JP5829966B2 - 電池制御用半導体装置及び電池パック - Google Patents

電池制御用半導体装置及び電池パック Download PDF

Info

Publication number
JP5829966B2
JP5829966B2 JP2012079689A JP2012079689A JP5829966B2 JP 5829966 B2 JP5829966 B2 JP 5829966B2 JP 2012079689 A JP2012079689 A JP 2012079689A JP 2012079689 A JP2012079689 A JP 2012079689A JP 5829966 B2 JP5829966 B2 JP 5829966B2
Authority
JP
Japan
Prior art keywords
battery
deep discharge
circuit
control
discharge detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012079689A
Other languages
English (en)
Other versions
JP2013211975A (ja
Inventor
加藤 大介
大介 加藤
牧野 良成
良成 牧野
亮介 榎本
亮介 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2012079689A priority Critical patent/JP5829966B2/ja
Priority to US13/783,241 priority patent/US20130257380A1/en
Publication of JP2013211975A publication Critical patent/JP2013211975A/ja
Application granted granted Critical
Publication of JP5829966B2 publication Critical patent/JP5829966B2/ja
Priority to US15/191,238 priority patent/US20160308377A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • H02J7/007184Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage in response to battery voltage gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、電池制御用半導体装置及び電池パックに関し、特にリチウムイオン二次電池の充電制御システムに好適に利用できるものである。
リチウムイオン二次電池は、非水電解質二次電池の一種で、電解質中のリチウムイオンが電気伝導を担う二次電池とされる。リチウムイオン二次電池においては、動作可能電圧の下限を下回る電圧(深放電領域)に達すると、金属リチウムの析出により内部短絡を起こすおそれがある。このような状態で二次電池を充電した場合には、二次電池が発火や破裂してしまうおそれがあるため、安全性向上の点から深放電状態での充電を禁止する必要がある。
特許文献1には、リチウムイオン二次電池電圧が再充電禁止電圧である閾値以下となった場合に、電池電圧が深放電領域に達したと判断し、電池パックに対する再充電を不可とする電池パックおよび制御方法が記載されている。
特許文献2には、過放電を繰り返した二次電池について過放電電池と判断し、充電を行わず、充電を続行することによる不具合を未然に防止することができる充電器が記載されている。
特許文献3には、電池電圧が非常に低い状態(深放電)にまで降下した際に、電池電圧で駆動する揮発性メモリが動作保証電圧を下回り記憶情報が変化することを利用した深放電検出技術が記載されている。記憶情報の変化を検出するのは電池パック外の接続機器である。接続機器は電池に接続された際に、電池が深放電に陥っていた事を検出すると不揮発性メモリに深放電回数を書き込む。任意の深放電回数により、電池の充放電を禁止する処理を実行する。
特開2011−115012号公報 特開2010−50045号公報 特開2003−168490号公報
特許文献1に記載された技術によれば、電池電圧が再充電禁止電圧である閾値V以下となった場合には電池電圧が深放電領域に達したと判断して、電池パックに対する再充電を不可としているが、そのような制御を行うための制御部についての具体的な構成が明確に示されていない。上記制御部は、所定のファームウェアを実行するCPU(中央処理装置)によって構成することが考えられる。しかし、その場合において、CPUが暴走した場合には、保護機能を発揮できないおそれがある。
特許文献2に記載された技術によれば、二次電池の保護機能が充電器に設けられているため、電池パック内で保護機能を発揮させることができない。また、電池パックが深放電状態になった場合、マイクロコンピュータの制御により、電池パックへの充電を禁止しているため、マイクロコンピュータが暴走した場合には、保護機能を発揮できないおそれがある。
特許文献3に記載された技術によれば、揮発性メモリの動作保証電圧が深放電検出レベルとされる。揮発性メモリの動作保証電圧は一般的にデバイスに依存する電圧であるため、それを変動させることは難しい。従って、電池の種類や安全性の要求が変わり、深放電状態の判断基準とされる電圧レベルが変わった場合には、回路構成の大幅な変更を余儀なくされる。また、揮発性メモリの記憶情報の変化を検出するのは、電池パック外の接続機器であり、電池パック内で検出処理を完結することができない。
その他の課題と新規な特徴は、本明細書の記述及び添付図面から明らかになるであろう。
課題を解決するための手段のうち代表的なものの概要を簡単に説明すれば下記の通りである。
すなわち、充電用トランジスタのオン・オフ動作を制御可能な制御回路と、上記制御回路を介して上記電池の充電動作を制御可能なCPUと、上記電池の深放電検出の閾値として設定された参照電圧に基づいて、上記電池の深放電状態を検出可能な深放電検出回路とを設ける。また、上記深放電検出回路によって上記電池の深放電状態が検出された場合に、上記深放電検出回路の検出結果を優先的に上記制御回路に伝達することにより、上記CPUからの充電制御にかかわらずに上記充電用トランジスタを強制的にオフ状態に制御するためのスイッチ回路を設ける。
課題を解決するための手段のうち代表的なものによって得られる効果を簡単に説明すれば下記の通りである。
すなわち、CPUの介在無しに深放電状態を検出して電池の充電を禁止することができ、しかも、電池の種類や安全性の要求が変わり、判断基準深放電検出レベルが変化しても、回路構成の大幅な変更を行わずに済む。
電池パックの構成例ブロック図である。 図1に示される電池パックにおけるスイッチ回路及びFET制御回路の構成例回路図である。 図1に示される電池パックにおけるスイッチ回路及びFET制御回路のさらに詳細な構成例回路図である。 図1に示される電池パックにおける主要動作の説明図である。 図1に示される電池パックにおける主要動作の説明図である。 図1に示される電池パックにおける主要動作の説明図である。 図1に示される電池パックにおける過電圧・過電流検出回路の構成例回路図である。 図1に示される電池パックにおける深放電検出回路の構成例回路図である。
1.実施の形態の概要
先ず、本願において開示される代表的な実施の形態について概要を説明する。代表的な実施の形態についての概要説明で括弧を付して参照する図面中の参照符号はそれが付された構成要素の概念に含まれるものを例示するに過ぎない。
〔1〕代表的な実施の形態に係る電池制御用半導体装置は、電池に直列接続される充電用トランジスタ(13)のオン・オフ動作を制御可能な制御回路(110)と、上記制御回路を介して上記電池の充電動作を制御可能なCPU(102)と、上記電池の深放電検出の閾値として設定された参照電圧に基づいて上記電池の深放電状態を検出可能な深放電検出回路(109)とを含む。また、上記電池制御用半導体装置は、上記深放電検出回路によって上記電池の深放電状態が検出された場合に、上記深放電検出回路の検出結果を優先的に上記制御回路に伝達することにより、上記CPUからの充電制御にかかわらずに上記充電用トランジスタを強制的にオフ状態に制御するためのスイッチ回路(111)を含む。
上記の構成によれば、スイッチ回路は、上記深放電検出回路によって上記電池の深放電状態が検出された場合に、上記深放電検出回路の検出結果を優先的に上記制御回路に伝達することにより、上記CPUからの充電制御にかかわらずに上記充電用トランジスタを強制的にオフ状態に制御する。この結果、上記CPUの介在無しに上記電池の充電経路を遮断することによって、その後の上記電池の充電を禁止することができる。また、電池の種類や安全性の要求が変わり、深放電状態の判断基準とされる電圧レベルが変わった場合には、上記電池の深放電検出の閾値として設定された参照電圧のレベル変更で対応でき、回路構成の大幅な変更を行わずに済む。
〔2〕上記〔1〕において、上記深放電検出回路は、上記電池の深放電状態を検出することによって深放電検出信号をローレベルにアサートするように構成することができる。上記スイッチ回路は、上記深放電検出信号に応じてオン・オフされる第1スイッチ素子(SW1)と、上記深放電検出信号に応じて上記第1スイッチとは相補的にオン・オフされる第2スイッチ素子(SW2)とを含んで容易に構成することができる。上記第1スイッチ素子(SW1)は、上記深放電検出回路によって上記深放電検出信号がハイレベルにネゲートされた状態でオンされて、上記CPUからの制御信号を上記制御回路に伝達する。上記第2スイッチ素子(SW2)は、上記深放電検出回路によって上記深放電検出信号がアサートされた状態でオンされて、上記深放電検出回路からの上記深放電検出信号を上記制御回路に伝達する。上記第1スイッチ素子や上記第2スイッチ素子は、MOSトランジスタによって形成することができる。
〔3〕上記〔2〕において、制御回路は、第1スイッチを介して伝達された上記制御信号又は第2スイッチを介して伝達された上記深放電検出信号を上記充電用トランジスタの制御端子に伝達するための論理ゲート(302,303)と、上記充電用トランジスタの制御端子(ゲート電極)をハイレベルにプルアップ又はローレベルにプルダウンするための抵抗(301)とを含んで構成することができる。上記抵抗によるプルアップ又はプルダウンにより、上記充電用トランジスタの制御端子の論理が安定されることから、上記充電用トランジスタの動作の安定化を図ることができる。
〔4〕上記〔3〕において、上記抵抗は、上記充電用トランジスタの制御端子に上記深放電検出信号が供給されるように設けることができる。このとき、上記充電用トランジスタの制御端子は、上記深放電検出信号によってプルアップ又はプルダウンされる。これにより、充電用トランジスタの動作の安定化を図ることができる。例えば充電用MOSトランジスタ(13)がnチャネル型MOSトランジスタとされるとき、深放電検出信号がハイレベルにネゲートされた場合は、充電用MOSトランジスタの制御端子(ゲート電極)が抵抗を介してハイレベルにプルアップされることで、充電用MOSトランジスタはオン状態に安定しやすくなる。また、深放電検出信号がローレベルにアサートされた場合は、充電用MOSトランジスタのゲート電極が抵抗を介してローレベルにプルダウンされることで、充電用MOSトランジスタはオフ状態に安定しやすくなる。
〔5〕上記〔3〕において、上記抵抗は、上記充電用トランジスタの制御端子をローレベルへプルダウンするように設けることができる。上記充電用トランジスタの制御端子がローレベルにプルダウンされることにより、例えばCPUが暴走した場合でも、充電用MOSトランジスタがオフ状態で安定するため、電池の安全性が保たれる。
〔6〕代表的な実施の形態に係る別の電池制御用半導体装置は、電池に直列接続される充電用トランジスタ(13)を含んで構成することができる。このとき、この電池制御用半導体装置には、上記充電用トランジスタのオン・オフ動作を制御可能な制御回路(110)と、上記制御回路を介して上記電池の充電動作を制御可能なCPU(102)と、上記電池の深放電検出の閾値として設定された参照電圧に基づいて、上記電池の深放電状態を検出可能な深放電検出回路(109)とを設けることができる。また、電池制御用半導体装置には、上記深放電検出回路によって上記電池の深放電状態が検出された場合に、上記深放電検出回路の検出結果を優先的に上記制御回路に伝達することにより、上記CPUからの充電制御にかかわらずに上記充電用トランジスタを強制的にオフ状態に制御するためのスイッチ回路(111)を設けることができる。
このように上記充電用トランジスタを含んで電池制御用半導体装置を構成することができ、その場合においても、上記〔1〕〜〔5〕の場合と同様の作用効果を得ることができる。
〔7〕代表的な実施の形態に係る電池パックは(1)は、充電可能な電池(11)と、上記電池の充電を制御可能な電池制御用半導体装置とを含んで構成される。上記電池制御用半導体装置は、上記電池に直列接続された充電用トランジスタ(13)と、充電用トランジスタのオン・オフ動作を制御可能な制御回路(110)と、制御回路を介して電池の充電動作を制御可能なCPU(102)と、電池の深放電検出の閾値として設定された参照電圧に基づいて、電池の深放電状態を検出可能な深放電検出回路(109)とを含む。また、上記電池制御用半導体装置は、上記深放電検出回路によって上記電池の深放電状態が検出された場合に、上記深放電検出回路の検出結果を優先的に上記制御回路に伝達することにより、上記CPUからの充電制御にかかわらずに上記充電用トランジスタを強制的にオフ状態に制御するためのスイッチ回路(111)を含む。
上記の構成によれば、上記〔1〕〜〔5〕の作用効果は、全て電池パック内で完結するから、上記〔1〕〜〔5〕の作用効果を得るのに外部機器あるいは外部回路が不要であり、外部依存性が無い。
2.実施の形態の詳細
実施の形態について更に詳述する。
《実施の形態1》
図1には、電池パックの構成例が示される。
図1に示される電池パック1は、電池11、電池11の充電および放電を制御する電池制御用IC(Integrated Circuit)10、センス抵抗12、充電用MOSトランジスタ13、放電用MOSトランジスタ14を含み、絶縁性の樹脂等によって封止されている。特に制限されないが、充電用MOSトランジスタ13や放電用MOSトランジスタ14には、nチャネル型MOSトランジスタを適用することができる。電池パック1には、端子T1,T2,T3,T4が設けられる。端子T1は、正極(+)側端子とされ、端子T4は、負極(−)側端子とされる。端子T2はデータ受信用端子とされ、端子T3はデータ送信用端子とされる。この電池パック1の各端子T1,T2,T3,T4は、図示しない充電器に結合され、その充電器によって電池パック1の充電が行われる。充電が完了した電池パック1は、例えば携帯端末やデジタルカメラなどに搭載され、この携帯端末やデジタルカメラなどにおける電子回路の動作用電源として機能する。
上記電池制御用IC10は、特に制限されないが、公知の半導体集積回路製造技術により、単結晶シリコン基板などの一つの半導体基板に形成される。電池11は、リチウムイオン二次電池とされる。この電池11の充電は、電池制御用IC10によって制御される。電池制御用IC10には、充電用MOSトランジスタ13及び放電用MOSトランジスタ14やセンス抵抗12が外付けされる。充電用MOSトランジスタ13及び放電用MOSトランジスタ14やセンス抵抗12は、電池11に直列接続される。充電用MOSトランジスタ13及び放電用MOSトランジスタ14のオン・オフ動作は、電池制御用IC10によって制御される。電池11からセンス抵抗12に至る経路の電位は、第1グランドGND1とされ、放電用MOSトランジスタ14から端子T4に至る経路の電位は、第2グランドGND2とされる。
上記電池制御用IC10は、特に制限されないが、通信回路101、CPU102、メモリ103、高精度電源104、電池電圧測定回路105、発振器106、電流積算回路107、保護機能回路108、FET制御回路110、スイッチ回路111を含む。
通信回路101は、結合された充電器又は携帯端末との間で、電池パック1の識別データや充放電に関する制御データのやり取りを行う。
CPU102は、予め設定されたプログラムに従って、この電池パック1の充電制御を行う。
メモリ103は、ROM(Read Only Memory)及びRAM(Random Access Memory)を含む。上記ROMには、CPU102で実行されるプログラムが格納される。上記RAMは、上記CPU102で上記プログラムが実行される際の作業領域などに利用される。
高精度電源104は、外部から電池制御用IC10に入力された電圧に基づいて、各種レベルの定電圧を形成する。形成された定電圧は、分圧用の抵抗に供給される電圧やコンパレータ(比較回路)に供給される参照電圧(基準電圧)など、比較的高い安定度が要求される電圧として各部に供給される。
電池電圧測定回路105は、第1グランドGND1を基準として電池11の正極側電圧V1を測定する。この電圧測定結果は、デジタル信号に変換されてからCPU102に伝達される。
発振器106は、この電池制御用IC10における論理回路の動作用クロック信号を形成する。形成されたクロック信号は、電池制御用IC10における各部に供給される。
電流積算回路107は、センス抵抗12の両端に生じた電圧をモニタすることで、電池11の充放電電流を測定する。この電流測定結果は、デジタル信号に変換されてからCPU102に伝達される。
保護機能回路108は、電池パック1の過電圧又は過電流状態や、深放電によって電池11が損傷するのを防止するために設けられている。保護機能回路108には、過電圧・過電流検出回路112、深放電検出回路109を含む。過電圧・過電流検出回路112は、過電圧状態や過電流状態を検出する。深放電検出回路109は、電池11の深放電状態を検出する。過電圧・過電流検出回路112での過電圧状態や過電流状態の検出結果や、深放電検出回路109での深放電状態の検出結果は、FET制御回路110に伝達される。
FET制御回路110は、CPU102からの制御信号、過電圧・過電流検出回路112での検出結果、及び深放電検出回路109での検出結果に基づいて、充電用MOSトランジスタ13のオン・オフ動作を制御する。また、FET制御回路110は、CPU102からの制御信号、及び過電圧・過電流検出回路112での検出結果に基づいて放電用MOSトランジスタ14のオン・オフ動作を制御する。充電用MOSトランジスタ13は、電池11の充電の際にオンされ、電池11の電圧が所定レベルに達した場合にオフされる。
充電用MOSトランジスタ13がオフされた状態では、電池11の充電はできないが、この充電用MOSトランジスタ13に並列接続されている寄生ダイオード15を介して電池11からの放電は可能になる。また、電池11の充電中に、過電圧・過電流検出回路112によって過電圧が検出された場合には、FET制御回路110によって充電用MOSトランジスタ13がオフされて、電池11の充電が中止される。
放電用MOSトランジスタ14は、電池11の電圧が所定レベルに低下した場合に、FET制御回路110によってオフされる。これにより、電池11からの放電電流が阻止される。この放電用MOSトランジスタ14がオフされた状態では、電池11からの放電はできないが、この放電用MOSトランジスタ14に並列接続されている寄生ダイオード16を介して電池11に充電電流を流すことは可能である。また、放電中に、過電流検出回路112によって過電流が検出された場合には、FET制御回路110によって放電用MOSトランジスタ14がオフされて過電流が遮断される。
上記過電圧・過電流検出回路112は、例えば図7に示されるように、過電圧を検出するための過電圧検出回路112Aと、過電流を検出するための過電流検出回路112Bとを含む。過電圧検出回路112Aは、電池11の正極側電圧V1を分圧するために互いに直列接続された抵抗902,903と、コンパレータ901とを含む。抵抗902には、電池11の正極側電圧V1が伝達される。抵抗903は、第1グランドGND1に接続される。コンパレータ901は、抵抗902,903の直列接続ノードの電位V2と参照電圧Vref1との比較を行い、その比較結果を出力する。この比較結果が過電圧検出結果(過電圧検出信号)とされる。過電流検出回路112Bは、コンパレータ904を含む。このコンパレータ904は、第1グランドGND1を基準とするセンス抵抗12の端子電圧V3と参照電圧Vref2との比較を行い、その比較結果を出力する。この比較結果が過電流検出結果(過電流検出信号)とされる。コンパレータ901の出力とコンパレータ904の出力とのオア論理がオアゲート905によって得られ、このオアゲート905の出力が、過電圧・過電流検出信号とされる。上記参照電圧Vref1,Vref2は、上記高精度電源104において形成される。
上記深放電検出回路109は、例えば図8に示されるように、電池11の正極側電圧V1を分圧するために互いに直列接続された抵抗906,907と、コンパレータ908とを含む。抵抗906には、電池11の正極側電圧V1が伝達される。抵抗907は、第1グランドGND1に接続される。コンパレータ908は、抵抗906,907の直列接続ノードの電位V4と参照電圧Vref3との比較を行い、その比較結果を出力する。この比較結果が過電圧検出結果(過電圧検出信号)とされる。参照電圧Vref3は、電池11の深放電状態を検出するための閾値とされ、例えば、高精度電源104において、互いに直列接続された複数の抵抗(ラダー抵抗)によって分圧して形成したものとされる。この場合、参照電圧Vref3のレベルは、ラダー抵抗のタップ(直列接続ノード)切替えによって容易に変更可能とされる。
図2には、上記スイッチ回路111、及び上記FET制御回路110の構成例が示される。
スイッチ回路111は、充電用MOSトランジスタ13に対応する第1スイッチ回路111Aと、放電用MOSトランジスタ14に対応する第2スイッチ回路111Bとを含む。第1スイッチ回路111Aは、深放電検出回路109から出力される深放電検出信号と、過電圧・過電流検出回路112から出力される過電圧・過電流検出信号と、CPU102から出力される制御信号とを、選択的にFET制御回路110に伝達する。第2スイッチ回路111Bは、過電圧・過電流検出回路112から出力される過電圧・過電流検出信号と、CPU102から出力される制御信号とを、選択的にFET制御回路110に伝達する。ここで、深放電検出回路109での検出結果の優先度が最も高く設定されている。つまり、深放電検出回路109によって電池11の深放電状態が検出された場合には、CPU102からの充電制御や、過電圧・過電流検出回路112での過電圧状態や過電流状態の検出結果にかかわらずに、充電用MOSトランジスタ13が強制的にオフ状態に制御されるようになっている。
FET制御回路110は、充電用MOSトランジスタ13に対応する第1FET制御回路110Aと、放電用MOSトランジスタ14に対応する第2FET制御回路110Bとを含む。第1FET制御回路110Aは、第1スイッチ回路111Aを介して伝達された信号に応じて充電用MOSトランジスタ13のオン・オフ動作を制御する。第2FET制御回路110Bは、第2スイッチ回路111Bを介して伝達された信号に応じて放電用MOSトランジスタ14のオン・オフ動作を制御する。
図3には、上記第1スイッチ回路111A及び上記第1FET制御回路110Aの構成例が示される。
第1スイッチ回路111Aは、4個のスイッチ素子SW1,SW2,SW3,SW4によって構成することができる。この4個のスイッチ素子SW1,SW2,SW3,SW4には、それぞれMOSトランジスタを適用することができる。第1スイッチ素子SW1、第4スイッチ素子SW4は、CPU102と第1FET制御回路110Aとの間に設けられ、この第1スイッチ素子SW1及び第4スイッチ素子SW4がオンされることにより、CPU102から出力される制御信号を第1FET制御回路110Aに伝達するための経路が形成される。第2スイッチ素子SW2は、深放電検出回路109と第1FET制御回路110Aとの間に設けられ、第2スイッチ素子SW2がオンされることにより、深放電検出回路109から出力される深放電検出信号を第1FET制御回路110Aに伝達するための経路が形成される。また、第3スイッチ素子SW3は、過電圧・過電流検出回路112と、第1スイッチ素子SW1との間に設けられ、この第1スイッチ素子SW1及び第3スイッチ素子SW3がオンされることにより、過電圧・過電流検出回路112から出力される過電圧・過電流検出信号を第1FET制御回路110Aに伝達するための経路が形成される。第1スイッチ素子SW1及び第2スイッチ素子SW2は、深放電検出回路109から出力される深放電検出信号に応じて相補的にオン・オフされる。例えば深放電検出回路109から出力される深放電検出信号がローレベルにアサートされた場合に、第1スイッチ素子SW1がオフされ、第2スイッチ素子SW2がオンされる。また、深放電検出回路109から出力される深放電検出信号がハイレベルにネゲートされた場合に、第1スイッチ素子SW1がオンされ、第2スイッチ素子SW2がオフされる。第3スイッチ素子SW3及び第4SW4は、過電圧・過電流検出回路112から出力される過電圧・過電流検出信号に応じて相補的にオン・オフされる。例えば過電圧・過電流検出回路112から出力される過電圧・過電流検出信号がローレベルにアサートされた場合に、第3スイッチ素子SW3がオンされ、第4スイッチ素子SW4がオフされる。また、過電圧・過電流検出回路112から出力される過電圧・過電流検出信号がハイレベルにネゲートされた場合に、第3スイッチ素子SW3がオフされ、第4スイッチ素子SW4がオンされる。
この第1FET制御回路110Aは、抵抗301、インバータ302,303を含む。インバータ302,303は、互いに直列接続される。第2スイッチ素子SW2又は第3スイッチ素子SW3を介して伝達された信号は、インバータ302,303を介して充電用MOSトランジスタ13のゲート(制御端子)に伝達される。抵抗301の一端は、充電用MOSトランジスタ13のゲートに接続される。抵抗301の他端には、深放電検出回路109から出力される深放電検出信号が伝達されるようになっている。
次に、上記構成の作用を説明する。
電池パック1の充電を行う場合、各端子T1,T2,T3,T4は、図示しない充電器に結合される。この状態で、電池11の正極側電圧V1のレベルが電池電圧測定回路105で測定され、その測定結果がCPU102に伝達される。電池11の正極側電圧V1のレベルが、動作可能電圧の範囲に入っている場合には、第1スイッチ回路111Aは、図3に示される状態となる。すなわち、深放電検出回路109から出力される深放電検出信号がハイレベルとされることにより、第1スイッチ素子SW1はオンされ、第2スイッチ素子SW2はオフされる。このとき、充電用MOSトランジスタ13のゲート電極は、抵抗301によって、深放電検出信号のハイレベルにプルアップされる。また、過電圧・過電流検出回路112から出力される過電圧・過電流検出信号がハイレベルにされることにより、第3スイッチ素子SW3がオフされ、第4スイッチ素子SW4がオンされる。この状態で、CPU102から出力される制御信号が、破線矢印304で示されるように、第1スイッチ素子SW1及び第4スイッチ素子SW4を介して第1FET制御回路110Aに伝達される。このため、充電用MOSトランジスタ13の状態は、CPU102からの制御に依存される。CPU102から出力される制御信号がローレベルになり、それに従って、充電用MOSトランジスタ13がオンされることで、電池11に充電電流が流されて充電が開始される。そして、電池11の正極側電圧V1のレベルが所定レベルに達すると、CPU102から出力される制御信号がハイレベルとなって充電用MOSトランジスタ13がオフされて充電が終了する。
尚、電池11の電圧が、深放電電圧程低くは無いが、CPU102が動作できない電圧にまで低下した場合には、充電用MOSトランジスタ13のゲート電極が抵抗301によってプルアップされているため、充電用MOSトランジスタ13はオン状態とされ、それにより、電池11の充電が可能とされる。
電池11の充電中において、過電圧・過電流検出回路112によって、過電圧又は過電流が検出された場合には、図4に示されるように、過電圧・過電流検出回路112から出力される過電圧・過電流検出信号がローレベルとなり、第3スイッチ素子SW3がオンされ、第4スイッチ素子SW4がオフされる。これにより、過電圧・過電流検出回路112から出力される過電圧・過電流検出信号のローレベルが、破線矢印405で示されるように、スイッチSW1,SW3を介して第1FET制御回路110Aに伝達される。これにより、充電用MOSトランジスタ13がオフされて、電池11の充電が中止される。
また、深放電検出回路109によって、電池11の深放電状態が検出された場合には、図5に示されるように、深放電検出信号がローレベルにされて、第1スイッチ素子SW1がオフされ、第2スイッチ素子SW2がオンされる。また、深放電検出信号がローレベルにされることで、充電用MOSトランジスタ13のゲートは抵抗301を介して第2グランドGND2のレベルにプルダウンされる。この状態で、深放電検出信号のローレベルが、破線矢印505で示されるように、第2スイッチ素子SW2を介して第1FET制御回路110Aに伝達されて、充電用MOSトランジスタ13がオフされる。このとき、第1スイッチ素子SW1がオフされているため、CPU102からの制御信号や、過電圧・過電流検出回路112からの過電圧・過電流検出信号は、第1FET制御回路110Aには伝達されない。つまり、電池11の深放電状態が検出されて深放電検出信号がローレベルにされた場合には、過電圧・過電流検出回路112やCPU102からの制御にかかわらず、充電用MOSトランジスタ13が強制的にオフされることで、その後の電池1の充電が禁止される。
実施の形態1によれば、以下の作用効果を得ることができる。
(1)深放電検出回路109は、図8に示されるように、参照電圧Vref3により深放電電圧の閾値を決定しているため、高精度電源104におけるラダー抵抗のタップ切替えにより、参照電圧Vref3のレベルを容易に変更することができるので、深放電検出における閾値の設定変更は容易である。従って、電池11の種類や安全性の要求が変わり、深放電状態の判断基準とされる電圧レベルが変化しても、参照電圧のレベル変更で対応でき、回路構成の大幅な変更を行わずに済むという効果を奏する。
(2)深放電検出回路109から出力される深放電検出信号により、第1スイッチ素子SW1及び第2スイッチ素子SW2が相補的にオン・オフされるようになっている。つまり、図5に示されるように、深放電検出信号がローレベルにされ、第2スイッチ素子SW2がオンされるとき、第1スイッチ素子SW1はオフされる。この動作により、深放電検出回路109から出力される深放電検出信号が、CPU102からの制御信号や、過電圧・過電流検出回路112からの過電圧・過電流検出信号と衝突しなくなるため、例えばCPU102が暴走したとしても、その影響を受けないという効果がある。
(3)充電用MOSトランジスタ13は、深放電状態でもなく、充電時の過電圧・過電流状態でも無い状態では、CPU102の制御に依存するが、このCPU102の制御が不安定になったとしても、充電用MOSトランジスタ13のゲート電極は、抵抗301を介してプルアップ又はプルダウンされることで安定する。つまり、深放電検出信号がハイレベルの場合は、充電用MOSトランジスタ13のゲート電極が抵抗301を介してハイレベルにプルアップされることで、充電用MOSトランジスタ13はオン状態に安定しやすくなる。また、深放電検出信号がローレベルの場合は、充電用MOSトランジスタ13のゲート電極が抵抗301を介してローレベルにプルダウンされるので、充電用MOSトランジスタ13はオフ状態に安定しやすくなる。
(4)深放電時の安定状態を充電用MOSトランジスタ13のオフ状態としているため、深放電到達以降は、充電禁止状態を維持し続けることが可能である。
(5)実施の形態1によれば、上記(1)〜(4)作用は、全て電池パック1内で完結するから、深放電検出のために、外部機器あるいは外部回路が必要無いので、外部依存性が無いという効果を奏する。
《実施の形態2》
図6には、第1FET制御回路110Aの別の構成例が示される。
図6に示される構成が、図3に示されるのと、相違するのは、抵抗301を第2グランドGND2(充電用MOSトランジスタのソース電極)にプルダウンしている点である。4個のスイッチ素子SW1,SW2,W3,SW4を含む回路の基本的な動作は、実施の形態1の場合と同じである。
深放電状態でもなく、充電時の過電圧・過電流状態でも無い状態では、第1スイッチ素子SW1がオンしているため、CPU102、又は過電圧・過電流検出回路112からの制御が有効である。充電用MOSトランジスタ13のゲート電極がプルダウンされることで、充電用MOSトランジスタ13のゲート電極がローレベルであっても、CPU102や、過電圧・過電流検出回路112によって、充電用MOSトランジスタ13のゲート電極の論理レベルが制御される。また、深放電検出回路109によって深放電状態が検出された場合にも、実施の形態1の場合と同様に、第2スイッチ素子SW2をオンさせて深放電検出信号を第1FET制御回路110Aに伝達することができるので、充電用MOSトランジスタ13をオフさせることで、充電を禁止することができる。このように、実施の形態2においても、実施の形態1の場合と同様の作用効果を得ることができる。
さらに、実施の形態2においては、充電用MOSトランジスタ13が、抵抗301を介して第2グランドGND2(充電用MOSトランジスタのソース電極)に常にプルダウンされている。このため、CPU102が暴走した場合でも、充電用MOSトランジスタ13がオフ状態で安定するため、電池11の安全性が保たれる。
以上本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
1 電池パック
10 電池制御用IC
11 電池
12 センス抵抗
13 充電用MOSトランジスタ
14 放電用MOSトランジスタ
15,16 寄生ダイオード
101 通信回路
102 CPU
103 メモリ
104 高精度電源
105 電池電圧測定回路
106 発振器
107 電流積算回路
108 保護機能回路
109 深放電検出回路
110 FET制御回路
110A 第1FET制御回路
110B 第2FET制御回路
111 スイッチ回路
111A 第1スイッチ回路
111B 第2スイッチ回路
112 過電圧・過電流検出回路
112A 過電圧検出回路
112B 過電流検出回路
301 抵抗
302,303 インバータ
901,904,908 コンパレータ
902,903,906,907 抵抗
SW1 第1スイッチ素子
SW2 第2スイッチ素子
SW3 第3スイッチ素子
SW4 第4スイッチ素子

Claims (7)

  1. 電池に直列接続される充電用トランジスタのオン・オフ動作を制御可能な制御回路と、
    上記制御回路を介して上記電池の充電動作を制御可能なCPUと、
    上記電池の深放電検出の閾値として設定された参照電圧に基づいて、上記電池の深放電状態を検出可能な深放電検出回路と、
    上記深放電検出回路によって上記電池の深放電状態が検出された場合に、上記深放電検出回路の検出結果を優先的に上記制御回路に伝達することにより、上記CPUからの充電制御にかかわらずに上記充電用トランジスタを強制的にオフ状態に制御するためのスイッチ回路と、を含む電池制御用半導体装置。
  2. 上記深放電検出回路は、上記電池の深放電状態を検出することによって深放電検出信号をアサートするように構成され、
    上記スイッチ回路は、上記深放電検出信号に応じてオン・オフされる第1スイッチ素子と、上記深放電検出信号に応じて上記第1スイッチ素子とは相補的にオン・オフされる第2スイッチ素子と、を含み、
    上記第1スイッチ素子は、上記深放電検出回路によって上記深放電検出信号がネゲートされた状態でオンされて、上記CPUからの制御信号を上記制御回路に伝達し、
    上記第2スイッチ素子は、上記深放電検出回路によって上記深放電検出信号がアサートされた状態でオンされて、上記深放電検出回路からの上記深放電検出信号を上記制御回路に伝達する請求項1記載の電池制御用半導体装置。
  3. 上記制御回路は、上記第1スイッチ素子を介して伝達された上記制御信号、又は上記第2スイッチ素子を介して伝達された上記深放電検出信号を、上記充電用トランジスタの制御端子に伝達するための論理ゲートと、
    上記充電用トランジスタの制御端子をプルアップ又はプルダウンするための抵抗と、を含む請求項2記載の電池制御用半導体装置。
  4. 上記抵抗は、上記充電用トランジスタの制御端子に上記深放電検出信号が供給されるように設けられ、上記充電用トランジスタの制御端子は、上記深放電検出信号によってプルアップ又はプルダウンされる請求項3記載の電池制御用半導体装置。
  5. 上記抵抗は、上記充電用トランジスタの制御端子をプルダウンするように設けられた請求項3記載の電池制御用半導体装置。
  6. 電池に直列接続される充電用トランジスタと、
    上記充電用トランジスタのオン・オフ動作を制御可能な制御回路と、
    上記制御回路を介して上記電池の充電動作を制御可能なCPUと、
    上記電池の深放電検出の閾値として設定された参照電圧に基づいて、上記電池の深放電状態を検出可能な深放電検出回路と、
    上記深放電検出回路によって上記電池の深放電状態が検出された場合に、上記深放電検出回路の検出結果を優先的に上記制御回路に伝達することにより、上記CPUからの充電制御にかかわらずに上記充電用トランジスタを強制的にオフ状態に制御するためのスイッチ回路と、を含む電池制御用半導体装置。
  7. 充電可能な電池と、
    上記電池の充電を制御可能な電池制御用半導体装置と、を含み、
    上記電池制御用半導体装置は、
    上記電池に直列接続された充電用トランジスタと、
    上記充電用トランジスタのオン・オフ動作を制御可能な制御回路と、
    上記制御回路を介して上記電池の充電動作を制御可能なCPUと、
    上記電池の深放電検出の閾値として設定された参照電圧に基づいて、上記電池の深放電状態を検出可能な深放電検出回路と、
    上記深放電検出回路によって上記電池の深放電状態が検出された場合に、上記深放電検出回路の検出結果を優先的に上記制御回路に伝達することにより、上記CPUからの充電制御にかかわらずに上記充電用トランジスタを強制的にオフ状態に制御するためのスイッチ回路と、を含む電池パック。
JP2012079689A 2012-03-30 2012-03-30 電池制御用半導体装置及び電池パック Expired - Fee Related JP5829966B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012079689A JP5829966B2 (ja) 2012-03-30 2012-03-30 電池制御用半導体装置及び電池パック
US13/783,241 US20130257380A1 (en) 2012-03-30 2013-03-02 Semiconductor device for battery control and battery pack
US15/191,238 US20160308377A1 (en) 2012-03-30 2016-06-23 Semiconductor device for battery control and battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012079689A JP5829966B2 (ja) 2012-03-30 2012-03-30 電池制御用半導体装置及び電池パック

Publications (2)

Publication Number Publication Date
JP2013211975A JP2013211975A (ja) 2013-10-10
JP5829966B2 true JP5829966B2 (ja) 2015-12-09

Family

ID=49234027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012079689A Expired - Fee Related JP5829966B2 (ja) 2012-03-30 2012-03-30 電池制御用半導体装置及び電池パック

Country Status (2)

Country Link
US (2) US20130257380A1 (ja)
JP (1) JP5829966B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082914A (ja) * 2013-10-23 2015-04-27 株式会社豊田自動織機 車両に搭載される電池パックの保護装置
US9897658B2 (en) * 2015-01-27 2018-02-20 General Electric Company System and method for detecting battery end of discharge
JP2018052176A (ja) * 2016-09-26 2018-04-05 トヨタ自動車株式会社 車両の補機電池システム
JP2018137905A (ja) * 2017-02-22 2018-08-30 Necエナジーデバイス株式会社 保護装置、充電システム、及び電池パック
JP7338986B2 (ja) * 2019-02-26 2023-09-05 パナソニックエナジー株式会社 電源装置
CN112117785B (zh) * 2019-06-19 2022-09-09 Oppo广东移动通信有限公司 充电电路、充电芯片、移动终端及充电系统
CN116418328B (zh) * 2023-06-09 2023-09-19 拓尔微电子股份有限公司 关断控制电路、电池管理系统以及电池包

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547775A (en) * 1991-04-26 1996-08-20 Sony Corporation Circuit for preventing overcharge and overdischarge of secondary batteries
JPH10271691A (ja) * 1997-03-25 1998-10-09 Shin Kobe Electric Mach Co Ltd 二次電池の過充電及び過放電防止装置
FR2804800B1 (fr) * 2000-02-03 2002-04-26 Cit Alcatel Bloc batterie li-ion pouvant etre charge par un chargeur alcalin
US6215279B1 (en) * 2000-03-30 2001-04-10 Adc Telecommunications, Inc. Power circuit with double current limiting
JP2003132862A (ja) * 2001-10-29 2003-05-09 Nec Tokin Tochigi Ltd 電池パック
JP2003169422A (ja) * 2001-11-30 2003-06-13 Sanyo Electric Co Ltd 電池の過電流保護回路
US6798174B2 (en) * 2003-01-31 2004-09-28 Motorola, Inc. Method of terminating charge for a battery
US7589499B2 (en) * 2004-03-25 2009-09-15 O2Micro International Limited Over voltage transient controller
JP5064746B2 (ja) * 2006-09-13 2012-10-31 株式会社リコー 二次電池保護用半導体装置および該二次電保護用半導体装置を内蔵したバッテリパックならびに電子機器
US7671560B2 (en) * 2006-09-22 2010-03-02 St-Ericsson Sa Method and apparatus for handling deeply discharged batteries in a mobile station
TW200913433A (en) * 2007-09-10 2009-03-16 J Tek Inc Scattered energy storage control system
JP2010068637A (ja) * 2008-09-11 2010-03-25 Mitsumi Electric Co Ltd 充電制御用半導体集積回路
JP5212042B2 (ja) * 2008-11-19 2013-06-19 ミツミ電機株式会社 二次電池の過電流保護回路
KR101182890B1 (ko) * 2010-12-01 2012-09-13 삼성에스디아이 주식회사 배터리 팩 충전 제어 시스템
JP2012168728A (ja) * 2011-02-14 2012-09-06 Mitsumi Electric Co Ltd 保護モジュール及び該保護モジュールにおける状態情報管理方法

Also Published As

Publication number Publication date
US20160308377A1 (en) 2016-10-20
US20130257380A1 (en) 2013-10-03
JP2013211975A (ja) 2013-10-10

Similar Documents

Publication Publication Date Title
JP5829966B2 (ja) 電池制御用半導体装置及び電池パック
JP5974500B2 (ja) 保護機能付き充電制御装置および電池パック
US8148946B2 (en) Battery pack having protection circuit for secondary battery
JP5262034B2 (ja) 充放電保護回路および該充放電保護回路を組み込んだバッテリーパック、該バッテリーパックを用いた電子機器
US9041358B2 (en) Semiconductor device for battery control and battery pack
KR102254471B1 (ko) 2차 보호 ic, 2차 보호 ic의 제어 방법, 보호 모듈 및 전지 팩
US10355499B2 (en) Battery protection circuit, battery protection apparatus, and battery pack
KR101705794B1 (ko) 2차전지 보호 회로, 2차전지 보호 장치, 전지팩 및 데이터 기입 방법
US8581556B2 (en) Protection circuit and battery pack having current varying circuit to vary current flowing through power terminal
JP2010123321A (ja) 電池パックおよび制御方法
JP2009153238A (ja) 携帯機器と、携帯機器に用いる電池パック
US8524385B2 (en) Battery pack
JP5098501B2 (ja) 電池パック
JP2007028898A (ja) 充放電保護回路
JP4535910B2 (ja) 2次電池保護回路とバッテリパックおよび電子機器
JP5338047B2 (ja) 電池パック
JP2005168159A (ja) 過電流保護回路と充電式電池パック
JP2005168160A (ja) 過電流保護回路と充電式電池パック
TWI697164B (zh) 二次電池保護電路
JP2009183050A (ja) 電池パック
JP2009302079A (ja) タイマーを内蔵した半導体集積回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151023

R150 Certificate of patent or registration of utility model

Ref document number: 5829966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees