JP2010141259A - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP2010141259A
JP2010141259A JP2008318618A JP2008318618A JP2010141259A JP 2010141259 A JP2010141259 A JP 2010141259A JP 2008318618 A JP2008318618 A JP 2008318618A JP 2008318618 A JP2008318618 A JP 2008318618A JP 2010141259 A JP2010141259 A JP 2010141259A
Authority
JP
Japan
Prior art keywords
semiconductor device
impurity diffusion
diffusion layer
forming
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2008318618A
Other languages
English (en)
Inventor
Hiroyuki Fujimoto
紘行 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Memory Japan Ltd
Original Assignee
Elpida Memory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elpida Memory Inc filed Critical Elpida Memory Inc
Priority to JP2008318618A priority Critical patent/JP2010141259A/ja
Priority to US12/637,480 priority patent/US8198661B2/en
Publication of JP2010141259A publication Critical patent/JP2010141259A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/482Bit lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7841Field effect transistors with field effect produced by an insulated gate with floating body, e.g. programmable transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • H10B12/053Making the transistor the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/20DRAM devices comprising floating-body transistors, e.g. floating-body cells

Abstract

【課題】シリサイド層が第1不純物拡散層まで拡がるのを抑制し、複数種類のトランジスタを自由に設計することが可能な半導体装置及びその製造方法を提供する。
【解決手段】少なくとも、基台部1Bの上に複数立設された柱状のピラー部1Cを含むシリコン基板1と、基台部1Bの側面1bを覆うように設けられるビット線6と、ピラー部1Cの側面を覆うゲート絶縁膜4と基台部1Bの上面1aにおいて、ピラー部1Cが設けられる位置以外の領域に設けられる第1不純物拡散層8と、ピラー部1Cの上面1dに形成される第2不純物拡散層14と、ビット線6とシリコン基板1との間に形成され、第1不純物拡散層8との間で高低差を有し、且つ、上端5aが、第1不純物拡散層8の上端8aよりも低い位置に配されてなる第3不純物拡散層5と、ピラー部1Cの側面1c側に設けられるワード線10の一部をなすゲート電極10Aと、が備えられる。
【選択図】図1

Description

本発明は、半導体装置及びその製造方法に関する。
一般に、DRAM(Dynamic Random Access Memory)又はPRAM(Parameter Random Access Memory)等の半導体装置の分野においては、半導体装置が使用される機器の高機能化等により、さらなる高集積化が進められている。
しかしながら、従来の半導体層装置では、集積度が増加するにつれて、平面的に半導体素子が占められる領域が減少しており、例えば、トランジスタが形成される領域、即ち活性領域の大きさが次第に減少しているという問題がある。具体的には、活性領域の大きさが減少するのに伴って、通常の平面型トランジスタのチャネル長が減少し、いわゆる短チャネル効果が発生するという問題があった。このため、制限された領域においてチャネル長及び幅を増加させることを目的として、従来の平面型トランジスタに代わり、垂直型トランジスタのような3次元トランジスタが形成されてなる半導体装置が提案されている(例えば、特許文献1、2等を参照)。具体的には、シリコン基板をピラー形状とし、最上部に上部不純物拡散層、中央部にゲート電極で囲まれたチャネル領域、基板側に下部不純物拡散層を有するMOSトランジスタが形成されてなる構成の半導体装置が提案されている。
また、このような垂直型トランジスタにおいて、イオン注入法を利用して埋め込みビット線を形成する方法が採用されるようになっており、またさらに、埋め込みビット線をシリサイド層として形成する方法が提案されている(例えば、特許文献3を参照)。
特開平07−273221号公報 特表2002−541667号公報 特開2007−329480号公報
しかしながら、特許文献3のような、従来の半導体装置に用いられている埋め込み配線(ビット線)にシリサイド層を採用した場合、このシリサイド層がトランジスタの下部ソースドレイン拡散層(下部不純物拡散層)の真横に形成される。このため、狭いピッチで埋め込み配線を形成すると、シリサイド層と下部ソースドレイン拡散層との距離が小さくなり、シリサイド層が、熱処理によってチャネル領域まで拡がってしまうことがあるという問題がある。また、シリサイド化の前にシリサイドとシリコンの界面抵抗を低減するため、形成箇所への不純物注入を行うことから、トランジスタの下部不純物拡散層の濃度が決められてしまうため、複数種類のトランジスタを自由に設計することが困難であるという問題があった。
本発明者等は上記問題を解決するために鋭意研究を行い、3次元構造を有する半導体装置において、埋め込み配線(ビット線)平行方向の1回目のシリコンエッチング深さよりも、ゲート配線(ワード線)平行方向のシリコンエッチング深さを浅くすることにより、埋め込み配線と下部不純物拡散層の間に距離を設けることで、埋め込み配線のシリサイド層の上端と下部不純物拡散層の上端の間に距離ができる点に着目した。そして、埋め込み配線平行方向の1回目のシリコンエッチング後の不純物注入を、埋め込み配線のシリサイド層を形成する目的で行い、また、ゲート配線平行方向のシリコンエッチングを行った後の不純物注入を、トランジスタの特性を決定する下部不純物拡散層形成の目的で行う方法とすることで、上記構成が実現できることを知見した。即ち、シリコン基板にピラー部を加工するためのリソグラフィ処理を2度行なうにあたり、図63の模式図に示すように、下部不純物拡散層(第1不純物拡散層)の上端202よりも、シリサイド層からなる埋め込み配線の上端201の方が下方に位置するように、2度目のリソグラフィの際のシリコンドライエッチングの深さを制御することにより、シリサイド層が下部不純物拡散層まで拡がるのが抑制されることを見出し、本発明を完成させた。
即ち、本発明の半導体装置は、少なくとも、基台部の上に複数立設された柱状のピラー部を含む基板と、前記基台部の側面を覆うように設けられる埋め込み配線と、前記ピラー部の側面を覆うゲート絶縁膜と、前記基台部の上面において、前記ピラー部が設けられる位置以外の領域に設けられる第1不純物拡散層と、前記ピラー部の上面に形成される第2不純物拡散層と、前記埋め込み配線と前記基板との間に形成され、前記第1不純物拡散層との間で高低差を有し、且つ、上端側が、前記第1不純物拡散層の上端よりも低い位置に配されてなる第3不純物拡散層と、前記ピラー部の側面側に設けられるゲート配線の一部をなすゲート電極と、が備えられてなることを特徴とする。
係る構成の半導体装置によれば、ビット線と第1不純物拡散層との間に充分な距離が確保されるので、シリサイド層が第1不純物拡散層まで拡がるのが抑制される。また、ビット線のシリサイド層とシリコン基板との間の界面抵抗低減を目的とする不純物注入処理とは独立した処理として、トランジスタの特性を決定する下部拡散注入を行なうことができるので、複数種類のトランジスタを自由に設計することが可能となる。また、第1不純物拡散層に接続された配線はビット線として利用しなくても良く、一般配線として使用することが可能となる。
また、本発明の半導体装置の製造方法は、上記構成の半導体装置を製造する方法であって、複数のフィン部を形成するとともに、前記フィン部の下部に埋め込み配線を形成する工程と、前記フィン部に、前記埋め込み配線よりも高い位置を底面とする溝を形成することにより、前記フィン部を複数に分断してピラー部を形成する工程と、前記溝の底面に不純物を注入して第1不純物拡散層を形成する工程と、前記ピラー部に、ゲート絶縁膜、ゲート配線の一部をなすゲート電極、及び、第2不純物拡散層を形成する工程と、前記埋め込み配線と前記ピラー部を含む基板との間に第3不純物拡散層を形成する工程と、を備えることを特徴とする。
また、本発明の半導体装置の製造方法は、上記構成の半導体装置を製造する方法であって、シリコン基板上に第1の酸化膜及び第1の窒化膜が順次形成されてなるハードマスクを形成した後、該ハードマスクを用いてシリコン基板をエッチングし、埋め込み配線予定ラインの延在方向で第1の溝を形成することにより、フィン部を形成するフィン部形成工程と、前記第1の溝の底部に不純物を注入することにより、前記シリコン基板に第3不純物拡散層を形成する最下部拡散工程と、前記第3不純物拡散層をエッチングして前記第1の溝に連通した第2の溝を形成することにより、前記シリコン基板において基体部上に設けられるとともに、側面に前記第3不純物拡散層が形成されてなる基台部を形成する基台部形成工程と、前記第3不純物拡散層上に金属材料を堆積させて熱処理することでシリサイド層からなる埋め込み配線を形成した後、前記埋め込み配線及び前記基体部をエッチングし、前記第2の溝に連通した第3の溝を形成する埋め込み配線形成工程と、前記フィン部を、前記埋め込み配線と直行するゲート配線予定ラインの延在方向でエッチングし、前記埋め込み配線よりも高い位置を底面とする第4の溝を形成することにより、複数のピラー部を形成するピラー部形成工程と、 前記基台部の上面に不純物を注入することによって第1不純物拡散層を形成する下部拡散工程と、前記第4の溝の内部にゲート電極材料を充填して、ゲート電極を含むゲート配線を形成するゲート配線形成工程と、前記ゲート配線をエッチングすることにより、前記第4の溝の側面を各々覆うように分離した後、前記ゲート配線の各々の上部をエッチングして除去するゲート配線エッチング工程と、前記ピラー部の上面に不純物を注入して第2不純物拡散層を形成するとともに、前記ハードマスクを除去して前記第2不純物拡散層を露出させる上部拡散工程と、を備えることを特徴とする。
係る構成の半導体装置の製造方法によれば、シリサイド層が第1不純物拡散層まで拡がるのが抑制され、また、複数種類のトランジスタを自由に設計することが可能な本発明の半導体装置を、優れた生産性で効率良く製造することが可能となる。
上述のような、本発明に係る半導体装置の製造方法によれば、例えば、垂直型トランジスタ等の半導体装置に備えられるピラー部の形成時に、半導体基板のエッチングを複数回行う。次いで、半導体基板の表面から半導体領域が一定の深さまで後退した状態で、所定の濃度の不純物導入を行う。さらに、半導体基板の表面からの半導体領域が、上記深さと異なる深さまで後退した状態で、別の濃度の不純物導入を行う。このようにして、深さの異なる位置に不純物拡散層を形成する。
そして、本発明に係る半導体装置の製造方法によって得られる半導体装置によれば、上述の不純物拡散層の内、先に掲載された一方の不純物拡散層(第1不純物拡散層)を、垂直型トランジスタ等の下部拡散層として使用する。また、さらに下方に後退した位置に形成された他方の不純物拡散層(第3不純物拡散層)を、前記下部拡散層と配線との間の接触抵抗を低減させるために使用するか、もしくは、配線として使用するというものである。
本発明の半導体装置によれば、上記構成により、第3不純物拡散層及び埋め込み配線と第1不純物拡散層との間に充分な距離が確保されるので、第3不純物拡散層及び埋め込み配線をなすシリサイドが第1不純物拡散層まで拡がるのを抑制することが可能となる。また、埋め込み配線をなすシリサイド層とシリコン基板との間の界面抵抗低減を目的とする不純物注入処理とは独立した処理として、トランジスタの特性を決定する下部拡散注入、即ち第1不純物拡散層形成を行なうことができるので、複数種類のトランジスタを自由に設計することが可能となる。また、第1不純物拡散層に接続された埋め込み配線は、ビット線として利用しても、あるいはしなくても良く、一般配線として使用することも可能となる。
以下に、本発明の実施形態である半導体装置及びその製造方法について、図面を適宜参照しながら説明する。なお、以下の説明において参照する図面は、本実施形態の半導体装置及びその製造方法を説明する図面であって、図示される各部の大きさや厚さや寸法等は、実際の半導体装置の寸法関係とは異なっている。
[第1実施形態]
図1は本発明を適用した第1実施形態である半導体装置Aを模式的に示す断面図である。また、図2〜図17は、本実施形態の半導体装置の製造方法の各工程を模式的に示す工程図である。なお、図1〜図17は、何れも、図42及び図43の平面模式図中に示す断面指示線における断面図であり、各図共通で、(a)は断面A−A´、(b)は断面B−B´、(c)は断面C−C´、(d)は断面D−D´の模式図である。なお、図42及び図43において、ビット線平行方向の加工のパターンはパターン51となり、ワード線平行方向の加工のパターンはパターン52となる。また、図43では、ワード線平行方向の加工バターン52をパターン51に重ねて示しており、上記各パターン51,52は、エッチングしない残留パターンである。
「半導体装置の構成」
まず、本実施形態の半導体装置の構成について以下に説明する。
図1(a)〜(d)に示すように、本実施形態の半導体装置Aは、少なくとも、基台部1Bの上に複数立設された柱状のピラー部1Cを含むシリコン基板(基板)1と、基台部1Bの側面1bを覆うように設けられるビット線(埋め込み配線)6と、ピラー部1Cの側面を覆うゲート絶縁膜4と基台部1Bの上面1aにおいて、ピラー部1Cが設けられる位置以外の領域に設けられる第1不純物拡散層8と、ピラー部1Cの上面1dに形成される第2不純物拡散層14と、ビット線6とシリコン基板1との間に形成され、第1不純物拡散層8との間で高低差を有し、且つ、上端5aが、第1不純物拡散層8の上端8aよりも低い位置に配されてなる第3不純物拡散層5と、ピラー部1Cの側面1c側に設けられるワード線(ゲート配線)10の一部をなすゲート電極10Aと、が備えられ、概略構成される。
本実施形態の半導体装置Aは、上記構成のように第1不純物拡散層8が複数備えられることにより、シリコン基板1上において複数の垂直型のトランジスタ領域が形成される。そして、半導体装置Aは、上記複数の垂直型トランジスタ領域の各々がFBC(フローティングボディセル)構造とされてなる、メモリセルとして構成されるものである。
シリコン基板(基板)1は、平坦面からなる基体部1Aと、この基体部1A上に設けられた基台部1Bと、この基台部B上に複数立設された柱状のピラー部1Cとから構成されており、本実施形態においては、シリコン単結晶からなる。
基台部1Bは、基体部1A上において、柱状のピラー部1Cの基台として形成される。
ピラー部1Cは、シリコンからなる柱状部であり、上面1dは、例えば楕円形状等とすることができる。また、この上面1dの高さは、ほぼ均一とされている。
なお、シリコン基板1は、基体部上にシリコン層からなる基台部及びピラー部が形成されたものを用いてもよい。
ビット線(埋め込み配線)6は、本実施形態においては、少なくとも、不純物が拡散されたシリコン層がシリサイド反応してなるシリサイド層を含み、基台部1Bの側面1bを覆うように、ビット線延在方向に設けられる。本実施形態では、ビット線6がシリサイド層のみからなる例を説明しているが、これには限定されず、後述の他の実施形態において説明するように、例えば、別の導電材料等も含む構成とすることも可能であり、適宜採用できる。
ビット線6を構成するシリサイド層の材質としては、特に限定されるものではなく、例えば、少なくとも、CoSi、NiSi、NiSi、NiSi、NiSi、WSi、 TiSi、VSi、CrSi、ZrSi、NbSi、MoSi、 TaSi、CoSi、CoSi、 PtSi、PtSi及びPdSiの内の何れか1種以上が含まれるものを何ら制限無く採用することができる。また、ビット線6は、単結晶シリコン、多結晶シリコン、アモルファスシリコンの内の少なくとも一つを含む構成とすることができる。
ゲート絶縁膜4は、ピラー部1Cの側面を覆って設けられ、第2の酸化膜41及び第2の窒化膜42の2層から構成されている。
また、本実施形態のゲート絶縁膜は、上記構成には限定されず、例えば、酸化膜、窒化膜、酸窒化膜、又はHfを含む高誘電率ゲート絶縁膜の内の何れかを含む構成としても良い。また、ゲート絶縁膜を、SiON、又はSiOCの何れかを含む構成とすることも可能である。
層間絶縁膜7は、上述のゲート絶縁膜4を介して基台部1B及びピラー部1Cの側面の少なくとも一部を覆うとともに、ビット線6を覆うように形成されている。
層間絶縁膜7としては、例えば、シリコン窒化膜等から構成することができ、基台部1B及びピラー部1Cの各々の間に充填して形成することができる。
第1不純物拡散層8は、ドーパント(不純物)がイオン注入された不純物拡散領域から構成されており、シリコン基板1の基台部1Bの上面1a上において、ピラー部1Cが設けられる位置以外の領域に設けられる。
本実施形態の第1不純物拡散層8には、例えば、約1E15atoms/cm程度の濃度となるようにヒ素(As)が注入された構成とすることができる。
第2不純物拡散層14は、ドーパントがイオン注入された不純物拡散領域から構成されており、シリコン基板1のピラー部1Cの上面1dに設けられている。
本実施形態の第2不純物拡散層14には、例えば、約2.5E15atoms/cm程度の濃度となるようにヒ素(As)が注入された構成とすることができる。
ワード線(ゲート配線)10は、少なくとも上記のゲート絶縁膜4を介して、ピラー部1Cの側面1cを覆うように設けられており、ゲート電極10Aを含む構成とされている。
ワード線10としては、例えば、リン等がドープされたDOPOS(DOped POlycrystalline Silicon)層から構成することができるが、これには限定されない。例えば、ワード線10を、シリサイド層やメタル層、又は上記DOPOSを含むこれらの材料の内の少なくとも1種以上からなる構成とすることができ、従来公知のゲート電極材料の中から、適宜採用することが可能である。
第3不純物拡散層5は、第1不純物拡散層8及び第2不純物拡散層14と同様、ドーパントがイオン注入された不純物拡散領域から構成され、ビット線6とシリコン基板1との間において、電気的ポテンシャル障壁が低い層として形成される。また、上述したように、第3不純物拡散層5は、第1不純物拡散層8との間で高低差を有し、且つ、上端5aが、第1不純物拡散層8の上端8aよりも低い位置に配されてなる。
コンタクト12は、第2不純物拡散層14の上面14aの全面に接続されて設けられる層であり、その材質は、特に限定されないが、例えば、Ti、TiN、Wの3層からなる構成とすることができる。
キャパシタ13は、上述のコンタクト12の上に設けられる層である。キャパシタ13としては、各キャパシタ材料からなる材質及び構造を何ら制限無く採用することが可能であり、半導体装置の諸特性を勘案しながら適宜採用できる。
本実施形態の半導体装置Aは、第1不純物拡散層8が、それぞれ異なる濃度で不純物が拡散されて複数形成されることにより、シリコン基板1上において複数の種類のトランジスタ領域が形成される。そして、半導体装置Aは、上述の複数のトランジスタ領域の各々が、1つのビット線6に接続されて構成されてなる。
また、本実施形態の半導体装置Aは、第3不純物拡散層5が、それぞれ異なる濃度で不純物が拡散されて複数形成された構成とすることができる。これにより、シリコン基板1上において複数の種類のトランジスタ領域が形成され、この複数のトランジスタ領域の各々が、1つのビット線6に接続された構成とすることができる。
本実施形態の半導体装置Aは、図17(a)〜(d)に示すように、第3不純物拡散層5及びビット線6と、第1不純物拡散層8との間で高低差が設けられ、且つ、第3不純物拡散層5の上端5aが第1不純物拡散層8の上端8aよりも低い位置に配されて構成されている。半導体装置Aは、このような構成により、第3不純物拡散層5及びビット線6と第1不純物拡散層8との間に充分な距離が確保されるので、第3不純物拡散層5及びビット層6をなすシリサイド層が第1不純物拡散層8まで拡がるのが抑制されるという効果が得られる。
また、シリサイド層からなるビット線(埋め込み配線)6の上面が酸化膜でカバーされ、底面は、高濃度pn接合で隣接するビット線間のショートを回避できるので、信頼性の高い半導体装置を実現することができるという効果が得られるものである。
「半導体装置の製造方法」
次に、本実施形態の半導体装置Aの製造方法について、図2〜図17(図1も参照)を用いて以下に説明する。
本実施形態の半導体装置Aの製造方法は、複数のフィン部1Hを形成するとともに、フィン部1Hの下部にビット線(埋め込み配線)6を形成する工程と、フィン部1Hに、ビット線6よりも高い位置を底面とする第4の溝1Gを形成することにより、フィン部1Hを複数に分断してピラー部1Cを形成する工程と、第4の溝1Gの底面に不純物を注入して第1不純物拡散層8を形成する工程と、ピラー部1Cに、ゲート絶縁膜4、ワード線(ゲート配線)10の一部をなすゲート電極10A、及び、第2不純物拡散層14を形成する工程と、ビット線6とピラー部1Cを含むシリコン基板1との間に第3不純物拡散層5を形成する工程と、を備える方法である。
また、本実施形態の製造方法は、より具体的には、シリコン基板1上に第1の酸化膜2及び第1の窒化膜3が順次形成されてなるハードマスク20を形成した後、該ハードマスク20を用いてシリコン基板1をエッチングし、ビット線(埋め込み配線)予定ラインの延在方向で第1の溝1Dを形成することにより、フィン部1Hを形成するフィン部形成工程(1)と、第1の溝1Dの底部に不純物を注入することにより、シリコン基板1に第3不純物拡散層5を形成する最下部拡散工程(2)と、第3不純物拡散層5をエッチングして第1の溝1Dに連通した第2の溝1Eを形成することにより、シリコン基板1において基体部1A上に設けられるとともに、側面に第3不純物拡散層5が形成されてなる基台部1Bを形成する基台部形成工程(3)と、第3不純物拡散層5上に金属材料を堆積させて熱処理することでシリサイド層からなるビット線6を形成した後、ビット線6及び基体部1Aをエッチングし、第2の溝1Eに連通した第3の溝1Fを形成するビット線(埋め込み配線)形成工程(4)と、フィン部1Hを、ビット線6と直行するワード線(ゲート配線)予定ラインの延在方向でエッチングし、ビット線6よりも高い位置を底面とする第4の溝1Gを形成することにより、複数のピラー部1Cを形成するピラー部形成工程(5)と、基台部1Bの上面に不純物を注入することによって第1不純物拡散層8を形成する下部拡散工程(6)と、第4の溝1Gの内部にゲート電極材料を充填して、ゲート電極10Aを含むワード線10を形成するワード線(ゲート配線)形成工程(7)と、ワード線10をエッチングすることにより、第4の溝1Gの側面を各々覆うように分離した後、ワード線10の各々の上部をエッチングして除去するワード線(ゲート配線)エッチング工程(8)と、ピラー部1Cの上面1dに不純物を注入して第2不純物拡散層14を形成するとともに、ハードマスク20を除去して第2不純物拡散層14を露出させる上部拡散工程(9)と、を備えた方法とすることができる。
以下、各工程について詳細に説明する。
<(1)フィン部形成工程>
フィン部形成工程では、シリコン基板1上に第1の酸化膜2及び第1の窒化膜3が順次形成されてなるハードマスク20を形成する。次いで、ハードマスク20を用いてシリコン基板1をエッチングし、ビット線6予定ラインの延在方向で第1の溝1Dを形成することにより、フィン部1Hを形成する。
具体的には、図2(a)〜(d)に示すように、まず、シリコン基板1を熱酸化することにより、第1の酸化膜2を形成する。この際の熱酸化温度は950℃とし、約10分間行なう。
次いで、第1の窒化膜3を、CVD法を用いて、例えば、50nmの膜厚で成長させる。
次いで、図3(a)〜(d)に示すように、リソグラフィ法を用いて、ラインアンドスペースにパターニングし(図42及び図43も参照)、第1の窒化膜3及び第1の酸化膜2をドライエッチングした後、レジストを剥離する。
次いで、図4(a)〜(d)に示すように、第1の酸化膜2及び第1の窒化膜3からなる葉ハードマスク20を用いてシリコン基板1をドライエッチングし、第1の溝1Dを形成する。この際の第1の溝1Dの深さは、例えば、150mm程度とする。このように、シリコン基板1においてハードマスク20に被覆されていない領域がエッチング除去されることにより、シリコン基板1の表面に凹凸が形成される。即ち、ハードマスク20に被覆されている領域にフィン部1Hが形成される。
<(2)最下部拡散工程>
次に、最下部拡散工程では、第1の溝1Dの底部1eに不純物を注入することにより、シリコン基板1に第3不純物拡散層5を形成する。
具体的には、図5(a)〜(d)に示すように、まず、予め、第1の溝1Dの内部を熱酸化して、フィン部1Hの側面を含む第1の溝1Dの内部に第2の酸化膜41を、例えば5nmの膜厚で形成する。
次いで、図6(a)〜(d)に示すように、第2の酸化膜41の表面及びハードマスク20の側面に、CVD法により、例えば10nmの膜厚で第2の窒化膜42を形成することにより、第2の酸化膜41及び第2の窒化膜42からなるゲート絶縁膜4を形成する。
そして、第1の溝1Dの底部の第2の窒化膜42を除去し、次いで、第1の溝1Dの底部に第2の酸化膜41を介して不純物を注入することにより、シリコン基板1に第3不純物拡散層5を形成する。この際、例えば、不純物としてAsを用い、15KeVで1E15atoms/cmの条件で行なうことができる。
<(3)基台部工程>
次に、基台部工程では、第3不純物拡散層5をエッチングして第1の溝1Dに連通した第2の溝1Eを形成することにより、シリコン基板1において基体部1A上に設けられるとともに、側面に第3不純物拡散層5が形成されてなる基台部1Bを形成する。
具体的には、図7(a)〜(d)に示すように、まず、予め、第1の溝1Dの底部の第2の酸化膜41を除去する。次いで、第3不純物拡散層5をエッチングして第1の溝1Dに連通した第2の溝1Eを形成することにより、シリコン基板1において基体部1A上に設けられるとともに、側面に第3不純物拡散層5が形成されてなる基台部1Bを形成する
<(4)ビット線(埋め込み配線)形成工程>
次に、ビット線(埋め込み配線)形成工程では、第3不純物拡散層5上に金属材料を堆積させて熱処理することでシリサイド層からなるビット線6を形成した後、ビット線6及び基体部1Aをエッチングし、第2の溝1Eに連通した第3の溝1Fを形成する。
具体的には、図8(a)〜(d)に示すように、まず、第3不純物拡散層5上に、金属材料としてコバルトを20nm程度で堆積させる。次いで、例えば850℃の温度で熱処理を行なうことにより、コバルトシリサイド層からなるビット線6を形成した後シリサイド反応しなかったコバルトを除去する。
次いで、ビット線6及び基体部1Aをエッチングすることにより、第2の溝1Eに連通した第3の溝1Fを形成する。
<(5)ピラー部形成工程>
次に、ピラー部形成工程では、フィン部1Hを、ビット線6と直行するワード線予定ラインの延在方向でエッチングし、ビット線6よりも高い位置を底面とする第4の溝1Gを形成することにより、複数のピラー部1Cを形成する。
具体的には、図9(a)〜(d)に示すように、まず、予め、第1の溝1D、第2の溝1E及び第3の溝1Fの内部に、CVD法を用いて酸化膜を成長させて充填する。さらに、第1の窒化物3及び第2の窒化膜42上に、CVD法により、例えば、50nm程度の膜厚で酸化膜を成長させる。そして、CMP研磨方法等の公知の手法を用いて平坦化処理を行うことにより、層間絶縁膜7を形成する。この際、CMP研磨は、例えば、研磨剤としてシリカを用いて行う。
次いで、図10(a)〜(d)に示すように、上記手順で形成した層間絶縁膜7を、ビット線6と直行するワード線10予定ライン(図43を参照)の方向でパターニングしてエッチングする。そして、層間絶縁膜7をマスクとしてシリコン基板1をエッチングすることで、第4の溝1Gを形成することにより、複数のピラー部1Cを形成する。
<(6)下部拡散工程>
次に、下部拡散工程では、基台部1Bの上面1aに不純物を注入することによって第1不純物拡散層8を形成する。
具体的には、図11(a)〜(d)に示すように、まず、第4の溝1Gの内部を熱酸化させ、第4の酸化膜81を、例えば5nm程度の厚さで成長させる。次いで、第4の酸化膜81を介して基台部1Bの上面1aに不純物を注入することにより、第1不純物拡散層8を形成する。この際、不純物として、例えば、Asを用い、10KeVで1E14atoms/cmの条件で行なうことができる。
<(7)ワード線(ゲート配線)形成工程>
次に、ワード線(ゲート配線)形成工程では、第4の溝1Gの内部にゲート電極材料を充填して、ゲート電極10Aを含むワード線10を形成する。
具体的には、図12(a)〜(d)に示すように、まず、層間絶縁膜7上及び第4の溝1Gの内部に、HDP法を用いて第5の酸化膜9を形成する。
次いで、図13(a)〜(d)に示すように、第5の酸化膜9及び層間絶縁膜7の上部をウェットエッチングによって除去した後、さらにゲート酸化を行ない、図示略のゲート酸化膜を、例えば、5nm程度で形成する。そして、CVD法を用いて、第4の溝1Gの内部にゲート電極材料を充填した後、CMP研磨して平坦化することにより、ワード線10を形成する。
<(8)ワード線(ゲート配線)エッチング工程>
次に、ワード線(ゲート配線)エッチング工程では、ワード線10をエッチングすることにより、第4の溝1Gの各側面を各々覆うように分離した後、ワード線10の各々の上部をエッチングして除去する。
具体的には、図14(a)〜(d)に示すように、まず、ワード線10を、ゲート平行方向にリソグラフィでパターニングする。次いで、ワード線10をエッチングすることにより、第4の溝1Gの各側面を各々覆うように、各々の列に分離した後、レジストを剥離する。そして、ワード線10の各々の上部をエッチングして除去することにより、ワード線10の高さ方向寸法を短縮する。
なお、本実施形態では、ワード線を、第4の溝のサイドウォールとして形成した後、エッチバックによって加工する方法を用いて形成しても良い。
<(9)上部拡散工程>
次に、上部拡散工程では、ピラー部1Cの上面1dに不純物を注入して第2不純物拡散層14を形成するとともに、ハードマスク20を除去して第2不純物拡散層14を露出させる。
具体的には、図15(a)〜(d)に示すように、まず、予め、ワード線10を覆うように、第4の溝1Gの内部に上部層間膜11を堆積させた後、CMP研磨によって平坦化する。
次いで、図16(a)〜(d)に示すように、第1の窒化膜3を、熱リン酸を用いてウェットエッチングで除去する。次いで、第1の酸化膜2を介して、ピラー部1Cの上面1dに不純物を注入して第2不純物拡散層14を形成する。この際、不純物として、例えば、Asを用い、15KeVで1E14atoms/cmの条件で行なうことができる。
そして、第1の酸化膜2をドライエッチングによって除去することにより、第2不純物拡散層14を露出させる。
<コンタクト及びキャパシタを形成する工程>
次に、本実施形態の製造方法では、第1の酸化膜2及び第1の窒化膜3の除去によって上部が露出した層間絶縁膜7の各々の間を埋めるように、第2不純物拡散層14の上面にコンタクト12を形成する工程と、コンタクト12及び層間絶縁膜7を覆うようにキャパシタ13を形成する工程とを備えた方法とすることができる。
具体的には、図17(a)〜(d)に示すように、まず、第2不純物拡散層14の上面にコンタクト材料を成長させた後、CMP研磨によって平坦化することにより、コンタクト12を形成する。
そして、図1(a)〜(d)に示すように、コンタクト12及び層間絶縁膜7を覆うようにキャパシタ13を形成する。
これら、コンタクト12及びキャパシタ13は、従来公知の材料及び構造を採用するとともに、従来公知の方法を何ら制限無く用いて形成することができる。
以上のような各工程により、本実施形態の半導体装置Aを製造することができる。
以上説明したような、本実施形態の半導体装置Aによれば、上記構成により、第3不純物拡散層5及びビット線6と第1不純物拡散層8との間に充分な距離が確保されるので、第3不純物拡散層5及びビット線6をなすシリサイドが第1不純物拡散層8まで拡がるのを抑制することが可能となる。また、ビット線6をなすシリサイド層とシリコン基板1との間の界面抵抗低減を目的とする不純物注入処理とは独立した処理として、トランジスタの特性を決定する下部拡散注入、即ち第1不純物拡散層形成を行なうことができるので、複数種類のトランジスタを自由に設計することが可能となる。また、第1不純物拡散層に接続された埋め込み配線は、ビット線として利用しても、あるいはしなくても良く、一般配線として使用することも可能となるという優れた効果が得られるものである。また、シリサイド層からなるビット線6の上面が酸化膜でカバーされ、底面は、高濃度pn接合で隣接するビット線間のショートを回避できるので、信頼性の高い半導体装置を実現することができる。
また、本実施形態の半導体装置Aの製造方法によれば、シリサイド層が第1不純物拡散層まで拡がるのが抑制され、また、複数種類のトランジスタを自由に設計することが可能な本発明の半導体装置を、優れた生産性で効率良く製造することが可能となる。
また、本実施形態の製造方法によれば、例えば、縦型MOS−Trの下部に埋め込み配線のビット線を形成した後、ビット線の側面を酸化膜で分離し、ビット線の下をPN接合で分離する方法とすることで、容易にビット線を形成することが可能となる。
ここで、本実施形態の半導体装置A及びその製造方法では、以下に説明するような特徴を有している。
(1)半導体基板(シリコン基板)をエッチングする方法によってピラー部を形成する
(2)シリコン基板もしくはウエルと、トランジスタのボディとの間に電気的ポテンシャル障壁の低い層(第3不純物拡散層)が存在する。
(3)下部拡散層(第1不純物拡散層)の濃度を、埋め込み配線と下部拡散層との間の接触抵抗を低減するための不純物濃度や、埋め込み配線とピラー部との横方向の距離等に関わらず、独立して決定することができる。
(4) 埋め込み配線の材料をシリサイド又はシリサイドを含む物質とする場合、シリサイドと下部拡散層との間の横方向の距離が確保できる。
本実施形態においては、上述のように、シリコン基板をエッチングする方法によってピラー部を形成し、さらに、下部拡散層の濃度を、埋め込み配線と下部拡散層の接触抵抗を低減するための不純物濃度又は配線の不純物濃度や、埋め込み配線とピラーとの間の横方向の距離に関わらず、独立して決定可能なデバイスを形成することができる。即ち、上記(1)及び(3)の両方を満たすことが可能となる。
また、シリコン基板もしくはウエルと、トランジスタのボディとの間に電気的ポテンシャル障壁の低い層からなる第3不純物拡散層が存在し、さらに、下部拡散層の濃度を、埋め込み配線と下部拡散層との間の接触抵抗を低減するための不純物濃度、もしくは埋め込み配線の不純物濃度や、埋め込み配線とピラー部との間の横方向の距離に関わらず、独立して決定可能なデバイスを形成することができる。即ち、上記(2)及び(3)の両方を満たすことが可能となる。
また、埋め込み配線の材料が不純物拡散層であっても、下部拡散層の濃度を、「埋め込み配線と下部拡散層との間の接触抵抗を低減するための不純物濃度」や、埋め込み配線とピラーとの間の横方向の距離に関わらず、独立して決定することが可能となる。即ち、上記(1)及び(3)の両方を満たすデバイス、もしくは上記(2)及び(3)の両方を満たすデバイスの例である。
下部拡散層は、横方向への広がりを抑えることや、ピラー部の径を大きくすることにより、フローティングボディ効果の小さいトランジスタを構成することもできる。また、下部拡散層は、横方向への広がりを持たせることや、ピラーの径を小さくすることにより、フローティングボディ効果の大きなトランジスタを構成することもできる。
シリコン基板をエッチングする方法により、ピラー部の結晶性が向上するのでリーク電流が減少し、また、フローティングボディ効果の大きなトランジスタは、トランジスタのボディ部に正孔を溜め易いため、FBC(フローティングボディセル)構造)として利用することもできる。即ち、(1)及び(3)の両方を満たすデバイスに、フローティングボディ効果の大きな条件を組み合わせることにより、特性の優れたFBC構造を形成することが可能となる。
さらに、埋め込み配線の材料がシリサイド又はシリサイドを含む物質とする場合、シリサイドと下部拡散層との間の距離が確保可能なデバイスを形成することができる。即ち、上記(4)を満たすことが可能となる。
また、埋め込み配線の材料は、シリサイド層及びメタル層からなる構成であっても、シリサイドと下部拡散層との間の距離が確保可能なデバイスを形成することができる。即ち、上記(4)を満たすデバイスの例である。
[第2実施形態]
以下に、本発明の第2実施形態の半導体装置Bについて、図18〜図30を適宜参照しながら説明する。
図18は本発明を適用した第2実施形態である半導体装置Bを模式的に示す断面図である。また、図19〜図30は、本実施形態の半導体装置の製造方法の各工程を模式的に示す工程図であり、上記第1実施形態と同様、何れも、図42及び図43の平面模式図中に示す断面指示線における断面図である。
なお、本実施形態では、上記第1実施形態の半導体装置Aと共通する構成については同じ符号を付し、また、その詳しい説明を省略する。
図18(a)〜(d)に示すように、本実施形態の半導体装置Bは、主に、ビット線(埋め込み配線)65が、シリサイド層6Aとメタル層15とから構成される点で、第1実施形態の半導体装置1とは異なる。
本実施形態の半導体装置Bに備えられるビット線65は、第1実施形態で説明したビット線6と同様の手順で得られるシリサイド層6Aの表面に、メタル層15が形成されてなる。
メタル層15の材質としては、特に限定されるものではないが、例えば、少なくとも、タングステン層又は窒化タングステン層の何れか一方、あるいは両方が含まれる構成とすることができる。
以下に、本実施形態の半導体装置Bの製造方法について説明する。
本実施形態では、上述した第1実施形態に備えられるビット線(埋め込み配線)形成工程(4)において、第3不純物拡散層5上に金属材料を堆積させて熱処理することでシリサイド層6Aを形成した後、第2の溝1Eにメタル材料を充填することによってシリサイド層6A及びメタル層15を含むビット線65を形成し、次いで、ビット線65及び基体部1Aをエッチングすることによって第2の溝1Eに連通した第3の溝1Fを形成する方法とすることができる。
本実施形態では、図19(a)〜(b)に示すようなシリサイド層6Aを形成するまでの工程は、第1実施形態に示す工程(1)〜工程(3)と同様の工程とすることができる。
そして、図20(a)〜(b)に示すように、本実施形態では、シリサイド層6Aに形成された第2の溝1E内に、CVD法を用いて上記メタル材料を成膜して充填し、メタル層15を形成する。
次に、図21(a)〜(b)に示すように、第1の溝1Dの内部に、CVD法を用いて、サイドウォール窒化膜16を、例えば、10nmの厚さで成長させる。次いで、サイドウォール窒化膜16をエッチバックし、さらにメタル層15をドライエッチングした後、さらにシリサイド層6Aをドライエッチングする。そして、さらに、基体部1Aをエッチングすることにより、第3の溝1Fを形成する。
次に、図22(a)〜(b)に示すように、CVD法を用いて酸化膜を形成することにより、各溝の内部及びこれらの上部を覆うように、層間絶縁膜7を形成する。
次に、図23(a)〜(b)に示すように、リソグラフィでゲート平行方向にパターニングを行うことにより、層間絶縁膜7、第1の窒化膜3及び第1の酸化膜2とともに、シリコン基板1をドライエッチングすることにより、第4の溝1Gを形成する。
次に、図24(a)〜(b)に示すように、第4の溝1Gの底部を熱酸化処理することにより、この部分のシリコンを酸化させる。次いで、第1実施形態と同様の手順で不純物を注入し、この部分に第1不純物拡散層8を形成する。
次に、図25(a)〜(b)に示すように、HDP法と用いて第4の溝1Gの底部に第5の酸化膜9を形成する。次いで、ウェットエッチングによって第4の溝1Gの側壁部を表出させた後、ゲート酸化処理を行なう。
次に、図26(a)〜(b)に示すように、第4の溝1G内に、CVD法を用いてゲート電極材料を成長させた後、CMP研磨によって平坦化することにより、ワード線10を形成する。
次に、図27(a)〜(b)に示すように、ゲート平行方向にリソグラフィでパターニングを行い、ワード線10を各々の列に分離した後、レジストを剥離する。次いで、ワード線10の各々の上部をエッチング除去することにより、高さ方向の寸法を短縮する。
次に、図28(a)〜(b)に示すように、第4の溝1Gの内部に層間絶縁膜11を堆積させた後、CMP研磨によって平坦化する。
次に、図29(a)〜(b)に示すように、第1の窒化膜3を第1実施形態と同様の手順で除去した後、同様の条件で、ピラー部1Cの上面1dから不純物注入を行ない、第2不純物拡散層14を形成する。次いで、同様に、第1の酸化膜2をエッチング除去し、第2不純物拡散層14を露出させる。
次いで、図30(a)〜(b)に示すように、第2不純物拡散層14上にコンタクト材料を成長させてコンタクト12を形成し、さらに、図18(a)〜(b)に示すように、コンタクト12上にキャパシタ13を形成する。
以上の工程により、図18(a)〜(b)に示すような本実施形態の半導体装置Bが得られる。
[第3実施形態]
以下に、本発明の第3実施形態の半導体装置について、図31〜図34を適宜参照しながら説明する。
図31〜図34は、本実施形態の半導体装置の製造方法の各工程を模式的に示す工程図であり、何れも、図42及び図43の平面模式図中に示す断面指示線における断面A−A´である。
なお、本実施形態では、上記第1及び第2実施形態の半導体装置A、Bと共通する構成については同じ符号を付し、また、その詳しい説明を省略する。
図31に示すように、本実施形態では、例えば、図26(a)〜(b)に示す第2実施形態の半導体装置Bの工程において、最初に形成した第1の窒化膜3の幅に比べ、図中の符号21−aの分だけ、片側の第1の窒化膜の幅が広くなっている。これにより、図32に示すように、第1の窒化膜のウェットエッチングを行うと、リセスしている領域が符号21−aの分だけ広くなり、この部分のみ、コンタクトを形成できる領域が広くなる。例えば、図26(a)〜(b)に示す第2実施形態において形成した膜が酸化膜である場合、その後、同様にプロセスを進めることにより、図33に示すような酸化膜31が形成された状態となる。
図33に示す例の場合、最初に形成した第1の窒化膜3の幅に比べ、符号21−Bの分だけ、片側の窒化膜幅が広くなっているものの、この広がり幅は、上述の符号21−aに比べて小さい。よって、図34に示すように、第1の窒化膜3のウェットエッチング後は、リセスしている部分が21−bの分だけ広くなるが、同様に、符号21−aに比べれば拡がり幅は小さい。このような点を考慮すると、マスクの材料やサイドウォールの材料、サイドウォールの膜厚を適宜選択することにより、コンタクトを形成することのできる面積をコントロールすることが出来ることが明らかでる。これにより、例えば、コンタクト形成面積を増加させることで、コンタクト抵抗が低減できることが明らかである。
[第4実施形態]
以下に、本発明の第4実施形態の半導体装置について、図35を参照しながら説明する。
図35は、本実施形態の半導体装置の製造方法の各工程を模式的に示す工程図であり、何れも、図42及び図43の平面模式図中に示す断面指示線における断面A−A´である。
ピラー部1Cのサイドウォールとして形成する膜は、図26(a)〜(b)に示す第2実施形態の半導体装置Bの工程において、サイドウォール窒化膜16及び第2の窒化膜42の何れもが窒化膜となっている。本実施形態では、図35に示すように、これらを酸化膜32、33として構成する。このような構成とすることにより、ワード線平行方向にシリコン基板1をドライエッチングする際、サイドウォール窒化膜が無いことから、第1の窒化膜3をエッチングした後は、窒化膜の選択比を考慮する必要がなくなるので、形状形成が容易になる場合がある。
[第5実施形態]
以下に、本発明の第4実施形態の半導体装置について、図36〜図41を適宜参照しながら説明する。
図36〜図41は、本実施形態の半導体装置の製造方法の各工程を模式的に示す工程図であり、何れも、図42及び図43の平面模式図中に示す断面指示線における断面A−A´である。
ここで、図36に示す工程図は、図20に示す第2実施形態の工程図と同様の図面である。この後、図37に示すように、サイドウォール窒化膜35及びこのサイドウォール窒化膜35の厚さ分の第1の窒化膜3をウェットエッチングする。
次いで、図38に示すように、再度、窒化膜の成長を行い、第1の窒化膜3を再成長させるとともに、上端が第1の窒化膜3の縁部を覆う形状とされたサイドウォール窒化膜36を形成する。
次いで、図39に示すように、再度、第1の窒化膜3及びサイドウォール窒化膜36のウェットエッチングを行う。
次いで、図40に示すように、層間膜37を堆積させる。
そして、図41に示すように、リソグラフィ法により、層間膜37、第1の窒化膜3、第1の酸化膜2及びシリコン基板1をドライエッチングする。このような工程とした場合には、サイドウォールに窒化膜がないことから、第1の窒化膜3をエッチングした後、シリコン基板1をドライエッチングする際、窒化膜の選択比を考慮する必要がなくなるので、形状形成が容易になる場合がある。
[第6実施形態]
以下に、本発明の第6実施形態の半導体装置について、図44〜図58を適宜参照しながら説明する。
図44〜図58は、本実施形態の半導体装置の製造方法の各工程を模式的に示す工程図であり、図44〜図46は平面図、図47〜図58は、何れも図44〜図46の平面模式図中に示す断面指示線における、(a)断面A´´−A´´´、(b)断面B´´−B´´´、(c)断面C´´−C´´´、(d)断面D´´−D´´´である。
上述したような第1〜第5実施形態の説明においては、ビット線(埋め込み配線)、ワード線(ゲート配線)として、クロスポイント型のメモリセルを想定した工程図を示したが、さらに一般的には、図44に示すように、ビット線を、単に配線と置き換えた形で考えることができる。
図44に示す工程図においては、配線パターン151が所々途切れた構成とされているが、このように、配線パターンは任意に形成することができる。これにより、図示例の工程は、例えば、メモリセルのように単純なパターンで並んでいる場合のみならず、任意の配列のパターン、任意の配線パターンに適用することができる。
なお、図45は、ワード線52を重ねて示した模式図であり、図46は、第2不純物拡散層上の配線パターン53を重ねて示した模式図である。
フロー(工程)自体は、上述した各実施形態と同様であり、図44〜図46に示す工程のパターンで加工を行うと、図47〜図58に示すような形態となる。
まず、図47(a)〜(b)に示すように、シリコン基板1を熱酸化して第1の酸化膜2を形成し、CVD法を用いて第1の窒化膜3を形成する。そして、図44に示す配線パターン151をリソグラフィ法でパターニングした後、第1の窒化膜3をドライエッチングし、さらに第1の酸化膜2をドライエッチングすることにより、各断面図に示すような形となる。
次いで、図48に示すように、シリコン基板1をドライエッチングした後、図49に示すように、熱酸化処理を行うことで第2の酸化膜41を形成する。
次いで、図50に示すように、CVD法を用いて第2の窒化膜42を形成することでゲート絶縁膜4を形成した後、不純物注入を行うことで、第3不純物拡散層5を形成し、その後、第2の窒化膜41をサイドウォールエッチバックする。
次いで、図51に示すように、第1の溝内の酸化膜のドライエッチングを行い、さらに、第3不純物拡散層5をドライエッチングする。次いで、上述した各実施形態と同様の方法で、第3不純物拡散層5をシリサイド反応させ、シリサイド層からなるビット線(埋め込み配線)6を形成する。
次いで、図52に示すように、ビット線6をドライエッチングした後、シリコン基板1をドライエッチングし、さらに、層間絶縁膜7を堆積させる。図示例のように、埋め込み配線パターンを任意とした場合には、ラインアンドスペースで配線を形成した場合にはない、広くオープンなスペースが存在し、CVD法による酸化膜の成長のみでは埋めることが困難な領域が存在する。そして、層間膜100にて広いパターンを埋める工程を行うが、上記各実施形態で説明したような、2段階で層間を埋める必要はなく、一度の成膜で層間膜を形成しても良い。
次いで、図53に示すように、CMP研磨を行って酸化膜を平坦化した後、再度、酸化膜を堆積する。
次いで、図54に示すように、リソグラフィ法と用いてワード線(ゲート配線)をパターニングし、層間絶縁膜7のドライエッチング、第1の窒化膜3のドライエッチング、第1の酸化膜2のドライエッチング、シリコンドライエッチングを行う。
次いで、図55に示すように、熱酸化を行った後、不純物注入を行う。
次いで、図56に示すように、ゲート材料を堆積してCMP研磨で平坦化し、リソグラフィ法でパターニングした後、分割すし、さらに、層間膜を堆積してCMP研磨による平坦化を行う。この際、ゲート材料は、溝内におけるサイドウォールとして成膜し、エッチバックで加工しても良い。
次いで、図57に示すように、窒化膜をウェットエッチングし、不純物注入を行って第2不純物拡散層を形成した後、酸化膜をドライエッチングし、さらに、第2不純物拡散層上にコンタクト材料を堆積し、CMP研磨で平坦化する。
次いで、コンタクト上にキャパシタを形成してもよいが、配線パターンが任意であるので、図58に示すように、第2不純物拡散層上のコンタクトに上面で接するように配線61を形成しても良い。
[本発明のその他の実施形態]
以下に、本発明のその他の実施形態の半導体装置について、図59〜図63を適宜参照しながら説明する。
図59〜図62は、本発明のその他の実施形態の半導体装置の製造方法の各工程を模式的に示す工程図であり、図59は平面図、図60〜図62は、何れも図59の平面模式図中に示す断面指示線における、(a)断面A−A´、(b)断面B−B´、(c)断面C−C´、(d)断面D−D´である。
本発明に係る半導体装置では、図59に示す例のように、メモリセルのセル端をシンプルなパターンに構成しても良い。
また、図60に示す例のように、ゲート電極を形成しない場合でも、第2不純物拡散層の不純物を適正化し、また、エネルギーを適正化することで、縦型ダイオードとして本質的な問題はなく、形成した埋め込み配線は利用可能である。即ち、第2不純物拡散層200は第1不純物拡散層8がN型となる不純物注入ならばP型、第1不純物拡散層8がP型となる不純物注入ならばN型となるように、不純物を注入すればよい。
また、半導体装置に備えられるトランジスタは、通常のトランジスタとして利用してもよく、トランジスタのボディに正孔をためてメモリ動作させるFloating Body Cell(FBC)として利用しても良い。
また、図61に示す例のように、第1不純物拡散層8がビット線6にかかるように形成されていても良い。
また、図62に示すように、各々の埋め込み配線の間において、埋め込み配線の下面よりも低い位置が、絶縁膜で分離されていない構成としても構わない。
また、ゲート中に、フローティング部や窒化膜等の電子トラップ部を設け、フラッシュメモリとして利用しても良い。
以上説明したような、上記各実施形態の半導体装置によれば、上述したように、シリサイド層が第1不純物拡散層まで拡がるのが抑制され、また、複数種類のトランジスタを自由に設計することが可能な本発明の半導体装置を、優れた生産性で効率良く製造することが可能となる。
本発明の第1実施形態である半導体装置を示す断面模式図であり、図42及び図43の平面模式図に示す断面指示線に基づき、(a)は断面A−A´、(b)は断面B−B´、(c)は断面C−C´、(d)は断面D−D´である。 本発明の第1実施形態である半導体装置の製造方法を示す工程図である。 本発明の第1実施形態である半導体装置の製造方法を示す工程図である。 本発明の第1実施形態である半導体装置の製造方法を示す工程図である。 本発明の第1実施形態である半導体装置の製造方法を示す工程図である。 本発明の第1実施形態である半導体装置の製造方法を示す工程図である。 本発明の第1実施形態である半導体装置の製造方法を示す工程図である。 本発明の第1実施形態である半導体装置の製造方法を示す工程図である。 本発明の第1実施形態である半導体装置の製造方法を示す工程図である。 本発明の第1実施形態である半導体装置の製造方法を示す工程図である。 本発明の第1実施形態である半導体装置の製造方法を示す工程図である。 本発明の第1実施形態である半導体装置の製造方法を示す工程図である。 本発明の第1実施形態である半導体装置の製造方法を示す工程図である。 本発明の第1実施形態である半導体装置の製造方法を示す工程図である。 本発明の第1実施形態である半導体装置の製造方法を示す工程図である。 本発明の第1実施形態である半導体装置の製造方法を示す工程図である。 本発明の第1実施形態である半導体装置の製造方法を示す工程図である。 本発明の第2実施形態である半導体装置を示す断面模式図であり、図42及び図43の平面模式図に示す断面指示線に基づき、(a)は断面A−A´、(b)は断面B−B´、(c)は断面C−C´、(d)は断面D−D´である。 本発明の第2実施形態である半導体装置の製造方法を示す工程図である。 本発明の第2実施形態である半導体装置の製造方法を示す工程図である。 本発明の第2実施形態である半導体装置の製造方法を示す工程図である。 本発明の第2実施形態である半導体装置の製造方法を示す工程図である。 本発明の第2実施形態である半導体装置の製造方法を示す工程図である。 本発明の第2実施形態である半導体装置の製造方法を示す工程図である。 本発明の第2実施形態である半導体装置の製造方法を示す工程図である。 本発明の第2実施形態である半導体装置の製造方法を示す工程図である。 本発明の第2実施形態である半導体装置の製造方法を示す工程図である。 本発明の第2実施形態である半導体装置の製造方法を示す工程図である。 本発明の第2実施形態である半導体装置の製造方法を示す工程図である。 本発明の第2実施形態である半導体装置の製造方法を示す工程図である。 本発明の第3実施形態である半導体装置を示す断面模式図であり、図42及び図43の平面模式図に示す断面指示線に基づく断面A−A´である。 本発明の第3実施形態である半導体装置の製造方法を示す工程図である。 本発明の第3実施形態である半導体装置の製造方法を示す工程図である。 本発明の第3実施形態である半導体装置の製造方法を示す工程図である。 本発明の第4実施形態である半導体装置を示す断面模式図であり、図42及び図43の平面模式図に示す断面指示線に基づく断面A−A´である。 本発明の第5実施形態である半導体装置を示す断面模式図であり、図42及び図43の平面模式図に示す断面指示線に基づき、(a)は断面A−A´、(b)は断面B−B´、(c)は断面C−C´、(d)は断面D−D´である。 本発明の第5実施形態である半導体装置の製造方法を示す工程図である。 本発明の第5実施形態である半導体装置の製造方法を示す工程図である。 本発明の第5実施形態である半導体装置の製造方法を示す工程図である。 本発明の第5実施形態である半導体装置の製造方法を示す工程図である。 本発明の第5実施形態である半導体装置の製造方法を示す工程図である。 本発明の第1実施形態である半導体装置を示す平面模式図である。 本発明の第1実施形態である半導体装置を示す平面模式図である。 本発明の第6実施形態である半導体装置の一例を示す平面模式図である。 本発明の第6実施形態である半導体装置の一例を示す平面模式図である。 本発明の第6実施形態である半導体装置の一例を示す平面模式図である。 本発明の第6実施形態である半導体装置を示す断面模式図であり、図44〜図46の平面模式図に示す断面指示線に基づき、(a)は断面A−A´、(b)は断面B−B´、(c)は断面C−C´、(d)は断面D−D´である。 本発明の第6実施形態である半導体装置の製造方法を示す工程図である。 本発明の第6実施形態である半導体装置の製造方法を示す工程図である。 本発明の第6実施形態である半導体装置の製造方法を示す工程図である。 本発明の第6実施形態である半導体装置の製造方法を示す工程図である。 本発明の第6実施形態である半導体装置の製造方法を示す工程図である。 本発明の第6実施形態である半導体装置の製造方法を示す工程図である。 本発明の第6実施形態である半導体装置の製造方法を示す工程図である。 本発明の第6実施形態である半導体装置の製造方法を示す工程図である。 本発明の第6実施形態である半導体装置の製造方法を示す工程図である。 本発明の第6実施形態である半導体装置の製造方法を示す工程図である。 本発明の第6実施形態である半導体装置の製造方法を示す工程図である。 本発明のその他の実施形態である半導体装置の製造方法の一例を示す平面模式図である。 本発明のその他の実施形態である半導体装置の製造方法の一例を示す工程図である。 本発明のその他の実施形態である半導体装置の製造方法の一例を示す工程図である。 本発明のその他の実施形態である半導体装置の製造方法の一例を示す工程図である。 本発明のその他の実施形態である半導体装置の一例を示す断面模式図である。
符号の説明
A、B…半導体装置、1…シリコン基板、1A…基体部、1B…基台部、1C…ピラー部、1D…第1の溝、1E…第2の溝、1F…第3の溝、1G…第4の溝、1H…フィン部、1a…上面(基台部)、1b…側面(基台部)、1c…側面(ピラー部)、1d…上面(ピラー部)、2…第1の酸化膜(ハードマスク)、3…第1の窒化膜(ハードマスク)、20…ハードマスク、4…ゲート絶縁膜、41…第2の酸化膜、42…第2の窒化膜、5…第3不純物拡散層、5a…上端(第3不純物拡散層)、6、65…ビット線(埋め込み配線)、6a…上端(ビット線)、6A…シリサイド層(ビット線)、7、11…層間絶縁膜、8…第1不純物拡散層、8a…上端(第1不純物拡散層)、10…ワード線(ゲート配線)、10A…ゲート電極、12…コンタクト、13…キャパシタ、14…第2不純物拡散層、15…メタル層(ビット線)

Claims (22)

  1. 少なくとも、基台部の上に複数立設された柱状のピラー部を含む基板と、
    前記基台部の側面を覆うように設けられる埋め込み配線と、
    前記ピラー部の側面を覆うゲート絶縁膜と、
    前記基台部の上面において、前記ピラー部が設けられる位置以外の領域に設けられる第1不純物拡散層と、
    前記ピラー部の上面に形成される第2不純物拡散層と、
    前記埋め込み配線と前記基板との間に形成され、前記第1不純物拡散層との間で高低差を有し、且つ、上端側が、前記第1不純物拡散層の上端よりも低い位置に配されてなる第3不純物拡散層と、
    前記ピラー部の側面側に設けられるゲート配線の一部をなすゲート電極と、
    が備えられてなることを特徴とする半導体装置。
  2. 前記ピラー部を含む前記基板がシリコン単結晶からなることを特徴とする請求項1に記載の半導体装置。
  3. 前記第3不純物拡散層は、電気的ポテンシャル障壁が低い層であることを特徴とする請求項1又は請求項2に記載の半導体装置。
  4. 前記埋め込み配線が、シリサイド層を含むことを特徴とする請求項1〜請求項3の何れか1項に記載の半導体装置。
  5. 前記埋め込み配線が、単結晶シリコン、多結晶シリコン、アモルファスシリコンの内の少なくとも一つを含むことを特徴とする請求項1〜請求項3の何れか1項に記載の半導体装置。
  6. 前記埋め込み配線が、シリサイド層及びメタル層を含むことを特徴とする請求項1〜請求項3の何れか1項に記載の半導体装置。
  7. 前記埋め込み配線は、少なくとも、タングステン層又は窒化タングステン層の何れか一方、あるいは両方を含有するメタル層を含むことを特徴する請求項6に記載の半導体装置。
  8. 前記埋め込み配線は、少なくとも、CoSi、NiSi、NiSi、NiSi、NiSi、WSi、 TiSi、VSi、CrSi、ZrSi、NbSi、MoSi、 TaSi、CoSi、CoSi、 PtSi、PtSi及びPdSiの内の何れか1種以上が含まれるシリサイド層を含むことを特徴する請求項1〜請求項7の何れか1項に記載の半導体装置。
  9. さらに、前記ゲート絶縁膜を介して前記基台部及びピラー部の側面の少なくとも一部を覆うとともに、前記埋め込み配線を覆う層間絶縁膜が設けられていることを特徴とする請求項1〜請求項8の何れか1項に記載の半導体装置。
  10. 前記ゲート配線が、DOPOS(DOped POlycrystalline Silicon)層、シリサイド層、メタル層の内の少なくとも1種以上を含むことを特徴とする請求項1〜請求項9の何れか1項に記載の半導体装置。
  11. 前記ゲート絶縁膜が、酸化膜、窒化膜、酸窒化膜、又はHfを含む高誘電率ゲート絶縁膜の内の何れかを含むことを特徴とする請求項1〜請求項10の何れか1項に記載の半導体装置。
  12. さらに、第2不純物拡散層の上面にコンタクトが設けられ、該コンタクト上にキャパシタが設けられていることを特徴とする請求項1〜請求項11の何れか1項に記載の半導体装置。
  13. 前記第1不純物拡散層が複数備えられることにより、前記基板上において複数のトランジスタ領域が形成され、複数の前記トランジスタ領域の各々がメモリセルとして構成されていることを特徴とする請求項1〜請求項12の何れか1項に記載の半導体装置。
  14. 前記第1不純物拡散層が、それぞれ異なる濃度で不純物が拡散されて複数形成されることにより、前記基板上において複数の種類のトランジスタ領域が形成され、複数の前記トランジスタ領域の各々が、1つの前記埋め込み配線に接続されていることを特徴とする請求項1〜請求項12の何れか1項に記載の半導体装置。
  15. 前記第1不純物拡散層が複数備えられることにより、前記基板上において複数のトランジスタ領域が形成され、複数の前記トランジスタ領域の各々がFBC(フローティングボディセル)構造とされていることを特徴とする請求項1〜請求項12の何れか1項に記載の半導体装置。
  16. 前記第3不純物拡散層が、それぞれ異なる濃度で不純物が拡散されて複数形成されることにより、前記基板上において複数の種類のトランジスタ領域が形成され、複数の前記トランジスタ領域の各々が、1つの前記埋め込み配線に接続されていることを特徴とする請求項1〜請求項15の何れか1項に記載の半導体装置。
  17. 請求項1〜請求項16の何れか1項に記載の半導体装置を製造する方法であって、
    複数のフィン部を形成するとともに、前記フィン部の下部に埋め込み配線を形成する工程と、
    前記フィン部に、前記埋め込み配線よりも高い位置を底面とする溝を形成することにより、前記フィン部を複数に分断してピラー部を形成する工程と、
    前記溝の底面に不純物を注入して第1不純物拡散層を形成する工程と、
    前記ピラー部に、ゲート絶縁膜、ゲート配線の一部をなすゲート電極、及び、第2不純物拡散層を形成する工程と、
    前記埋め込み配線と前記ピラー部を含む基板との間に第3不純物拡散層を形成する工程と、
    を備えることを特徴とする半導体装置の製造方法。
  18. 請求項1〜請求項16の何れか1項に記載の半導体装置を製造する方法であって、
    シリコン基板上に第1の酸化膜及び第1の窒化膜が順次形成されてなるハードマスクを形成した後、該ハードマスクを用いてシリコン基板をエッチングし、埋め込み配線予定ラインの延在方向で第1の溝を形成することにより、フィン部を形成するフィン部形成工程と、
    前記第1の溝の底部に不純物を注入することにより、前記シリコン基板に第3不純物拡散層を形成する最下部拡散工程と、
    前記第3不純物拡散層をエッチングして前記第1の溝に連通した第2の溝を形成することにより、前記シリコン基板において基体部上に設けられるとともに、側面に前記第3不純物拡散層が形成されてなる基台部を形成する基台部形成工程と、
    前記第3不純物拡散層上に金属材料を堆積させて熱処理することでシリサイド層からなる埋め込み配線を形成した後、前記埋め込み配線及び前記基体部をエッチングし、前記第2の溝に連通した第3の溝を形成する埋め込み配線形成工程と、
    前記フィン部を、前記埋め込み配線と直行するゲート配線予定ラインの延在方向でエッチングし、前記埋め込み配線よりも高い位置を底面とする第4の溝を形成することにより、複数のピラー部を形成するピラー部形成工程と、
    前記基台部の上面に不純物を注入することによって第1不純物拡散層を形成する下部拡散工程と、
    前記第4の溝の内部にゲート電極材料を充填して、ゲート電極を含むゲート配線を形成するゲート配線形成工程と、
    前記ゲート配線をエッチングすることにより、前記第4の溝の側面を各々覆うように分離した後、前記ゲート配線の各々の上部をエッチングして除去するゲート配線エッチング工程と、
    前記ピラー部の上面に不純物を注入して第2不純物拡散層を形成するとともに、前記ハードマスクを除去して前記第2不純物拡散層を露出させる上部拡散工程と、を備えることを特徴とする半導体装置の製造方法。
  19. さらに、前記埋め込み配線形成工程の後、前記第1の溝、第2の溝及び第3の溝の内部に絶縁物を充填し、さらに、前記第1の窒化物及び第2の窒化膜上に絶縁物を形成して平坦化することによって層間絶縁膜を形成する工程が備えられていることを特徴とする請求項18に記載の半導体装置の製造方法。
  20. 前記埋め込み配線形成工程において、前記第3不純物拡散層上に金属材料を堆積させて熱処理することでシリサイド層を形成した後、前記第2の溝にメタル材料を充填することによってシリサイド層及びメタル層を含む埋め込み配線を形成し、次いで、該埋め込み配線及び前記基体部をエッチングすることによって前記第2の溝に連通した第3の溝を形成することを特徴とする請求項18又は請求項19に記載の半導体沿装置の製造方法。
  21. さらに、前記フィン部を形成した後、前記第1の溝の内部を熱酸化して、前記フィン部の側面を含む前記第1の溝の内部に第2の酸化膜を形成し、またさらに、前記第2の酸化膜の表面及び前記ハードマスクの側面に第2の窒化膜を形成することにより、前記第2の酸化膜及び第2の窒化膜からなるゲート絶縁膜を形成する工程が備えられていることを特徴とする請求項18〜請求項20の何れか1項に記載の半導体装置の製造方法。
  22. さらに、前記第2不純物拡散層の上面にコンタクトを形成する工程と、前記コンタクト上にキャパシタを形成する工程と、が備えられていることを特徴とする請求項18〜21の何れか1項に記載の半導体装置の製造方法。
JP2008318618A 2008-12-15 2008-12-15 半導体装置及びその製造方法 Abandoned JP2010141259A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008318618A JP2010141259A (ja) 2008-12-15 2008-12-15 半導体装置及びその製造方法
US12/637,480 US8198661B2 (en) 2008-12-15 2009-12-14 Semiconductor device and method of forming semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008318618A JP2010141259A (ja) 2008-12-15 2008-12-15 半導体装置及びその製造方法

Publications (1)

Publication Number Publication Date
JP2010141259A true JP2010141259A (ja) 2010-06-24

Family

ID=42239470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008318618A Abandoned JP2010141259A (ja) 2008-12-15 2008-12-15 半導体装置及びその製造方法

Country Status (2)

Country Link
US (1) US8198661B2 (ja)
JP (1) JP2010141259A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109353A (ja) * 2010-11-16 2012-06-07 Elpida Memory Inc 半導体装置及びその製造方法
JP2013098532A (ja) * 2011-10-31 2013-05-20 Sk Hynix Inc 半導体素子及びその形成方法
US9136358B2 (en) 2013-03-20 2015-09-15 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method for manufacturing same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI497713B (zh) 2011-09-14 2015-08-21 Inotera Memories Inc 絕緣體的製作方法
KR20130065264A (ko) * 2011-12-09 2013-06-19 에스케이하이닉스 주식회사 매립비트라인 형성 방법, 매립비트라인를 구비한 반도체장치 및 제조 방법
KR102008317B1 (ko) 2012-03-07 2019-08-07 삼성전자주식회사 반도체 소자 및 반도체 소자의 제조방법
US8697511B2 (en) * 2012-05-18 2014-04-15 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US8877578B2 (en) 2012-05-18 2014-11-04 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9263555B2 (en) * 2014-07-03 2016-02-16 Globalfoundries Inc. Methods of forming a channel region for a semiconductor device by performing a triple cladding process
US10269805B2 (en) 2017-06-26 2019-04-23 Micron Technology, Inc. Apparatuses having body connection lines coupled with access devices
WO2023281728A1 (ja) * 2021-07-09 2023-01-12 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074904A (ja) * 1996-06-14 1998-03-17 Siemens Ag サブgrゲートの製造方法
JP2002246571A (ja) * 2001-02-15 2002-08-30 Toshiba Corp 半導体メモリ装置
JP2007329480A (ja) * 2006-06-09 2007-12-20 Samsung Electronics Co Ltd 埋め込みビットラインの形成方法
JP2008177565A (ja) * 2007-01-18 2008-07-31 Samsung Electronics Co Ltd 垂直方向のチャンネルを有するアクセス素子、これを含む半導体装置、及びアクセス素子の形成方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960016773B1 (en) 1994-03-28 1996-12-20 Samsung Electronics Co Ltd Buried bit line and cylindrical gate cell and forming method thereof
DE19914490C1 (de) * 1999-03-30 2000-07-06 Siemens Ag Speicherzellenanordnung und Verfahren zu deren Herstellung
DE10318625B4 (de) * 2003-04-24 2006-08-03 Infineon Technologies Ag Vertikale Speicherzelle und Verfahren zu deren Herstellung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074904A (ja) * 1996-06-14 1998-03-17 Siemens Ag サブgrゲートの製造方法
JP2002246571A (ja) * 2001-02-15 2002-08-30 Toshiba Corp 半導体メモリ装置
JP2007329480A (ja) * 2006-06-09 2007-12-20 Samsung Electronics Co Ltd 埋め込みビットラインの形成方法
JP2008177565A (ja) * 2007-01-18 2008-07-31 Samsung Electronics Co Ltd 垂直方向のチャンネルを有するアクセス素子、これを含む半導体装置、及びアクセス素子の形成方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109353A (ja) * 2010-11-16 2012-06-07 Elpida Memory Inc 半導体装置及びその製造方法
JP2013098532A (ja) * 2011-10-31 2013-05-20 Sk Hynix Inc 半導体素子及びその形成方法
US9136358B2 (en) 2013-03-20 2015-09-15 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method for manufacturing same

Also Published As

Publication number Publication date
US20100148233A1 (en) 2010-06-17
US8198661B2 (en) 2012-06-12

Similar Documents

Publication Publication Date Title
JP2010141259A (ja) 半導体装置及びその製造方法
JP4413841B2 (ja) 半導体記憶装置及びその製造方法
KR101986145B1 (ko) 매립비트라인을 구비한 반도체장치 및 그 제조 방법
KR100734266B1 (ko) 콘택 저항이 개선된 수직 채널 반도체 소자 및 그 제조방법
TWI548086B (zh) 溝渠式橫向擴散金屬氧化半導體元件及其製造方法
KR101168336B1 (ko) 수직형 트랜지스터와 매몰된 비트라인을 갖는 반도체 메모리소자 및 그 제조방법
US9153654B2 (en) Semiconductor device with buried bit line and method for fabricating the same
US6432774B2 (en) Method of fabricating memory cell with trench capacitor and vertical transistor
JP2009065024A (ja) 半導体装置及びその製造方法
US20090267125A1 (en) Semiconductor device and method of manufacturing the same
JP2013026382A (ja) 半導体装置の製造方法
JP2006344809A (ja) 半導体装置及びその製造方法
JP2011077185A (ja) 半導体装置の製造方法、半導体装置及びデータ処理システム
JP2011243948A (ja) 半導体装置及びその製造方法
JP2008004894A (ja) 半導体装置及びその製造方法
US20130248997A1 (en) Semiconductor Devices Including Guard Ring Structures
JP2012174790A (ja) 半導体装置及びその製造方法
US8999827B2 (en) Semiconductor device manufacturing method
US20120153380A1 (en) Method for fabricating semiconductor device
JP2009260184A (ja) 半導体装置及び半導体装置の製造方法
JP2007103652A (ja) 半導体装置およびその製造方法
KR101116356B1 (ko) 플라즈마 도핑 방법 및 그를 이용한 반도체장치 제조 방법
JP2008034793A (ja) 半導体素子及びその製造方法
JP2007134470A (ja) 半導体装置及びその製造方法
JP2011243690A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111007

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130905

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131217

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140228

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140305

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140402

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140407

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140502

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141212

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141219

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20150107