー像を最終的に記録材上に転移させて、該記録材上に画像を形成する画像形成装置において、上記潜像担持体と上記現像剤担持体とが対向する現像領域における該潜像担持体の外周の振れ量を、潜像担持体表面移動方向について少なくとも2以上の地点で測定して得られる各振れ量データ及びそれらの測定地点を示す振れ量測定地点データを、互いに関連付けられた状態で含んでいる潜像担持体振れ量測定情報と、該現像領域における該現像剤担持体の外周の振れ量を、現像剤担持体表面移動方向について少なくとも2以上の地点で測定して得られる各振れ量データ及びそれらの測定地点を示す振れ量測定地点データを、互いに関連付けられた状態で含んでいる現像剤担持体振れ量測定情報とを記憶した振れ量測定情報記憶手段と、該潜像担持体振れ量測定情報に含まれる少なくとも1つの振れ量測定地点データが示す振れ量測定地点と、該現像剤担持体の振れ量測定情報に含まれる少なくとも1つの振れ量測定地点データが示す振れ量測定地点とが現像領域で対向したときの現像ギャップを測定して得られる現像ギャップ測定情報を記憶した現像ギャップ測定情報記憶手段と、該振れ量測定情報記憶手段に記憶されている該潜像担持体振れ量測定情報及び該現像剤担持体振れ量測定情報と、該現像ギャップ測定情報記憶手段に記憶されている現像ギャップ測定情報とから、該潜像担持体振れ量測定情報に含まれる2以上の振れ量測定地点データが示す振れ量測定地点と該現像剤担持体振れ量測定情報に含まれる2以上の振れ量測定地点データが示す振れ量測定地点とが互いに上記現像領域で対向するときの各現像電界強度を求め、求めたすべての現像電界強度を目標電界強度の許容範囲内とする現像電界強度制御の内容を決定し、決定した制御内容に従って現像電界強度制御を行う現像電界強度制御手段とを有することを特徴とするものである。
また、請求項2の発明は、請求項1の画像形成装置において、上記現像電界強度制御手段が行う上記現像電界強度制御は、上記潜像形成手段を制御して、上記すべての現像電界強度に対応する潜像担持体表面上の各振れ量測定地点に形成される静電潜像の電位を調整する制御であることを特徴とするものである。
また、請求項3の発明は、請求項2の画像形成装置において、上記潜像担持体は感光体であり、かつ、上記潜像形成手段は露光により該潜像担持体の表面電位を変化させる露光装置であり、上記潜像担持体の表面電位を検知する表面電位検知手段と、所定の基準トナー像のトナー付着量を検知するトナー付着量検知手段と、該表面電位検知手段による検知結果と該トナー付着量検知手段による検知結果とに基づいて、上記潜像形成手段により該潜像担持体上に形成される静電潜像の電位と該潜像形成手段の露光強度との関係を求め、静電潜像の電位が所定の画像濃度を得るための目標電位となるように、求めた該関係から該潜像形成手段の露光強度を調整して、画像濃度を調整する画像濃度調整手段とを有しており、上記現像電界強度制御手段は、該画像濃度調整手段による画像濃度の調整後に、上記現像電界強度制御の内容を決定することを特徴とするものである。
また、請求項4の発明は、請求項3の画像形成装置において、上記潜像担持体振れ量測定情報及び上記現像ギャップ測定情報は、いずれも、上記表面電位検知手段による検知領域を通過する潜像担持体表面上の地点で測定した振れ量から得られたものであることを特徴とするものである。
また、請求項5の発明は、請求項3又は4の画像形成装置において、上記現像電界強度制御手段が行う潜像形成手段の制御は、上記画像濃度調整手段が求めた上記関係から、上記すべての現像電界強度に対応する潜像担持体表面上の各振れ量測定地点に形成される静電潜像の電位が、該すべての現像電界強度を目標電界強度の許容範囲内とする電位となるように、該潜像形成手段の露光強度を制御するものであることを特徴とするものである。
また、請求項6の発明は、請求項1乃至5のいずれか1項に記載の画像形成装置において、上記現像電界強度制御手段は、上記振れ量測定情報記憶手段及び現像ギャップ測定情報記憶手段の少なくとも一方に記憶されている情報が更新されたときに、上記現像電界強度制御の内容を決定することを特徴とするものである。
また、請求項7の発明は、請求項1乃至6のいずれか1項に記載の画像形成装置において、上記現像剤担持体振れ量測定情報に含まれる振れ量測定地点データの数をn1とし、該現像剤担持体の回転駆動時における角速度をω1とし、上記潜像担持体振れ量測定情報に含まれる振れ量測定地点データの数をn2とし、該潜像担持体の回転駆動時における角速度をω2としたとき、ω1/ω2=n2/n1の関係式を満たすことを特徴とするものである。
また、請求項8の発明は、請求項1乃至7のいずれか1項に記載の画像形成装置において、上記潜像担持体振れ量測定情報及び上記現像剤担持体振れ量測定情報は、それぞれに含まれる振れ量データを、それぞれの振れ量測定地点が回転駆動方向に沿うように配列した情報であることを特徴とするものである。
本発明においては、潜像担持体及び現像剤担持体の双方の振れを考慮し、これらの振れに起因した現像ギャップの変動による現像電界強度の変化を特定し、その現像電界強度の変化が目標電界強度の許容範囲内となるようにすることができる。したがって、現像剤担持体の振れだけを考慮する従来技術と比較して、現像ギャップの変動に起因する濃度ムラを効果的に抑制することができる。
しかも、本発明においては、現像電界強度制御を行うために、わざわざ基準トナー像を形成する必要がないので、基準トナー像の形成によるダウンタイムの増加やトナー消費量の増加という不具合は生じない。
以上、本発明によれば、装置のダウンタイムを増加させたり、トナー消費量を増加させたりすることなく、潜像担持体及び現像剤担持体の振れによる現像ギャップの変動に起因する濃度ムラを従来よりも効果的に抑制することができるという優れた効果が得られる。
実施形態の複写機において行われる現像電界強度制御の制御フローを示すフローチャートである。 同複写機の概略構成を示す概略構成図である。 同複写機における中間転写ユニットとその周囲構成とを示す拡大構成図である。 同複写機における4つの画像形成ユニットのうち、2つを示す拡大構成図である。 同複写機の電気回路の要部を示すブロック図である。 同複写機の中間転写ベルトとその表面に形成された階調パターン像とを示す模式図である。 同複写機において行われる電位設定値調整制御の制御フローを示すフローチャートである。 階調パターン像の検知結果に基づいて特定される現像ポテンシャルと各基準パッチのトナー付着量との関係(現像γの特性)を示すグラフである。 電位設定値調整制御によって求められるレーザー発光パワーと感光体露光部電位との関係を示すグラフである。 感光体上の振れ量測定地点を示す斜視図である。 各感光体振れ量測定地点での測定結果である振れ量データからなる感光体振れ量測定情報の内容を示す説明図である。 現像スリーブ上の振れ量測定地点を示す斜視図である。 各スリーブ振れ量測定地点での測定結果である振れ量データからなるスリーブ振れ量測定情報の内容を示す説明図である。 現像ギャップテーブルの内容を示す説明図である。 同複写機における感光体と現像スリーブの回転位置関係を示す説明図である。 レーザー発光パワーテーブルの内容を示す説明図である。 同複写機における感光体及び現像スリーブの各回転位置とレーザー書込み位置との位置関係を示す説明図である。
以下、本発明を適用した画像形成装置として、複数の感光体を設けたいわゆるタンデム型のフルカラー電子写真複写機(以下、単に「複写機」という。)の一実施形態について説明する。
はじめに、本実施形態に係る複写機の基本的な構成について説明する。
図2は、本実施形態に係る複写機の概略構成を示す概略構成図である。
同図において、複写機は、画像形成を行うプリント部100と、このプリント部100が載置されプリント部100に対して記録材である転写紙5の供給を行う給紙装置200と、プリント部100上に取り付けられ原稿画像を読み取るスキャナ300と、このスキャナ300の上部に取り付けられる原稿自動搬送装置(ADF)400とを備えている。プリント部100には、転写紙5を手差し給紙させるための手差しトレイ6、及び、画像形成済みの転写紙5が排紙される排紙トレイ7が設けられている。
図3は、プリント部100の構成を拡大して示す拡大構成図である。
プリント部100には、中間転写体としての無端状の中間転写ベルト10が設けられている。この中間転写ベルト10の材料には、ベルト伸びによる位置ずれを防止するために機械的特性に優れた材料であるポリイミドが採用されている。このポリイミドには、高画質高安定化、即ち、温湿度環境に依存せず常に安定した転写性能が得られるようにするために電気抵抗調整剤としてカーボンを分散させている。このため、中間転写ベルト10は黒色を呈している。
中間転写ベルト10は、3つの支持ローラ14,15,16に張架された状態で、図3中で時計回り方向に回転駆動される。図3に示すように、支持ローラ14,15,16のうちの第1支持ローラ14と第2支持ローラ15との間のベルト張架部分には、イエロー(Y)、シアン(C)、マゼンタ(M)、ブラック(K)の4つの画像形成ユニット18Y,18C,18M,18Kが並んで配置されている。また第1支持ローラ14と第3支持ローラ16との間のベルト張架部分には、中間転写ベルト10上に形成された基準トナー像を検出するためのトナー付着量検知手段としての光学センサ110が取り付けられている。
画像形成ユニット18Y,18C,18M,18Kの上方には、図2に示したように、潜像形成手段としてのレーザー書込装置21が設けられている。このレーザー書込装置21は、スキャナ300で読み取った原稿の画像情報に基づいて、レーザー制御部(図示せず)によって半導体レーザー(図示せず)を駆動して書込光を出射する。そして、その書込光により、各画像形成ユニット18Y,18C,18M,18Kに設けられた潜像担持体たるドラム状の感光体20Y,20C,20M,20Kを露光走査して感光体に静電潜像を形成する。なお、書込光の光源としては、レーザーダイオードに限るものではなく、例えばLEDであってもよい。
図4は、4つの画像形成ユニット18Y,18C,18M,18Kのうちの2つを示す拡大構成図である。
なお、4つの画像形成ユニット18Y,18C,18M,18Kは、使用するトナーの色が互いに異なる点の他が同様の構成になっているので、同図においては、各部材の符号の末尾に付すY、C、M、Kという添字を省略している。また、以下の説明においても、これら添字を必要に応じて適宜省略する。
画像形成ユニット18には、感光体20の周囲に、帯電手段としての帯電装置60、現像手段としての現像装置61、クリーニング手段としての感光体クリーニング装置63及び除電手段としての除電装置64が設けられている。また、感光体20に対して中間転写ベルト10を介して対向する位置には、転写手段としての1次転写装置62が設けられている。
帯電装置60は、帯電ローラを採用した接触帯電方式のものであり、感光体20に接触して電圧を印加することにより感光体20の表面を一様に帯電する。この帯電装置60には、非接触のスコロトロンチャージャなどを採用した非接触帯電方式のものも採用できる。
現像装置61では、磁性キャリアと非磁性トナーからなる二成分現像剤を使用している。なお、現像剤としては一成分現像剤を使用してもよい。この現像装置61は、現像ケース70内に設けられた攪拌部66と現像部67とに大別できる。攪拌部66では、二成分現像剤(以下、単に「現像剤」という。)が攪拌されながら搬送されて現像剤担持体としての後述する現像スリーブ65上に供給される。この攪拌部66は、平行な2本のスクリュー68が設けられており、2本のスクリュー68の間には、両端部で互いが連通するように仕切るための仕切り板が設けられている。また、現像ケース70には現像装置61内の現像剤のトナー濃度を検出するためのトナー濃度センサ71が取り付けられている。一方、現像部67では、現像スリーブ65に付着した現像剤のうちのトナーが感光体20に転移される。この現像部67には、現像ケース70の開口を通して感光体20と対向する現像スリーブ65が設けられており、その現像スリーブ65内にはマグネット(図示せず)が固定配置されている。また、現像スリーブ65に先端が接近するように現像剤規制部材としてのドクターブレード73が設けられている。
現像装置61内においては、現像剤を2本のスクリュー68で攪拌しながら搬送循環し、現像スリーブ65に供給する。現像スリーブ65に供給された現像剤は、現像スリーブ65内に配設されたマグネットローラの発する磁力によってスリーブ表面に汲み上げられる。現像スリーブ65に汲み上げられた現像剤は、現像スリーブ65の回転に伴って搬送され、ドクターブレード73によって適正な量に規制される。なお、規制された現像剤は攪拌部66に戻される。このようにして感光体20と対向する現像領域まで搬送された現像剤は、マグネットローラの発する磁力によって穂立ち状態となり、磁気ブラシを形成する。現像領域では、現像スリーブ65に印加されている現像バイアスにより、現像剤中のトナーを感光体20上の静電潜像部分に移動させる現像電界が形成される。これにより、現像剤中のトナーは、感光体20上の静電潜像部分に転移し、感光体20上の静電潜像は可視像化され、トナー像が形成される。現像領域を通過した現像剤は、マグネットの磁力が弱い部分まで搬送されることで現像スリーブ65から離れ、攪拌部66に戻される。このような動作の繰り返しにより、攪拌部66内のトナー濃度が薄くなると、それをトナー濃度センサ71が検出し、その検出結果に基づいて攪拌部66にトナーが補給される。
1次転写装置62としては、1次転写ローラを採用しており、中間転写ベルト10を挟んで感光体20に押し当てるようにして設置している。1次転写装置62は、ローラ形状のものでなくても、導電性のブラシ形状のものや、非接触のコロナチャージャなどを採用してもよい。
感光体クリーニング装置63は、先端を感光体20に押し当てられるように配置される、例えばポリウレタンゴム製のクリーニングブレード75を備えている。また、本実施形態では、クリーニング性能を高めるために感光体20に接触する導電性のファーブラシ76を併用している。クリーニングブレード75やファーブラシ76により感光体20から除去されたトナーは、感光体クリーニング装置63の内部に収容される。
除電ランプ等からなる除電装置64は、光を照射して感光体20の表面電位を初期化する。
また、画像形成ユニット18には、感光体20に対向する表面電位検知手段としての電位センサ120が設けられている。この電位センサ120は、感光体20に対向するように設けられ、感光体20の表面電位を検知する。図4において、帯電装置60により、感光体20の表面は例えば−(マイナス)700Vに一様帯電せしめられ、レーザー書込装置21によって書込光が照射された静電潜像部分の電位は、例えば−120Vとなる。これに対して、現像バイアスの電圧を−470Vとし、350Vの現像ポテンシャルを確保する。このようなプロセス条件は、後述する電位設定値調整制御の結果によって適時変更される。
先に示した図2において、画像形成ユニット18では、感光体20の回転とともに、まず帯電装置60で感光体20の表面を一様に帯電せしめる。次いで、スキャナ300により読み取った画像情報に基づいてレーザー書込装置21からレーザーによる書込光を照射し、感光体20上に静電潜像を形成する。その後、現像装置61により静電潜像が可視像化されてトナー像が形成される。このトナー像は、1次転写装置62により中間転写ベルト10上に1次転写される。1次転写後に感光体20の表面に残留した転写残トナーは、感光体クリーニング装置63により除去され、その後、感光体20の表面は、除電装置64により除電されて、次の画像形成に供される。
先に図3に示したように、支持ローラのうちの第3支持ローラ16に対向する位置には、2次転写装置である2次転写ローラ24が設けられている。そして、中間転写ベルト10上のトナー像を転写紙5上に2次転写する際には、2次転写ローラ24を第3支持ローラ16に巻回された中間転写ベルト部分に押し当てて2次転写を行う。なお、2次転写装置としては2次転写ローラ24を用いた構成でなくても、例えば転写ベルトや非接触の転写チャージャを用いた構成としてもよい。この2次転写ローラ24には、2次転写ローラ24に付着したトナーをクリーニングするローラクリーニング部91が当接している。
また、2次転写ローラ24の転写紙5搬送方向下流側には、2つのローラ23a,23b間に無端ベルト状の搬送ベルト22が張架した構成を有する。また、このさらに搬送方向下流側には、転写紙5上に転写されたトナー像を定着させるための定着装置25が設けられている。この定着装置25は、加熱ローラ26に加圧ローラ27を押し当てた構成となっている。また、中間転写ベルト10の支持ローラのうちの第2支持ローラ15に対向する位置には、ベルトクリーニング装置17が設けられている。このベルトクリーニング装置17は、転写紙5に中間転写ベルト10上のトナー像を転写した後に中間転写ベルト10上に残留する残留トナーを除去するためのものである。
プリント部100には、図2に示したように、給紙装置200から給紙された転写紙5を2次転写ローラ24を経由して排紙トレイ7に案内する搬送路48が設けられている。また、この搬送路48に沿って、搬送ローラ49a、レジストローラ49b、排出ローラ56なども設けられている。搬送路48の下流側には、転写後の転写紙5の搬送方向を排紙トレイ7又は用紙反転装置93に切り替える切替爪55が設けられている。用紙反転装置93は、転写紙5を反転させて再び2次転写ローラ24に向けて送り出すものである。さらに、プリント部100には、手差しトレイ6から搬送路48へ合流する手差し給紙路53が設けられ、この手差し給紙路53の上流側には、手差しトレイ6にセットされた転写紙5を一枚ずつ給紙するための給紙ローラ50及分離ローラ51が設けられている。
給紙装置200は、転写紙5を収納する複数の給紙カセット44、これらの給紙カセット44に収納された転写紙を一枚ずつ送り出す給紙ローラ42及び分離ローラ45、送り出された転写紙を給紙路46に沿って搬送する搬送ローラ47などから構成されている。給紙路46は、プリント部100の搬送路48に接続している。
スキャナ300では、コンタクトガラス31上に載置される原稿(図示せず)の読み取り走査を行うために、原稿照明用光源とミラーを搭載した第1及び第2の走行体33,34が往復移動する。これらの走行体33,34により走査された画像情報は、結像レンズ35によってその後方に設置されている読取センサ36の結像面に集光され、読取センサ36によって画像信号として読込まれる。
図5は、本実施形態に係る複写機の電気回路の要部を示すブロック図である。
同図に示すように、本複写機には、コンピュータ構成のメイン制御部500が備えられており、このメイン制御部500が各部を駆動制御する。メイン制御部500は、各種演算や各部の駆動制御を実行するCPU(Central Processing Unit)501にバスライン502を介して、コンピュータプログラム等の固定的データを予め記憶するROM(Read Only Memory)503と各種データを書き換え自在に記憶するワークエリア等として機能するRAM(Random Access Memory)504とが接続されて構成されている。ROM503には、光学センサ110の出力値に対する単位面積当りのトナー付着量への換算に関する情報を記憶した換算テーブル(図示せず)が格納されている。メイン制御部500には、プリント部100の各部、給紙装置200、スキャナ300、原稿自動搬送装置400が接続されている。ここで、プリント部100の光学センサ110及び電位センサ120は、検出した情報をメイン制御部500に送り出す。
本複写機の画像濃度調整手段としての制御部(CPU501、ROM503及びRAM504からなる組合せ)は、電源スイッチ(図示せず)がONされた直後に、電位設定値調整制御と呼ばれる画像濃度等を調整する作像条件調整制御を行うように構成されている。
この電位設定値調整制御では、4つの画像形成ユニット18Y,18C,18M,18Kにおいて、それぞれ感光体20Y,20C,20M,20Kの表面に階調パターン像を形成し、これを中間転写ベルト10上に転写する。Y、M、C、Kの各色階調パターン像は、それぞれ単位面積あたりのトナー付着量が互いに異なる複数の基準パッチ(基準トナー像)からなり、例えば、図6に示すような状態で中間転写ベルト10に転写される。具体的には、複数のM基準パッチからなるM階調パターン像Tm、複数のC基準パッチからなるC階調パターン像Tc、複数のY基準パッチからなるY階調パターン像Tyは、それぞれベルト移動方向にM、C、Yという順で一直線上に並ぶように転写される。一方、複数のK基準パッチからなるK階調パターン像Tkは、ベルト幅方向において、他の階調パターン像とは異なる位置に転写される。
電位設定値調整制御では、中間転写ベルト10上に形成した階調パターン像(例えば10階調パターン)における各基準パッチを光学センサ110によって検知し、各基準パッチに対応する出力電圧値に基づいて適切な現像γ(ガンマ)を算出する。そして、算出結果に基づいて、狙いの画像濃度を得ることができる感光体表面の目標帯電電位(以下、単に「目標帯電電位」という。)、現像バイアス、光書込強度(露光強度)を特定して、それぞれの設定値を記憶する。なお、現像γとは、現像ポテンシャルと単位面積たりにおけるトナー付着量との関係を示すグラフの傾きのことである。
図7は、本複写機によって行われる電位設定値調整制御における制御フローを示すフローチャートである。
電位設定値調整制御では、まず、それぞれトナー付着量が互いに異なる10個の基準パッチからなるY−10階調パターン像、C−10階調パターン像、M−10階調パターン像、K−10階調パターン像を形成する(S700)。そして、これら階調パターン像を光学センサ110によって検知し、出力結果をRAM504に格納する。このとき、同時に、感光体20上における各階調パターン部電位(静電潜像の電位)に対する電位センサ120の出力値を読み込んでRAM504に格納する(S701)。次に、RAM504に記憶しておいた電位センサ120の電位出力値と、パターン作像時現像バイアスとから現像ポテンシャルを計算する(S702)。同時に、各パッチにおけるトナー付着量を付着量変換テーブル(図示せず)を参照することによって求める。トナー付着量を計算したら、次に、現像γの計算を行う(S703)。
図8は、S702で求められた現像ポテンシャルと、各基準パッチのトナー付着量との関係を示すグラフである。
上記S703では、このグラフに示す直線近似式(この傾きが現像γであり、横軸切片を現像開始電圧という。)を計算する。現像γを計算したら、次に、図8に示したように、狙いのトナー付着量TargetM/Aを得るのに必要な現像ポテンシャルVpotを現像γに基づいて特定した後(S704)、この現像ポテンシャルにマッチした感光体の帯電電位、現像バイアス、露光部電位(静電潜像電位)を、それぞれ、目標帯電電位Vd、目標現像バイアス電位Vb、目標露光部電位(静電潜像電位)VLとして、電位テーブル(図示せず)に基づいて特定する(S705)。
このようにして各目標電位Vd,Vb,VLを特定したら、レーザー書込装置21を制御するレーザー制御回路(図示せず)を介して半導体レーザーのレーザー発光パワーが最大となるように制御し、電位センサ120の出力値を取り込むことによって感光体20の残留電位を検出する(S706)。そして、その残留電位が0でない時には、先にS705で特定しておいた各目標電位Vd,Vb,VLに対してその残留電位分の補正を行う(S707)。以下、補正後の各目標電位を、それぞれ、Vd*、Vb*、VL*と表記する。
その後、各色並行して帯電装置60による感光体20の帯電電位が上記目標帯電電位Vd*になるように電源回路(図示せず)を調整した後(S708)、レーザー制御回路を介して半導体レーザーにおけるレーザー発光パワーを数段階に振り、感光体20の露光部電位が上記目標露光部電位VL*になるようなレーザー発光パワーLDP*を求める。
図9は、S709で得られるレーザー発光パワーと感光体の露光部電位との関係を示すグラフである。
図示の如く、レーザー発光パワーと感光体の露光部電位との関係は、直線近似式y=ax+bで表される。この直線近似式の傾きa及び切片bがRAM504に格納される(S709)。そして、黒現像装置61K、シアン現像装置61C、マゼンタ現像装置61M、イエロー現像装置61Yの各現像バイアスが、それぞれ上記目標現像バイアス電位Vb*になるように電源回路を調整した後、それぞれの調整値をプリント動作時における仮作像条件として記憶する(S710)。
以上により、電位設定値調整制御の処理が終了となる。
次に、本発明の特徴部分である、現像電界強度を目標電界強度の許容範囲内とする現像電界強度制御について説明する。
本複写機において、振れ量測定情報記憶手段としてのRAM504は、感光体20と現像スリーブ65とが対向する現像領域における感光体20及び現像スリーブ65の外周の振れ量を、感光体20及び現像スリーブ65のそれぞれについて少なくとも2以上の地点で測定して得られる感光体振れ量測定情報とスリーブ振れ量測定情報とを記憶している。また、現像ギャップ測定情報記憶手段としてのRAM504は、感光体振れ量測定情報に含まれる少なくとも1つの振れ量を測定した感光体振れ量測定地点とスリーブ振れ量測定情報に含まれる少なくとも1つの振れ量を測定したスリーブ振れ量測定地点とが現像領域で対向したときの現像ギャップ(両地点の最近接距離)を測定して得られる現像ギャップ測定情報を記憶している。そして、現像電界強度制御手段として機能するメイン制御部500は、このように予め記憶されている感光体振れ量測定情報及びスリーブ振れ量測定情報と現像ギャップ測定情報とから、感光体振れ量測定情報に含まれる2以上の振れ量データに対応した感光体振れ量測定地点とスリーブ振れ量測定情報に含まれる2以上の振れ量データに対応したスリーブ振れ量測定地点とが互いに現像領域で対向するときの各現像電界強度を求め、その後、求めたすべての現像電界強度を目標電界強度の許容範囲内とする現像電界強度制御の内容を決定し、決定した制御内容に従って現像電界強度制御を行う。
図1は、本複写機において行われる現像電界強度制御の制御フローを示すフローチャートである。
本複写機においては、4つの画像形成ユニット18Y,18C,18M,18Kにおいて、メイン制御部500のRAM504に記憶された、感光体振れ量測定情報、スリーブ振れ量測定情報、現像ギャップ測定情報のいずれかが更新されると、CPU501により現像電界強度制御の実行判定が下される(S800)。次に、更新された情報により、感光体20及び現像スリーブ65が回転駆動することにより現像領域で互いに対向することになる各感光体振れ量測定地点と各スリーブ振れ量測定地点との最近接距離(現像ギャップ)を算出し、算出した値により現像ギャップテーブルを更新する(S801)。この現像ギャップテーブルは、感光体20及び現像スリーブ65が回転駆動することにより現像領域で互いに対向することになる各感光体振れ量測定地点と各スリーブ振れ量測定地点との間の各現像ギャップをテーブル化したものである。また、現像ギャップテーブルに記述される全現像ギャップの平均値も算出する(S801)。続いて、これらの現像ギャップでの現像電界強度をそれぞれ求め、求めた全現像電界強度を目標電界強度の許容範囲内となるように、上記電位設定値調整制御でRAM504に記憶された目標露光部電位VL*を補正し、補正後目標露光部電位VL**を算出する(S802)。この補正後目標露光部電位VL**と、上述した電位設定値調整制御でRAM504に記憶したレーザー発光パワーと感光体露光部電位との直線近似式(図9参照)の情報とから、補正後レーザー発光パワーLDP**を算出し、レーザー発光パワーテーブルを更新する(S803)。
以下、各ステップについて詳細を説明する。
(S800)
図10は、感光体振れ量測定地点を示す斜視図である。
各感光体振れ量測定地点は、すべて、感光体20の回転中心軸である直線O2−O2’に対して直交する仮想平面上にあり、かつ、電位センサ120の検知領域を通過する感光体20の外周ライン614上に位置している。本実施形態において、感光体振れ量測定情報は、振れ量測定基準点612に振れ計測器、例えばダイヤルゲージなどをセットし、振れ量測定基準点612の振れをゼロとして、感光体20を図中矢印615の向きに1回転させて取得する。なお、矢印615は、プリント部100における感光体20の回転駆動方向と同一である。振れ量測定は、一定角度(単位は[deg]である。)刻みで実施し、感光体20の回転中心軸に向かう方向への振れを−(マイナス)として表記する。振れ量測定数すなわち振れ量測定地点の数は、振れ量測定基準点612の振れ情報を含むn2[個]の整数で決められ、図中符号616で示す振れ量測定地点がn2番目(最後)に測定されることになる。感光体振れ量測定情報は、図11に示すように、図中符号660で示すテーブル領域に振れ量測定基準点612の振れ量データが記述され、図中符号661で示すテーブル領域にn2番目の感光体振れ量測定地点616の振れ量データが記述される。この感光体振れ量測定情報は、感光体20の個体差が出るので、個々の感光体20をプリント部100に搭載する前に事前に測定しておき、個々の感光体20を複写機のプリント部100に搭載する際に、その複写機のメイン制御部500のRAM504に当該感光体20に対応する感光体振れ量測定情報を記憶する。
図12は、スリーブ振れ量測定地点を示す斜視図である。
各スリーブ振れ量測定地点は、すべて、現像スリーブ65の回転中心軸である直線O1−O1’に対して直交する仮想平面上にあり、かつ、感光体20の外周ライン614と対向する現像スリーブ65の外周ライン604上に位置している。本実施形態において、スリーブ振れ量測定情報は、振れ量測定基準点602に振れ計測器、例えばダイヤルゲージなどをセットし、振れ量測定基準点602の振れをゼロとして、現像スリーブ65を図中矢印605の向きに1回転させて取得する。なお、矢印605は、プリント部100における現像スリーブ65の回転駆動方向と同一である。振れ量測定は、一定角度(単位は[deg]である。)刻みで実施し、現像スリーブ65の回転中心軸に向かう方向への振れを−(マイナス)として表記する。振れ量測定数すなわち振れ量測定地点の数は、振れ量測定基準点602の振れ情報を含むn1[個]の整数で決められ、図中符号606で示す振れ量測定地点がn1番目(最後)に測定されることになる。スリーブ振れ量測定情報は、図13に示すように、図中符号650で示すテーブル領域に振れ量測定基準点602の振れ量データが記述され、図中符号651で示すテーブル領域にn1番目のスリーブ振れ量測定地点606の振れ量データが記述される。このような記述されたn1個の振れ量データは、その後{(n2/n1)−1}回、すなわち、スリーブ振れ量測定情報の行数(振れ量データ数)がn2に達するまで、繰り返し記述されて、スリーブ振れ量測定情報が作成される。このスリーブ振れ量測定情報は、現像スリーブ65の個体差が出るので、個々の現像スリーブ65をプリント部100に搭載する前に事前に測定しておき、個々の現像スリーブ65を複写機のプリント部100に搭載する際に、その複写機のメイン制御部500のRAM504に当該現像スリーブ65に対応するスリーブ振れ量測定情報を記憶する。
また、本実施形態では、現像スリーブ65と感光体20とをプリント部100に取り付ける際に、各々の振れ量測定基準点602,612が現像領域で対向する位置関係(以下「ホームポジション」という。)とし、その現像ギャップd1[m]を例えばシックネスゲージ等で測定し、その測定値を現像ギャップ測定情報として、メイン制御部500のRAM504に記憶する。
このようにしてRAM504内に情報が記憶され又は書き換えられると、CPU501は現像電界強度制御が必要と判断し、次のステップの制御を実行する。
(S801)
本ステップでは、RAM504に記憶された感光体振れ量測定情報、スリーブ振れ量測定情報、現像ギャップ測定情報により、図14に示す現像ギャップテーブルを更新する。なお、ここでは、図中符号670で示すテーブル領域に、現像ギャップ測定情報の値すなわちホームポジションでの現像ギャップ測定値d1[m]を現像ギャップデータとして記述している。その他のテーブル領域に記述される現像ギャップデータは、図11に示した感光体20の各振れ量データと図13に示した現像スリーブ65の各振れ量データとの和から、ホームポジションでの現像ギャップ測定値d1を差し引いた値(振れ量データの正負の定義が反対の場合にはd1を足した値)である。また、このようにして作成した現像ギャップテーブルの各現像ギャップデータの平均値dave[m]は、メイン制御部500のCPU501が演算処理して、RAM504に記憶する。
ここで、本実施形態においては、現像スリーブ65及び感光体20を回転駆動させたときに、現像スリーブ65及び感光体20それぞれの振れ量測定地点が互いに現像領域で対向するように、位相合わせを行う必要がある。そのため、現像スリーブ65の回転角速度ω1[rad/s]と感光体20の回転角速度ω2[rad/s]との角速度比(ω1/ω2)が、現像スリーブ65及び感光体20の振れ量測定数(振れ量測定地点の数)の比(n2/n1)と一致するように設定されている。以下にその理由について述べる。
図15は、4つの画像形成ユニット18Y,18C,18M,18Kのうちの1つを示す、感光体20と現像スリーブ65との回転位置関係を示す説明図である。
現像スリーブ65は、半径R1[m]の円筒形状であり、角速度ω1[rad/s]で図中矢印605の向きに回転駆動する。また、感光体20は、半径R2[m]のドラム形状であり、角速度ω2[rad/s]で図中矢印615の向きに回転駆動する。また、図中符号θ1で示す角度は、現像スリーブ65の各振れ量測定地点と現像領域中央部との間の中心角を示し、図中符号θ2で示す角度は、感光体20の各振れ量測定地点と現像領域中央部との間の中心角を示している。
現像スリーブ65における任意の振れ量測定地点Aと感光体20における任意の振れ量測定地点Cが現像領域で対向しているとしたとき、次に、現像領域へ到達する各振れ量測定地点B,Dが同じ時間t[s]経過後にそれぞれ現像領域に到達し、現像領域で両者が互いに対向するためには、次の式(2)が成り立たなければならない。
t = θ1/ω1 = θ2/ω2 ・・・(2)
ここで、θ1=360/n1、θ2=360/n2であるから、上記式(2)は、下記の式(3)に変形できる。
(ω1/ω2) = n2/n1 ・・・(3)
よって、上記式(5)が成り立てば、感光体20上の各振れ量測定地点と、現像スリーブ65上の各振れ量測定地点との位相が一致し、両者は常に現像領域で対向することができる。
(S802)
本ステップでは、上述した電位設定値調整制御のS707により求めた目標露光部電位VL*と、図14に示す現像ギャップテーブルとにより、補正後目標露光部電位VL**を算出する。
ここで、電位設定値調整制御において仮決定された作像条件による現像ポテンシャルをVpot[V]とすれば、次式(4)が成り立つ。
Vpot = Vb*−VL* ・・・(4)
また、図14において、k番目の現像ギャップをdk[m]とすれば、上記式(1)より、現像電界強度Eを一定に保つためには、次式(5)が成り立たなければならない。
E = Vpot/dave = (Vb*−VL*)/dave
= (Vb*−VL**)/dk ・・・(5)
そして、上記式(5)より、次式(6)が得られる。
VL** = Vb*−(Vb*−VL*)×(dk/dave) ・・・(6)
本ステップでは、図14に示す現像ギャップテーブルに記述された各現像ギャップデータと、上記式(6)とを用いて、各現像ギャップデータに対応する補正後目標露光部電位VL**を算出する。
(S803)
本ステップでは、上述した電位設定値調整制御のS709でRAM504に記憶したレーザー発光パワーLDP*と感光体露光部電位VL*との関係を示す直線近似式の情報(傾きa及び切片b)を用いて、次式(7)により、各補正後目標露光部電位VL**に対応する補正後レーザー発光パワーLDP**を算出する。
LDP** = (VL**−b)/a ・・・(7)
そして、これにより算出される各補正後レーザー発光パワーLDP**により、図16に示すRAM504に記憶されているレーザー発光パワーテーブルを更新する。なお、このレーザー発光パワーテーブルにおける時間t[s]は、上記式(2)における時間t[s]と同一である。このレーザー発光パワーテーブルは、レーザー書込装置21を制御するレーザー制御回路(図示せず)を介して半導体レーザーのレーザー発光パワーを制御する際に用いられる。この制御により、レーザー発光パワーを発光時間に応じて可変制御することができる。したがって、このようにして各補正後レーザー発光パワーLDP**に基づいてレーザー発光パワーテーブルの作成あるいは更新することで、現像電界強度を目標電界強度の許容範囲内とする現像電界強度制御の内容が決定される。
次に、以上のようにして現像電界強度制御の内容を決定した後に行う画像形成動作中の現像電界強度制御の動作について説明する。
本複写機を用いて原稿のコピーをとる場合、まず、原稿自動搬送装置400の原稿台30に原稿をセットする。または、原稿自動搬送装置400を開いてスキャナ300のコンタクトガラス31上に原稿をセットし、原稿自動搬送装置400を閉じてそれで押さえる。その後、ユーザーがスタートスイッチ(図示せず)を押すと、原稿自動搬送装置400に原稿をセットしたときには、原稿がコンタクトガラス31上に搬送される。そして、スキャナ300が駆動して第1走行体33及び第2走行体34が走行を開始する。これにより、第1走行体33からの光がコンタクトガラス31上の原稿で反射し、その反射光が第2走行体34のミラーで反射されて、結像レンズ35を通じて読取センサ36に案内される。このようにして原稿の画像情報を読み取る。
また、ユーザーによりスタートスイッチが押されると、駆動モータ(図示せず)が駆動し、支持ローラ14,15,16のうちの1つが回転駆動して中間転写ベルト10が回転駆動する。これと同時に各画像形成ユニット18Y,18C,18M,18Kにおける感光体20と現像スリーブ65とをホームポジションに合わせて、感光体20及び現像スリーブ65が回転駆動する。
図17は、4つの画像形成ユニット18Y,18C,18M,18Kのうちの1つを示す、感光体20及び現像スリーブ65の各回転位置とレーザー書込み位置617との位置関係を示す説明図である。
図17においては、現像領域に位置する感光体振れ量測定地点Cが、レーザー書込み位置617に到達するまでの距離を、L[m]と表記している。ここで、感光体振れ量測定地点Cがレーザー書込み位置617に到達するまでの時間をT[s]とすれば、次式(8)が成り立つ。
T = L/(ω2×R2) ・・・(8)
感光体20の回転駆動開始後、上記式(8)により求められる時間T[s]経過後に、スキャナ300の読取センサ36で読み取った画像情報に基づいて、レーザー書込装置21は、図16に示したレーザー発光パワーテーブルに記述されている時間周期でレーザー発光パワーを変更させながら、書込光を各画像形成ユニット18の感光体20上に照射する。これにより、少なくとも各感光体振れ量測定地点には、その地点が現像領域に到達したときに形成される現像電界強度が一定となるような補正後レーザー発光パワーLDP**で、書込光が照射されることになる。したがって、各感光体20には、それぞれ現像電界強度が一定となるような電位をもつ静電潜像が形成される。その結果、各現像装置61により可視像化されると、各感光体20上には、それぞれ、イエロー、シアン、マゼンタ、ブラックの濃度ムラのないトナー像が形成される。
このようにして形成された各色トナー像は、各1次転写装置62Y,62C,62M,62Kにより、順次中間転写ベルト10上に重なり合うようにそれぞれ1次転写される。これにより、中間転写ベルト10上には、各色トナー像が重なり合った合成トナー像が形成される。なお、2次転写後の中間転写ベルト10上に残留した転写残トナーは、ベルトクリーニング装置17により除去される。また、ユーザーによりスタートスイッチが押されると、ユーザーが選択した転写紙5に応じた給紙装置200の給紙ローラ42が回転し、給紙カセット44の1つから転写紙5が送り出される。送り出された転写紙5は、分離ローラ45で1枚に分離して給紙路46に入り込み、搬送ローラ47によりプリント部100内の搬送路48まで搬送される。このようにして搬送された転写紙5は、レジストローラ49bに突き当たったところで止められる。レジストローラ49bは、上述のようにして中間転写ベルト10上に形成された合成トナー画像が2次転写ローラ24に対向する2次転写部に搬送されるタイミングに合わせて回転を開始する。レジストローラ49bにより送り出された転写紙5は、中間転写ベルト10と2次転写ローラ24との間に送り込まれ、2次転写ローラ24により、中間転写ベルト10上の合成トナー像が転写紙5上に2次転写される。その後、転写紙5は、2次転写ローラ24に吸着した状態で定着装置25まで搬送され、定着装置25で熱と圧力が加えられてトナー像の定着処理が行われる。定着装置25を通過した転写紙5は、排出ローラ56により排紙トレイ7に排出されスタックされる。なお、トナー像が定着された面の裏面にも画像形成を行う場合には、定着装置25を通過した転写紙5の搬送方向を切替爪55により切り換え、用紙反転装置93に送り込む。転写紙5は、そこで反転し再び2次転写ローラ24に案内される。
以上、本実施形態に係る複写機は、表面が周回移動する潜像担持体としての感光体20Y,20C,20M,20Kと、各感光体20Y,20C,20M,20Kの表面電位を変化させることで感光体上に静電潜像を形成する潜像形成手段としてのレーザー書込装置21と、表面が周回移動する現像剤担持体としての現像スリーブ65の表面を感光体20Y,20C,20M,20Kの表面に対向させ、感光体上の静電潜像と現像スリーブ65の表面との間に形成される現像電界によって現像スリーブ65上のトナーを静電潜像に付着させることで現像を行う現像手段としての現像装置61とを備え、現像により得られた感光体20Y,20C,20M,20K上のトナー像を最終的に記録材としての転写紙5上に転移させて、転写紙5上に画像を形成する画像形成装置である。そして、感光体20Y,20C,20M,20Kと現像スリーブ65とが対向する現像領域における感光体及び該現像スリーブの外周の振れ量を、感光体及び現像スリーブのそれぞれについて少なくとも2以上の地点で測定して得られる感光体振れ量測定情報及びスリーブ振れ量測定情報を記憶した振れ量測定情報記憶手段としての記憶領域、並びに、感光体振れ量測定情報に含まれる少なくとも1つの振れ量を測定した振れ量測定地点と、スリーブ振れ量測定情報に含まれる少なくとも1つの振れ量を測定した振れ量測定地点とが現像領域で対向したときの現像ギャップを測定して得られる現像ギャップ測定情報を記憶した現像ギャップ測定情報記憶手段としての記憶領域が、メイン制御部500のRAM504に設けられており、現像電界強度制御手段としてのメイン制御部500は、RAM504に記憶されている感光体振れ量測定情報及びスリーブ振れ量測定情報と現像ギャップ測定情報とから、感光体振れ量測定情報に含まれる2以上の振れ量に対応した振れ量測定地点とスリーブ振れ量測定情報に含まれる2以上の振れ量に対応した振れ量測定地点とが互いに現像領域で対向するときの各現像電界強度を求め、求めたすべての現像電界強度を目標電界強度の許容範囲内とする現像電界強度制御の内容を決定し、決定した制御内容に従って現像電界強度制御を行う。これにより、感光体20及び現像スリーブ65の双方の振れに起因した現像ギャップの変動が発生していても、現像電界強度の変化が目標電界強度の許容範囲内となるようにすることができる。しかも、本実施形態においては、現像電界強度制御を行うために、わざわざ基準トナー像を形成する必要がないので、基準トナー像の形成によるダウンタイムの増加やトナー消費量の増加という不具合は生じない。
また、本実施形態の現像電界強度制御は、レーザー書込装置21を制御して、感光体表面上の各振れ量測定地点に形成される静電潜像の電位を調整することで、これらの振れ量測定地点が現像領域に存在するときの全現像電界強度を目標電界強度の許容範囲内とする制御である。上記現像電界強度制御は、このようなレーザー書込装置21の制御以外の方法でも行うことも可能であるが、レーザー書込装置21の制御は比較的制御が容易かつ精度よく実行することができることから好ましい方法である。
また、本実施形態では、感光体20Y,20C,20M,20Kの表面電位を検知する表面電位検知手段としての電位センサ120と、所定の基準トナー像のトナー付着量を検知するトナー付着量検知手段としての光学センサ110とを設け、メイン制御部500は、電位センサ120による検知結果と光学センサ110による検知結果とに基づいて、レーザー書込装置21により感光体20Y,20C,20M,20K上に形成される静電潜像の電位(露光部電位)とレーザー書込装置21の露光強度(レーザー発光パワー)との関係(直線近似式y=ax+b)を求め、静電潜像の電位が所定の画像濃度を得るための目標電位である目標露光部電位VL*となるように、求めた関係からレーザー書込装置21のレーザー発光パワーを調整して、画像濃度を調整する電位設定値調整制御を行う画像濃度調整手段として機能する。そして、メイン制御部500は、この電位設定値調整制御後に、上記現像電界強度制御の内容を決定する。これにより、レーザー書込装置21の制御による現像電界強度制御と電位設定値調整制御とを併用する場合でも、安定して、現像電界強度を目標電界強度の許容範囲内とすることができる。
また、本実施形態では、感光体振れ量測定情報及び現像ギャップ測定情報は、いずれも、電位センサ120による検知領域を通過する感光体表面上の地点で測定した振れ量から得られたものである。これにより、各測定地点における現像電界強度をより正確に求めることが可能となり、より正確に現像電界強度を目標電界強度の許容範囲内とすることができる。
また、本実施形態では、現像電界強度制御で行うレーザー書込装置21の制御は、電位設定値調整制御で求めた上記関係(直線近似式y=ax+b)から、上記すべての現像電界強度に対応する感光体表面上の各振れ量測定地点に形成される静電潜像の電位が、該すべての現像電界強度を目標電界強度の許容範囲内とする電位となるように、レーザー書込装置21の露光強度を制御するものである。このように、電位設定値調整制御で求めた上記関係を利用することで、効率的で迅速な処理が可能となる。
また、本実施形態において、メイン制御部500は、RAM504に記憶されている情報のいずれかが更新されたときに現像電界強度制御の内容を決定する。これにより、RAM504に記憶されている情報の更新に対応した最新の内容で現像電界強度制御を行うことができる。
また、本実施形態では、スリーブ振れ量測定地点の数をn1とし、現像スリーブ65の回転駆動時における角速度をω1とし、感光体振れ量測定地点の数をn2とし、感光体20Y,20C,20M,20Kの回転駆動時における角速度をω2としたとき、ω1/ω2=n2/n1の関係式を満たす。これにより、感光体20上の各振れ量測定地点と現像スリーブ65上の各振れ量測定地点との位相が一致し、両者は常に現像領域で対向する。よって、より正確に現像電界強度を目標電界強度の許容範囲内とすることができる。
また、本実施形態では、感光体振れ量測定情報及びスリーブ振れ量測定情報は、それぞれに含まれる振れ量データを、それぞれの振れ量測定地点が回転駆動方向に沿うように配列した情報である。これにより、効率的な処理が可能となる。
なお、本実施形態においては、現像電界強度制御と電位設定値調整制御とを併用する例について説明したが、現像電界強度制御は電位設定値調整制御を行わない構成においても実施できる。
また、本実施形態においては、感光体20上のトナー像を中間転写ベルト10を介して転写紙5に転写する中間転写方式の構成を例に挙げて説明したが、このような構成に限らず、例えば次のような構成も採用できる。紙搬送ベルトを感光体との対向位置に配設し、この紙搬送ベルトの表面に保持させながら搬送している転写紙に対して、感光体上のトナー像を直接転写する方式である。かかる方式でも、基準パッチについては、紙搬送ベルトの表面に保持されている転写紙ではなく、紙搬送ベルトの表面に転写させるようにすることで、紙搬送ベルトの表面上の基準パッチを光学センサに検知させることができる。
また、重ね合わせの転写によって多色トナー像を形成するカラータイプの複写機について説明したが、単色トナー像だけを形成する単色タイプの画像形成装置にも、本発明の適用が可能である。
10 中間転写ベルト
18Y,18C,18M,18K 画像形成ユニット
20Y,20C,20M,20K 感光体
21 レーザー書込装置
60 帯電装置
61Y,61C,61M,61K 現像装置
65 現像スリーブ
100 プリント部
110 光学センサ
120 電位センサ
500 メイン制御部
602,612 振れ量測定基準点
617 書き込み位置
特開2007−33770号公報 特開2008−76576号公報

Claims (8)

  1. 表面が周回移動する潜像担持体と、
    該潜像担持体の表面電位を変化させることで該潜像担持体上に静電潜像を形成する潜像形成手段と、
    表面が周回移動する現像剤担持体の表面を該潜像担持体の表面に対向させ、該潜像担持体上の静電潜像と該現像剤担持体の表面との間に形成される現像電界によって、該現像剤担持体上のトナーを静電潜像に付着させることで現像を行う現像手段とを備え、
    現像により得られた潜像担持体上のトナー像を最終的に記録材上に転移させて、該記録材上に画像を形成する画像形成装置において、
    上記潜像担持体と上記現像剤担持体とが対向する現像領域における該潜像担持体の外周の振れ量を、潜像担持体表面移動方向について少なくとも2以上の地点で測定して得られる各振れ量データ及びそれらの測定地点を示す振れ量測定地点データを、互いに関連付けられた状態で含んでいる潜像担持体振れ量測定情報と、該現像領域における該現像剤担持体の外周の振れ量を、現像剤担持体表面移動方向について少なくとも2以上の地点で測定して得られる各振れ量データ及びそれらの測定地点を示す振れ量測定地点データを、互いに関連付けられた状態で含んでいる現像剤担持体振れ量測定情報とを記憶した振れ量測定情報記憶手段と、
    該潜像担持体振れ量測定情報に含まれる少なくとも1つの振れ量測定地点データが示す振れ量測定地点と、該現像剤担持体の振れ量測定情報に含まれる少なくとも1つの振れ量測定地点データが示す振れ量測定地点とが現像領域で対向したときの現像ギャップを測定して得られる現像ギャップ測定情報を記憶した現像ギャップ測定情報記憶手段と、
    該振れ量測定情報記憶手段に記憶されている該潜像担持体振れ量測定情報及び該現像剤担持体振れ量測定情報と、該現像ギャップ測定情報記憶手段に記憶されている現像ギャップ測定情報とから、該潜像担持体振れ量測定情報に含まれる2以上の振れ量測定地点データが示す振れ量測定地点と該現像剤担持体振れ量測定情報に含まれる2以上の振れ量測定地点データが示す振れ量測定地点とが互いに上記現像領域で対向するときの各現像電界強度を求め、求めたすべての現像電界強度を目標電界強度の許容範囲内とする現像電界強度制御の内容を決定し、決定した制御内容に従って現像電界強度制御を行う現像電界強度制御手段とを有することを特徴とする画像形成装置。
  2. 請求項1の画像形成装置において、
    上記現像電界強度制御手段が行う上記現像電界強度制御は、上記潜像形成手段を制御して、上記すべての現像電界強度に対応する潜像担持体表面上の各振れ量測定地点に形成される静電潜像の電位を調整する制御であることを特徴とする画像形成装置。
  3. 請求項2の画像形成装置において、
    上記潜像担持体は感光体であり、かつ、上記潜像形成手段は露光により該潜像担持体の表面電位を変化させる露光装置であり、
    上記潜像担持体の表面電位を検知する表面電位検知手段と、
    所定の基準トナー像のトナー付着量を検知するトナー付着量検知手段と、
    該表面電位検知手段による検知結果と該トナー付着量検知手段による検知結果とに基づいて、上記潜像形成手段により該潜像担持体上に形成される静電潜像の電位と該潜像形成手段の露光強度との関係を求め、静電潜像の電位が所定の画像濃度を得るための目標電位となるように、求めた該関係から該潜像形成手段の露光強度を調整して、画像濃度を調整する画像濃度調整手段とを有しており、
    上記現像電界強度制御手段は、該画像濃度調整手段による画像濃度の調整後に、上記現像電界強度制御の内容を決定することを特徴とする画像形成装置。
  4. 請求項3の画像形成装置において、
    上記潜像担持体振れ量測定情報及び上記現像ギャップ測定情報は、いずれも、上記表面電位検知手段による検知領域を通過する潜像担持体表面上の地点で測定した振れ量から得られたものであることを特徴とする画像形成装置。
  5. 請求項3又は4の画像形成装置において、
    上記現像電界強度制御手段が行う潜像形成手段の制御は、上記画像濃度調整手段が求めた上記関係から、上記すべての現像電界強度に対応する潜像担持体表面上の各振れ量測定地点に形成される静電潜像の電位が、該すべての現像電界強度を目標電界強度の許容範囲内とする電位となるように、該潜像形成手段の露光強度を制御するものであることを特徴とする画像形成装置。
  6. 請求項1乃至5のいずれか1項に記載の画像形成装置において、
    上記現像電界強度制御手段は、上記振れ量測定情報記憶手段及び現像ギャップ測定情報記憶手段の少なくとも一方に記憶されている情報が更新されたときに、上記現像電界強度制御の内容を決定することを特徴とする画像形成装置。
  7. 請求項1乃至6のいずれか1項に記載の画像形成装置において、
    上記現像剤担持体振れ量測定情報に含まれる振れ量測定地点データの数をn1とし、該現像剤担持体の回転駆動時における角速度をω1とし、上記潜像担持体振れ量測定情報に含まれる振れ量測定地点データの数をn2とし、該潜像担持体の回転駆動時における角速度をω2としたとき、ω1/ω2=n2/n1の関係式を満たすことを特徴とする画像形成装置。
  8. 請求項1乃至7のいずれか1項に記載の画像形成装置において、
    上記潜像担持体振れ量測定情報及び上記現像剤担持体振れ量測定情報は、それぞれに含まれる振れ量データを、それぞれの振れ量測定地点が回転駆動方向に沿うように配列した情報であることを特徴とする画像形成装置。
JP2009038055A 2009-02-20 2009-02-20 画像形成装置 Withdrawn JP2010191364A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009038055A JP2010191364A (ja) 2009-02-20 2009-02-20 画像形成装置
US12/709,034 US8301047B2 (en) 2009-02-20 2010-02-19 Image forming apparatus and method of controlling development electric field strength therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009038055A JP2010191364A (ja) 2009-02-20 2009-02-20 画像形成装置

Publications (1)

Publication Number Publication Date
JP2010191364A true JP2010191364A (ja) 2010-09-02

Family

ID=42631067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009038055A Withdrawn JP2010191364A (ja) 2009-02-20 2009-02-20 画像形成装置

Country Status (2)

Country Link
US (1) US8301047B2 (ja)
JP (1) JP2010191364A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8620170B2 (en) 2010-02-19 2013-12-31 Ricoh Company, Limited Image forming apparatus
JP2015068833A (ja) * 2013-09-26 2015-04-13 株式会社リコー 画像形成装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6489409B2 (ja) 2014-10-15 2019-03-27 株式会社リコー 画像形成装置
EP3043212B1 (en) * 2015-01-09 2020-07-22 Ricoh Company, Ltd. Developing device, process cartridge, and image forming apparatus including same
US9696654B2 (en) 2015-04-03 2017-07-04 Ricoh Company, Ltd. Image forming apparatus comprising image density detector and toner concentration detector

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267269A (ja) * 1991-02-22 1992-09-22 Canon Inc 画像形成装置
JP2003255652A (ja) 2002-02-28 2003-09-10 Ricoh Co Ltd 画像形成装置
JP4004904B2 (ja) * 2002-09-17 2007-11-07 シャープ株式会社 画像形成装置、および、画像形成装置の色重ね調整方法
JP4810119B2 (ja) * 2005-05-09 2011-11-09 キヤノン株式会社 画像形成装置およびその制御方法
JP2007033770A (ja) 2005-07-26 2007-02-08 Ricoh Co Ltd 画像形成装置
JP4815272B2 (ja) * 2006-05-29 2011-11-16 株式会社リコー 現像装置及び画像形成装置
JP4988251B2 (ja) * 2006-06-02 2012-08-01 株式会社リコー 現像装置及び画像形成装置
JP2008076576A (ja) 2006-09-19 2008-04-03 Ricoh Co Ltd 画像形成装置及びプロセスカートリッジ
US7904001B2 (en) * 2007-02-16 2011-03-08 Ricoh Company, Ltd. Developing unit, process cartridge, and image forming apparatus having a plurality of conveyor members, a supply part, and a discharge part
US7792465B2 (en) * 2007-02-20 2010-09-07 Ricoh Company, Ltd. Developing device, process cartridge, and image forming apparatus
JP2008216565A (ja) * 2007-03-02 2008-09-18 Ricoh Co Ltd 現像装置、プロセスカートリッジ、及び、画像形成装置
EP1970770B1 (en) * 2007-03-15 2013-09-18 Konica Minolta Business Technologies, Inc. Image forming apparatus with means to calibrate a toner density sensor
JP5039416B2 (ja) * 2007-04-03 2012-10-03 株式会社リコー 現像装置及び画像形成装置
JP5151391B2 (ja) * 2007-10-22 2013-02-27 株式会社リコー 現像装置、及び画像形成装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8620170B2 (en) 2010-02-19 2013-12-31 Ricoh Company, Limited Image forming apparatus
JP2015068833A (ja) * 2013-09-26 2015-04-13 株式会社リコー 画像形成装置

Also Published As

Publication number Publication date
US20100215389A1 (en) 2010-08-26
US8301047B2 (en) 2012-10-30

Similar Documents

Publication Publication Date Title
JP5376332B2 (ja) 画像形成装置
JP5267946B2 (ja) 画像形成装置
JP6137615B2 (ja) 画像形成装置及び画像濃度制御方法
US9436135B2 (en) Toner pattern density correction in an image forming apparatus
JP2016057582A (ja) 画像形成装置
JP2010191364A (ja) 画像形成装置
JP2014052573A (ja) 画像形成装置
JP2006259334A (ja) 画像形成装置、カラー画像形成装置および画像形成方法
JP6414531B2 (ja) 画像形成装置
JP2009020252A (ja) 電子写真画像形成装置
US10775712B2 (en) Image forming apparatus with a charging amount acquisition unit that performs a charging amount acquisition operation for forming a measurement toner image on an image carrier
JP2012194408A (ja) 画像形成装置
JP2005266686A (ja) 画像形成装置
JP4520181B2 (ja) 画像形成装置
JP6032519B2 (ja) 画像形成装置
JP5674111B2 (ja) 画像形成装置
JP2011248003A (ja) 画像形成装置
JP2017097033A (ja) 画像形成装置
JP2005017627A (ja) 画像形成装置
JP2005148355A (ja) 画像形成装置
JP2003330232A (ja) 画像制御方法
JP2017068041A (ja) 画像形成装置
JP5692643B2 (ja) 画像形成装置
JP2008122433A (ja) 画像形成装置
JP2005092118A (ja) 画像形成装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120501