JP2010110208A - 過電圧過渡コントローラ - Google Patents

過電圧過渡コントローラ Download PDF

Info

Publication number
JP2010110208A
JP2010110208A JP2009276778A JP2009276778A JP2010110208A JP 2010110208 A JP2010110208 A JP 2010110208A JP 2009276778 A JP2009276778 A JP 2009276778A JP 2009276778 A JP2009276778 A JP 2009276778A JP 2010110208 A JP2010110208 A JP 2010110208A
Authority
JP
Japan
Prior art keywords
signal
overvoltage transient
overvoltage
switch
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009276778A
Other languages
English (en)
Other versions
JP5253366B2 (ja
Inventor
S Denning Bruce
ブルース・エス・デニング
Guoxing Li
グオジィング・リー
Liusheng Liu
リウシェン・リウ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
O2Micro Inc
Original Assignee
O2Micro Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by O2Micro Inc filed Critical O2Micro Inc
Publication of JP2010110208A publication Critical patent/JP2010110208A/ja
Application granted granted Critical
Publication of JP5253366B2 publication Critical patent/JP5253366B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Protection Of Static Devices (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

【課題】充電式バッテリを過電圧過渡状態から保護する過電圧過渡コントローラを提供する。
【解決手段】過電圧過渡コントローラは、第1の信号と基準電圧レベルを表す第2の信号とを比較して、第1の信号が第2の信号よりも大きいか第2の信号と等しければ、過電圧過渡状態を表す出力信号をスイッチに供給する比較器を備える。このスイッチは、上記出力信号に応答して上記充電式バッテリを上記過電圧過渡状態から保護する。上記過電圧過渡コントローラは、さらにDACを備える。ここで、上記第2の信号は、少なくとも部分的に上記DACの出力に基づく。また、充電スイッチ及びこのような過電圧過渡コントローラを備えた装置が提供される。
【選択図】図10

Description

本発明は、過電圧過渡コントローラ(over voltage transient controller)に関する。
本発明は、例えば、ラップトップコンピュータ、PDA、携帯電話、及び/又は充電式バッテリ(rechargeable battery)を備えた任意のタイプの電子装置など、携帯電子装置のためのバッテリ充電及び/又はシステムに有用である。
本発明は、2004年3月25日付けで提出された米国仮出願シリアル番号第60/556254の利益を主張し、また、その教示するところは、参照することにより本明細書に組み込まれる。
充電式バッテリ(rechargeable battery)、とりわけリチウムイオン電池(lithium ion battery)は、消耗したバッテリに対するストレスを避けるために、著しく放電した状態(deeply discharged status)から予備充電(precharge)(回復充電(recovery charge))を行う必要がある。充電式バッテリが著しく放電して、そのセル電圧が不足電圧閾値VUVよりも低くなると、大きな充電電流を用いて直接的に充電することはできない。その代わり、予備充電モード(pre-charge mode)が必要とされる。予備充電モードでは、バッテリ電圧が電圧VUVを超えるまで、小さな充電電流が使用され、それから、通常モードで充電することが可能となり、即ち、大きな充電電流によって充電される。そこで、予備充電モードは、トリクル充電(trickle charge)またはウェークアップ充電(wake-up charge)とも呼ばれる。リチウムイオン電池については、不足電圧閾値VUVは1セルにつき約2.4V〜3.0Vであり、バッテリのタイプと製造業者に依存する。予備充電電流は約10mA〜100mAである。しかしながら、標準の充電電流は、数百ミリアンペアから1アンペアであり、バッテリ容量に依存する。
図1Aは、リチウムイオン充電式バッテリについてのプロファイル50を表す。バッテリ電圧がVUVよりも高ければ、バッテリは一定電流(CC:constant current)充電モードに入り、そして大きな一定電流がバッテリを充電するために使用される(バッテリ電圧もまたバッテリ容量の増加に伴って増加する)。バッテリ電圧が、過電圧閾値を表すVOV(リチウムイオン電池の場合、通常はおよそ4.2V)にまで上がると、バッテリは、一定電圧(CV:constant voltage)充電モードに入る。このモードでは、充電器はVOVで電圧を維持する。充電電流が、所定の最小値、例えば50mAにまで減少すると、充電動作(charging procedure)が停止される。CV充電モードの間、充電器は電圧をVOVに正確に(+/−.005Vの範囲内で)調整(regulate)し、そうでなければ、充電電流は、バッテリ容量の増加に伴って徐々に減少しないであろう。もし、例えば充電出力がVOVよりも大きければバッテリの過充電が発生し、そのことは、リチウムイオン電池に関する安全性の問題(safety issue)を提起する。
図1Bに、予備充電を実施するための従来回路10を示す。抵抗14と直列に接続された予備充電(precharge)MOSFET 12は予備充電のために使用される。予備充電時には、充電FET 16がオフになり、且つ予備充電FET 12がオンになる。従って、予備充電電流は、充電器入力電圧VPACK+と全セル電圧Vcellとの電圧差(VPACK+)−Vcellを直列抵抗14 Rpreで除算することにより決定される。ACアダプタが存在し、VPACK+がセル電圧Vcellよりも高ければ、充電または予備充電は各セルの初期電圧に基づいて開始する。もし何れかのセルにおける電圧が閾値VUVよりも低ければ、バッテリパックは予備充電モードになるであろう。そうでなければ、通常の充電が行われるであろう。
本分野における当業者であれば、図1Bの回路10が、バッテリモニタIC 20を備え、そのバッテリモニタIC 20は、バッテリパック22のセル(セル1、セル2・・・セル4)のそれぞれに関する電圧および電流状態をモニタするための回路を備えることが理解される。このような回路は、各セル電圧をサンプリングするためのスイッチング回路網24を備えてもよい。予備充電MOSFET 12の動作を制御するために、従来回路10は比較器26を備え、この比較器26は、一定の基準電圧と各セルの電圧とをスイッチ30を介して比較する。
しかしながら、図1Bに示された接続形態の一つの難点は、余分なパワーMOSFET(即ち、MOSFET 12)と抵抗14を必要とすることであり、それらは高価であると共にPCB面積を増やす。加えて、この接続形態では、セル電圧が低くなると、大きな予備充電電流を招く。また、予備充電電流は、セル電圧の増加に伴って減少し、それは、予備充電を完了するための時間を一層ながくする。
さらに、抵抗14の値が固定されているので、最大および最小予備充電電流も固定され、そして別のバッテリパックに適合するように調節できない。
本発明に係る過電圧過渡コントローラは、第1の信号と基準電圧レベルを表す第2の信号とを比較して、前記第1の信号が前記第2の信号よりも大きいか前記第2の信号と等しければ、過電圧過渡状態を表す出力信号をスイッチに供給する比較器を備え、前記スイッチは、前記出力信号に応答して充電式バッテリを前記過電圧過渡状態から保護するように構成される。
リチウムイオン電池の代表的な充電プロファイルを図式的に示す図である。 従来のバッテリ充電回路を示す図である。 本発明による一つの典型的なトリクル充電接続形態を示す図である。 本発明による一つの典型的なトリクル放電接続形態を示す図である。 本発明による他の典型的なトリクル充電接続形態を示す図である。 本発明による他の典型的なトリクル放電接続形態を示す図である。 本発明による他の典型的なトリクル充電およびトリクル放電接続形態を示す図である。 典型的なプログラム可能な電流源(Nビットのプログラム可能な基準電流源)を示す図である。 他の典型的なトリクル充電およびトリクル放電接続形態を示す図である。 過電圧過渡コントローラを備えた図6のトリクル充電およびトリクル放電接続形態を示す図である。 図7の過電圧過渡コントローラの一実施形態を示す図である。 図7の過電圧過渡コントローラの他の実施形態を示す図である。 図7の過電圧過渡コントローラのさらに他の実施形態を示す図である。
以下の詳細な説明は、好ましい実施形態と使用方法を参照して述べられるが、本発明がこれらの好ましい実施形態および使用方法に限定されるものではないことは、本分野の当業者であれば理解できる。さらに、本発明は広範囲にわたり、添付の請求項において述べられることによってのみ制限される。
本発明の他の特徴と利点は、図面を参照して以下の詳細な説明が進むにつれて明らかになるであろう。図面において同様の数字は同様の部分を表す。
図2Aは、本発明による一つの典型的なトリクル充電接続形態(trickle charge topology)100を示す。この実施形態では、二つのFET(充電FET CHG_FETおよび放電FET DSG_FET)が使用される。この実施形態では、充電FET 104及び放電FET 102は、本分野において理解されるように、図示した方法で背中合わせに直列に配置される。トリクル充電モードでは、放電FET 102はオフ(非導通)であってもよいが、充電FET(CHG_FET)がオン(導通)であれば、電流がそのボディダイオード(body diode)を通して依然としてバッテリセルに流れてもよい。もし、CHG_FETがオフであれば、電流はバッテリから流れ出ることもなく、バッテリに流れ込むこともない。
二つのMOSFETのほかに、この接続形態100は、また、基準ダイオードD1 110、放電ドライバ106、充電ドライバ108、および基準電流源Iref 112を備える。充電ドライバ108および放電ドライバ106は増幅器からそれぞれ構成される。標準の充電モードでは、スイッチK1及びK2(114及び116)は、位置2に設定される。この位置では、充電駆動電圧CHGは、相対基準電圧(relative reference voltage)CHG_REFに概ね等しい点に駆動され、それは、充電FET 104を完全にターンオンさせるように作用する。従って、基準電圧CHG_REFは、充電FETデバイス104のターンオン要件に従って選択される。
トリクル充電モードでは、スイッチK1及びK2は位置1に設定される。ACアダプタが適用されれば、VPACK+電圧が上昇する。充電FET 104は、充電ドライバ108によって飽和状態に駆動され、このことは、充電FET 104が可変抵抗として働くことを意味し、わずかな電荷(trickle charge)がスイッチ104を通って流れる。充電ドライバ108は、充電FET(CHG_FET) 104を調節して電圧VcをVdに等しくするように適合され、それはダイオードD1 110及び基準電流源Iref 112によって設定される。
Vcは、スイッチ間の電圧として引き出される。Vcは、増幅器の(−)端子に対する入力として設定され、一方、(Iref及びD1によって設定される)Vdはその(+)端子に対する入力として設定される。出力信号CHGはVd−Vcである。Vcは概ねVdに等しいが、増幅器の利得は、充電FETを飽和領域で動作させるのに十分な大出力信号が生成されるように選択される。従って、充電ドライバ108は、トリクル充電期間中に動作して固定信号(Vd)とVcとを比較するように適合される。
順方向バイアス状態では、ダイオードD1のDC電流は、次の式で与えられる。
Iref=A1*IS1*(exp(Vd1/Vt)−1)
ここで、A1はダイオードD1の接合面積であり、IS1はダイオードD1の単位逆飽和電流であり、Vd1=Vd−Vcellはダイオードでの電圧降下であり、そしてVtはダイオードの閾値電圧である。
放電FET 102のボディダイオードにおけるDC電流は次の式で与えられる。
Ipch=A2*IS2*(exp(Vd2/Vt)−1)
ここで、A2はボディダイオードの接合面積であり、IS2はボディダイオードの単位逆飽和電流であり、Vd2=Vc−Vcellは、放電FETのボディダイオードでの電圧降下である。
IS1及びIS2は、本分野において知られているように、選択された半導体デバイスのタイプによって決定される。
もし、VdとVcとが実質的に等しくされると、トリクル充電電流は基準電流Irefに比例し、次の式で与えられる。
Ipch=A2/A1*(IS2/IS1)*Iref
好ましくは、本発明は必要としないが、充電及び放電FETのボディダイオードの接合面積A2は、一般には低ターンオン抵抗および大電流要件のために大きいが、ダイオードD1の接合面積A1はチップ面積(die area)を抑えるために極めて小さい。従って、A2>>A1であるから、小さな電流Iref(数十マイクロアンペア)が、より大きな電流Ipch(数十から数百ミリアンペア)を制御するために使用できる。
図2Bは、本発明による一つの典型的なトリクル放電接続形態200を示す。この実施形態は、基準電流源112及びダイオード110が放電MOSFET 102上に接続されていることを除いて、図2Aに示された接続形態と同様である。トリクル放電期間中、充電MOSFET 104はオフであってもよく、放電電流はそのボディダイオードを通じて流れる。それ以外の接続形態200の動作は、図2Aを参照して前述したとおりである。
図3Aは、本発明による他の典型的なトリクル充電接続形態300を示す。この実施形態では、充電FETおよび放電FETは、(図2Aに示されるような)背中合わせに代えて、向かい合わせで直列に配置されている。図3Bの実施形態は、また、基準ダイオードD1 310を備え、そしてこの実施形態では、充電FETドライバ306はスイッチK1及びK2によって制御される。
通常の充電モードでは、スイッチK1及びK2は位置2に設定され、従って充電FETのゲート電圧はCHG_REFに駆動され、それは充電FET 302を完全にターンオンさせるように作用する。トリクル充電モードでは、放電FET 304はオフであってもよく、K1及びK2は位置1に設定されてもよい。この場合、充電FETドライバ306は、充電FET302を調整して電圧Vcを実質的にVdに等しくするように動作する。順方向バイアス状態では、ダイオードD1のDC電流は次の式で表される。
Iref=A1*IS1*(exp(Vd1/Vt)−1)
ここで、A1はダイオードD1の接合面積であり、IS1はダイオードD1の単位逆飽和電流であり、Vd1=(VPACK+)−VdはダイオードD1での電圧降下であり、そしてVtはダイオードの閾値電圧である。
放電FETのボディダイオードにおけるDC電流は、次の式で表される。
Ipch=A2*IS2*(exp(Vd2/Vt)−1)
ここで、A2はボディダイオードの接合面積であり、IS2はボディダイオードの単位逆飽和電流であり、Vd2=(VPACK+)−Vcは放電FETのボディダイオードでの電圧降下である。
IS1及びIS2は、本分野において知られているように、選択された半導体デバイスのタイプによって決定される。
もし、Vd及びVcが等しくされると、トリクル充電電流は次の式で与えられる。
Ipch=A2/A1*(IS2/IS1)*Iref
図3Bは、本発明による一つの典型的なトリクル放電接続形態400を示す。この実施形態は、基準電流源312及びダイオード310が放電MOSFET 302上に接続されていることを除いて、図3Aに示された接続形態300と同様である。トリクル放電期間中、充電MOSFET 304はオフであってもよく、放電電流はボディダイオードを通して流れてもよい。それ以外の接続形態400の動作は、図3Aを参照して前述したとおりである。
トリクル充電過程の速度を上げるために、トリクル充電電流Ipchは、セル電圧に基づいて容易に調節できる。セル電圧が高くなると、基準電流Irefをプログラムすることによってトリクル充電電流が一層大きく設定される。図5におけるプログラム可能な基準電流源は、本分野で知られているように、セル電圧に基づいて基準電流を発生するように調整されてもよい。
さらに、他の典型的なトリクル充電およびトリクル放電接続形態500が図4に示されている。この典型的な実施形態では、充電FET 504および放電FET 502は、本分野で知られているように、図示されたように背中合わせで直列に配置される。トリクル充電モードでは、放電FET 502はオフ(非導通)であってもよいが、充電FET(CHG_FET)がオン(導通)であれば、電流は、そのボディダイオードを通じてバッテリセルに依然として流れ得る。もし、CHG_FETがオフであれば、電流はバッテリから流れ出ることもなく、バッテリに流れ込むこともない。
また、この実施形態は、基準抵抗R1及びR2、放電ドライバ506、充電ドライバ508、並びに基準電流源Iref1 512及びIref2 510を備える。充電ドライバ508及び放電ドライバ506は増幅器をそれぞれ備えてもよい。通常の充電モードでは、スイッチK1及びK2(518及び520)は位置1に設定されてもよい。この位置では、充電駆動電圧CHGは、相対基準電圧CHG_REFに概ね等しい点に駆動されてもよく、それは充電FET 504を完全にターンオンさせるように作用する。従って、基準電圧CHG_REFは、充電FETデバイス504のターンオン要件に従って選択されてもよい。
トリクル充電が必要なときには、スイッチK1及びK2はノード2に接続されてもよい。この場合における増幅器508に対する入力は、Rsens(+)の両端子間の電圧およびR1での電圧降下分である(Iref1 512によって発生される)。増幅器508の利得は、抵抗R1でのIref1による電圧降下がセンス抵抗Rsensでのトリクル充電電流Ipchによる電圧降下に概ね等しくなるように、大きな値(例えば>80dB)に選択される。
トリクル充電電流は次の式で与えられる。
Ipch=Iref1*R1/Rsens
ここで、Iref1は、プログラム可能な基準電流源である。通常、Rsensは、極めて小さく(例えば10から20ミリオームのオーダー)、一方、R1は10オームのオーダーとなるように選択される。故に、Rsensに対するR1の比率は極めて大きく、従ってR1/Rsensの大きな利得のために、比較的大きなトリクル充電電流を発生するのに小さな基準電流Iref1が使用できる。
図4の実施形態では、トリクル充電モード期間中、放電FETを完全にターンオンさせることもでき、これにより、VPACK+とバッテリパックとの間のダイオード順バイアス電圧降下を排除する。これは、図2A及び図3Aに示される実施形態を凌ぐ図4の利点である。このモードでは、スイッチK4 514及びK3 516は位置1に設定されてもよく、これにより、(上述の方法で)放電FETを完全にターンオンさせる放電基準電圧を用いて放電FETを駆動する。
さらに図4を参照すると、通常の放電モードでは、スイッチK3及びK4はそれぞれノード1に接続されてもよい。このようにして、放電FETドライバは、バッファとして構成されてもよく、放電FETを駆動して完全にターンオンさせる。トリクル放電モードでは、スイッチK3及びK4はノード2に接続されてもよい。抵抗R2でのIref2による電圧降下は、ドライバの高利得のために、センス抵抗Rsensでの電圧降下分に概ね等しい。そこで、トリクル放電電流は次の式で与えられる。
Idsg=Iref2*R2/Rsens
ここで、Iref2はプログラム可能な基準電流源である。通常、Rsensは極めて小さく、従ってRsensに対するR2の比率は極めて大きくなり、よって大きな利得R2/Rsensのために、比較的大きなトリクル放電電流を発生するのに小さな基準電流Iref2が使用できる。電流方向は放電中に反転するので、センス抵抗Rsensでの電圧降下は反転された極性を有するようになる。従って、Rsensでの電流の極性を反転するために極性反転回路522が提供される。
この実施形態では、トリクル充電期間中、放電FETは完全にターンオンされ得る。従って、ダイオード順バイアス電圧降下が、VPACK+とバッテリパック電圧との間で排除される。同様に、トリクル放電期間中、充電FETが完全にターンオンされて、バッテリパック電圧とVPACK+との間のダイオード順バイアス電圧降下を排除する。
本発明では、一旦、MOSFETおよびダイオードが固定されても、Ipchは、プログラム可能な電流源(Iref)112、312、510及び/又は512によって依然として調節され得る。プログラム可能な電流源のための一つの典型的な回路接続形態が図5に示される。図5の回路は、本分野で知られているように、レシオドカレントミラー(ratioed current mirror)を用いて電流Irefを発生するように適合されてもよい。もちろん、プログラム可能な電流源は、本分野において知られており、図5の回路に加えて、種々の方法で実施され得る。
一つの典型的なトリクル予備充電およびトリクル放電接続形態600が図6に示されている。この実施形態では、充電FET604及び放電FET 602は、本分野で知られているように、図示されたように背中合わせで直列に配置されてもよく、もう一つの方法として、上述したように向かい合わせで直列に配置されてもよい。この典型的な実施形態では、以下に詳細に説明するように、FET駆動電圧を発生するために、デジタル/アナログ変換回路(DAC)616が使用できる。
この実施形態は、アナログ/デジタル変換回路(ADC)614、コントローラ612、およびデジタル/アナログ変換回路(DAC)616から構成される。センス抵抗Rsens 618で検出された電流はADC 614に入力される。次に、ADCは、検出された電流を示すデジタル信号を発生し、そしてそれらの信号をコントローラ612に出力する。動作において、抵抗Rsens 618を通る電流が所定の閾値よりも小さければ、コントローラ612は、DAC 616にデータを出力して、対応するFET駆動電圧を増加させる。そうでなければ、コントローラ612は、DAC 616にデータを出力して、検出された電流と所定の電流との差分が概ね等しくなるまでFET駆動電圧を減少させる。この実施形態のこれらの動作特性は以下で更に詳細に説明される。
通常の充電または放電モードでは、DAC 616は機能無効(disable)とされてもよく、充電FET604および放電FET 602が導通状態となる。この実施形態では、DAC616は、例えば、図示されたようなDAC_EN信号を利用することにより、制御可能に機能有効(enable)及び/又は機能無効(disable)とされることができる。充電FETドライバ608は、充電FET 604のゲートをCHG_REF値に駆動してもよく、それは充電FET 604を完全にターンオンさせる。放電FETドライバ606は、放電FET 602のゲートをDSG_REF値に駆動してもよく、それは放電FET 602を完全にターンオンさせる。充電FETドライバ608および放電FETドライバ606は、例えば、CHG_EN及びDSG_EN信号をそれぞれ利用することにより、制御可能に機能有効及び/又は機能無効とされてもよい。
トリクル放電モードでは、スイッチK1(620)はノード1に接続されてもよい。放電ドライバ606は機能無効(例えば、DSG_ENがロウ)とされてもよく、それは、放電ドライバ606の出力に高インピーダンスを発生させるように作用する。放電FET 602の導通状態は、DAC 616及びコントローラ612によって制御されてもよい。従って、放電FET 602、センス抵抗Rsens 618、ADC 614、コントローラ612、およびDAC 616はループを構成してもよい。放電FET 602のターンオン抵抗を制御することにより、本実施形態は、コントローラに事前プログラムされたように、トリクル放電電流を所望値に調整することができる。上記実施形態において述べたように、放電FET 602のターンオン抵抗は、そのゲート駆動電圧を調節することにより調整できる。
コントローラ612は、DAC 616の動作を制御する回路を備えてもよい。本明細書の何れの実施形態においても使用されるが、“回路(circuitry)”は、例えば、単体または任意の組み合わせで、ハードウェア回路、プログラム可能な回路、状態マシン回路、及び/又はプログラム可能な回路によって実行される命令を格納するファームウェアから構成されてもよい。コントローラ612は、1又は2以上の集積回路から構成されてもよい。本明細書の何れの実施形態においても使用されるが、“集積回路(integrated circuit)”は、例えば、半導体集積回路チップのような半導体装置及び/又はマイクロ電子デバイスを意味する。図6には示されていないが、この実施形態は、また、1又は2以上の次のようなタイプのメモリから成るメモリを備えても良い。即ち、半導体ファームウェアメモリ、プログラマブルメモリ、不揮発性メモリ、読み出し専用メモリ、電気的にプログラム可能なメモリ、ランダムアクセスメモリ、フラッシュメモリ、磁気ディスクメモリ、及び/又は光ディスクメモリである。追加的または択一的に、メモリは、他の又は最近開発されたタイプのコンピュータ読み取り可能なメモリから構成されてもよい。機械読み取り可能なファームウェアプログラム命令はメモリに格納される。以下に説明するように、これらの命令は、コントローラ612によってアクセスされて実行され、そして、これらの命令が、コントローラ612及び/又は本実施形態に含まれるであろう他の回路によって実行されると、コントローラ612が本明細書で述べられる動作を実施することになる。
この実施形態では、コントローラ612は、所望のトリクル放電電流値Itdを表す1又は2以上のデータビットを発生することができる。そのために、コントローラ612は、連続的及び/又は繰り返しの動作を実施して、Rsens 618によって検出される実際の電流に基づいて所望のトリクル放電電流を達成することができる。例えば、もし所望のトリクル放電電流がItdに設定されると、コントローラ612は、逐次近似抵抗(successive approximation register; SAR)法を実施して、適切なデータビットを生成することができる。SAR法は、初期状態でDACのMSB(most significant bit)をハイに設定するステップと、それからRsens 612を流れる電流を測定するステップとから成る。もし、センス抵抗618(Isen)を流れる電流がItdよりも大きければ、コントローラ612は、DACのMSBをロウに設定し、そうでなければ、コントローラ612はDACのMSBをハイに維持する。そして、コントローラ612は、第2MSBビットをハイに設定し、それからRsensを流れる電流を測定する。もし、Itd<Isenであれば、第2のMSBビットはロウに設定され、そうでなければ、このビットはハイである。この逐次近似は、DACのLSBが設定されるまで続けられる。従って、実行命令は、メモリ(図示なし)に格納され、そしてコントローラ612は、これらの命令をアクセスして、例えばSAR法などの動作を実施してもよい。もし、Itdが所定のバッテリパックについて固定されていれば、メモリに格納された命令もまた固定される。いつでもトリクル放電が必要とされるときには、コントローラ612は、DACを制御して所望のトリクル放電を発生し、そして、バッテリパックは、Itdを外部の負荷に供給することができる。適切なトリクル放電電流を発生する制御コードはメモリに保持され、そして、その後のトリクル放電動作のためにコントローラ612によってアクセスされる。もし、トリクル放電電流の調節が必要であれば、本明細書で述べられる制御ループが使用されて、適宜、Itdを増加または減少させる。トリクル放電モード期間中、充電ドライバ608は機能有効または機能無効とされ得る。その違いは、トリクル放電電流が、それぞれ充電FETまたはそのボディダイオードを通じて流れることである。
トリクル充電モードでは、スイッチK1はノード2に接続される。充電ドライバ608は、機能無効(CHG_ENがロウ)にされてもよい。充電FET 604の導通状態は、DAC 616及びコントローラ612によって制御される。このモードでは、充電FET 604、センス抵抗Rsens 618、ADC 614、コントローラ612、およびDAC 616は、上記制御ループを構成してもよい。充電FET 604のターンオン抵抗を制御することにより、本実施形態は、トリクル充電電流を所望値に調節することができる。通常、予備充電電流は固定値である。このモードでは、本実施形態は、例えば上述のSAR法を用いてIpchを生成し、そしてこの制御コードをメモリに保持してもよい。トリクル予備充電電流について、上限値から下限値までの範囲で値が変わってもよく、従って、制御コードは、ハイレンジとロウレンジとの間でIpchを変えるように適合され、よってトリクル充電電流が適宜に調節されることを可能にする。トリクル充電モード中、放電ドライバ606もまた、機能有効または機能無効とされることができる。その違いは、トリクル充電電流が、それぞれ放電FETまたはそのボディダイオードを通じて流れることである。
図1Aから、予備充電期間および一定電圧(CV)充電期間中に、充電電流は制御される必要があることが分かる。このような従来回路では、CV充電は、充電電圧を正確にVOVに調節するためには充電器に完全に依存しなければばらず、そして、充電電流は徐々に減少するであろう。
本発明では、予備充電機能は、余分の予備充電FETを用いることなく実施可能である。さらに、予備充電過程の速度を高める目的で、予備充電電流Ipchはセル電圧に基づいて容易に調節可能である。図2A、図3Aおよび図4、または図6に述べられている制御ループアプローチのように、セル電圧が高くなる程、基準電流Irefをプログラミングすることによって、より大きな予備充電電流が供給されてもよい。
有利には、本明細書の幾多の実施形態に述べられているように、トリクル予備充電電流制御は、トリクル予備充電回路がセル電圧に基づいてトリクル充電電流を発生可能なCV時間期間中に利用可能である。このようにして、CV充電電流のテーパー(taper)は、充電器調節電圧VOVに依存する必要がない。従って、有利には、本開示は、高価で精度の良い電圧調整充電器に対する必要性を取り除く幾多の実施形態を提供する。確かに、リチウムイオン電池を充電するために簡単なACアダプタを使用することができる。なぜなら、CV充電期間では、充電器でさえ一定電圧をVOVに維持することはできないが、充電電流は予めプログラムされたトリクル電流値に制限され、それはセル電圧に基づき決定されるからである。従って、過充電(over charging)は起こらないであろう。この充電電流制限は、(この電流制限を、所望のVOVについて実際に観測された電流よりもわずかに大きな電流制限に設定することにより)二次的な過電圧保護として、及び/又は、(正確な所望のVOVが得られるまで、充電電流を調整することにより)一次的な過電圧保護として使用することができる。
また、有利には、本発明によるトリクル放電は、バッテリパックについて一層良好な短絡回路(short circuit)を提供する。従来のバッテリパックでは、放電FETは、完全にターンオンして放電を可能にできるか、または完全にターンオフして放電を不能にできるかのどちらかである。バッテリパックがシステムから取り外された場合、例えば、廃棄処分された場合、放電FETは、オンに維持されて、バッテリパックがシステムに差し込まれたときにはいつでもシステムを給電するための準備をする。この場合、もし、VPACK+端子が短絡するような、何か異常なことが発生すれば、非常に大きな電流がバッテリから流れ出し、それは次にバッテリにダメージを与えるであろう。あるいは、従来のバッテリパックでは、放電FETは、バッテリを短絡回路状態から保護するためにオフに維持される。しかし、これは、バッテリパックがシステムに差し込まれているときに、バッテリがシステムに給電することを妨げる。この困難を克服するため、幾つかの従来のバッテリパックは、放電FETをターンオンさせることをバッテリに通知する機械的方法を提供する。これは、顧客に不便を与え、そしてまた、バッテリパックの価格及び/又は大きさの増加を招く。本明細書に述べられる少なくとも一つの実施形態によれば、バッテリパックは、バッテリがシステムから取り外されているときには、トリクル放電モードに置かれても良い。トリクル放電電流値は、バッテリパックがシステムに差し込まれたときにシステム組み込みコントローラ(system embedded controller)を給電するために、十分に大きく、例えば100mAに選択されることができる。そしてシステム組み込みコントローラは、バッテリが存在することを検出し、このバッテリに通常の放電モードで動作することを通知する。VPACK+短絡中でさえ、所定のトリクル放電値、例えば100mAに電流を制限する放電FETを用いれば、高電流サージが防止される。
本明細書で述べられるトリクル放電およびトリクル充電接続形態は、また、複数のバッテリシステム(multiple battery system)において利用される。複数のバッテリパックが同時に放電するときに、それらは、より多くの電力をシステムに供給することができる。これは、また、効率を増加させるために複数のバッテリパックが互いに並列接続されているので、このバッテリの内部インピーダンスを減少させる。しかしながら、厳しい規定(stringent regulations)は、複数のバッテリパックが同時に放電しても、それらの複数のバッテリが正確に同一の電圧でなければならないことを要求する。そうでなければ、バッテリに接続された給電バスの抵抗が極めて小さい(例えば2ミリオーム)ために二つのバッテリパックが極めて小さな電圧差(例えば10mV)を有していても、大きな電流(この例では5アンペア)が電圧の高いバッテリパックから電圧の低いバッテリパックに流れる。
実際には、複数のバッテリパックが同一の電圧を有するように維持することは困難であり、また、バッテリパック電圧が放電に伴って変化するため、バッテリ電圧をモニタする高精度のADCを用いたとしても、二つのバッテリが同一の電圧であるかどうかを判断することは極めて困難である。幾多の実施形態を参照して本明細書で述べるように、トリクル放電動作は、複数のバッテリパックの問題を解決することができる。一例として、システムは、二つのバッテリパック、即ちパックAとパックBから構成されてもよい。初期状態では、パックAの電圧はパックBの電圧よりも高いと仮定する。
パックAは、最初に放電してシステムを給電し、そしてパックAの電圧は徐々に低下する。パックBの放電FETはオフになってパックBの放電を機能無効(disable)にしてもよい。パックAの電圧がパックBと同じ電圧にまで低下すると、本発明は、パックBを、トリクル充電モードまたはトリクル放電モードのどちらかに設定する。もし、パックBがトリクル充電モードで機能有効とされれば、放電FETは完全にターンオンとされ、そして充電FETは飽和導通領域で動作するように制御される。このようにして、放電FETは電流制限抵抗として使用される。もし、パックBがトリクル放電モードで機能有効とされれば、充電FETは完全にターンオンとされ、そして放電FETは飽和領域で動作するように制御される。このようにして、放電FETは電流制限抵抗として使用される。さらなる安全のため、図6の接続形態600を参照すると、トリクル充電動作及び/又はトリクル放電動作は、充電FET及び/又は放電FETの等価抵抗を増加させるため、充電FETおよび放電FETを飽和導通領域で動作させることにより比較的小さな電流値を発生するように制御設定されてもよい。
上記の例では、パックAが放電し、パックBは働いていないので、たとえ測定電圧値が等しくても、実際のパックAの電圧はパックBの電圧よりも高くなる。このことが発生すると、パックAがパックBを充電する。しかしながら、(もしパックBをトリクル充電モードにすれば)充電電流は充電FETの抵抗によって制限され、または、(もしパックBをトリクル放電モードにすれば)充電電流は放電FETの抵抗によって制限される。制限された電流は、例えばコントローラ612により実行される制御コードによって決定される。
本発明では、この充電電流は、パックBに備えられたADCによりモニタされる。パックAとパックBとの間の電圧差が減少するにつれて、パックAからパックBへの充電電流も減少する。充電電流が、所定値、例えば10mAよりも小さくなったときに、コントローラは、トリクル充電モードまたはトリクル放電モードから完全な放電モードに切り換える。
従って、従来の接続形態に比較して、より多くの柔軟性、より少ない構成、予備充電を完了するための高効率を提供する接続形態およびプログラム可能なトリクル予備充電及び/又はトリクル放電回路が開示された。本明細書で述べられた少なくとも一つの実施形態のプログラム可能なトリクル充電回路を、バッテリセルの充電レベルに基づいてトリクル予備充電モードまたは通常の充電モードに設定するために、スイッチ(K1,K2及び/又はK3及びK4)はバッテリモニタICによって制御されてもよいことが理解される(著しく放電されたものはトリクル充電モードを必要とする)。さらに、本明細書で示された接続形態は、個別の構成部品を用いて実施されてもよく、及び/又は、ICに集積されてもよく、及び/又は、その両方の組み合わせであってもよい。
本発明は、充電式バッテリを使用する任意の携帯電子装置(ポータブルコンピュータ、携帯電話、PDAなど)に適用される。そのためには、本明細書で示された接続形態は、携帯電子装置のためのバッテリパックに統合されてもよい。本明細書で使用される“バッテリパック”は、少なくとも一つののバッテリセルから構成されたバッテリとして定義されてもよい。バッテリパックは、1又は2以上の充電式リチウムイオンセルから構成されてもよい。また、バッテリパックは、バッテリパックの制御可能な充電及び/又は放電動作を容易にするための本明細書で説明され図示されたような1又は2以上の電子構成部品から構成されてもよい。
(過電圧過渡コントローラ構成要素)
図7は、過電圧過渡コントローラ702を備えた図6のトリクル予備充電およびトリクル放電接続形態の他の実施形態を図示する。通常、過電圧過渡コントローラ702は、バッテリパックのセルを過電圧過渡状態(over voltage transient condition)から保護する。本明細書で使用されるように、“過電圧過渡状態”とは、過渡時間インターバル中の通常の充電電圧レベルを超える電圧レベルにおける増加である。一例として、電圧レベルにおける上記増加は、約10ミリボルトよりも大きくてもよく、そして過渡時間インターバルは、約1マイクロ秒と1ミリ秒との間であってもよい。
バッテリのセルを過電圧過渡状態から保護するために、過電圧過渡コントローラ702は、バッテリパックに供給される電圧レベルを示す入力信号を受け取って、過電圧過渡状態が発生しているかどうかを検出する。もし、このような過電圧過渡状態が検出されれば、過電圧過渡コントローラ702は、この状態を表す出力制御信号を供給する。充電スイッチ604は、過電圧過渡コントローラ702からの出力制御信号に応答して、充電式バッテリを過電圧状態から保護する。一実施形態において、スイッチ604は、過電圧状態期間で開放して充電式バッテリを保護する。
図7の接続形態の集積回路700は、図6に詳細に示されるような電流制限回路を備えても良い。本明細書で使用されるように、“回路(circuit)”は、例えば、ハードウェア回路、プログラマブル回路、状態マシン回路、及び/又は、プログラマブル回路によって実行される命令を格納するファームウェアの一つ又は任意の組み合わせから構成されてもよい。このような電流制限回路は、高分解能のADC 614、コントローラ611、DAC 612、およびスイッチK1を備えても良い。
過電圧過渡コントローラ702は、このような電流制限回路と共に、または独立に利用されてもよい。例えば、電流制限回路は、通常の充電および放電動作中に放電および充電スイッチ602及び604の状態を制御していなくてもよく、従ってDAC 612は機能無効とされてもよい。このような充電動作中に、充電ドライバ608は、充電スイッチ604を完全にターンオンさせる基準電圧レベル(CHG_REF)に充電スイッチ604を駆動してもよい。同様に、このような放電動作中に、放電ドライバ606は、放電スイッチ602を完全にターンオンさせる基準電圧レベル(DSG_REF)に放電スイッチ602を駆動してもよい。さらに、過電圧過渡コントローラ702は、このような期間中、予備充電可能なバッテリを過電圧過渡状態から依然として保護していてもよい。
例えば、このような通常の充電および放電動作中に、過電圧過渡コントローラ702は、バッテリパックのセルに入力される電圧レベル(VPACK+)をモニタしてもよい。このような電圧信号は、経路706を介して過電圧過渡コントローラ702に入力されてもよい。モニタされた電圧レベルが、許容できる閾値レベルよりも低くなると、過電圧過渡コントローラ702は、経路708を介してデジタル1のレベルの信号(CHG_PERMIT信号)をANDゲート704に供給してもよい。あるいは、モニタされた電圧レベルが上記閾値レベルを上回るか、上記閾値レベルと等しいときには、過電圧過渡コントローラ702は、経路708を介してデジタル0のレベルの信号(CHG_PERMIT信号)をANDゲート704に供給してもよい。
ANDゲート704は、充電ドライバ608を機能有効(enable)または機能無効(disable)とする充電許可信号(CHG_EN)を、経路708を介して供給してもよい。ANDゲート704は、ANDゲート704に対する両方の入力がデジタル1であるときに、デジタル1の充電許可信号を供給する。ANDゲート704に対する一方の入力は、経路708を介して過電圧過渡コントローラ702から与えられてもよい。ANDゲート704に対する他方の入力は、経路710を介した二次的な充電許可信号(CHG_EN’)入力であってもよい。経路710を介して入力された二次的な充電許可信号(CHG_EN’)は、或る場合においては、バッテリパックのセルのそれぞれに関する充電をモニタする任意の種々の回路によって供給されてもよい。CHG_EN’信号は、全てのセルの電圧レベルが閾値レベルを上回っていれば、デジタル1であってもよい。あるいは、CHG_EN’信号は、一つのセルの電圧レベルが上記閾値レベルを下回っていれば、デジタル0であってもよい。
従って、通常のバッテリ充電動作中には、過電圧過渡コントローラ702は、過電圧過渡状態を検出し、デジタル0の出力信号をANDゲート704に供給してもよい。よって、ANDゲート704の出力は、CHG_EN’信号に従ってデジタル0となり、そして充電ドライバ608は、充電スイッチ604を開放して、バッテリを過電圧過渡状態から保護する。或る場合においては、このような過電圧過渡状態は、一定電圧充電状態中に発生する(図1B参照)。
従って、過電圧過渡状態の開始から充電スイッチ604の実際の開放までの時間は、重大な過電圧過渡がセルに到達することを防止するために十分に速くあるべきである。或る場合においては、数マイクロ秒が好ましい。従って、過電圧過渡コントローラ702は、過電圧過渡状態を迅速に検出して、デジタル0の信号をANDゲート704に供給することができなければならず、且つ、充電ドライバ608は、即座に応答して充電スイッチ604を開放することができなければならない。過電圧状態の場合に充電スイッチを開放することにより充電スイッチ604を制御するためのデジタルスイッチ制御が上述されたが、アナログスイッチ制御スキームもまた実施できる。アナログスイッチ制御スキームは、アナログ信号をドライバ608に供給して、充電スイッチ604のオン抵抗を制御する。従って、過電圧過渡状態は、充電スイッチ604を中間導通状態に駆動して、過電圧過渡状態の期間中にバッテリに供給される電圧を制限することができる。
過電圧過渡コントローラ702は、また、過渡電圧状態(transient voltage condition)が消失したときを検出し、そしてデジタル1の出力信号をANDゲート704に供給してもよい。また、二次的な充電許可信号CHG_EN’がデジタル1である限り、通常の充電動作が再開される。充電スイッチ604の開放を生じる過電圧過渡状態の発生は比較的稀であり、充電スイッチ604の閉成時間が比較的遅くても平均充電電流を著しく減少させないので、通常は、充電スイッチ604は、開放のように迅速に閉成する必要はない。
過電圧過渡コントローラ702は電流制限回路と独立に使用されてもよいが、過電圧過渡コントローラ702は、また、幾つかの追加の特徴を提供するために電流制限回路と共に使用されてもよい。例えば、もし、充電中にバッテリに供給される電圧値が期待電圧レベルをわずかに上回れば、電流制御回路の電流制限制御ループが位置1のスイッチK1を介して放電ドライバ606に接続されて、放電スイッチ602のオン抵抗を、充電式バッテリに対する平均出力電圧が低くされて上記所望の電圧レベルになる点に制御してもよい。同時に、過電圧過渡コントローラ702は、過電圧過渡状態に対する保護のために、バッテリに供給される電圧レベルをモニタしてもよい。
放電スイッチ602のオン抵抗を制御する電流制限回路と、充電スイッチ604の状態を制御する過電圧過渡コントローラ702との同時的な動作は、種々の状況で有利である。これらの状況の一つは、関連する充電器が所望の出力電圧を発生しているが、バッテリのアンバランス又はミスマッチの内部セルが過度の充電電圧を受けるときである。放電スイッチ602のオン抵抗を制御することにより平均充電電圧値を減少させることは、アンバランスまたはミスマッチのセルがより適度な充電電圧を受けることを可能にする。従って、追加的なセルのバランシングが発生するので、充電が継続できる。ここで、そうでなければ、充電は過度の充電電圧を受けるセルのために停止される。
これに対し、他の状況は、関連する充電器が所望の出力電圧を発生しているが、バッテリパックのセルが受ける電圧が、最大安全充電レート(maximum safe charging rate)を得るのに十分高くないかもしれないときである。これは、例えばライン損失(line losses)などの多くの要因のために起こる。そして、充電器の出力電圧は、少量だけ意図的に増加されてもよい。そして、電流制限回路は、放電スイッチ602のオン抵抗を制御するために利用されてもよい。バッテリセルに最大安全充電電圧を提供するために、放電スイッチ602のオン抵抗を増加することにより、充電器からのより高い電圧レベルが減少されてもよい。従って、充電時間が減少される。
さらに、他の状況は、並列に2以上のバッテリを同時充電(simultaneous charging)することを提供することである。これは、バッテリパックが、電流制限回路の放電制御ループに放電スイッチ602のオン抵抗を制御させることにより、小さな過電圧状態を処理できるためであり、従って、低抵抗経路を介してバッテリパックを互いに結合するときに、各バッテリパックについてほとんど同一の電圧レベルを有する必要性を緩和する。
これら3つの状況のそれぞれにおいて、スイッチ602のオン抵抗は、仮定または測定された平均VPACK+電圧に基づき所望の電圧または電流を選択するように制御されてもよい。そして、過電圧過渡コントローラ702は、充電スイッチ604を制御することによりこれらの方策(strategy)を強化し又は有効にして、発生するかもしれない任意の過電圧過渡を抑制してもよい。
図8は、図7の過電圧過渡コントローラ702と一致する過電圧過渡コントローラ702aの一実施形態を図示する。この過電圧過渡コントローラ702aは、比較器802、デジタルラッチ808、コントローラ806、DAC 804、および分圧器812を備える。分圧器812は、抵抗R1およびR2を備え、VPACK+に現れる電圧レベルを低い電圧レベルに比例的に縮小する。そして、分圧器812は、縮小された電圧レベルを比較器802の反転入力端子に供給する。比較器802は、縮小されたVPACK+の電圧レベルを、DAC 804により供給される基準電圧と比較し、そして比較結果に応じた状態を有する信号CHG_PERMITを出力する。この信号は、上記縮小された電圧が上記基準電圧よりも小さいときにはデジタル1であり、上記縮小された電圧が上記基準信号よりも大きいか等しいときには、デジタル0であってもよく、これにより、過電圧過渡状態を示す。
比較器802は、マイクロ秒の時間で必要な比較を行うことができ、従ってデジタル0の出力信号を迅速に供給して、バッテリパックのセルを過電圧過渡状態から保護する。デジタルラッチ808は、コントローラ806への出力信号のためにデジタル0のCHG_PERMIT信号をラッチし、そしてコントローラ806によってリセットされる。従って、短い時間インターバルで過電圧過渡状態が発生しても、コントローラ806は、それが発生したことを依然として検出することができる。コントローラ806によって命令されるDAC804は、基準電圧を比較器802の非反転端子に供給してもよい。
一実施形態において、DAC 804は、高分解能のDACであってもよく、低線形性を有してもよく、較正されなくてもよく、且つ比較的遅くてもよい。本明細書で使用されるように、“高分解能のDAC”は、少なくとも10ビットの分解能を有するDACを意味する。DAC 804の出力は、それが、比較器802の反転入力端子に入力される縮小された電圧入力を超えるまで増加されてもよく、この比較器802は、CHG_PERMIT信号をデジタル0にすると共に、このような信号をデジタルラッチ808にラッチさせる。11ビットの高分解能のDACについては、この過程(process)は、0から始めて1ずつ増加し、2048までのテストを必要とする。このテスト過程は、既知の関連電圧の小さな範囲のみにわたるステッピング(stepping)を備える任意の種々の方法により、または前述したSAR技法により促進されてもよい。
もし、(おそらくは精度のよい外部のアナログ/デジタル変換器(ADC)を用いることによって)VPACKの平均値が既知であれば、既知の平均VPACK電圧に対応するデジタルDACの入力値のテーブルが構築されてもよい。このテーブルから、所望の出力基準電圧のために必要な近似的なデジタル入力が推定される。あるいは、もし、線形性が高く、良好に較正されたDACがDAC 804のために使用されれば、DACによって供給される所望の基準電圧は、閉ループアプローチに頼ることなく、直接的に選択されることができる。このアプローチに必要とされるDACは、閉ループアプローチに必要とされる低線形性DACよりも費用がかかるかもしれない。
図9は、他の実施形態を示し、図7の過電圧過渡コントローラ702と一致する過電圧過渡コントローラ702bを図示する。図8の過電圧過渡コントローラ702aと類似する過電圧過渡コントローラ702bの構成要素には同様の符号が付され、従って説明の明確のために本明細書では繰り返しの説明を省略する。図8の前述の実施形態とは反対に、図9の実施形態は、低分解能のDAC 902を利用してもよい。本明細書で使用されるように、“低分解能のDAC”は、8ビットよりも多くない分解能を有するDACを意味する。低分解能のDAC 902は小さなオフセット電圧信号を発生するために使用されてもよい。
合算回路(summation circuit)904は、低分解能のDAC 902から小さなオフセット電圧信号を入力すると共に、コントローラ806から複数の基準信号のうちの一つを入力し、そして、低分解能のDAC 902からのオフセット電圧と基準信号との和に等しい信号を比較器802の非反転入力に供給する。従って、低分解能のDACは、選択された基準信号を整形(trim)してもよい。
コントローラ806により供給される基準信号は、種々の電圧レベルを表す種々の基準信号のうちの一つであってもよい。基準信号の値は、バッテリパックのセル数とセル電圧レベルごとの公称最大値とを含む種々の要因に基づいて変化してもよいが、これらの要因に限定されない。例えば、コントローラ806は、セル電圧レベルごとの公称最大値が4.2ボルトの3つのセルバッテリパックについては12.6ボルトの基準電圧レベルを表す信号を供給してもよい。一方、コントローラ806は、セル電圧レベルごとの公称最大値が同じく4.2ボルトの4つのバッテリパックについては16.8ボルトの基準電圧レベルを表す信号を供給してもよい。
図9の実施形態で必要とされる低分解能のDAC 902は、図8の高分解能のDACよりも安価である。DAC 902は、必要に応じて閉ループ法でさらに制御されてもよい。しかしながら、DAC 902は、また、開ループ法で制御されてもよい。DAC 902からの比較的低オフセットアダー(low offset adder)比較的正確な基準電圧レベルとが開ループ動作において利用されてもよい。
また、図10は、更なる他の実施形態を示し、図7の過電圧過渡コントローラ702と一致する過電圧過渡コントローラ702cを図示する。図10の過電圧コントローラ702cの構成要素は、図8の過電圧過渡コントローラ702aの構成要素と類似しており、同様の要素には同様の符号を付し、従って明確のために、繰り返しの説明を省略する。
過電圧過渡コントローラ702cは、ロウパスフィルタ1004、減算回路1006、コントローラ806、およびDAC 1002を備える。一定電圧充電モードでは、平均VPACK+電圧は、バッテリパックにおける他の精度のよいADCから正確に知ることができる。さらに、平均VPACK+電圧はゆっくり変化する。従って、ロウパスフィルタ1004は、分圧器812からのVPACK+の縮小バージョンから、フィルタされた平均VPACK+電圧レベルを駆動する。そして、減算回路1006は、元(raw)の縮小されたVPACK+を、上記フィルタされた平均縮小VPACK+電圧から減算して、比較器802の反転入力端子にテスト電圧を生じる。このテスト電圧は、電圧レベルの大きさとは対照的に、一般に電圧レベルにおける上方移動(upward movement)方向に敏感である。
そして、比較器802は、このテスト電圧とDAC 1002によって供給される基準電圧とを比較して、テスト電圧が基準電圧よりも低ければデジタルの値1を供給し、テスト電圧が上記基準電圧よりも高いか上記基準電圧と等しければ、デジタルの0を供給する。この実施形態では、DAC 1002は、低分解能で、低線形性で、較正されおらず、且つ比較的低速なDACであってもよい。
開ループ制御か閉ループ制御に関係なくVPACK+電圧への遅い任意の変化を解消するために、DAC 1002によって供給される基準電圧を定期的に再計算する必要がある。ロウパスフィルタ1004は、必要とされるフィルタ期間に依存して安定的な動作のために外部容量を必要とする。DAC 1002は、所望のDAC電圧レベルを、平均VPACK+電圧よりも低い所望の過電圧閾値レベル(例えば、システムにおける他の精度のよいADCから)と等しく設定することにより、開ループ法で制御されてもよい。
要約すると、このように過電圧過渡コントローラが提供される。この過電圧過渡コントローラは、第1の信号と基準電圧レベルを表す第2の信号とを比較して、上記第1の信号が上記第2の信号よりも大きいか上記第2の信号と等しければ、過電圧過渡状態を表す出力信号をスイッチに供給する比較器を備えてもよい。このスイッチは、上記出力信号に応答して、充電式バッテリを上記過電圧過渡状態から保護する。過電圧過渡コントローラは、さらにDACを備えてもよく、ここで、上記第2の信号は、少なくとも部分的に上記DACの出力に基づく。また、充電スイッチ及びこのような過電圧過渡コントローラを備える装置が提供される。
最後に、過電圧過渡状態を検出するステップと、バッテリと電源との間に接続されたスイッチに制御信号を供給して上記バッテリを上記過電圧過渡状態から保護するステップとを含む方法が提供される。上記過電圧過渡状態からの保護は、上記スイッチを開状態に駆動し、これにより、上記バッテリを上記過電圧過渡状態から隔絶するステップを含んでも良い。
本明細書で用いられている用語および表現は、説明の用語として使用され、制限の用語ではなく、このような用語および表現を使用することに、図示され説明された特徴(またはその一部)の如何なる均等物をも排除する意図はなく、種々の変形は本請求項の範囲内で可能である。他の変形、バリエーション、及び代替物も可能である。従って、本請求項はこのような均等物の全てに及ぶ。
100 接続形態
102 放電FET
104 充電FET
106 放電ドライバ
108 充電ドライバ
110 基準ダイオード(D1)
112 基準電流源(Iref)
114 スイッチ(K1)
116 スイッチ(K2)
CELL セル
Rsens センス抵抗

Claims (17)

  1. 第1の信号と基準電圧レベルを表す第2の信号とを比較して、前記第1の信号が前記第2の信号よりも大きいか前記第2の信号と等しければ、過電圧過渡状態を表す出力信号を、該出力信号に応答して充電式バッテリを前記過電圧過渡状態から保護するためのスイッチに供給する比較器と、
    前記充電式バッテリの平均電圧レベルを表す信号を供給するロウパスフィルタと、
    前記ロウパスフィルタからの前記充電式バッテリの前記平均電圧レベルを表す前記信号と前記充電式バッテリの元(raw)の電圧レベルを表す信号との間の差分に基づいて前記第1の信号を供給する減算回路と
    を備えた過電圧過渡コントローラ。
  2. 前記第2の信号は、低分解能DACにより発生される請求項1記載の過電圧過渡コントローラ。
  3. 前記低分解能DACは、低分解能で、低線形性で、較正されないDACからなる請求項2記載の過電圧過度コントローラ。
  4. 前記ロウパスフィルタは、該ロウパスフィルタの安定的な動作を提供するように構成された外部容量を更に備えた請求項2記載の過電圧過渡コントローラ。
  5. 前記低分解能DACは、前記バッテリパックの電圧よりも低い所望の過電圧閾値レベルに等しいDAC電圧を設定することにより開ループ法で制御されるように構成された請求項4記載の過電圧過渡コントローラ。
  6. 充電スイッチと、
    過電圧過渡コントローラとを備え、
    前記過電圧過渡コントローラは、
    第1の信号と基準電圧レベルを表す第2の信号とを比較して、前記第1の信号が前記第2の信号よりも大きいか前記第2の信号と等しければ、過電圧過渡状態を表す出力信号を、該出力信号に応答して充電式バッテリを前記過電圧過渡状態から保護するための前記充電スイッチに供給する比較器と、
    前記充電式バッテリの平均電圧レベルを表す信号を供給するロウパスフィルタと、
    前記ロウパスフィルタからの前記充電式バッテリの前記平均電圧レベルを表す前記信号と前記充電式バッテリの元(raw)の電圧レベルを表す信号との間の差分に基づいて前記第1の信号を供給する減算回路と
    を備えた装置。
  7. 前記過電圧過渡コントローラは、前記充電スイッチを開状態に駆動することにより、前記充電式バッテリを前記過電圧過渡状態から保護する請求項6記載の装置。
  8. 前記過電圧過渡コントローラは、前記充電スイッチの内部抵抗を増加させて前記充電式バッテリに供給される電圧レベルを制限することにより、前記充電式バッテリを前記過電圧過渡状態から保護する請求項7記載の装置。
  9. 前記充電スイッチに直列接続された放電スイッチと、
    前記放電スイッチの内部抵抗を制御するための電流制限回路とを更に備え、
    前記過電圧過渡コントローラは、前記過電圧過渡状態に対する保護のために前記充電スイッチを同時に制御する請求項6記載の装置。
  10. 前記第2の信号は、低分解能DACにより発生される請求項9記載の装置。
  11. 前記低分解能DACは、低分解能で、低線形性で、較正されないDACからなる請求項10記載の装置。
  12. 前記ロウパスフィルタは、該ロウパスフィルタの安定的な動作を提供するように構成された外部容量を更に備えた請求項10記載の装置。
  13. 前記低分解能DACは、前記バッテリパックの電圧よりも低い所望の過電圧閾値レベルに等しいDAC電圧を設定することにより開ループ法で制御されるように構成された請求項12記載の装置。
  14. 過電圧過渡状態を検出するステップと、
    制御信号をスイッチに供給するステップとを備え、
    前記スイッチは、バッテリと電源との間に接続され、前記制御信号は、前記バッテリを前記過電圧過渡状態から保護するために、前記スイッチを第1の導通状態に駆動して、前記スイッチの内部抵抗を増加させ、前記過電圧過渡状態の期間中、前記バッテリに供給される電圧を制限するためのものである方法。
  15. 前記制御信号は、前記スイッチを開状態に駆動して前記バッテリを前記過電圧過渡状態から保護する請求項14記載の方法。
  16. 前記過電圧過渡状態を検出するステップは、第1の信号と基準電圧レベルを表す第2の信号とを比較し、前記第1の信号が前記第2の信号よりも大きいか前記第2の信号と等しい場合、前記制御信号を前記スイッチに供給するステップを含み、前記第1の信号は、前記充電式バッテリの平均電圧レベルを表す信号と前記充電式バッテリの元(raw)の電圧レベルを表す信号との間の差分を表すものである請求項14記載の方法。
  17. 前記充電式バッテリの前記平均電圧レベルを表す前記信号を、ロウパスフィルタを介して供給するステップと、
    減算回路を使用して、前記ロウパスフィルタからの前記充電式バッテリの前記平均電圧レベルを表す前記信号と前記充電式バッテリの前記元(raw)の電圧レベルを表す前記信号との間の差分に基づいて前記第1の信号を供給するステップと
    を更に含む請求項16記載の方法。
JP2009276778A 2004-03-25 2009-12-04 過電圧過渡コントローラ Expired - Fee Related JP5253366B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US55625404P 2004-03-25 2004-03-25
US60/556,254 2004-03-25
US10/832,620 US7589499B2 (en) 2004-03-25 2004-04-27 Over voltage transient controller
US10/832,620 2004-04-27

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005090074A Division JP2005278396A (ja) 2004-03-25 2005-03-25 過電圧過渡コントローラ

Publications (2)

Publication Number Publication Date
JP2010110208A true JP2010110208A (ja) 2010-05-13
JP5253366B2 JP5253366B2 (ja) 2013-07-31

Family

ID=36938762

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2005087264A Pending JP2005278395A (ja) 2004-03-25 2005-03-24 トリクル予備充電、及び/またはトリクル放電が可能な回路
JP2005090074A Withdrawn JP2005278396A (ja) 2004-03-25 2005-03-25 過電圧過渡コントローラ
JP2009276778A Expired - Fee Related JP5253366B2 (ja) 2004-03-25 2009-12-04 過電圧過渡コントローラ

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2005087264A Pending JP2005278395A (ja) 2004-03-25 2005-03-24 トリクル予備充電、及び/またはトリクル放電が可能な回路
JP2005090074A Withdrawn JP2005278396A (ja) 2004-03-25 2005-03-25 過電圧過渡コントローラ

Country Status (5)

Country Link
US (3) US7180268B2 (ja)
JP (3) JP2005278395A (ja)
CN (5) CN100594649C (ja)
HK (2) HK1080999A1 (ja)
TW (2) TWI281299B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015112007A (ja) * 2011-05-31 2015-06-18 日立オートモティブシステムズ株式会社 電池システム監視装置
JP2017093284A (ja) * 2015-11-02 2017-05-25 三星電子株式会社Samsung Electronics Co.,Ltd. バッテリ充電方法及びバッテリ充電装置
JP2020150750A (ja) * 2019-03-15 2020-09-17 三洋電機株式会社 電源装置
KR102451089B1 (ko) * 2022-02-14 2022-10-06 주식회사 오토실리콘 배터리 셀의 과도전압 검출회로를 구비한 배터리 모니터링 회로

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7180268B2 (en) * 2004-03-25 2007-02-20 O2Micro International Limited Circuits capable of trickle precharge and/or trickle discharge
US8618805B2 (en) * 2004-03-25 2013-12-31 02Micro, Inc. Battery pack with a battery protection circuit
US7449865B2 (en) * 2004-11-29 2008-11-11 Mediatek Incorporation Battery charger for preventing both overshoot charging currents and overcharged battery voltage during mode transitions and method thereof
US7405539B2 (en) * 2004-11-29 2008-07-29 Mediatek Incorporation Battery charger for preventing charging currents from overshooting during mode transition and method thereof
US7759902B2 (en) * 2005-01-19 2010-07-20 Atmel Corporation Single chip microcontroller including battery management and protection
US20060232244A1 (en) * 2005-04-18 2006-10-19 Texas Instruments Incorporated Systems for charging a battery in a closed loop configuration
DE102005037821A1 (de) * 2005-08-08 2007-02-22 Vb Autobatterie Gmbh & Co. Kgaa Ladeeinrichtung für Akkumulatoren und Verfahren zur Ermittlung von einer Schichtung von Elektrolyt mit unterschiedlicher Säuredichte und/oder von Sulfatanteilen in der aktiven Masse der positiven Platten in Akkumulatoren
CN100416978C (zh) * 2005-12-30 2008-09-03 中兴通讯股份有限公司 无需采样即可实现电池预充电的充电控制方法及其系统
US7759905B2 (en) * 2006-09-01 2010-07-20 Via Technologies, Inc. Linear battery charger
US7675269B2 (en) * 2006-11-03 2010-03-09 Broadcom Corporation Circuit and method for battery charging and discharging protection
KR100839740B1 (ko) * 2006-11-06 2008-06-19 삼성에스디아이 주식회사 하이브리드 배터리 및 그것의 충전 방법
US7598710B2 (en) * 2006-12-08 2009-10-06 Monolithic Power Systems, Inc. Battery charger with temperature control
US20080136364A1 (en) * 2006-12-08 2008-06-12 Russell Calvarese Battery charging using thermoelectric devices
US7701177B2 (en) * 2006-12-21 2010-04-20 O2Micro International Limited Battery pre-charging circuit comprising normal voltage and low voltage pre-charging circuits
DE102007031568A1 (de) * 2007-07-06 2009-01-08 Robert Bosch Gmbh Vorrichtung, insbesondere Ladegerätvorrichtung, zum Laden eines Akkumulators
US8427113B2 (en) * 2007-08-01 2013-04-23 Intersil Americas LLC Voltage converter with combined buck converter and capacitive voltage divider
US20090033293A1 (en) * 2007-08-01 2009-02-05 Intersil Americas Inc. Voltage converter with combined capacitive voltage divider, buck converter and battery charger
US7694243B2 (en) * 2007-12-27 2010-04-06 International Business Machines Corporation Avoiding device stressing
WO2009090590A1 (en) * 2008-01-18 2009-07-23 Koninklijke Philips Electronics N.V. A rechargeable electric appliance
JP5469813B2 (ja) * 2008-01-29 2014-04-16 株式会社日立製作所 車両用電池システム
US8063643B2 (en) * 2008-03-05 2011-11-22 Liebert Corporation System and method for measuring battery internal resistance
CN101645609B (zh) * 2008-08-08 2012-07-04 凹凸电子(武汉)有限公司 电池系统及其充/放电电路和充/放电控制方法
US8164309B2 (en) 2008-08-08 2012-04-24 O2Micro, Inc Battery charging system with trickle charging/discharging control
US8405358B2 (en) * 2008-09-02 2013-03-26 O2Micro Inc. Battery charging systems with controllable charging currents
WO2010033076A1 (en) * 2008-09-17 2010-03-25 Stl Energy Technology (S) Pte Ltd Battery pack burn-in test system and method
US8154248B2 (en) * 2008-10-07 2012-04-10 Black & Decker Inc. Signal for pre-charge selection in lithium charging and discharge control/pre-charge function
CN101510699B (zh) * 2009-04-08 2013-01-23 华硕电脑股份有限公司 电子装置及其电源充电系统
US8143863B2 (en) * 2009-10-12 2012-03-27 O2Micro, Inc Circuits and methods for controlling a current flowing through a battery
TWI411195B (zh) * 2009-11-30 2013-10-01 Mstar Semiconductor Inc 手持式裝置之充電電路及其相關控制電路
TWI390820B (zh) * 2009-12-01 2013-03-21 Acer Inc Charging circuit
US8547064B2 (en) * 2010-01-14 2013-10-01 Texas Instruments Incorporated Battery cell tab monitor
TW201136082A (en) * 2010-02-22 2011-10-16 O2Micro Inc Battery protection circuit, method and battery pack thereof
US8674663B2 (en) * 2010-03-19 2014-03-18 Texas Instruments Incorporated Converter and method for extracting maximum power from piezo vibration harvester
KR101084217B1 (ko) * 2010-03-29 2011-11-17 삼성에스디아이 주식회사 배터리 팩, 및 배터리 팩의 제어 방법
JP5618359B2 (ja) * 2010-08-02 2014-11-05 Necエナジーデバイス株式会社 二次電池パック接続制御方法、および、蓄電システム
JP5562195B2 (ja) * 2010-09-29 2014-07-30 株式会社日立製作所 充電制御装置
US20120081126A1 (en) * 2010-09-30 2012-04-05 Stefan Maireanu Battery monitoring system with a switching mode topology
US8786270B2 (en) 2010-11-08 2014-07-22 Intersil Americas Inc. Synthetic ripple regulator with frequency control
DE102011017599A1 (de) * 2011-04-27 2012-10-31 Robert Bosch Gmbh Verfahren zum Betreiben einer Speichervorrichtung zum Speichern von elektrischer Energie und Speichervorrichtung zum Speichern von elektrischer Energie
US8880916B2 (en) * 2011-08-09 2014-11-04 O2Micro, Inc. Circuits and methods for controlling battery management systems
US8864373B2 (en) 2011-09-12 2014-10-21 National Semiconductor Corporation Small highly accurate battery temperature monitoring circuit
EP2770606B1 (en) 2011-10-20 2019-04-17 Hitachi Automotive Systems, Ltd. Battery system monitoring device and charge storage device equipped with same
CN103135062A (zh) * 2011-11-30 2013-06-05 凯迈(洛阳)电子有限公司 一种高效率动力电池充放电监测方法
CN102570408A (zh) * 2011-12-31 2012-07-11 南京德朔实业有限公司 一种用于锂电池过放电保护电路
WO2013114697A1 (ja) * 2012-01-30 2013-08-08 Necエナジーデバイス株式会社 蓄電システム、二次電池パックの制御方法及び二次電池パック
CN102590592A (zh) * 2012-03-05 2012-07-18 绍兴光大芯业微电子有限公司 精确检测锂电池组电压装置
JP5829966B2 (ja) * 2012-03-30 2015-12-09 ルネサスエレクトロニクス株式会社 電池制御用半導体装置及び電池パック
US20130293185A1 (en) * 2012-05-04 2013-11-07 Qualcomm Incorporated High current battery charging using ir dropout compensation
FR2991461B1 (fr) * 2012-05-30 2015-06-12 Valeo Equip Electr Moteur Procede de diagnostic d'un commutateur de securite d'un dispositif d'alimentation electrique securise d'un vehicule automobile hybride et dispositif d'alimentation electrique securise correspondant
US9153974B2 (en) * 2012-06-13 2015-10-06 GM Global Technology Operations LLC Battery parallel balancing circuit
CN103516038A (zh) * 2012-06-28 2014-01-15 鸿富锦精密工业(深圳)有限公司 省电电路及电子装置
US9190862B2 (en) 2012-08-23 2015-11-17 Qualcomm Incorporated Charging current calibration
KR101975395B1 (ko) * 2012-08-29 2019-05-07 삼성에스디아이 주식회사 배터리 팩 및 이의 제어 방법
TWI473407B (zh) 2012-09-19 2015-02-11 Univ Nat Cheng Kung 非反向—升降壓兩用型直流轉直流數位控制系統
JP2014073021A (ja) * 2012-09-28 2014-04-21 Hitachi Koki Co Ltd 二次電池収容体
JP6026225B2 (ja) * 2012-10-30 2016-11-16 株式会社日立情報通信エンジニアリング 蓄電システム
KR101428293B1 (ko) * 2012-12-18 2014-08-07 현대자동차주식회사 전기자동차용 보조배터리의 주기적 충전 방법
CN103066666B (zh) 2013-01-22 2015-08-26 矽力杰半导体技术(杭州)有限公司 一种升压型电池充电管理系统及其控制方法
TWI489735B (zh) * 2013-02-04 2015-06-21 Hon Hai Prec Ind Co Ltd 電子設備
US9368979B2 (en) * 2013-03-15 2016-06-14 O2Micro Inc System and methods for battery balancing
JP2014207766A (ja) * 2013-04-12 2014-10-30 パナソニック株式会社 過電流検出装置、及び当該過電流検出装置を用いた充放電システム、分電盤、充電制御装置、車両用充放電装置、車両用電気機器
CN104122917B (zh) * 2013-04-24 2016-06-08 立锜科技股份有限公司 保护装置及其校正方法
US10424915B2 (en) * 2014-01-13 2019-09-24 Littelfuse, Inc. Secondary protection with permanent disable for a battery
KR101696315B1 (ko) * 2014-08-25 2017-01-13 주식회사 엘지화학 성능이 개선된 프리차지 회로 및 이를 구비한 배터리 팩
CN106292812B (zh) * 2015-06-02 2017-12-29 海能达通信股份有限公司 一种防爆通讯设备及其电平控制电路
DE102016214415A1 (de) * 2015-11-10 2017-05-11 Robert Bosch Gmbh Schaltung zur Erfassung einer Spannung einer Mehrzahl von in Reihe geschalteten elektrischen Energiespeichereinheiten und Verfahren zum Betrieb dieser Schaltung
JP6540896B2 (ja) * 2016-06-02 2019-07-10 株式会社村田製作所 バッテリモジュール電圧制御装置、バッテリモジュールおよび電源システム
FR3052271B1 (fr) 2016-06-06 2020-06-05 STMicroelectronics (Alps) SAS Dispositif d'asservissement de tension
JP6828296B2 (ja) * 2016-08-09 2021-02-10 株式会社Gsユアサ 蓄電装置および蓄電装置の充電制御方法
KR102246769B1 (ko) * 2016-11-07 2021-04-30 삼성에스디아이 주식회사 배터리 팩 및 이를 포함하는 전기 청소기
TWI609550B (zh) * 2016-11-18 2017-12-21 茂達電子股份有限公司 電池充電電路及其方法
TWI632778B (zh) * 2017-04-24 2018-08-11 瑞昱半導體股份有限公司 數位類比轉換器及其執行方法
JP6908842B2 (ja) * 2017-07-14 2021-07-28 ミツミ電機株式会社 二次電池保護回路、二次電池保護集積回路及び電池パック
US10594158B2 (en) * 2017-07-26 2020-03-17 Quanta Computer Inc. ORing FET control method for battery backup system
US11038364B2 (en) * 2018-01-10 2021-06-15 Microsoft Technology Licensing, Llc Parallel charging and discharging of batteries with disparate characteristics
US10778013B2 (en) 2018-01-10 2020-09-15 Microsoft Technology Licensing, Llc Distributed battery architecture
GB2563489B (en) * 2018-04-19 2019-12-04 O2Micro Inc Battery protection systems
US11088559B2 (en) * 2018-06-06 2021-08-10 Texas Instruments Incorporated Current protection for battery charger
US10910820B2 (en) 2018-07-30 2021-02-02 Nxp B.V. Fast over voltage and surge detection for high speed and load switches
DE102018221856A1 (de) * 2018-12-17 2020-06-18 Robert Bosch Gmbh Batteriemodul für ein Kraftfahrzeug
US11251626B2 (en) * 2019-01-15 2022-02-15 Lithium Power Inc. System for lead-acid battery replacement
CN112117505B (zh) * 2019-06-20 2022-04-05 深圳市瑞能实业股份有限公司 一种化成分容控制方法及化成分容控制系统
US11101680B2 (en) 2019-06-28 2021-08-24 Microsoft Technology Licensing, Llc Parallel battery charge management
US11165265B2 (en) 2019-06-28 2021-11-02 Microsoft Technology Licensing, Llc Parallel battery discharge management
CN110350494A (zh) * 2019-06-28 2019-10-18 深圳市明信测试设备有限公司 一种可调节保护范围的直流保护方法
KR20210047142A (ko) * 2019-10-21 2021-04-29 주식회사 엘지화학 프리차지 회로 및 이를 포함하는 배터리 시스템
KR102432368B1 (ko) * 2020-08-31 2022-08-11 삼성에스디아이 주식회사 배터리 보호 회로 및 이를 포함하는 배터리 장치
US11901749B2 (en) 2020-09-09 2024-02-13 Microsoft Technology Licensing, Llc Balanced discharge in multi-battery system
CN112644334B (zh) * 2021-01-12 2022-08-16 一汽解放汽车有限公司 防止电池过放电的控制方法、系统、车辆及存储介质
DE102021111864A1 (de) * 2021-05-06 2022-11-10 instagrid GmbH Energieversorgungssystem und Verfahren zum Laden eines Energieversorgungssystems
US11630471B2 (en) 2021-07-01 2023-04-18 Nxp Usa, Inc. Over voltage detection and protection
CN114944680B (zh) * 2022-04-11 2023-03-24 深圳天溯计量检测股份有限公司 一种电动汽车用交流充电桩计量检测系统
CN117293940A (zh) * 2022-06-20 2023-12-26 北京小米移动软件有限公司 无线耳机的充电方法、充电电路及充电盒
FR3141112A1 (fr) * 2022-10-21 2024-04-26 Vitesco Technologies Activation de batteries connectées en parallèle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0879982A (ja) * 1994-09-01 1996-03-22 Fujitsu Ltd 充放電制御装置および定電圧定電流制御回路
JPH09130988A (ja) * 1995-10-30 1997-05-16 Matsushita Electric Ind Co Ltd 充電制御装置
JPH11178222A (ja) * 1997-12-04 1999-07-02 Nec Shizuoka Ltd 消費電力増加による電圧低下に対するメモリ保護回路
JP2000069689A (ja) * 1998-08-26 2000-03-03 Matsushita Electric Ind Co Ltd 電池パック装置

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4746852A (en) 1984-10-29 1988-05-24 Christie Electric Corp. Controller for battery charger
JPS61221539A (ja) 1984-10-29 1986-10-01 クリステイ−・エレクトリツク・コ−ポレイシヨン バツテリ充電器の制御装置および方法
DE69025868T2 (de) * 1989-12-11 1996-09-05 Canon Kk Ladegerät
US5307000A (en) * 1992-01-22 1994-04-26 Electronic Power Technology, Inc. Method and apparatus for charging, thawing, and formatting a battery
US6369576B1 (en) * 1992-07-08 2002-04-09 Texas Instruments Incorporated Battery pack with monitoring function for use in a battery charging system
US5517379A (en) 1993-05-26 1996-05-14 Siliconix Incorporated Reverse battery protection device containing power MOSFET
JP3197428B2 (ja) * 1994-04-13 2001-08-13 株式会社マキタ 充電装置
JP3561969B2 (ja) * 1994-08-30 2004-09-08 ソニー株式会社 編集方法及び編集制御機器
JP3584502B2 (ja) * 1994-10-07 2004-11-04 ソニー株式会社 充電制御装置
US5539299A (en) 1994-10-31 1996-07-23 Motorola Inc. Protection switch for a battery powered device
JPH08140281A (ja) 1994-11-09 1996-05-31 Mitsubishi Electric Corp 充電装置
JP3152120B2 (ja) 1995-08-31 2001-04-03 松下電器産業株式会社 定電圧充電器
US5903137A (en) * 1995-12-15 1999-05-11 Compaq Computer Corporation Battery pack with single charge inhibit/regulator transistor
JPH09289738A (ja) 1996-02-22 1997-11-04 Hitachi Metals Ltd 電池監視回路
US5789902A (en) 1996-02-22 1998-08-04 Hitachi Metals, Ltd. Bi-direction current control circuit for monitoring charge/discharge of a battery
US5867008A (en) 1996-06-05 1999-02-02 Double-Time Battery Corporation Overcharge protection circuitry for rechargeable battery pack
JP3190587B2 (ja) * 1997-02-14 2001-07-23 セイコーインスツルメンツ株式会社 充放電制御回路
US5804944A (en) * 1997-04-07 1998-09-08 Motorola, Inc. Battery protection system and process for charging a battery
US6331763B1 (en) 1998-04-15 2001-12-18 Tyco Electronics Corporation Devices and methods for protection of rechargeable elements
JP3305257B2 (ja) 1998-05-06 2002-07-22 セイコーインスツルメンツ株式会社 充放電制御回路と充電式電源装置およびその制御方法
US6160381A (en) * 1998-05-21 2000-12-12 Qualcomm Inc. Battery pack protection circuit and battery pack including a protection circuit
JP3873623B2 (ja) * 1998-05-28 2007-01-24 トヨタ自動車株式会社 電池充電状態の推定手段及び電池劣化状態推定方法
ATE425584T1 (de) * 1999-03-01 2009-03-15 Koninkl Philips Electronics Nv Gerät mit einem motor dessen geschwindigkeit veränderbar ist
JP3380766B2 (ja) * 1999-03-18 2003-02-24 富士通株式会社 保護方法及び制御回路並びに電池ユニット
JP3670522B2 (ja) * 1999-07-30 2005-07-13 富士通株式会社 バッテリパック
CN102064541A (zh) * 1999-10-22 2011-05-18 泰科电子有限公司 用于保护可充电元件的装置及方法
JP4182313B2 (ja) 1999-12-28 2008-11-19 ミツミ電機株式会社 二次電池の保護方法及び保護回路
TW535308B (en) * 2000-05-23 2003-06-01 Canon Kk Detecting method for detecting internal state of a rechargeable battery, detecting device for practicing said detecting method, and instrument provided with said
JP2002008374A (ja) * 2000-06-22 2002-01-11 Mitsubishi Electric Corp 電圧降圧回路
EP1315977B1 (en) 2000-08-02 2008-11-19 Seiko Epson Corporation Electronic apparatus and control method
JP3945134B2 (ja) * 2000-08-02 2007-07-18 セイコーエプソン株式会社 リミッタ制御回路、リミッタ制御回路の調整方法、外部調整装置および外部調整装置の制御方法
US6362599B1 (en) * 2000-09-21 2002-03-26 Delphi Technologies, Inc. Method and apparatus for sensing the status of a vehicle
JP4380927B2 (ja) * 2001-02-05 2009-12-09 ミツミ電機株式会社 過充電保護回路
US6531847B1 (en) 2001-11-07 2003-03-11 Quallion Llc Safety method, device and system for an energy storage device
US6603286B2 (en) 2001-12-23 2003-08-05 Motorola, Inc. Battery charging circuit with undervoltage current control
EP1343018A1 (en) * 2002-03-05 2003-09-10 Dialog Semiconductor GmbH Battery charge monitor
US6844702B2 (en) * 2002-05-16 2005-01-18 Koninklijke Philips Electronics N.V. System, method and apparatus for contact-less battery charging with dynamic control
US6492792B1 (en) 2002-05-26 2002-12-10 Motorola, Inc Battery trickle charging circuit
US6756769B2 (en) * 2002-06-20 2004-06-29 O2Micro International Limited Enabling circuit for avoiding negative voltage transients
US6636020B1 (en) * 2002-10-01 2003-10-21 Wilson Greatbatch Technologies, Inc. Lithium-ion over voltage protection circuit
EP1498998A1 (en) * 2003-07-16 2005-01-19 Dialog Semiconductor GmbH Protection switch with reverse voltage protection
US7180268B2 (en) * 2004-03-25 2007-02-20 O2Micro International Limited Circuits capable of trickle precharge and/or trickle discharge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0879982A (ja) * 1994-09-01 1996-03-22 Fujitsu Ltd 充放電制御装置および定電圧定電流制御回路
JPH09130988A (ja) * 1995-10-30 1997-05-16 Matsushita Electric Ind Co Ltd 充電制御装置
JPH11178222A (ja) * 1997-12-04 1999-07-02 Nec Shizuoka Ltd 消費電力増加による電圧低下に対するメモリ保護回路
JP2000069689A (ja) * 1998-08-26 2000-03-03 Matsushita Electric Ind Co Ltd 電池パック装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015112007A (ja) * 2011-05-31 2015-06-18 日立オートモティブシステムズ株式会社 電池システム監視装置
JP2017093284A (ja) * 2015-11-02 2017-05-25 三星電子株式会社Samsung Electronics Co.,Ltd. バッテリ充電方法及びバッテリ充電装置
JP7130353B2 (ja) 2015-11-02 2022-09-05 三星電子株式会社 バッテリ充電方法及びバッテリ充電装置
JP2020150750A (ja) * 2019-03-15 2020-09-17 三洋電機株式会社 電源装置
JP7351626B2 (ja) 2019-03-15 2023-09-27 パナソニックエナジー株式会社 電源装置
KR102451089B1 (ko) * 2022-02-14 2022-10-06 주식회사 오토실리콘 배터리 셀의 과도전압 검출회로를 구비한 배터리 모니터링 회로

Also Published As

Publication number Publication date
JP5253366B2 (ja) 2013-07-31
TW200536231A (en) 2005-11-01
HK1080999A1 (en) 2006-05-04
US20050212484A1 (en) 2005-09-29
TWI281299B (en) 2007-05-11
CN2812375Y (zh) 2006-08-30
JP2005278395A (ja) 2005-10-06
CN100594649C (zh) 2010-03-17
US8232773B2 (en) 2012-07-31
US20050212489A1 (en) 2005-09-29
TWI281300B (en) 2007-05-11
US7180268B2 (en) 2007-02-20
US7589499B2 (en) 2009-09-15
US20100007350A1 (en) 2010-01-14
JP2005278396A (ja) 2005-10-06
CN100373742C (zh) 2008-03-05
CN1674403A (zh) 2005-09-28
TW200534561A (en) 2005-10-16
CN100345356C (zh) 2007-10-24
CN101095271A (zh) 2007-12-26
HK1081000A1 (en) 2006-05-04
CN2812374Y (zh) 2006-08-30
CN1674402A (zh) 2005-09-28

Similar Documents

Publication Publication Date Title
JP5253366B2 (ja) 過電圧過渡コントローラ
US7646169B2 (en) Trickle discharge for battery pack protection
US7816892B2 (en) Battery charger for preventing charging currents from overshooting during mode transition and method thereof
US6897635B2 (en) Method for predicting remaining charge of portable electronics battery
US8222870B2 (en) Battery management systems with adjustable charging current
US7847519B2 (en) Smart battery protector with impedance compensation
US7045990B2 (en) Portable device having a charging circuit and semiconductor device for use in the charging circuit of the same
KR101054584B1 (ko) 충전 방법, 전지 팩 및 그 충전기
JP5351523B2 (ja) 過電流および短絡に対する保護における電力サージフィルタリング
US7521898B2 (en) Charger, DC/DC converter including that charger, and control circuit thereof
US8035354B2 (en) Battery full-charge detection for charge-and-play circuits
US8264211B2 (en) Programmable power limiting for power transistor system
JP2002152988A (ja) ハイサイド電流感知スマートバッテリーチャージャー
US20070188142A1 (en) Charging and discharging control circuit and charging type power supply device
TW200822484A (en) Method for battery pack protection
GB2545587A (en) Systems and methods for controlling battery current
CN112106272B (zh) 电池充电器及用于对电池充电的系统和方法
JP2011083093A (ja) 充電制御方法及び充電制御回路
JP5306582B2 (ja) 電池管理装置及び電池管理方法
JP4713357B2 (ja) 充電装置及びその故障検出方法
KR20030031736A (ko) 재충전용 배터리 충전 장치 및 방법

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees