JP2010184398A - 画像形成装置、光学走査装置、及びそれらの制御方法 - Google Patents

画像形成装置、光学走査装置、及びそれらの制御方法 Download PDF

Info

Publication number
JP2010184398A
JP2010184398A JP2009029113A JP2009029113A JP2010184398A JP 2010184398 A JP2010184398 A JP 2010184398A JP 2009029113 A JP2009029113 A JP 2009029113A JP 2009029113 A JP2009029113 A JP 2009029113A JP 2010184398 A JP2010184398 A JP 2010184398A
Authority
JP
Japan
Prior art keywords
current
laser
output
light
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009029113A
Other languages
English (en)
Other versions
JP5667746B2 (ja
JP2010184398A5 (ja
Inventor
Takashi Sugano
高士 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009029113A priority Critical patent/JP5667746B2/ja
Publication of JP2010184398A publication Critical patent/JP2010184398A/ja
Publication of JP2010184398A5 publication Critical patent/JP2010184398A5/ja
Application granted granted Critical
Publication of JP5667746B2 publication Critical patent/JP5667746B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

【課題】半導体レーザへ電流を供給するD/Aコンバータに対して、適切な基準電圧を設定し、光量の補正精度を向上する画像形成装置、光学走査装置、及びそれらの制御方法を提供する。
【解決手段】本発明の画像形成装置は、APCの実行により、半導体レーザへ電流を供給する電流値を決定し、当該電流値の電流を第1のD/Aコンバータから出力させる。さらに、画像形成装置は、電流/電圧変換部において当該電流値を電圧値に変換するとともに、当該電圧値を、光量補正を実行するための第2のD/Aコンバータの基準電圧に設定する。
【選択図】図1

Description

本発明は、複写機、プリンタ、ファクシミリ装置等の画像形成装置、画像形成装置において使用される光学走査装置、及びそれらの制御方法に関するものである。
複写機、プリンタ、ファクシミリ装置等、電子写真方式の画像形成装置において使用される光学走査装置では、感光ドラムにおける主走査方向の1走査中に発光するレーザの光量を一定に保つべく、自動光量制御(APC:Automatic Power Control)が知られている。光学走査装置は、APCにおいて、1走査中のビーム検出区間(BD区間)でレーザの光量を検出し、当該検出結果に基づいてレーザの駆動電流を制御する。
一般的に、APCには、レーザから発光される光量が一定に保たれたとしても、ビームが照射される感光ドラム上の1走査区間における中央部と両端部とで、その照度が不均一になる問題がある。これは、光学走査装置の回転多面鏡(ポリゴンミラー)へ入射されるビームの強度が、集光光学系の光軸近傍で最大となるようにガウス分布を形成しているためである。これにより、感光ドラム上の被走査面における照度は、像高が大きくなる(感光ドラムの端部へ向かう)につれて小さくなる傾向がある。その結果、形成される画像に濃度むらが発生するという問題がある。
この問題に対し、例えば、特許文献1では、感光ドラム上の1走査区間を複数ブロックに分割し、各ブロックに対して半導体レーザから発光する光量を補正するための補正データを記憶装置に保持する画像形成装置が提案されている。さらに、当該画像形成装置は、各ブロックの補正データをブロック間で線形補間することにより1走査区間の補正データを算出し、当該補正データを用いて半導体レーザの駆動電流を制御する。これにより、感光ドラムの端部における光量を補正している。
ここで、図14及び図15は、上述の従来技術における画像形成装置及びレーザ駆動部の構成例を示す図である。図14における画像形成装置1において、エンジン制御部3の内部にD/Aコンバータ57とローパスフィルタ(LPF)58とを備える。
D/Aコンバータ57は、1走査中のBD区間におけるAPCの実行に際し、サンプルホールドされた基準信号56を基準電圧として使用する。ここで、基準電圧とは、半導体レーザが出力する最大の光量に対応した電圧値であって、レーザ制御回路21に接続されたコンデンサ51に保持されている電圧である。D/Aコンバータ57は、半導体レーザが発光する光量を補正すべく、エンジン制御部3で生成された上述の補正データに基づいて、デジタル・アナログ変換を実行し、補正データ電圧信号をアナログ信号として出力する。当該信号は、CR等で構成されたローパスフィルタ58へ入力される。ローパスフィルタ58においてフィルタリングが施され、出力された補正データ電圧信号43は、レーザ制御回路21へ入力される。レーザ制御回路21内部のパルス電流源は、入力された補正データ電圧信号43に応じて、半導体レーザの駆動電流を制御することにより、発光される光量を可変とする。当該制御によって、1走査中の光量が補正される。
しかしながら、上述の従来技術では、光学走査装置が出力するビームが多ビーム(例えば、32ビーム等)の場合、画像形成装置はビームごとにAPCを実行するため、1走査中に全てのビームに対してAPCを実行することが困難となる。この場合、APCにより設定された各ビームに対応した電圧を複数のコンデンサへ長時間保持することが必要となり、各コンデンサが回路内のリーク電流等の影響を受けやすくなる。その結果、コンデンサの電圧値が変動するとともに、D/Aコンバータ57の基準電圧が変動し、光量の補正が正しく行われなくなるという問題がある。
この問題に対しては、電流出力型のD/Aコンバータを用いて、半導体レーザの駆動電流を制御することにより、光量の補正を行う手法が有効である。この場合、D/Aコンバータに対して設定する基準電圧を、半導体レーザに対して所望の電流を供給することが可能な範囲で適切に設定する必要がある。
特開2003−29954号公報
しかしながら、上述の電流出力型のD/Aコンバータを用いて半導体レーザの駆動電流を制御する手法には、以下のような問題がある。例えば、D/Aコンバータから半導体レーザへ出力する電流の補正範囲が、設定した基準電圧に対応する電流の最大値よりも小さい場合、D/Aコンバータの動作領域を十分に使用することができない。これにより、半導体レーザが発光する光量の補正精度が劣化してしまうという問題がある。また、画像形成装置に使用される半導体レーザや光学走査装置の光学特性に依存して、光量の補正精度が異なってしまうという問題がある。
本発明は、上述の問題に鑑みてなされたものであり、半導体レーザへ電流を供給するD/Aコンバータに対して、適切な基準電圧を設定し、光量の補正精度を改善する画像形成装置、光学走査装置、及びそれらの制御方法を提供することを目的としている。
本発明は、例えば、画像形成装置として実現できる。画像形成装置は、量子化された電流値の電流により駆動され、電流値に応じた光量のレーザを出力する光源を備え、光源から出力されるレーザにより像担持体を走査する画像形成装置であって、光源から出力されるレーザの光量を検出する検出手段と、検出手段の検出結果に基づいて、レーザの光量の最大値が予め定められた光量となるように、光源に出力する電流の最大値を決定する決定手段と、決定手段により決定された電流の最大値を電圧値に変換する変換手段と、変換手段により変換された電圧値に対応する電流値を最大値として電流値を量子化し、光源から出力されるレーザの光量が可変となるように、量子化された電流値に基づいて光源に出力する電流を制御する制御手段とを備えることを特徴とする。
本発明は、例えば、光学走査装置として実現できる。光学走査装置は、量子化された電流値の電流により駆動され、電流値に応じた光量のレーザを出力する光源を備え、光源から出力されるレーザにより走査対象を走査する光学走査装置であって、光源から出力されるレーザの光量を検出する検出手段と、検出手段の検出結果に基づいて、レーザの光量の最大値が予め定められた光量となるように、光源に出力する電流の最大値を決定する決定手段と、決定手段により決定された電流の最大値を電圧値に変換する変換手段と、変換手段により変換された電圧値に対応する電流値を最大値として電流値を量子化し、光源から出力されるレーザの光量が可変となるように、量子化された電流値に基づいて光源に出力する電流を制御する制御手段とを備えることを特徴とする。
本発明は、例えば、画像形成装置の制御方法として実現できる。制御方法は、量子化された電流値の電流により駆動され、電流値に応じた光量のレーザを出力する光源を備え、光源から出力されるレーザにより像担持体を走査する画像形成装置の制御方法であって、光源から出力されるレーザの光量を検出する検出ステップと、検出ステップの検出結果に基づいて、レーザの光量の最大値が予め定められた光量となるように、光源に出力する電流の最大値を決定する決定ステップと、決定ステップにより決定された電流の最大値を電圧値に変換する変換ステップと、変換ステップにより変換された電圧値に対応する電流値を最大値として電流値を量子化し、光源から出力されるレーザの光量が可変となるように、量子化された電流値に基づいて光源に出力する電流を制御する制御ステップとを実行することを特徴とする。
本発明は、例えば、光学走査装置の制御方法として実現できる。制御方法は、量子化された電流値の電流により駆動され、電流値に応じた光量のレーザを出力する光源を備え、光源から出力されるレーザにより走査対象を走査する光学走査装置の制御方法であって、光源から出力されるレーザの光量を検出する検出ステップと、検出ステップの検出結果に基づいて、レーザの光量の最大値が予め定められた光量となるように、光源に出力する電流の最大値を決定する決定ステップと、決定ステップにより決定された電流の最大値を電圧値に変換する変換ステップと、変換ステップにより変換された電圧値に対応する電流値を最大値として電流値を量子化し、光源から出力されるレーザの光量が可変となるように、量子化された電流値に基づいて光源に出力する電流を制御する制御ステップとを実行することを特徴とする。
本発明によれば、例えば、半導体レーザへ電流を供給するD/Aコンバータに対して、適切な基準電圧を設定し、光量の補正精度を改善する画像形成装置、光学走査装置、及びそれらの制御方法を提供できる。
本実施形態に係る画像形成装置のブロック構成例を示す図である。 本実施形態に係るレーザ制御回路163のブロック構成例を示す図である。 本実施形態に係るレーザ制御回路163におけるDAC206、209から出力される電流の電流値225、224とLD165aの光量Poとの関係を示す図である。 本実施形態に係るレーザ制御回路163におけるDAC206、209から出力される電流の電流値225、224とLD165aの光量Poとの関係を示す図である。 本実施形態に係るレーザ制御回路163における、画像形成の際の動作モードを示す図である。 本実施形態に係るレーザ制御回路163における動作状態の遷移を示す図である。 光学走査装置における半導体レーザ165及びレーザ駆動部166の周辺の構成例を示す図である。 本実施形態に係る光量補正の前後における、感光ドラム19上の主走査方向の光量分布と、半導体レーザ165のチップ面の光量分布とを示す図である。 光量補正前における感光ドラム19上の光量分布の一例を示す図である。 感光ドラム19上の各ドラム位置ブロック1001における光量1003、補正率1004、補正データ1005、及びLD165aの電流値1006の一例を示す図である。 本実施形態の比較例となるレーザ制御回路のブロック構成例を示す図である。 本実施形態の比較例となるレーザ制御回路100におけるDAC102、103から出力される電流Ib、Iswの電流値とLD110aの光量Poとの関係を示す図である。 本実施形態に係るレーザ制御回路163における光量補正の制御手順を示すフローチャートである。 従来技術における画像形成装置の構成例を示す図である。 従来技術におけるレーザ駆動部の構成例を示す図である。
以下に本発明の一実施形態を示す。以下で説明される実施形態は、本発明の上位概念、中位概念及び下位概念など種々の概念を理解するために役立つであろう。また、本発明の技術的範囲は、特許請求の範囲によって確定されるのであって、以下の実施形態によって限定されるわけではない。
<画像形成装置の構成>
以下では、図1乃至図13を参照して、本発明の実施形態について説明する。
図1は、本実施形態に係る画像形成装置のブロック構成例を示す図である。なお、図1は、画像形成装置161の中でも光学走査に係る部分についてのみ示している。画像形成装置161は、光学走査装置(レーザスキャナユニット)162、バックアップメモリ176、エンジン制御部(CPU)177、レーザスキャナ制御部178、及び画像制御部180を備える。光学走査装置162は、CPU177からの指示に基づいて、レーザスキャナ制御部178によって制御される。
図7は、図1に示す光学走査装置における半導体レーザ165及びレーザ駆動部166の周辺の構成例を示す図である。感光ドラム(像担持体)19に対して画像が形成される画像領域において、光源である半導体レーザ165から出力されたレーザビーム(L1)は、シリンドリカルレンズ14を介してポリゴンミラー15へ到達する。ポリゴンミラー15は、スキャナモータユニット16の駆動により等角速度で回転している。そのため、レーザビーム(L1)は、ポリゴンミラー15によって偏向され、fθレンズ17へ到達する。さらに、レーザビーム(L1)は、fθレンズ17によって、走査対象である感光ドラム19をその回転方向と直角方向に等速で走査するように変換される。fθレンズ17を出射したレーザビーム(L1)は、反射ミラー18において反射し、感光ドラム19を照射することにより露光する。その結果、感光ドラム19上に静電潜像が形成される。当該静電潜像は、トナーによって現像された後、記録用紙に対して転写及び定着されることにより、当該記録用紙に画像形成(印字)される。
一方、感光ドラム19に対して画像が形成されない非画像領域において、半導体レーザ165から出力されたレーザビーム(L2)は、ポリゴンミラー15によって偏向された後、fθレンズ17を介してビーム検出(以下では、「BD」と称する。)センサ20へ到達する。BDセンサ20によってレーザビーム(L2)が検出されることにより、レーザビーム(L1)の走査開始等のタイミングが検出される。
図2は、本実施形態に係るレーザ制御回路163のブロック構成例を示す図である。レーザ制御回路163は、レーザダイオード(以下では、「LD」と称する。)とする)165aの駆動電流を制御することにより、LD165aを所定の光量で発光させる。半導体レーザ165は、LD165aと、LD165aから出力されるレーザビームを検出するフォトダイオード(以下では、「PD」と称する。)165bとを備える。PD165bは、検出したレーザビームの光量に応じた電流を、APC制御部207へ出力する。
APC制御部207は、LD165aから発光されるレーザビームの光量を調整可能な電子VRを内蔵する。電子VRは、PD165b及びレーザ制御回路163の電源に接続され、VR制御部208によって制御される。
電子VRの設定は、図1のCPU177からの通信信号183を用いた指示により、レーザスキャナ制御部178によって実行される。具体的には、当該設定は、光学走査装置162内部のEEPROM164に記憶されている値が、VR制御部208へ読み込まれることにより行われる。なお、EEPROM164には、予め出荷時に工場等で電子VRの設定値が書き込まれている。また、当該設定は、図2のCS(チップセレクト)173、SCK(シリアルクロック)174、DIO(データI/O)175を用いたシリアル通信により実現される。
VR制御部に対する電子VRの設定値が設定されると、画像形成装置では、後述する自動光量制御(APC:Automatic Power Control)が実施される。
<レーザ制御回路の動作モード>
次に、図5及び図6を参照して、レーザ制御回路163における、画像形成の際の動作モードについて説明する。
図5は、本実施形態に係るレーザ制御回路163における、画像形成の際の動作モードを示す図である。レーザ制御回路163における動作モードは、図5に示すように、レーザスキャナ制御部178から出力されるAPC制御信号211、バイアスAPC制御信号212、及びデータ出力制御信号214の3つの制御信号の状態に基づいて決定される。例えば、制御信号211、212、214が各々、ハイレベル(H)、ハイレベル(H)、ローレベル(L)の場合、レーザ制御回路163の動作モードは、データ出力モード(DATA OUT)と決定される。また、決定された動作モードに応じて、APC制御部207の動作状態、及び出力選択部202の出力状態が図5に示す状態へ制御される。
また、図6は、本実施形態に係るレーザ制御回路163における動作状態の遷移を示す図である。レーザ制御回路163は、制御信号211、212、214により、図6に示すように状態が遷移するように制御される。レーザ駆動部166の駆動により、LD165aから出力したレーザビーム(L2)は、非画像領域において、BDセンサ20へ入射する。レーザビーム(L2)を検出したBDセンサ20は、ローレベルの信号を出力する。レーザ制御回路163は、当該出力信号の立ち下りエッジを基準として、光量制御モード(APC、Bias APC)、レーザ強制消灯モード(OFF)、データ出力モード(DATA OUT)、レーザ強制消灯モード(OFF)、光量制御モード(APC)の順で制御される。
以下では、図2を参照して、図5及び図6に示したレーザ制御回路163の各動作モードにおける、APC制御部207の動作状態及び出力選択部202の出力状態について説明する。
(1)光量制御モード(APC、Bias APC)
光量制御モードにおいて、APC制御部207は、APCを実行することにより、バイアス電流(Ib)用のD/Aコンバータ(DAC)206、及びスイッチング電流(Isw)用のDAC209に設定する量子化データを更新する。また、出力選択部202は、画像制御部180からのデータ出力(VDOn信号203a及び/VDOn信号203b)によらず、LD165aが発光するように、トランジスタ201a、201bへスイッチング信号231、232を強制出力する。なお、光量制御モードにおけるレーザ制御回路163の処理は、後述するように、APCモード(APC)、及びバイアスAPCモード(Bias APC)の2段階で実行される。
(2)レーザ強制消灯モード(OFF)
レーザ強制消灯モードにおいて、APC制御部207は、光量制御モードで設定した設定値を保持する。また、出力選択部202は、VDOn信号203a及び/VDOn信号203bによらず、LD165aが消灯するように、トランジスタ201a、201bへスイッチング信号231、232の出力を停止する。
(3)データ出力モード(DATA OUT)
画像形成装置が記録用紙に対してプリントを行う画像領域において、レーザ制御回路163はデータ出力モードとなる。データ出力モードにおいて、APC制御部207は、光量制御モードで設定した設定値を保持し続けるとともに、当該設定値を用いて光量補正を実行する。また、出力選択部202は、VDOn信号203a及び/VDOn信号203bに応じて、スイッチング信号231、232を出力する。これにより、LD165a及び抵抗200の何れかに電流が流れ、LD165aにおける発光及び消灯の制御が行われる。
(4)リセットモード(RESET)
リセットモードにおいて、APC制御部207は、光量制御モードで設定した設定値を初期化する。また、出力選択部202は、VDOn信号203a及び/VDOn信号203bによらず、LD165aが消灯するように、トランジスタ201a、201bへスイッチング信号231、232の出力を停止する。
<比較例>
次に、本発明の比較例となるレーザ制御回路の動作について説明する。図11は、本実施形態の比較例となるレーザ制御回路のブロック構成例を示す図である。本実施形態と比較して、比較例では、図1に示す画像形成装置のブロック構成の中でレーザ制御回路が図11に示す構成となる。
CPU177からAPCの実行を指示されたレーザスキャナ制御部178は、APC制御信号、バイアスAPC制御信号、及びデータ出力制御信号を用いて、レーザ制御回路100へ制御信号を出力する。これにより、レーザ制御回路100はAPCを開始する。
APCに際して、まず、バイアス電流(Ib)用のDAC102、及びスイッチング電流(Isw)用のDAC103に対して、それらが出力する電流の最大値に対応する電圧が、基準電圧として設定される。当該基準電圧により、DAC102、103の動作領域、すなわち、DAC102、103が出力する電流の最大値が設定される。その後、APC制御部101の制御によるAPCの結果、DAC102、103から出力される電流Ib、Iswの値が決定される。このとき、APC制御部101からDAC102、103に対して量子化データ121、122が設定されるとともに、これらに応じてDAC102、103からIb、Iswが出力される。さらに、Isw用のDAC103は、LD110aから出力される光量を調整すべく、光量補正制御部(SD−CTL)105の制御により、APCによって設定されたIswを補正した後、出力する。
比較例において、Isw用のDAC103にはゲイン制御部104が接続され、その制御により、基準電圧(ゲイン)が可変に設定される。このとき、基準電圧は、DAC103がLD110aに対して所望の電流を供給することが可能な範囲で、適切に設定される必要がある。
図12は、本実施形態の比較例となるレーザ制御回路100におけるDAC102、103から出力される電流Ib、Iswの電流値とLD110aの光量Poとの関係を示す図である。図12では、APCの結果、Ib、Iswは10mA、21.6mAに設定されるごとに、DAC102、103に対して所定の基準電圧(ゲイン1)が与えられた場合を示している。また、当該基準電圧が設定された場合に、DAC102、103がそれらの電流値を出力するための量子化データは、51、220(10進数)となっている。なお、当該量子化データは、8bit、256階調(0〜255)で設定されている。ここで、図12のDより、当該基準電圧の場合、Iswの電流値はDAC103が出力可能な最大値の半分以下であり、LD110aの光量補正の際に、DAC103の動作領域が十分に使用されないことになる。
このような場合、比較例では、ゲイン制御部104からDAC103へ設定する基準電圧を調整する。例えば、図12のDに示すように、基準電圧を半分に設定(ゲイン1/2)することにより、DAC103の動作領域における使用部分が増加し、光量の補正精度が2倍に改善する。その一方で、DAC103が出力する電流値のうち、光量補正時に使用可能な値は、8bitの量子化データによる256階調の中で220階調に留まる。従って、DAC103の動作領域における使用範囲をフルスケールにするためには、DAC103において光量補正後に出力される電流値の最大値と、DAC103に設定される基準電圧に対応する電流値を等しくする必要がある。
後述する本実施形態に係る画像形成装置のレーザ制御回路163では、Isw用のDACに設定する基準電圧を、APCにより決定された電流値に基づいて設定することで、当該DACの動作領域をフルスケールで使用する。
<レーザ制御回路の動作>
次に、本実施形態に係るレーザ制御回路163における動作について説明する。
(APC)
CPU177からAPCの実行を指示されたレーザスキャナ制御部178は、APC制御信号211、バイアスAPC制御信号212、及びデータ出力制御信号214により、レーザ制御回路163をAPCモードとする。APCモードにおいて、出力選択部202は、トランジスタ201aをONにしてLD165aに対して電流を流すことにより、光源であるLD165aからレーザビームを発光させる。これに対して、PD165bは、LD165aから発光されたレーザビームを検出し、当該検出結果に基づいて、レーザビームの光量に応じたPD電流219を出力する。PD電流219はAPC制御部207に入力され、その内部の電子VRにより電圧値へ変換される。APC制御部207は、当該電圧値と、予め定められた基準電圧とを比較し、それらが等しくなるまで、DAC209へ設定する量子化データ220を調整する。なお、本実施形態において当該量子化データは、8bit、256階調(0〜255)で設定される。
ここで、図3及び図4は、本実施形態に係るレーザ制御回路163におけるDAC206、209から出力される電流の電流値225、224とLD165aの光量Poとの関係を示す図である。図3及び図4のAは、LD165aの電流対光量(I−L)特性を示す。本実施形態では、APCによって調整される光量(以下では、「調整光量」と称する。)を、20mWとした場合を一例して説明する。なお、DAC206、209の基準電圧は、調整光量に基づいて予め定められる。なお、図3はAPC及びバイアスAPCの際、図4はAPC及びバイアスAPCの終了後の状態を示している。
図3のB及びCは、APC制御部207からDAC206、209へ出力される量子化データ213、220と、DAC206、209から出力される電流値224、225とを示す。なお、量子化データ213、220として各々、最大値の255(10進数)が設定されると、DAC206、209は、50mAの電流をその最大値として出力可能である。
図3のBに示すように、APC及びバイアスAPCの実行の際に、量子化データ213は常に0(10進数)であり、電流値224も0mAである。すなわち、APCにおいてDAC206は用いられず、DAC209のみが用いられる。また、図3のCは、APCの結果、LD165aが発光する光量を調整光量である20mWへ制御するための電流値225は40mA、量子化データ220は204(10進数)となることを示している。
DAC209から出力された電流は、電流/電圧(I/V)変換部226により電圧変換され、その電圧値227はDAC228に入力される。この電圧値227は、DAC228において基準電圧として設定される。
後述するように、データ出力モードにおいて、DAC228は、当該基準電圧の設定に基づいて、光量補正制御部(SD−CTL)217から入力される量子化データ230に応じた電流値229を出力する。当該電流値229の変化により、LD165aが発光する光量が補正される。なお、APCモード及びバイアスAPCモードにおけるAPCの実行中には、量子化データ230として常に最大値の255(10進数)が設定される。このため、DAC228から出力される電流Iswの電流値229は、DAC209から出力される電流値225と等しくなる。
(バイアスAPC)
上述のAPCが終了すると、CPU177は、レーザスキャナ制御部178に対して、バイアスAPCを実行するように指示する。レーザスキャナ制御部178は、APC制御信号211、バイアスAPC制御信号212、及びデータ出力制御信号214により、レーザ制御回路163をバイアスAPCモードとする。これにより、レーザ制御回路163においてバイアスAPCが実行され、データ出力モードにおいてDAC206が出力するバイアス電流Ibの電流値224が決定される。当該電流値は、図3のAにおけるIbであって、レーザ閾値電流の電流値に相当するものである。
バイアスAPCに際して、APC制御部207は、まず、APCのターゲットとなる光量を適当な値に定める。さらに、当該光量をターゲットとしてAPCを実行することにより、APC制御部207からDAC209へ出力する量子化データ220と、DAC209から出力される電流の電流値225とが求められる。
図3は、一例として、ターゲットの光量を、調整光量の1/4の光量としてバイアスAPCが実行された場合を示している。その際、APC制御部207では、調整光量の基準電圧の1/4の電圧値と、PD電流219に対応した電圧値とが等しくなるように、APCが実行される。図3のCでは、当該APCの結果、LD165aが発光する光量を調整光量の1/4の光量へ制御するための電流値225が23.8mAであることを示し、量子化データ220が121(10進数)となることを示している。
APC制御部207は、APCモード及びバイアスAPCモードにおけるAPCの実行により求められた量子化データ220を用いて、レーザ閾値電流に相当する電流値Ibを算出する。当該算出方法の一例としては、まず、図3のI−L特性におけるレーザ閾値電流値を超える範囲を一次関数で近似する。当該一次関数は、1/4光量及び調整光量と、それらに対応する量子化データとから求められる。さらに、当該一次関数に基づいて、光量0に対応する量子化データが算出されるとともに電流値Ibが算出される。
APC制御部207は、電流値IbをDAC206から出力させるべく、算出した量子化データをDAC206に対して設定する。図4のBは、バイアスAPCの結果、電流値224が18.4mA、量子化データ213が94(10進数)となることを示している。
量子化データ213及び電流値224を決定した後、APC制御部207は、データ出力モードにおいて用いる電流値225及び量子化データ220を決定する。具体的には、APC制御部207は、APCモードにおいて求められた電流値と、バイアスAPCモードにおいて求められたバイアス電流Ibとの差分を、DAC209が出力する電流値225と決定する。また、当該電流値をDAC209が出力するための量子化データ220を決定する。例えば、図3のCにおける量子化データ204(10進数)と、図4のBにおける量子化データ94(10進数)との差分である110(10進数)が、図4のCに示す量子化データ220として設定される。なお、当該演算は、APCモード及びバイアスAPCモードの実行の際に、レーザのI−L特性が変化しないという想定に基づいている。
以上により求められた量子化データ213、220は、DAC206、209に対して設定される。これにより、LD165aから発光されるレーザビームの光量が、調整光量へと制御される。次に、レーザ制御回路163は、データ出力モードにおける感光ドラム19上の1主走査区間におけるレーザの各照射位置の光量のばらつきである光量分布を均一化すべく、LD165aから感光ドラム19へ照射する光量を補正する。以下では、光量補正の方法について説明する。
(光量補正)
図8は、本実施形態に係る光量補正の前後における、感光ドラム19上の主走査方向の光量分布と、半導体レーザ165のチップ面の光量分布とを示す図である。なお、図8のA乃至Dで、横軸は感光ドラム19上の主走査方向位置を示し、縦軸は光量を示している。図8のCのように半導体レーザ165のチップ面における光量分布を均一とすると、レーザビームが照射された感光ドラム19上における光量分布は図8のAのように不均一となる。そこで、図8のDのように半導体レーザ165のチップ面における光量分布を補正することにより、図8のBのように感光ドラム19上における光量分布を均一化する。
ここで、図9は、光量補正前における感光ドラム19上の光量分布の一例を示す図である。まず、レーザ制御回路163は、図9に示すように、感光ドラム19の表面における1主走査区間を複数のブロックに分割し、各ブロックの位置における光量を測定する。さらに、レーザ制御回路163は、当該測定結果に基づいて、各ブロック位置の光量の最小値(最小光量)を基準として、各ブロック位置に対して半導体レーザ165から発光するレーザビームの光量を補正するための補正データを算出する。当該補正データは、実測した光量分布の最小光量に対する比率である補正率により算出される。なお、各ブロック位置に関するデータは、EEPROM164に予め出荷時に工場等で書き込まれている。
図10は、図9に示す感光ドラム19上の各ドラム位置ブロック1001における光量1003、補正率1004、補正データ1005、及びLD165aの電流値1006の一例を示す図である。なお、補正データは、補正率に基づいて求められる8bitの量子化データであって、光量補正制御部217からDAC228に対して設定される設定値となる。また、データ名1002は図9に示す同一の符号と対応している。
ここで、一例として、ドラム位置ブロック10における補正データの算出方法について説明する。まず、図9の光量分布おいて、最小光量となるのはドラム位置ブロック0及び24であって、当該光量の実測値は、図10より200μWである。また、ドラム位置ブロック10の光量の実測値は、図10より258μWである。これらの値を用いることにより、光量の補正率は、ドラム位置ブロック10の光量を最小光量で減算し、当該減算結果を最小光量で除算することにより、
補正率=(258[μW]−200[μW])/200[μW]=29[%]
と求められる。さらに、補正データは、8bitの量子化データとして、
補正データ=255×(100[%]−光量補正率[%])/100=181(10進数)
と求められる。同様の演算により求められた各ブロック位置における補正データは、EEPROM164に格納される。
次に、データ出力モードへの移行に際し、EEPROM164に格納された補正データは、レーザスキャナ制御部178内部の補正データ格納部179へ読み出され、保存される。当該補正データは、ドラム位置ブロック0から順番に、補正データ格納部179から光量補正制御部(SD−CTL)217へ送信される。なお、当該送信処理は、クロック信号であるIswSDCLK170、書き込みイネーブル信号であるIswWEN171、及び補正データ信号であるIswSDDATA172を用いて実行される。
データ出力モードへ移行したレーザ制御回路163は、画像領域において、光量補正制御部217からDAC228に対して、8bitに量子化された補正データ230を位置ブロック0から順に送信する。DAC228は、当該補正データに基づき、APC及びバイアスAPCにより決定された電流値を補正して、電流を出力する。例えば、図10によると、感光ドラム19上における位置ブロック10の位置をレーザビームが走査する際には、181(10進数)という補正データがDAC228に与えられる。すると、DAC228は、図4のDに示すように決定された電流値21.6mAを181/255倍した電流値15.3mAの電流を出力する。
レーザ制御回路163によって、以上の光量補正が全てのドラム位置ブロックにおいて実行されることにより、半導体レーザ165のチップ面の光量分布は図8のDのようになり、感光ドラム19上の光量分布は図8のBのように均一となる。
<レーザ制御回路の制御手順>
最後に、本実施形態に係る光量補正の制御手順について説明する。図13は、本実施形態に係るレーザ制御回路163における光量補正の制御手順を示すフローチャートである。
ステップS1301において、APC制御部207は、APCを実行する。上述のように、APC制御部207は、LD165aからレーザビームを発光させ、PD165bにそれを検出させる。APC制御部207は、PD165bにおける当該検出結果に基づいて、APCを実行する。これにより、APC制御部207は、バイアス電流(Ib)及びスイッチング電流(Isw)を用いてLD165aへ供給する電流の電流値を決定する。なお、データ出力モードにおいて、当該電流値は、光量補正後にLd165aへ供給される電流の最大値となる。その後、ステップS1302へ移行する。
ステップS1302において、APC制御部207は、バイアスAPCを実行する。上述のように、APC制御部207は、バイアスAPCによりバイアス電流Ibの電流値224を決定する。なお、DAC206には、当該電流値224を出力するための量子化データ213が設定される。その後、ステップS1303へ移行する。
ステップS1303において、APC制御部207は、DAC228における出力電流であるIswの最大値を決定する。さらに、APC制御部207は、当該電流値の電流をDAC209が出力するように、量子化データ220をDAC209へ設定する。その後、ステップS1304へ移行する。
ステップS1304において、I/V変換部226は、DAC209から出力される電流の電流値225を電圧値227に変換し、DAC228へ出力する。その後、ステップS1305へ移行する。
ステップS1305において、DAC228は、入力された電圧値227を基準電圧として設定する。これにより、DAC228から出力される電流の最大値がAPC制御部207により決定された値に設定される。その後、ステップS1306へ移行する。
画像形成装置がデータ出力モードとなると、ステップS1306において、DAC228は、上述のように予め算出された補正データに基づいて、Iswを可変とすることにより、光量補正を実行する。
以上説明したように、本実施形態に係る画像形成装置は、APCの実行により、半導体レーザへ電流を供給する電流の最大値を決定し、当該電流値の電流を第1のD/Aコンバータから出力させる。さらに、画像形成装置は、電流/電圧変換部において当該電流値を電圧値に変換するとともに、当該電圧値を、光量補正を実行するための第2のD/Aコンバータの基準電圧に設定する。当該処理により、第2のD/Aコンバータにおける光量補正後に出力される量子化された電流値の最大値を、半導体レーザへ供給される電流の最大値に設定することができるため、当該D/Aコンバータの動作領域をフルスケールで使用することができる。その結果、第2のD/Aコンバータから出力される電流値の量子化の分解能を改善できるとともに、光量の補正精度を改善できる。
13:コリメートレンズ
14:シリンドリカルレンズ
15:ポリゴンミラー
16:スキャナモータユニット
17:fθレンズ
18:反射ミラー
19:感光ドラム
20:BDセンサ
161:画像形成装置
162:光学走査装置(レーザスキャナユニット)
163:レーザ制御回路
164:EEPROM
165:半導体レーザ
165a:レーザダイオード(LD)
165b:フォトダイオード(PD)
166:レーザ駆動部
176:バックアップメモリ
177:エンジン制御部(CPU)
178:レーザスキャナ制御部
179:補正データ格納部
180:画像制御部
200:抵抗
201a、201b:トランジスタ
202:出力選択部
204:動作設定部(SIO−CTL)
206、209、228:D/Aコンバータ(DAC)
207:APC制御部
208:VR制御部(VR−CTL)
217:光量補正制御部(SD−CTL)
226:電流/電圧(I/V)変換部
211:APC制御信号
212:バイアスAPC制御信号
214:データ出力制御信号

Claims (8)

  1. 量子化された電流値の電流により駆動され、該電流値に応じた光量のレーザを出力する光源を備え、前記光源から出力されるレーザにより像担持体を走査する画像形成装置であって、
    前記光源から出力されるレーザの光量を検出する検出手段と、
    前記検出手段の検出結果に基づいて、前記レーザの光量の最大値が予め定められた光量となるように、前記光源に出力する電流の最大値を決定する決定手段と、
    前記決定手段により決定された電流の最大値を電圧値に変換する変換手段と、
    前記変換手段により変換された前記電圧値に対応する電流値を最大値として該電流値を量子化し、前記光源から出力されるレーザの光量が可変となるように、量子化された電流値に基づいて前記光源に出力する電流を制御する制御手段と
    を備えることを特徴とする画像形成装置。
  2. 前記制御手段は、
    像担持体に対して同じ光量でレーザを照射した場合の1主走査区間における各照射位置の光量のばらつきを補正するための補正データに応じて、レーザの光量が可変となるように、前記光源へ出力する電流を制御することを特徴とする請求項1に記載の画像形成装置。
  3. 前記像担持体の表面を複数の領域に分割し、各領域において前記光源から照射されるレーザの光量を測定する測定手段と、
    前記測定手段による測定結果に基づいて、前記補正データを算出する算出手段と
    を更に備えることを特徴とする請求項2に記載の画像形成装置。
  4. 前記算出手段は、
    前記測定手段により測定された各領域の光量を、前記測定手段により測定された全ての領域の光量における最小値で減算し、減算結果を該最小値で除算することにより、前記補正データを算出することを特徴とする請求項3に記載の画像形成装置。
  5. 前記算出手段により算出された前記補正データを記憶する記憶手段を更に備え、
    前記制御手段は、
    前記記憶手段に記憶された前記補正データを参照して、前記光源へ出力する電流を制御することを特徴とする請求項3又は4に記載の画像形成装置。
  6. 量子化された電流値の電流により駆動され、該電流値に応じた光量のレーザを出力する光源を備え、前記光源から出力されるレーザにより走査対象を走査する光学走査装置であって、
    前記光源から出力されるレーザの光量を検出する検出手段と、
    前記検出手段の検出結果に基づいて、前記レーザの光量の最大値が予め定められた光量となるように、前記光源に出力する電流の最大値を決定する決定手段と、
    前記決定手段により決定された電流の最大値を電圧値に変換する変換手段と、
    前記変換手段により変換された前記電圧値に対応する電流値を最大値として該電流値を量子化し、前記光源から出力されるレーザの光量が可変となるように、量子化された電流値に基づいて前記光源に出力する電流を制御する制御手段と
    を備えることを特徴とする光学走査装置。
  7. 量子化された電流値の電流により駆動され、該電流値に応じた光量のレーザを出力する光源を備え、前記光源から出力されるレーザにより像担持体を走査する画像形成装置の制御方法であって、
    前記光源から出力されるレーザの光量を検出する検出ステップと、
    前記検出ステップの検出結果に基づいて、前記レーザの光量の最大値が予め定められた光量となるように、前記光源に出力する電流の最大値を決定する決定ステップと、
    前記決定ステップにより決定された電流の最大値を電圧値に変換する変換ステップと、
    前記変換ステップにより変換された前記電圧値に対応する電流値を最大値として該電流値を量子化し、前記光源から出力されるレーザの光量が可変となるように、量子化された電流値に基づいて前記光源に出力する電流を制御する制御ステップと
    を実行することを特徴とする画像形成装置の制御方法。
  8. 量子化された電流値の電流により駆動され、該電流値に応じた光量のレーザを出力する光源を備え、前記光源から出力されるレーザにより走査対象を走査する光学走査装置の制御方法であって、
    前記光源から出力されるレーザの光量を検出する検出ステップと、
    前記検出ステップの検出結果に基づいて、前記レーザの光量の最大値が予め定められた光量となるように、前記光源に出力する電流の最大値を決定する決定ステップと、
    前記決定ステップにより決定された電流の最大値を電圧値に変換する変換ステップと、
    前記変換ステップにより変換された前記電圧値に対応する電流値を最大値として該電流値を量子化し、前記光源から出力されるレーザの光量が可変となるように、量子化された電流値に基づいて前記光源に出力する電流を制御する制御ステップと
    を実行することを特徴とする光学走査装置の制御方法。
JP2009029113A 2009-02-10 2009-02-10 画像形成装置 Expired - Fee Related JP5667746B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009029113A JP5667746B2 (ja) 2009-02-10 2009-02-10 画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009029113A JP5667746B2 (ja) 2009-02-10 2009-02-10 画像形成装置

Publications (3)

Publication Number Publication Date
JP2010184398A true JP2010184398A (ja) 2010-08-26
JP2010184398A5 JP2010184398A5 (ja) 2012-03-29
JP5667746B2 JP5667746B2 (ja) 2015-02-12

Family

ID=42765352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009029113A Expired - Fee Related JP5667746B2 (ja) 2009-02-10 2009-02-10 画像形成装置

Country Status (1)

Country Link
JP (1) JP5667746B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202902A (ja) * 2012-03-28 2013-10-07 Kyocera Document Solutions Inc 光走査装置及び画像形成装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197974A (ja) * 1987-10-09 1989-04-17 Hitachi Ltd 半導体レーザのパワー制御装置
JPH05191603A (ja) * 1991-03-05 1993-07-30 Ricoh Co Ltd Ldドライブ回路
JPH0662191A (ja) * 1992-08-12 1994-03-04 Minolta Camera Co Ltd レーザビーム光学系
JPH06198954A (ja) * 1992-12-28 1994-07-19 Canon Inc 画像形成装置
JPH0948152A (ja) * 1995-08-07 1997-02-18 Fuji Xerox Co Ltd マルチビームレーザ画像記録装置における光量制御装置
JPH09183254A (ja) * 1996-12-16 1997-07-15 Canon Inc 情報記録装置
JPH11291548A (ja) * 1998-04-13 1999-10-26 Fuji Xerox Co Ltd レーザ光量補正方法、レーザ駆動装置、レーザ走査装置および画像記録装置
JP2001237490A (ja) * 2000-02-23 2001-08-31 Minolta Co Ltd 半導体レーザ駆動装置
JP2002067376A (ja) * 2000-08-25 2002-03-05 Konica Corp 画像形成装置
JP2003264337A (ja) * 2002-03-11 2003-09-19 Fuji Photo Film Co Ltd 半導体レーザ駆動回路および画像形成装置
JP2004223716A (ja) * 2002-02-08 2004-08-12 Canon Inc レーザビーム制御機構と画像形成装置
JP2005011943A (ja) * 2003-06-18 2005-01-13 Ricoh Co Ltd 半導体レーザ駆動装置及びその半導体レーザ駆動装置を使用した画像形成装置
JP2007171639A (ja) * 2005-12-22 2007-07-05 Canon Inc 画像形成装置
JP2010078857A (ja) * 2008-09-25 2010-04-08 Canon Inc 走査光学装置、画像形成装置及び制御方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197974A (ja) * 1987-10-09 1989-04-17 Hitachi Ltd 半導体レーザのパワー制御装置
JPH05191603A (ja) * 1991-03-05 1993-07-30 Ricoh Co Ltd Ldドライブ回路
JPH0662191A (ja) * 1992-08-12 1994-03-04 Minolta Camera Co Ltd レーザビーム光学系
JPH06198954A (ja) * 1992-12-28 1994-07-19 Canon Inc 画像形成装置
JPH0948152A (ja) * 1995-08-07 1997-02-18 Fuji Xerox Co Ltd マルチビームレーザ画像記録装置における光量制御装置
JPH09183254A (ja) * 1996-12-16 1997-07-15 Canon Inc 情報記録装置
JPH11291548A (ja) * 1998-04-13 1999-10-26 Fuji Xerox Co Ltd レーザ光量補正方法、レーザ駆動装置、レーザ走査装置および画像記録装置
JP2001237490A (ja) * 2000-02-23 2001-08-31 Minolta Co Ltd 半導体レーザ駆動装置
JP2002067376A (ja) * 2000-08-25 2002-03-05 Konica Corp 画像形成装置
JP2004223716A (ja) * 2002-02-08 2004-08-12 Canon Inc レーザビーム制御機構と画像形成装置
JP2003264337A (ja) * 2002-03-11 2003-09-19 Fuji Photo Film Co Ltd 半導体レーザ駆動回路および画像形成装置
JP2005011943A (ja) * 2003-06-18 2005-01-13 Ricoh Co Ltd 半導体レーザ駆動装置及びその半導体レーザ駆動装置を使用した画像形成装置
JP2007171639A (ja) * 2005-12-22 2007-07-05 Canon Inc 画像形成装置
JP2010078857A (ja) * 2008-09-25 2010-04-08 Canon Inc 走査光学装置、画像形成装置及び制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202902A (ja) * 2012-03-28 2013-10-07 Kyocera Document Solutions Inc 光走査装置及び画像形成装置

Also Published As

Publication number Publication date
JP5667746B2 (ja) 2015-02-12

Similar Documents

Publication Publication Date Title
US8773482B2 (en) Exposure apparatus
US8957932B2 (en) Exposure apparatus and image forming apparatus
JP2010078857A (ja) 走査光学装置、画像形成装置及び制御方法
JP2000071510A (ja) 画像形成装置
US7852363B2 (en) Light scanning apparatus, image forming apparatus, and light power control method
JP3245205B2 (ja) 画像形成装置
US6259466B1 (en) Light source drive apparatus and image formation apparatus
JP2011187494A (ja) 半導体レーザ駆動装置及びその半導体レーザ駆動装置を備えた画像形成装置
JP5713746B2 (ja) 画像形成装置
JP5667746B2 (ja) 画像形成装置
JP4908979B2 (ja) レーザ光量制御装置
US7301553B2 (en) Light source control apparatus and image forming apparatus using the same
JP2006091553A (ja) 光量制御装置
JP2011198919A (ja) 半導体レーザ駆動装置及びその半導体レーザ駆動装置を備えた画像形成装置
JP4158568B2 (ja) 光源制御装置
JP4541910B2 (ja) 画像形成装置
JP2005010580A (ja) 光源制御装置
JP5219405B2 (ja) 補正値決定装置、補正値決定方法、及び、光学走査装置
JP2009090525A (ja) 画像形成装置及びその調整方法
JP6802676B2 (ja) 画像形成装置
JP2018155987A (ja) 画像形成装置
JP4186563B2 (ja) 光源制御装置
JP2009196103A (ja) 画像形成装置
JP2002264386A (ja) 画像形成装置
JP2005262477A (ja) 光ビーム発光制御装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R151 Written notification of patent or utility model registration

Ref document number: 5667746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees