JP2010129664A - 電子装置及びその製造方法 - Google Patents

電子装置及びその製造方法 Download PDF

Info

Publication number
JP2010129664A
JP2010129664A JP2008300938A JP2008300938A JP2010129664A JP 2010129664 A JP2010129664 A JP 2010129664A JP 2008300938 A JP2008300938 A JP 2008300938A JP 2008300938 A JP2008300938 A JP 2008300938A JP 2010129664 A JP2010129664 A JP 2010129664A
Authority
JP
Japan
Prior art keywords
solder
metal
electrode
electronic device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008300938A
Other languages
English (en)
Other versions
JP5470816B2 (ja
Inventor
Seiki Sakuyama
誠樹 作山
Toshiya Akamatsu
俊也 赤松
Masatoshi Takenochi
正寿 竹野内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2008300938A priority Critical patent/JP5470816B2/ja
Publication of JP2010129664A publication Critical patent/JP2010129664A/ja
Application granted granted Critical
Publication of JP5470816B2 publication Critical patent/JP5470816B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Landscapes

  • Wire Bonding (AREA)

Abstract

【課題】電子装置に関し、接合信頼性の高いBi含有鉛フリーはんだを用いた電子装置、及びその製造方法を提供することを目的とする。
【解決手段】
電子部品に備えられている電極と、前記電極の表面に形成されているはんだ接合材とを有し、前記はんだ接合材は、少なくともBiを含む第1の金属と、第2の金属と第3の金属との合金と、前記第3の金属とを含み、前記第2の金属は、Niとの金属間化合物を作ることができることを特徴とする電子装置。前記はんだ接合材を用いることによって、はんだバンプ形成後に発生する電極内の剥離の問題を解決できるため、高い接合信頼性を実現することができる。

【選択図】 図1

Description

本発明は、はんだ材料を用いた電子装置及びその製造方法に関する。
電子装置に組み込まれる電子部品と回路基板とを電気的に接続する手段として、古くからはんだ合金が使われている。これまで広く使われてきたはんだ合金はSn−37Pb(融点:183℃)であり、その他にPb−5Sn(融点:310℃〜314℃)やPb−10Sn(融点:275℃〜302℃)等が使われている。Sn−37Pb,Pb−5Sn,Pb−10Snはいずれも鉛(Pb)を含む材料である。
近年、廃棄された電子装置中に含まれる鉛の土壌溶出による地球環境への影響や、人体への影響が問題となってきた。そこで、鉛を含まないはんだ合金である、鉛フリーはんだの開発や電子装置への適用検討が進められている。
特開2002−314241号公報 特開2003−211289号公報 特開2003−290974号公報 特開2004−207494号公報 特開2007−313526号公報
電子装置に適用できる鉛フリーはんだの候補としては、Snを主成分としたはんだ合金がある。例えば、Sn−Ag合金やSn−Ag−Cu合金(融点:200℃〜220℃)が有力視されており、従来の鉛を含むはんだ合金からの置き換えが進められている。また、Biを主成分としたはんだ合金も提案されている。Biを主成分としたはんだ合金の一例としては、Bi−2.5Ag(融点:262℃)を挙げることができる。
しかしながら、Bi−2.5Agは、作業性や機械的強度の面では優れているが、はんだ接合部の信頼性(接合信頼性)の面で課題を有している。
本発明は、接合信頼性の高いBi含有鉛フリーはんだを用いた電子装置、及びその製造方法を提供することを目的とする。
発明の一観点によれば、電子部品に備えられている電極と、前記電極の表面に形成されているはんだ接合材とを有し、前記はんだ接合材は、少なくともBiを含む第1の金属と、第2の金属と第3の金属との合金と、前記第3の金属とを含み、前記第2の金属は、Niとの金属間化合物を作ることができる電子装置が提供される。
開示の電子装置によれば、上記はんだ接合材を用いることによって、はんだバンプ形成後に発生する電極内の剥離の問題を解決できるため、高い接合信頼性を実現することができる。
以下、本発明の実施形態について、図面を参照して具体的に説明する。
(第一の実施形態)
図1は、第一の実施形態におけるはんだバンプを備えた半導体チップの断面図である。半導体チップ1の回路面には、下層であるCu電極層2と、Cu電極層2上に形成したバリアメタル層3とを有する電極パッド5が備えられている。
バリアメタル層3は、はんだバンプとの界面反応によって形成された合金層(例えばSn−Ni合金層)を有している。バリアメタル層3の厚さとしては、3μm〜6μmの範囲が好ましい。
また、バリアメタル層3上には、はんだバンプ4が形成されている。はんだバンプ4は、少なくともBiを含む第1の金属と、第2の金属と第3の金属との合金と、前記第3の金属とを含み、前記第2の金属は、Niとの金属間化合物を作ることができる。第1の金属としてはBiが好ましく、Bi化合物も用いることができる。第2の金属としてはSn又はInが好ましい。第3の金属としては、例えばAu,Ag,Cu,Sb,Ni,Geから選択される金属を用いることができる。
第1の金属をBi、第2の金属をSn、第3の金属をAgとした場合、はんだバンプ4にはAg3Snが形成される。また、第1の金属をBi、第2の金属をIn、第3の金属をAgとした場合、はんだバンプ4にはAg3Inが形成される。はんだバンプの高さとしては、50μm〜100μmの範囲のものが広く使われている。
次に、第一の実施形態における電子装置の製造方法について、図2及び図3を参照して説明する。
図2及び図3は、第一の実施形態における電子装置の製造工程を示す工程断面図である。
まず、図2(a)に示すように、電極パッド5を備えた半導体ウェハ6と、電極パッド5に相当する部分に開口部31を設けたメタルマスク30とを準備する。
電極パッド5は、下層であるCu電極層2と、Cu電極層2上に形成したバリアメタル層3とを有する。なお、下層電極の材料としては、Cuの他に、Cu合金、Al、Al合金等を用いることができる。Cuを含む電極は、Alを含む電極に較べて耐マイグレーション性に優れ、低い抵抗を有している。そのため、半導体チップの信頼性や性能を高める上において有利である。下層電極の厚さとしては、15μm〜30μmの範囲が好ましい。
また、Cu電極層2上に形成したバリアメタル層3としては、Ni又はNi−P合金を用いることができる。バリアメタル層3は、下層の電極の上にはんだバンプを直接形成した際に、下層の電極が合金化により腐食するのを防ぐことができる。バリアメタル層3の厚さとしては、3μm〜6μmの範囲が好ましい。
さらに、電極パッド5は、ウェハプロセスの段階で形成される電極パッドでも良いし、電極の再配置を目的とした、いわゆる再配線プロセスによって形成された電極パッドを用いることもできる。再配線プロセスによって形成された電極パッドは、ウェハ上に形成した絶縁層の表面に形成され、配線(再配線)を介して元の電極パッドと電気的に接続されたものである。
なお、図示しないが、製造前の電極パッド5には、最表層にAuフラッシュめっきを施すことがある。Auフラッシュめっきは、はんだ付けする際の濡れ性を高める目的で設けられる層であり、その厚さとしては、1nm〜30nmの範囲が好ましい。
続いて、図2(b)に示すように、準備したメタルマスク30を半導体ウェハ6上に配置し、開口部31の位置と電極パッド5の位置とが整合するように位置合わせを行う。
そして、電極パッド5上に導電性接合材を供給する。図3(c)に示すように、導電性接合材33をメタルマスク30の上に載置し、スキージ32を用いて導電性接合材33を開口部31に埋め込む。
ここで、導電性接合材33について図4を参照して説明する。
図4は、第一の実施形態におけるはんだバンプとなる導電性接合材の拡大図である。
導電性接合材は、第1の金属と第2の金属との合金を含むはんだ粉末40、第3の金属の粉末41、融剤42を有しており、はんだ粉末40と第3の金属の粉末41とを融剤42に混合してペースト化したものである。例えば、第1の金属をBi、第2の金属をSnとした場合、はんだ粉末40はBi−Sn合金を含んでいる。その他の例として、第1の金属をBi、第2の金属をInとした場合、はんだ粉末40はBi−In合金を含んでいる。
融剤42は、ロジン、溶剤、活性剤、チクソ剤をベースに調合されており、印刷性やポットライフを考慮しながら、その都度最適なものを選択する。ロジンとしては、例えば天然ロジン又は重合ロジン等を用いることができるが、ロジンの代わりにエポキシ樹脂又はアクリル樹脂を用いることもできる。溶剤としては、ブチルカルビトールや、ヘキシルカルビトール、安息香酸ベンジル等が好ましい。活性剤は、ハロゲン系、有機酸系、アミン系等を用いることができる。チクソ剤としては、硬化ヒマシ油等を用いることができる。
続いて、メタルマスク30を取り外すと、図3(a)に示すように、電極パッド5上に導電性接合材33を供給することができる。上述の供給方法は、スクリーン印刷法と呼ばれている。
続いて、導電性接合材33が供給された半導体ウェハ6をリフロー炉に投入し、例えばピーク温度260℃〜290℃で加熱処理(リフロー加熱)を行う。リフロー加熱を行うと、導電性接合材33に含まれる図示しない融剤42が揮発する。そして、導電性接合材33中のはんだ成分が溶融して、図3(b)に示すように、電極パッド5の表面に球状のはんだバンプ4が形成される。その後、必要に応じてはんだバンプ4に付着している融剤42の残渣を洗浄により除去する。
ここで、第一の実施形態におけるはんだパンプ4について、図5を参照して説明する。
図5は、はんだ粉末の材料としてBi−Sn合金、第3の金属の粉末の材料としてAgを含む導電性接合材を用いて電極パッドの表面にはんだバンプを形成した場合の、はんだ接合部における断面図である。
まず、はんだバンプ4は、電極パッド5の表面に形成されているAuフラッシュめっき層と反応し、Auフラッシュめっき層は、溶融したはんだバンプ4の中に溶け込んで消滅する。そのため、図5(a)に示すように、はんだバンプ4は、Auフラッシュめっき層が消失して現れたNi層51の表面に形成される。このとき、はんだバンプ4とNi層51との接合界面において拡散反応が起きる。
上記はんだバンプ4中にはSn原子44とBi原子43が含まれているが、Sn原子44がNi層51へ拡散する速度は、Bi原子43がNi層51へ拡散する速度よりも大きい。このため、図5(a)に示すように、Bi原子43のNi層51への拡散よりも、Sn原子44のNi層51への拡散の方が優先的に進行する。
その後、図5(b)に示すように、Sn原子44の拡散によってNi層51内でSn−Ni合金層54が成長する。なお、Biを主成分としたはんだ合金ではBi原子に較べてSn原子の量が少ないため、Sn−Ni合金層54の成長はBi−2.5Agほど顕著には進行しない。そのため、一般的なNi層厚やリフロー加熱温度の範囲においては、Ni層51がすべてSn−Ni合金層54に置き換わるまでには至らないことが多い。はんだバンプ形成時に成長するSn−Ni合金層54の厚さは、0.5μm〜2μm程度である。
他方、Sn−Ni合金層54の成長に使われずにはんだバンプ4中に残留したSn原子44は、Ag原子45の一部と反応し、Ag3Sn46が生成される。生成したAg3Sn46は、はんだバンプ4の融点を上昇させる作用を有しており、Ag3Sn46の生成量を調節することによって所望の融点を得ることができる。また、Ag3Sn46は、はんだバンプ4の結晶粒界に析出してはんだ組織を強化するため、Biを主成分とするはんだ合金で課題となっている材料の脆さを改善することもできる。
以上の反応を経て成長したSn−Ni合金層54は、図5(c)に示すように、Biの拡散に対するバリアとなり、Bi−Ni合金層の成長を防止することができる。なお、Bi−Ni合金層については、後述する。
最後に、図3(c)に示すように、図示しない半導体ウェハ6の非回路面にダイシングテープ35を貼り付けた後、切断装置34を用いて半導体ウェハ6に対して個片切断を行う。このようにして、はんだバンプ4が形成された半導体チップ1を得ることができる。ここで、比較例として、Bi−2.5Agを用いたはんだバンプの形成について、図6を参照しながら説明する。
図6は、Bi−2.5Agを用いて電極パッドの表面にはんだバンプを形成した場合の、はんだ接合部における断面図である。
まず、Bi−2.5Agと融剤とを含む、図示しない導電性接合材を、表面側からAuフラッシュめっき/Ni/Cu電極を有する電極パッド5上に供給し、例えばピーク温度270℃〜290℃でリフロー加熱を行う。すると、リフロー炉内で融剤が揮発し、導電性接合材は、Bi−2.5Agを含むはんだバンプ50となる。
上記はんだバンプ50は、電極パッド5の最表面に形成されているAuフラッシュめっき層と反応し、Auフラッシュめっき層は、Au原子が溶融したはんだバンプ50の中に拡散して消滅する。そのため、図6(a)に示すように、はんだバンプ50は、Auフラッシュめっき層が消失して現れたNi層51の表面に形成される。このとき、はんだバンプ50とNi層51との接合界面において拡散反応が起きる。
上記はんだバンプ50中にはBi原子43が含まれているが、Bi原子43がNi層51へ拡散する速度は、Ni原子がはんだバンプ50側へ拡散する速度よりも大きい。このため、図6(a)に示すように、Ni原子のはんだバンプ50への拡散よりも、Bi原子43のNi層51への拡散の方が優先的に進行する。
その後、図6(b)に示すように、Bi原子43の拡散によってNi層51が合金化し、Bi−Ni合金層53が成長する。Bi−Ni合金層53の成長が進んでいくと、やがてNi層51全体がBi−Ni合金層53に置き換わる。このBi−Ni合金層53は脆い材料であり、Cu層52との密着性も良くない。このため、はんだバンプ形成後にはんだ接合部を観察すると、図6(c)に示すように、Bi−Ni合金層53とCu層52との接合界面において剥離が発生していることがある。
他方、本実施形態の反応を経て成長したSn−Ni合金層54は、Biの拡散に対するバリアとなり、Bi−Ni合金層の成長を防止している。このようにして、はんだバンプ50の形成後に、Ni層51とCu層52の接合界面で発生する剥離の問題を解決することができる。
上述のSn−Ni合金層54によるバリア効果は、本発明に係る導電性接合材によってもたらされる特有の作用である。その理由を以下に説明する。
従来の例として、Bi、Sn、Agを溶融させて得られる3元はんだ合金を粉末にし、このはんだ粉末を含む導電性接合材を挙げる。この導電性接合材を用いて電極パッド上にはんだバンプを形成する場合、形成前の上記はんだ粉末には、BiとAg3Snが含まれている。
ところが、リフロー加熱を行ってもこの含有物は加熱中には変化せず、形成されたはんだバンプにも同様にBiとAg3Snが含まれている。このように、Snは安定なAg3Snの状態で存在しているため、Sn原子は電極パッド方向に拡散しにくく、Sn−Ni合金層が成長しない。よって、Biの拡散に対するバリア効果を得ることができない。
他方、Bi−Sn合金を含むはんだ粉末と、Agの粉末とを含む導電性接合材を用いてはんだバンプを形成する場合は、リフロー加熱時にSnがBiから脱離しやすく、Ag3Snの生成反応はSnが脱離した後に開始される。そのため、Sn原子は電極パッド方向に拡散することができ、緻密なSn−Ni合金層を成長させることができる。そして、このSn−Ni合金層が、Biの拡散に対するバリアとして機能することとなる。
以上のように、導電性接合材に含ませる粉末を、Bi−Sn合金を含むはんだ粉末と、Agの粉末とに分けておくことによって、Sn−Ni合金層54によるバリア効果を得ることができる。
はんだバンプ50中における第2の金属の含有量は、第2の金属がSnである場合、はんだ組成物100重量%のうち1重量%〜20重量%であることが好ましい。Snの含有量が1重量%を下回ると、緻密なSn−Ni合金層が成長せず、Biの拡散を十分に抑制することができなくなる。他方、Snの含有量が20重量%を上回ると、はんだ合金の液相線温度が下降するため、実現できる融点の範囲が狭くなる。
また、第2の金属がInである場合、はんだ組成物100重量%のうち1重量%〜15重量%であることが好ましい。Inの含有量が1重量%を下回ると、緻密なIn−Ni合金層が成長せず、Biの拡散を十分に抑制することができなくなる。他方、Inの含有量が15重量%を上回ると、はんだ合金の液相線温度が下降するため、実現できる融点の範囲が狭くなる。
はんだバンプ中50における第3の金属の粉末の含有量は、Niめっき層との反応で消費されずに残った第2の金属の含有量に応じて決定することが望ましい。ただし、はんだ合金の融点は、第3の金属の含有量が増えるほど上昇するため、電子装置の実装条件等に応じて第3の金属の添加量を適宜調整する必要がある。
次に、当該電子装置を製造する際に用いられる導電性接合材の変形例、およびはんだバンプの形成について、図7及び図8を参照して説明する。
図7は、第一の実施形態におけるはんだバンプとなる別の導電性接合材の拡大図である。
この導電性接合材は、少なくともBiを含む第1の金属の粉末47と、Niとの金属間化合物を作ることができる第2の金属の粉末48と、融剤42とを含んでいる。
第1の金属としてはBiが好ましいが、Bi化合物を用いることもできる。第2の金属としてはSn又はInが好ましい。例えば、第1の金属をBi、第2の金属をSnとした場合は、Bi−Sn合金を含むはんだバンプが形成され、第1の金属をBi、第2の金属をInとした場合は、Bi−In合金を含むはんだバンプが形成される。
図8は、Bi粉末とSn粉末とを含む導電性接合材を用いて電極パッドの表面にはんだバンプを形成した場合の、はんだ接合部における断面図である。
まず、図示しない上記導電性接合材を、表面側からAuフラッシュめっき/Ni/Cu電極を有する電極パッド5上に供給し、例えばピーク温度270℃〜290℃でリフロー加熱を行う。すると、リフロー炉内で導電性接合材に含まれる融剤が揮発し、導電性接合材は、Biの粉末とSnの粉末とが溶融してできた合金を含むはんだバンプ50となる。
上記はんだバンプ50は、電極パッド5の最表面に形成されているAuフラッシュめっき層と反応し、Auフラッシュめっき層は、溶融したはんだバンプ50の中に溶け込んで消滅する。そのため、図8(a)に示すように、はんだバンプ50は、Auフラッシュめっき層が消失して現れたNi層51の表面に形成される。このとき、はんだバンプ50とNi層51との接合界面において拡散反応が起きる。
上記はんだバンプ50中にはSn原子44とBi原子43が含まれているが、Sn原子44のNi層51への拡散速度は、Bi原子43のNi層51への拡散速度よりも大きい。このため、図8(a)に示すように、Sn原子44が優先的にNi層51に拡散する。
その後、Sn原子44の拡散によりNi層51の一部が合金化し、図8(b)に示すように、Sn−Ni合金層54が成長する。そして、図8(c)に示すように、Sn−Ni合金層54がBi原子43の拡散に対するバリアとして機能し、脆いBi−Ni合金層が成長するのを防止することができる。このようにして、はんだバンプ50の形成後に、Ni層51とCu層52の接合界面で発生する剥離の問題を解決することができる。
さらに、本発明の導電性接合材を用いることによって、はんだバンプ形成温度の低温化を図ることができる。はんだ合金の融点の高さに関わらず、はんだバンプを形成する際の温度は低いほうが望ましい。しかしながら、従来の、Bi−Sn合金の粉末を含む導電性接合材を用いてはんだバンプを形成する際は、Bi−Sn合金の組成によっては融点が240℃を超えることがあるため、240℃以上の昇温が必要となる。
他方、例えば、Bi粉末とSn粉末を含む導電性接合材を用いると、Snの融点(232℃)ではんだバンプを形成できるようになり、バンプ形成温度の低温化により電子装置への熱ストレスを抑えることができる。しかも、はんだバンプの形成後は、BiとSnとの合金化に伴って、はんだバンプの融点が232℃よりも高くなるため、後述する第二の実施形態における電子装置に適用する場合において有利となる。
はんだバンプ中における第2の金属の含有量は、仮に第2の金属がSnである場合、はんだ組成物100重量%のうち1重量%〜20重量%であることが好ましい。また、第2の金属がInである場合、はんだ組成物100重量%のうち1重量%〜15重量%であることが好ましい。
次に、本発明に係る導電性接合材を用いて回路基板にはんだバンプを形成し、はんだバンプの融点(液相線温度)の測定と、電極内の剥離の有無の確認を行った結果について説明する。
はんだバンプを形成する対象の回路基板は、直径250μmのCu電極上に4μm厚のNi層をめっきにより形成し、その上に0.1mm厚のAuフラッシュめっきを施した電極パッドを備えている。
まず、導電性接合材を作製した。Bi−Sn合金塊およびAg塊をそれぞれディスクアトマイズ法により粉末化し、Bi:Sn:Ag=82:15:3の質量比になるように混合、攪拌した混合はんだ粉末を作製した。混合はんだ粉末の粒径は25μm以下とした。
その後、上記混合はんだ粉末を重量比9:1の割合で融剤と混練し、ペースト化して導電性接合材を作製した。融剤としては、ダイマレックスロジン、安息香酸ベンジル、無水コハク酸、セバシン酸、カスターワックスを混合して作製したものを用いた。
続いて、スクリーン印刷法により、上記導電性接合材を、回路基板上の電極パッドの表面に供給した。そして、導電性接合材を供給した回路基板をリフロー炉に投入してピーク温度290℃で3分間リフロー加熱を行い、電極パッドの表面にはんだバンプを形成した。
はんだバンプを観察したところ、電極パッドが剥離する等の問題は生じておらず、良好なはんだ接合部が形成できていた。はんだ接合部の断面の状態をEPMA(電子線プローブマイクロアナライザ)により調べたところ、はんだバンプとNi層との接合界面にはSn−Ni合金層が成長していたものの、Bi−Ni合金層は成長していなかった。この結果は、Sn−Ni合金層がバリア層となって、Bi原子のNi層への拡散が抑止されていることを示唆している。
続いて、上述と同じ方法で、添加元素や添加量を変化させた導電性接合材をいくつか作製し、これらの導電性接合材を用いて電極パッドの表面にはんだバンプを形成した。そして、はんだバンプの液相線温度をDSC法(示差熱分析法)により測定し、電極パッドにおける剥離の有無を断面観察により調べた。液相線温度の測定では、はんだバンプをサンプリングしてから測定を行った。その結果を表1に示す。いずれの試料においても、はんだ合金層と下地電極との界面における剥離も発生しておらず、良好なはんだ接合部が得られていることが確認できた。
Figure 2010129664
なお、はんだ合金の成分に関する説明の中で不可避不純物について言及していないが、不可避不純物の含有量が本発明の課題を解決できるレベルであれば、含有していても良い。不可避不純物としては、例えばPb,Cu,Fe,Na等が挙げられる。
(第二の実施形態)
次に、第二の実施形態における電子装置について、図9乃至図11を参照して説明する。
図9は、第二の実施形態における電子装置であるMCM(Multi Chip Module)の断面図である。
ここでは、回路基板における配線パターンや層間絶縁膜等の詳細構造は省略している。回路基板10に形成されている電極11上に、複数の半導体チップ1がはんだバンプ4を介してフリップチップ実装されている。
上記はんだバンプ4は、例えばAuめっきバンプや、Au合金ワイヤを用いて形成したAuボールバンプ、Ag粉末又はCu粉末等を含む導電性接合材を用いて形成したバンプ等と置き換えることもできる。フリップチップ実装の工法については、これまで公知となっているあらゆる工法を適用することができる。
回路基板10としては、例えばガラスエポキシ樹脂等を用いた有機基板や、セラミック基板、薄膜多層配線基板、フレキシブル基板、ガラス基板等を用いることができる。
回路基板10に形成された電極16には、チップ部品8がはんだ接合部9を介して実装されている。チップ部品8としては、具体的にはチップコンデンサ、チップインダクタ、チップ抵抗等を挙げることができる。
また、半導体チップ1と回路基板10の間隙はアンダーフィル材7で充填されている。そして、回路基板10の他方の面に形成されたランド電極12には、複数のはんだ端子13が接続されている。
アンダーフィル材7としては、熱硬化性のエポキシ樹脂やアクリル樹脂等が広く使われているが、充填時の流動性に優れ、硬化時に体積収縮しにくい材料が好ましい。ランド電極12の直径としては、200μm〜1mmの範囲が一般的である。はんだ端子13の接続後の高さは、ランド電極12の直径やはんだボールの大きさに依存するが、150μm〜1mmの範囲が一般的である。
図10(a)は、第二の実施形態における電子装置の、半導体チップ搭載面の平面図、図10(b)は、はんだ端子13が接続されている外部接続端子面の平面図である。
ここでも、配線パターンやビアホール、ソルダレジスト等の詳細構造は省略している。半導体チップ搭載面では、図10(a)に示すように、回路基板10上に、大きさの異なる複数の半導体チップ1や複数のチップ部品8が実装されている。一方、外部接続端子面では、図10(b)に示すように、回路基板10上ではんだ端子13が規則的に配置されている。
図11は、第二の実施形態における電子装置の変形例を示す断面図である。
上述した図10(a)によると、全ての半導体チップが回路基板10にフリップチップ実装されているが、はんだ付けされる電子部品を有していれば、MCMの構造は特に限定しない。例えば、図11(a)に示すように、Ball Grid Array(BGA)パッケージ21が実装されている構造や、図11(b)に示すように、リード端子14を有するリード端子付きパッケージ22が実装されている構造を挙げることができる。
次に、第二の実施形態における電子装置の製造方法について、図12及び図13を参照して説明する。
図12及び図13は、第二の実施形態における電子装置の製造工程を示す工程断面図である。
まず、はんだバンプ4を備えた半導体チップ1を準備する。はんだバンプ4の材料としては、例えば第一の実施形態において説明したはんだバンプ4の材料を用いる。
続いて、半導体チップ1およびチップ部品8を回路基板10に搭載する。図12(a)に示すように、はんだバンプ4の先端部に融剤42を塗布した後、フリップチップボンダを用いて、回路基板10の一方の面に形成された電極11上に半導体チップ1を搭載する。このとき、各々のはんだバンプ4はボンディングツールの熱により一部が溶解し、電極11と仮接続される。さらに、回路基板10に形成された電極16上に導電性接合材33を供給した後、マウンタを用いてチップ部品8を搭載する。
続いて、回路基板10を図示しないリフロー炉に投入し、例えばピーク温度270℃〜290℃でリフロー加熱を行う。リフロー加熱を行うと、図12(b)に示すように、はんだ成分が溶融し、はんだバンプ4と導電性接合材33は、それぞれ電極11、電極16に接続される。このとき、導電性接合材33は、融剤が揮発してはんだ接合部9となる。このはんだ接合部9は、はんだバンプ4と同一材料にすると共通のリフロー条件で実装を行うことができる。
続いて、回路基板10を室温まで戻した後、必要に応じてはんだバンプに付着している融剤42の残渣を洗浄により除去する。そして、図12(c)に示すように、塗布装置36を用いて半導体チップ1と回路基板10との間隙にアンダーフィル材7を充填する。
その後、回路基板10を図示しない高温槽に投入し、例えば100℃〜200℃で加熱処理を行い、アンダーフィル材7を熱硬化させて実装が完了する。以上の工程を、以降では1次実装と呼ぶ。
1次実装の別の工法例としては、例えば電極11の表面にはんだ膜を形成し、このはんだ膜上に半導体チップ1をはんだバンプを介してフリップチップ実装することもできる。上記工法によれば、はんだ接合部のセルフアライメントが機能しやすくなるため、実装時の位置ずれの防止を図ることができる。
回路基板側に設けるはんだ膜としては、広く用いられているSn−Ag合金やSn−Ag−Cu合金等の鉛フリーはんだが好ましい。ただし、フリップチップ実装によって新たな組成のはんだバンプが形成されるため、形成されたはんだバンプの融点が所望の温度になるように、はんだ膜の厚さを予め調節しておく必要がある。
続いて、回路基板10の他方の面に備えられたランド電極12に、はんだ端子13を接続する。まず、図13(a)に示すように、はんだ端子13に融剤42を塗布した後、図示しないボールマウンタを用いてランド電極12上にはんだ端子13を搭載する。
その後、はんだ端子13を搭載した回路基板10をリフロー炉に投入し、例えばピーク温度240℃〜260℃でリフロー加熱を行う。リフロー加熱を行うと、図13(b)に示すように、はんだ端子13は溶融して、ランド電極12と接続される。
続いて、必要に応じてはんだ端子に付着している融剤42の残渣を洗浄により除去する。そして、図13(c)に示すように、切断装置34を用いて個片切断を行い、電子装置が完成する。
最後に、上記電子装置をプリント配線板に実装する工程について説明する。この工程を以降では2次実装と呼ぶ。
図14は、第二の実施形態における電子装置の2次実装工程を示す工程断面図である。
まず、図14(a)に示すように、はんだ端子13の先端部に融剤42を塗布した後、プリント配線板18に形成された電極17上に電子装置23を搭載する。このとき、BGAパッケージ21等、他の電子部品についても同様に搭載を行う。
その後、プリント配線板19を図示しないリフロー炉に投入し、ピーク温度240℃〜260℃でリフロー加熱を行う。すると、図14(b)に示すように、はんだ端子13が溶融し、電子装置23がプリント配線板18に実装される。このとき、実装しようとする全ての電子部品のはんだ端子に同一の材料を用いると、1回のリフロー加熱で実装を行うことができる。
ここで、はんだ端子13とはんだバンプ4に同じ材料を用いる場合、1次実装に使われているはんだバンプ4が2次実装の際に再溶融してしまうため、接合信頼性が低下する恐れがある。よって、2次実装の際の再溶融を防止するために、はんだバンプ4よりも融点の低いはんだ合金をはんだ端子13の材料に用いるのが好ましい。例えば、はんだバンプ4としては、表1に示したはんだ合金から選択される材料を使用し、はんだ端子13としては、Sn−Ag合金又はSn−Ag−Cu合金を使用するのが好ましい。
続いて、電子装置等の実装を完了したプリント配線板18をリフロー炉から取り出して室温まで冷却した後、必要に応じてはんだ端子13に付着している融剤42の残渣を洗浄により除去する。
続いて、図14(c)に示すように、塗布装置36を用いて、実装された電子装置23とプリント配線板18との間隙にアンダーフィル材7を充填する。このとき、プリント配線板18に実装されている他のBGAパッケージ21等、他の電子部品についても必要に応じてアンダーフィル材7の充填を行うことができる。
最後に、プリント配線板18を図示しない高温槽の中に投入し、例えば100℃〜200℃でアンダーフィル材を熱硬化させて電子装置23の2次実装が完了する。
以上、本発明の好ましい実施の形態について詳述したが、本発明は特定の実施の形態に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内において、種々の変形や変更が可能である。
例えば、本発明における電子部品としては、半導体チップの他に、半導体ウェハ、半導体パッケージ、半導体モジュール等の半導体部品や、チップ部品、コネクタ部品、フレキシブル基板等の回路基板等、回路基板にはんだ付けされる機構部品の全てを含めることができる。
本発明における電子装置としては、上記の電子部品群の他に、携帯電話、デジタルスチルカメラ、コンピュータ、サーバ等といった、いわゆる電子機器も含めることができる。
また、電子部品に備えられている電極としては、半導体チップや半導体ウェハに備えられている電極パッドの他に、上記の機構部品群に備えられ、回路基板との電気的接続に用いられる外部接続端子等も含めることができる。当該電極の表面に形成されているはんだ接合材には、はんだバンプの他に、はんだボールやはんだめっき膜等、はんだを主成分とした接合部材の全てを含めることができる。
図1は、第一の実施形態におけるはんだバンプを備えた半導体チップの断面図である。 図2は、第一の実施形態における電子装置の製造工程を示す工程断面図(その1)である。 図3は、第一の実施形態における電子装置の製造工程を示す工程断面図(その2)である。 図4は、第一の実施形態におけるはんだバンプとなる導電性接合材の拡大図である。 図5は、はんだ粉末の材料としてBi−Sn合金、第3の金属の粉末の材料としてAgを含む導電性接合材を用いて電極パッドの表面にはんだバンプを形成した場合の、はんだ接合部における断面図である。 図6は、Bi−2.5Agを用いて電極パッドの表面にはんだバンプを形成した場合の、はんだ接合部における断面図である。 図7は、第一の実施形態におけるはんだバンプとなる別の導電性接合材の拡大図である。 図8は、Bi粉末とSn粉末とを含む導電性接合材を用いて電極パッドの表面にはんだバンプを形成した場合の、はんだ接合部における断面図である。 図9は、第二の実施形態における電子装置であるMCM(Multi Chip Module)の断面図である。 図10は、第二の実施形態における電子装置の、半導体チップ搭載面の平面図、及びはんだ端子が接続されている外部接続端子面の平面図である。 図11は、第二の実施形態における電子装置の変形例を示す断面図である。 図12は、第二の実施形態における電子装置の製造工程を示す工程断面図(その1)である。 図13は、第二の実施形態における電子装置の製造工程を示す工程断面図(その2)である。 図14は、第二の実施形態における電子装置の2次実装工程を示す工程断面図である。
符号の説明
1 半導体チップ
4 はんだバンプ
5 電極パッド
6 半導体ウェハ
7 アンダーフィル材
9 はんだ接合部
10 回路基板
13 はんだ端子
33 導電性接合材
40 はんだ粉末
41 第3の金属の粉末
42 融剤
43 Bi原子
44 Sn原子
45 Ag原子
46 Ag3Sn
47 第1の金属の粉末
48 第2の金属の粉末
51 Ni層

Claims (7)

  1. 電子部品に備えられている電極と、
    前記電極の表面に形成されているはんだ接合材とを有し、
    前記はんだ接合材は、少なくともBiを含む第1の金属と、第2の金属と第3の金属との合金と、前記第3の金属とを含み、前記第2の金属は、Niとの金属間化合物を作ることができることを特徴とする電子装置。
  2. 前記はんだ接合材は回路基板の一方の面と接続されており、
    前記回路基板の他方の面に、はんだ端子が接続されていることを特徴とする請求項1に記載の電子装置。
  3. 電子部品に備えられている電極と、
    前記電極の表面に形成されているはんだ接合材と、
    前記はんだ接合材と接続されている回路基板と、
    前記回路基板の、前記はんだ接合材が接続されている面の他方の面に接続されているはんだ端子とを有し、
    前記はんだ接合材は、少なくともBiを含む第1の金属と、Niとの金属間化合物を作ることができる第2の金属とを含み、前記はんだ端子は、前記はんだ接合材の融点よりも低い融点を有することを特徴とする電子装置。
  4. 前記電極は、少なくとも前記Niを含むことを特徴とする、請求項1から3のいずれか1つに記載の電子装置。
  5. 第1の金属と第2の金属との合金を含むはんだ粉末と、第3の金属の粉末と、融剤とを含む導電性接合材を、電子部品に備えられている電極の表面に供給する工程と、
    前記導電性接合材の加熱処理により、前記電極の表面にはんだ接合材を形成する工程とを含み、
    前記第1の金属は少なくともBiを含み、前記第2の金属はNiとの金属間化合物を作ることができることを特徴とする電子装置の製造方法。
  6. 第1の金属の粉末と、第2の金属の粉末と、融剤とを含む導電性接合材を、電子部品に備えられている電極の表面に供給する工程と、
    前記導電性接合材の加熱処理により、前記電極の表面にはんだ接合材を形成する工程とを含み、
    前記第1の金属は少なくともBiを含み、前記第2の金属はNiとの金属間化合物を作ることができることを特徴とする電子装置の製造方法。
  7. 前記はんだ接合材と回路基板の一方の面とを接続する工程と、
    前記電子部品と前記回路基板との間隙にアンダーフィル材を充填する工程と、
    前記回路基板の他方の面に、はんだ端子を形成する工程と
    を含むことを特徴とする請求項5又は6に記載の電子装置の製造方法。

JP2008300938A 2008-11-26 2008-11-26 電子装置の製造方法 Active JP5470816B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008300938A JP5470816B2 (ja) 2008-11-26 2008-11-26 電子装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008300938A JP5470816B2 (ja) 2008-11-26 2008-11-26 電子装置の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013254274A Division JP6020433B2 (ja) 2013-12-09 2013-12-09 電子装置

Publications (2)

Publication Number Publication Date
JP2010129664A true JP2010129664A (ja) 2010-06-10
JP5470816B2 JP5470816B2 (ja) 2014-04-16

Family

ID=42329878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008300938A Active JP5470816B2 (ja) 2008-11-26 2008-11-26 電子装置の製造方法

Country Status (1)

Country Link
JP (1) JP5470816B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142192A (ja) * 2010-12-28 2012-07-26 Fujitsu Component Ltd コネクタ、半田シート
JP2015202507A (ja) * 2014-04-14 2015-11-16 富士電機株式会社 高温はんだ合金
JPWO2014115798A1 (ja) * 2013-01-28 2017-01-26 株式会社村田製作所 はんだバンプの形成方法およびはんだバンプ
JP2017195267A (ja) * 2016-04-20 2017-10-26 富士通株式会社 電子装置、及び電子装置の製造方法
JP2018511482A (ja) * 2015-03-10 2018-04-26 インディウム コーポレーション 混成合金ソルダペースト
JP2019206032A (ja) * 2011-08-02 2019-12-05 アルファ・アセンブリー・ソリューションズ・インコーポレイテッドAlpha Assembly Solutions Inc. はんだ組成物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09181125A (ja) * 1995-12-22 1997-07-11 Internatl Business Mach Corp <Ibm> 無鉛はんだを使用する相互接続構造
JPH1133775A (ja) * 1997-07-17 1999-02-09 Matsushita Electric Ind Co Ltd 錫含有鉛フリーはんだ合金及びそのクリームはんだ並びにその製造方法
JP2003290974A (ja) * 2002-03-28 2003-10-14 Fujitsu Ltd 電子回路装置の接合構造及びそれに用いる電子部品
WO2006131979A1 (ja) * 2005-06-10 2006-12-14 Senju Metal Industry Co., Ltd. 無電解Niめっき部のはんだ付け方法
JP2007090407A (ja) * 2005-09-30 2007-04-12 Toshiba Corp 電子部品の接合材料、プリント回路配線基板、及び電子機器
JP2008183590A (ja) * 2007-01-30 2008-08-14 Oki Electric Ind Co Ltd 半導体装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09181125A (ja) * 1995-12-22 1997-07-11 Internatl Business Mach Corp <Ibm> 無鉛はんだを使用する相互接続構造
JPH1133775A (ja) * 1997-07-17 1999-02-09 Matsushita Electric Ind Co Ltd 錫含有鉛フリーはんだ合金及びそのクリームはんだ並びにその製造方法
JP2003290974A (ja) * 2002-03-28 2003-10-14 Fujitsu Ltd 電子回路装置の接合構造及びそれに用いる電子部品
WO2006131979A1 (ja) * 2005-06-10 2006-12-14 Senju Metal Industry Co., Ltd. 無電解Niめっき部のはんだ付け方法
JP2007090407A (ja) * 2005-09-30 2007-04-12 Toshiba Corp 電子部品の接合材料、プリント回路配線基板、及び電子機器
JP2008183590A (ja) * 2007-01-30 2008-08-14 Oki Electric Ind Co Ltd 半導体装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142192A (ja) * 2010-12-28 2012-07-26 Fujitsu Component Ltd コネクタ、半田シート
US8961200B2 (en) 2010-12-28 2015-02-24 Fujitsu Component Limited Connector and solder sheet
JP2019206032A (ja) * 2011-08-02 2019-12-05 アルファ・アセンブリー・ソリューションズ・インコーポレイテッドAlpha Assembly Solutions Inc. はんだ組成物
JPWO2014115798A1 (ja) * 2013-01-28 2017-01-26 株式会社村田製作所 はんだバンプの形成方法およびはんだバンプ
US10090268B2 (en) 2013-01-28 2018-10-02 Murata Manufacturing Co., Ltd. Method of forming solder bump, and solder bump
JP2015202507A (ja) * 2014-04-14 2015-11-16 富士電機株式会社 高温はんだ合金
JP2018511482A (ja) * 2015-03-10 2018-04-26 インディウム コーポレーション 混成合金ソルダペースト
JP2017195267A (ja) * 2016-04-20 2017-10-26 富士通株式会社 電子装置、及び電子装置の製造方法

Also Published As

Publication number Publication date
JP5470816B2 (ja) 2014-04-16

Similar Documents

Publication Publication Date Title
KR100867871B1 (ko) 솔더 페이스트, 및 전자장치
TWI233684B (en) Electronic device
JP5533665B2 (ja) 電子装置の製造方法、電子部品搭載用基板及びその製造方法
JP5470816B2 (ja) 電子装置の製造方法
WO2013132942A1 (ja) 接合方法、接合構造体およびその製造方法
JP4070232B2 (ja) 配線基板及びその製造方法
JP2008238233A (ja) 非鉛系の合金接合材、接合方法および接合体
JP6020433B2 (ja) 電子装置
JP2004207494A (ja) 電子装置及び電子装置の実装方法及び電子装置の製造方法
JP2003290974A (ja) 電子回路装置の接合構造及びそれに用いる電子部品
JP2007123577A (ja) 半導体装置
JP2012024834A (ja) はんだ材料とその作製方法、及びこれを用いた半導体装置の製造方法
JP2009088431A (ja) バンプ形成用ペースト、及びバンプ構造体
JP2008147375A (ja) 半導体装置、回路配線基板及び半導体装置の製造方法
JP6156136B2 (ja) はんだバンプの焼結芯を形成するための芯用ペースト
JP2016096195A (ja) 電子装置及び電子装置の製造方法
JP2008218483A (ja) 半導体装置及びその製造方法
JP2013004929A (ja) はんだバンプ製造方法および下地形成用ペースト
US20040096688A1 (en) Lead-free joining material and joining method using the same
JP6969070B2 (ja) はんだ材料、はんだペースト、フォームはんだ及びはんだ継手
JP2012061508A (ja) 接合材料
JP6187536B2 (ja) はんだバンプ製造方法および下地形成用ペースト
JP4367630B2 (ja) バンプ形成方法
JP2016124012A (ja) はんだ合金、電子部品および電子装置の製造方法
JP2005057117A (ja) はんだ付け方法および接合構造体ならびに電気/電子部品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Ref document number: 5470816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150