JP2010070605A - 液状エポキシ樹脂組成物、硬化物、その製造方法、及びプリント配線基板用樹脂組成物 - Google Patents

液状エポキシ樹脂組成物、硬化物、その製造方法、及びプリント配線基板用樹脂組成物 Download PDF

Info

Publication number
JP2010070605A
JP2010070605A JP2008237848A JP2008237848A JP2010070605A JP 2010070605 A JP2010070605 A JP 2010070605A JP 2008237848 A JP2008237848 A JP 2008237848A JP 2008237848 A JP2008237848 A JP 2008237848A JP 2010070605 A JP2010070605 A JP 2010070605A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
mass
liquid epoxy
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008237848A
Other languages
English (en)
Other versions
JP2010070605A5 (ja
Inventor
Hisao Yamaguchi
尚男 山口
Hironobu Ito
広宣 伊藤
Ichiro Ogura
一郎 小椋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2008237848A priority Critical patent/JP2010070605A/ja
Publication of JP2010070605A publication Critical patent/JP2010070605A/ja
Publication of JP2010070605A5 publication Critical patent/JP2010070605A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)

Abstract

【課題】常温液状の組成物でありながら、かつ、硬化物の耐熱性に優れるエポキシ樹脂組成物を提供すること。
【解決手段】ノボラック型エポキシ樹脂(A)、メタクリル酸及び無水メタクリル酸に代表される酸基含有ラジカル重合性単量体(B)の合計100質量部に対して、前記ノボラック型エポキシ樹脂(A)を55〜95質量部、前記酸基含有ラジカル重合性単量体(B)を5〜55質量部となる割合となる割合で含有する液状エポキシ樹脂組成物をイン・サイチュー反応させる。
【選択図】なし

Description

本発明は、優れた流動性を発現し、その硬化物において耐熱性に優れるために、半導体封止材、プリント回路基板、レジストインキ材料、アンダーフィルなどの液状封止材、導電性ペーストなどの接着剤、液晶シール材、フレキシブル基板用カバーレイ、ビルドアップ用接着フィルム、繊維強化プラスチック製部材等の複合材料等に好適に用いる事が出来る液状エポキシ樹脂組成物、及びその硬化物に関する。
エポキシ樹脂及びその硬化剤を必須成分とするエポキシ樹脂組成物は、高耐熱性、耐湿性、寸法安定性等の諸物性に優れる点から半導体封止材やプリント回路基板、ビルドアップ基板、レジストインキ等の電子部品、導電ペースト等の導電性接着剤やその他接着剤、アンダーフィルなどの液状封止材、液晶シール材、フレキシブル基板用カバーレイ、ビルドアップ用接着フィルム、塗料、フォトレジスト材料、顕色材料、繊維強化プラスチック製部材等で広く用いられている。
これらの用途のうち、プリント配線基板の分野では、固形熱硬化性樹脂を有機溶剤に溶解させたワニスをガラスクロスに含浸・プリプレグ化し、次いでこれを積層して積層板を製造するのが一般的である。しかしながら、近年のVOC問題など環境負荷への対応から有機溶剤を用いないか、その使用量を減らした非溶剤系ワニスの開発が盛んであり、例えば、低分子量ビスフェノール型エポキシ樹脂に代表される液状エポキシ樹脂と、酸無水物に代表されるエポキシ樹脂用硬化剤とを配合した非溶剤系ワニスが広く用いられている。然し乍ら、かかる低分子量ビスフェノール型エポキシ樹脂をエポキシ樹脂用硬化剤で硬化させてなる硬化物は、それ自体の耐熱性が十分なレベルになく、鉛フリーハンダ使用時や高周波型半導体装置実装時における熱履歴に対する耐性が十分ないといった問題を有していた。また、硬化物の耐熱性に優れるプリント配線基板用ワニスとしてはノボラック型エポキシ樹脂やビスフェノール型エポキシ樹脂をメタクリル酸と反応させて得られるビニルエステル樹脂を、不飽和単量体と混合・ワニス化する技術も知られている(下記特許文献1)。然し乍ら、ノボラック型エポキシ樹脂をメタクリル酸と反応させて得られるビニルエステル樹脂を用いる場合、そのワニス粘度が著しく高くなり溶剤の使用が避けられないものであり、他方、液状ビスフェノール型エポキシ樹脂をメタクリル酸と反応させて得られるビニルエステル樹脂を用いる場合、ワニス粘度は低くなるものの、耐熱性が十分でないものであった。
特許第3415610号公報
従って、本発明が解決しようとする課題は、常温液状の組成物でありながら、かつ、硬化物の耐熱性に優れるエポキシ樹脂組成物を提供することにある。
本発明者らは、上記課題を解決するため、鋭意検討した結果、ノボラック型エポキシ樹脂(A)、酸基含有ラジカル重合性単量体(B)、及びラジカル重合開始剤(C)を配合した組成物を、一度に硬化させる、所謂イン・サイチュー反応による硬化を行うこと、即ち、前記単量体(B)中の酸基を前記ノボラック型エポキシ樹脂(A)中のエポキシ基と反応させると共に、該単量体(B)に起因するラジカル重合性基を重合させることにより、硬化前では常温で優れた流動性を発現すると伴に、硬化後は優れた耐熱性を発現できることを見出し、本発明を完成するに至った。
即ち、本発明は、ノボラック型エポキシ樹脂(A)、酸基含有ラジカル重合性単量体(B)、及びラジカル重合開始剤(C)を必須成分とすることを特徴とする液状エポキシ樹脂組成物に関する。
本発明は、更に、前記液状エポキシ樹脂組成物をイン・サイチュー反応させることにより得られる硬化物に関する。
本発明は、更に、前記液状エポキシ樹脂組成物をイン・サイチュー反応させることを特徴とする硬化物の製造方法に関する。
本発明は、更に、上記液状エポキシ樹脂組成物からなるプリント配線基板用樹脂組成物に関する。
本発明によれば、常温液状の組成物でありながら、かつ、硬化物の耐熱性に優れた性能を発現するエポキシ樹脂組成物を提供できる。特に、本発明の組成物は常温で優れた流動性を有する為に、プリント配線基板やFRP用のプリプレグ製造時における繊維状基材への含浸性が良好であると共に、有機溶剤を使用しないか、或いは、使用量を低減できるため成形時における乾燥工程が不要乃至簡素化できるため、形成物の生産性が飛躍的に高まる。
以下、本発明を詳細に説明する。
本発明の液状エポキシ樹脂組成物は、前記した通り、ノボラック型エポキシ樹脂(A)、酸基含有ラジカル重合性単量体(B)、及びラジカル重合開始剤(C)を必須成分とするものであり、これを一度に反応させること、即ち、エポキシ基と酸基との反応と、ラジカル重合性基の重合反応とを特に反応工程として区別することなく両反応を同時乃至連続的に行うことを特徴としている。このようにイン・サイチュー反応により硬化させることで、硬化前においては流動性が著しく高くなる一方で、硬化物における耐熱性が飛躍的に向上させることができる。この点につき更に敷衍すれば、本発明におけるイン・サイチュー反応で得られる硬化物は、該ノボラック型エポキシ樹脂(A)と酸基含有ラジカル重合性単量体(B)とを予め反応させてビニルエステル化したのち、これをラジカル重合させる場合に比べて、耐熱性を一層高めることができるのであり、その結果、硬化前においては優れた流動性を発現すると共に、硬化後においては従来にない耐熱性を発現するものとなる。
本発明で用いるノボラック型エポキシ樹脂(A)は、フェノール類(x1)と前記アルデヒド類(x2)とを酸触媒下に重縮合して得られるノボラック樹脂をエピハロヒドリンと反応させて得られるものである。
ここで用いるフェノール類(x1)は、例えば、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、o−エチルフェノール、m−エチルフェノール、p−エチルフェノール、o−イソプロピルフェノール、m−プロピルフェノール、p−プロピルフェノール、p−sec−ブチルフェノール、p−tert−ブチルフェノール、p−シクロヘキシルフェノール、p−クロロフェノール、o−ブロモフェノール、m−ブロモフェノール、p−ブロモフェノール等のフェノール類、α−ナフトール、β−ナフトール等のナフトール類、2,4−キシレノール、2,5−キシレノール、2,6−キシレノール等のキシレノール類等の一価フェノール類;レゾルシン、カテコール、ハイドロキノン、2,2−ビス(4’−ヒドロキシフェニル)プロパン、1,1’−ビス(ジヒドロキシフェニル)メタン、1,1’−ビス(ジヒドロキシナフチル)メタン、テトラメチルビフェノール、ビフェノール、ヘキサメチルビフェノール、1,2−ジヒドロキシナフタレン、1,3−ジヒドロキシナフタレン、1,4−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、1,7−ジヒドロキシナフタレン、1,8−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン等のナフタレンジオール類等の二価フェノール類;トリスヒドロキシフェニルメタン等の三価フェノール類が挙げられる。
これらのなかでも、特にフェノール、o−クレゾール、m−クレゾール、ナフトール類、2,2−ビス(4’−ヒドロキシフェニル)プロパン、2,6−キシレノール、レゾルシン、ハイドロキノン、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレンが、工業的生産性、及び、本発明の組成物を硬化させた際の耐熱性が良好となる点から好ましく、とりわけフェノール、o−クレゾールが好ましい。
次に、前記アルデヒド類(x2)は、例えば、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、クロトンアルデヒド等の脂肪族アルデヒド;ベンズアルデヒド、4−メチルベンズアルデヒド、3,4−ジメチルベンズアルデヒド、ビフェニルアルデヒド、ナフチルアルデヒドなどの芳香族アルデヒド、サリチルアルデヒド、3−ヒドロキシベンズアルデヒド、4−ヒドロキシベンズアルデヒド、2−ヒドロキシ−4−メチルベンズアルデヒド、2−ヒドロキシ−3,4−ジメチルベンズアルデヒド、4−ヒドロキシビフェニルアルデヒド、2−ヒドロキシ−1−ナフトアルデヒド、5−ヒドロキシ−1−ナフトアルデヒド、6−ヒドロキシ−1−ナフトアルデヒド、7−ヒドロキシ−2−ナフトアルデヒドなどのヒドロキシル基置換芳香族アルデヒドが挙げられる。これらの中でも、特に工業的供給安定性、得られる硬化物の耐熱性、難燃性、誘電特性に優れる点からホルムアルデヒド、パラホルムアルデヒド、ベンズアルデヒド、サリチルアルデヒドが好ましく、特にホルムアルデヒド、パラホルムアルデヒドが好ましい。
上記した(x1)及び(x2)の各成分を反応させてノボラック型フェノール樹脂を製造する方法は、
具体的には、フェノール類(x1)、及びアルデヒド類(x2)を無触媒あるいは触媒存在下で反応させる方法が挙げられる。この際、系のpHは3.0〜9.0の範囲であることが好ましい。また、各原料の反応順序も特に制限はなく、
この時、フェノール類(x1)に対するアルデヒド類(x2)のモル比は特に限定されるものではないが、好ましくはアルデヒド類(x2)/フェノール類(x1)=0.1〜1.1(モル比)であり、より好ましくは前記比として0.2〜0.8である。
また、酸触媒としては、例えば塩酸、硫酸、スルホン酸、燐酸等の無機酸、シュウ酸、酢酸等の有機酸、ルイス酸、あるいは酢酸亜鉛などの2価金属塩等が挙げられる。ここで、本発明の液状エポキシ樹脂組成物を電気電子材料用の樹脂として使用する場合には、金属などの無機物が触媒残として残ないようにすることが好ましいことから、塩基性の触媒としてはアミン類、酸性の触媒としては有機酸を使用することが好ましい。このような観点から本発明では、上記反応を無触媒にて行うことが特に好ましい。
また、上記反応は反応制御の面から反応を各種溶媒の存在下で行ってもよい。必要に応じて中和、水洗して塩類などの不純物の除去を行ってもよいが、無触媒あるいは触媒にアミン類を使用した場合は不純物の除去は行わなくてもよい。
反応終了後、縮合水、未反応のアルデヒド類(x2)、フェノール類(x1)、溶媒等を常圧蒸留、真空蒸留等の常法にしたがって除去する。この時、メチロール基を実質的に含まないノボラック型フェノール樹脂を得るためには120℃以上の加熱処理を行うことが好ましい。また120℃以上の温度であれば充分時間をかけることによりメチロール基を消滅させることができるが、効率的に消滅させるにはより高い温度、好ましくは150℃以上の加熱処理を行うことが好ましい。この時高温においてはノボラック樹脂を得るときの常法にしたがい、加熱とともに蒸留することが好ましい。
このようにして得られるノボラック型フェノール樹脂は、特に、150℃でのICI溶融粘度が120ポイズdPa・s以下の範囲にあるものが、エポキシ化した後のワニスにした際の粘度が低く、かつ、硬化物における耐熱性とのバランスに優れる点から好ましい。
本発明で用いるノボラック型エポキシ樹脂(A)は、上記したノボラック型フェノール樹脂をエピハロヒドリンと反応させることによって製造することができる。
具体的には、ノボラック型フェノール樹脂と所定量のエピハロヒドリンとの溶解混合物にアルカリ金属水酸化物を添加し、または添加しながら上記の温度条件下に、好ましくは2〜5時間反応させる方法、またこの方法により得られたエポキシ樹脂を更に触媒下で1,1'−ビ−2−ナフトールを反応させる方法などを挙げることができる。
前記アルカリ金属水酸化物はその水溶液を使用してもよく、その場合は該アルカリ金属水酸化物の水溶液を連続的に反応系内に添加すると共に減圧下、または常圧下連続的に水及びエピハロヒドリンを留出させ、更に分液し水は除去しエピハロヒドリンは反応系内に連続的に戻す方法でもよい。
また、上記方法によって一旦ノボラック型フェノール樹脂のハロヒドリンエーテル化物を得、次いで、これにアルカリ金属水酸化物の固体または水溶液を加え、再び20〜120℃で1〜10時間反応させ脱ハロゲン化水素(閉環)させる方法でもよい。
また、この反応においては反応を円滑に進行させるためにメタノール、エタノール、イソプロピルアルコール、ブタノールなどのアルコール類、アセトン、メチルエチルケトンなどのケトン類、ジオキサンなどのエーテル類、ジメチルスルホン、ジメチルスルホキシド等の非プロトン性極性溶媒などを用いて反応を行うことが好ましい。
前記アルコール類、ケトン類、エーテル類を溶媒として使用する場合のその使用量としては、エピハロヒドリンの量に対し通常5〜50質量%、好ましくは10〜30質量%である。また非プロトン性極性溶媒を用いる場合はエピハロヒドリンの量に対し通常5〜100質量%、好ましくは10〜60質量%である。
これらの反応で得られた反応物を水洗後、または水洗無しに加熱減圧下、110〜250℃、圧力10mmHg以下でエピハロヒドリンや溶媒などを除去することによって、ノボラック型エポキシ樹脂(A)を得ることができる。また更に加水分解性ハロゲンの少ないエポキシ樹脂とするために、エピハロヒドリンを回収した後に得られるエポキシ樹脂を再びトルエン、メチルイソブチルケトンなどの溶剤に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えて更に反応させて閉環を確実なものにすることもできる。この場合、アルカリ金属水酸化物の使用量は用いるエポキシ樹脂中に残存する加水分解性塩素1モルに対して、通常0.5〜10モル、好ましくは1.2〜5.0モルである。反応温度は通常50〜120℃、反応時間は通常0.5〜3時間である。反応速度の向上を目的として、4級アンモニウム塩やクラウンエーテル等の相関移動触媒を存在させてもよい。相関移動触媒を使用する場合のその使用量としては、用いるエポキシ樹脂に対して0.1〜3.0質量%の範囲が好ましい。反応終了後、生成した塩を濾過、水洗などにより除去し、更に、加熱減圧下トルエン、メチルイソブチルケトンなどの溶剤を留去することにより高純度のノボラック型エポキシ樹脂(A)を得ることができる。
このようにして得られるノボラック型エポキシ樹脂(A)のエポキシ当量は、組成物の流動性に優れる点から150〜500g/eq.の範囲であることが好ましい。
このようにして得られるノボラック型エポキシ樹脂(A)は、特に、150℃でのICI溶融粘度が0.1〜60dPa・sの範囲にあるものが、ワニスにした際の粘度が低く、かつ、硬化物における耐熱性とのバランスに優れる点から好ましい。同様の観点から、該ノボラック型エポキシ樹脂(A)は、その軟化点が55〜110℃の範囲であることが好ましい。
次に、本発明で用いる酸基含有ラジカル重合性単量体(B)は、ノボラック型エポキシ樹脂(A)と反応すると同時に、ラジカル重合によりアクリロイル基の重合を生じさせるものである。本発明ではこのようなイン・サイチュー反応により硬化させることで硬化物の耐熱性を飛躍的に向上させることができる。かかる酸基含有ラジカル重合性単量体(B)は、具体的には、アクリル酸、メタクリル酸、マレイン酸、無水メタクリル酸;ヒドロキシエチルメタクリレート、ヒドロキシブチルメタクリレート、ヒドロキシプロピルメタクリレート等の水酸基含有(メタ)アクリレートと、無水コハク酸、無水マレイン酸等の多価カルボン酸無水物との反応生成物;或いは、下記構造式(1)
Figure 2010070605

(式中、Rは炭素原子数2〜10の脂肪族炭化水素基、Xはエステル結合又はカーボネート結合、Rは炭素原子数2〜10の脂肪族炭化水素基を表し、nは1〜5の整数を示す。)で表される化合物が挙げられる。
ここで、前記構造式(1)中、Xとしてエステル結合を有するものとしては、ヒドロキシアルキル(メタ)アクリレートと炭素原子数2〜10の脂肪族多価カルボン酸とを反応させて得られる化合物、及びヒドロキシアルキル(メタ)アクリレートと、炭素原子数2〜10の脂肪族ジオールと、炭素原子数2〜10の脂肪族多価カルボン酸とを反応させて得られる化合物が挙げられる。
ここでヒドロキシアルキル(メタ)アクリレートとしては、β−ヒドロキシエチルメタアクリレート、β−ヒドロキシエチルアクリレートが挙げられる。また、脂肪族多価カルボン酸としては、無水コハク酸、アジピン酸、無水マレイン酸、テトラヒドロフタル酸、シクロヘキサンジカルボン酸が挙げられる。
更に、炭素原子数2〜10の脂肪族ジオールとしては、1,2−プロパンジオール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、2−メチル−1,3−プロパンジオール、2,2−ジメチル−1,3−プロパンジオール、3−メチル−1,5−ペンタンジオール、1,2−シクロヘキサンジオール、1,3−シクロヘキサンジオール、1,4−シクロヘキサンジオール、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、1,2−シクロヘキサンジエタノール、1,3−シクロヘキサンジエタノール、1,4−シクロヘキサンジエタノールなどが挙げられる。これらのなかでも炭素原子数が4〜8のブタンジオール、ペンタンジオール、ヘキサンジオール、シクロヘキサンジオール、シクロヘキサンジメタノールがノボラック型エポキシ樹脂(A)との相溶性に優れる点から好ましい。
また、前記構造式(1)中、Xとしてカーボネート結合を有するものとしては、例えば、炭素原子数2〜10の脂肪族ジオールと炭酸ジアルキルをエステル交換反応によりポリカーボネートジオールを得た後(メタ)アクリル酸又はその誘導体と反応させて得られる化合物が挙げあれる。
ここで、炭素原子数2〜10の脂肪族ジオールとしては、例えば、1,2−プロパンジオール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、2−メチル−1,3−プロパンジオール、2,2−ジメチル−1,3−プロパンジオール、3−メチル−1,5−ペンタンジオール、1,2−シクロヘキサンジオール、1,3−シクロヘキサンジオール、1,4−シクロヘキサンジオール、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、1,2−シクロヘキサンジエタノール、1,3−シクロヘキサンジエタノール、1,4−シクロヘキサンジエタノールなどの炭素原子数3〜10のものが挙げられる。これらのなかでも炭素原子数が4〜8のブタンジオール、ペンタンジオール、ヘキサンジオール、シクロヘキサンジオール、シクロヘキサンジメタノールがノボラック型エポキシ樹脂(A)との相溶性に優れる点から好ましい。
一方、炭酸ジアルキルとしては反応性の点から炭酸ジメチルが挙げられる。
これらのなかでも特に、粘度低減の効果、及び硬化物の耐熱性に優れる点からアクリル酸、メタクリル酸、無水アクリル酸、又は無水メタクリル酸が好ましく、とりわけメタクリル酸、又は無水メタクリル酸が好ましい。特に流動性と硬化物の耐熱性とを高度に兼備できる点からメタクリル酸を単独で使用するか、或いは、メタクリル酸と無水メタクリル酸とを併用することが好ましく、後者の場合、メタクリル酸/無水メタクリル酸の質量比が30〜15/70〜85の割合であることが好ましい。
以上詳述したノボラック型エポキシ樹脂(A)、酸基含有ラジカル重合性単量体(B)の配合割合は、エポキシ樹脂(A)及び酸基含有ラジカル重合性単量体(B)の合計100質量部に対して、前記ノボラック型エポキシ樹脂(A)を55〜95質量部、前記酸基含有ラジカル重合性単量体(B)を5〜55質量部となる割合であることが、組成物自体が常温液状で、かつ、該組成物の流動性に優れ、更に、硬化物の耐熱性も良好なものとなる点から好ましく、更にこれらの性能がより顕著に良好となる点から、前記合計100質量部に対して前記ノボラック型エポキシ樹脂(A)を60〜80質量部、前記酸基含有ラジカル重合性単量体(B)を20〜40質量部となる割合であることが好ましい。また、特にプリント配線基板用樹脂組成物としては、硬化物の耐水性や基材の銅箔への密着性が良好となる点から、エポキシ樹脂(A)中のエポキシ基1モルに対して、酸基含有ラジカル重合性単量体(B)が0.8〜1.2モルとなる割合であることが特に好ましい。
本発明の組成物は、エポキシ樹脂成分として上記したノボラック型エポキシ樹脂(A)の他のエポキシ樹脂を、組成物の流動性を損なわない範囲で併用してもよい。
前記その他のエポキシ樹脂としては、特に制限されるものではなく、種々のエポキシ樹脂を用いることができるが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂等のビスフェノール型エポキシ樹脂、レゾルシン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、カテコール型エポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、硫黄含有エポキシ樹脂、スチルベン型エポキシ樹脂等の2官能型エポキシ樹脂、トリグリシジルシソシアヌレート、メトキシナフタレン変性アラルキル型エポキシ樹脂、メトキシナフタレン変性ノボラック樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂(ザイロック樹脂のエポキシ化物)、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニル変性ナフトール型エポキシ樹脂(ビスフェニルメチレン基でナフトール核が連結された多価ナフトール樹脂のエポキシ化合物)、アルコキシ基含有フェノールアラルキル樹脂、テトラブロモビスフェノールA型エポキシ樹脂などが挙げられる。
また、前記エポキシ樹脂は単独で用いてもよく、2種以上を混合してもよい。これらのエポキシ樹脂の中でも、特に低粘度である点では、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂が好ましく、難燃性に優れる点では、フェノールアラルキル型エポキシ樹脂、ビフェニル変性ノボラック型エポキシ樹脂が好ましい。これらのエポキシ樹脂の使用量は、ノボラック型エポキシ樹脂(A)100質量部に対して5〜80質量部の範囲であることが好ましい。
本発明で用いるラジカル重合開始剤(C)は、熱ラジカル重合開始剤として用いられるものであればよく、例えば、メチルエチルケトンパーオキサイド、メチルシクロヘキサノンパーオキサイド、メチルアセトアセテートパーオキサイド、アセチルアセトンパーオキサイド、1,1−ビス(t−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン、1,1−ビス(t−ブチルパーオキシ)シクロドデカン、n−ブチル4,4−ビス(t−ブチルパーオキシ)バレレート、2,2−ビス(t−ブチルパーオキシ)ブタン、1,1−ビス(t−ブチルパーオキシ)−2−メチルシクロヘキサン、t−ブチルハイドロパーオキサイド、P−メンタンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド、t−ヘキシルハイドロパーオキサイド、ジクミルパーオキサイド、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)ヘキサン、α、α'−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、t−ブチルクミルパーオキサイド、ジ−t−ブチルパーオキサイド、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)ヘキシン−3、イソブチリルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、桂皮酸パーオキサイド、m−トルオイルパーオキサイド、ベンゾイルパーオキサイド、ジイソプロピルパーオキシジカーボネート、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ−3−メトキシブチルパーオキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネート、ジ−sec−ブチルパーオキシジカーボネート、ジ(3−メチル−3−メトキシブチル)パーオキシジカーボネート、ジ(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、α、α'−ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン、クミルパーオキシネオデカノエート、1,1,3,3,−テトラメチルブチルパーオキシネオデカノエート、1−シクロヘキシル−1−メチ−ルエチルパーオキシネオデカノエート、t−ヘキシルパーオキシネオデカノエート、t−ブチルパーオキシネオデカノエート、t−ヘキシルパーオキシピバレート、t−ブチルパーオキシピバレート、2,5−ジメチル−2,5−ビス(2−エチルヘキサノイルパーオキシ)ヘキサン、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルへキサノエート、1−シクロヘキシル−1−メチルエチルパーオキシ−2−エチルヘキサノエート、t−ヘキシルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシマレイックアシッド、t−ブチルパーオキシラウレート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、2,5−ジメチル−2,5−ビス(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシアセテート、t−ヘキシルパーオキシベンゾエート、t−ブチルパーオキシ−m−トルオイルベンゾエート、t−ブチルパーオキシベンゾエート、ビス(t−ブチルパーオキシ)イソフタレート、t−ブチルパーオキシアリルモノカーボネート、3,3’,4,4’−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノン等が挙げられる。前記ラジカル重合開始剤(C)の使用量は、ラジカル重合性成分の総質量及びラジカル重合開始剤(C)の合計質量に対して0.001質量%以上、2質量%以下となる割合で含有されるのが好ましい。
本発明の液状エポキシ樹脂組成物は、更に、硬化促進剤を適宜併用することもできる。前記硬化促進剤としては種々のものが使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。特に光半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン系化合物ではトリフェニルフォスフィン、第3級アミンでは1,8−ジアザビシクロ−[5.4.0]−ウンデセン(DBU)が好ましい。
本発明の液状エポキシ樹脂組成物は、用途に応じて適度な柔軟性や強度などの機能性を硬化物に付与でき、かつ、ワニスの更なる低粘度化が可能となる点から、前記した(B)成分の他のラジカル重合性単量体(D)を併用することが好ましい。ここで使用し得るラジカル重合性単量体は、例えば、スチレン、メチルスチレン、ハロゲン化スチレン、ジビニルベンゼン、以下に代表される(メタ)アクリル酸エステル類が挙げられる。
本発明に使用できる単官能(メタ)アクリレートとしては例えば、メチル、エチル、プロピル、ブチル、3−メトキシブチル、アミル、イソアミル、2−エチルヘキシル、オクチル、イソオクチル、ノニル、イソノニル、デシル、イソデシル、ドデシル、トリデシル、ヘキサデシル、オクタデシル、ステアリル、イソステアリル、シクロヘキシル、ベンジル、メトキシエチル、ブトキシエチル、フェノキシエチル、ノニルフェノキシエチル、グリシジル、ジメチルアミノエチル、ジエチルアミノエチル、イソボルニル、ジシクロペンタニル、ジシクロペンテニル、ジシクロペンテニロキシエチル等の置換基を有する(メタ)アクリレート等が挙げられる。
また、多官能(メタ)アクリレートとしては例えば、1,3−ブチレングリコール、1,4−ブタンジオール、1,5−ペンタンジオール、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、1,8−オクタンジオール、1,9−ノナンジオール、トリシクロデカンジメタノール、エチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール等のジ(メタ)アクリレート、トリス(2−ヒドロキシエチル)イソシアヌレートのジ(メタ)アクリレート、1,6−ヘキサンジオール1モルに2モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオールのジ(メタ)アクリレート、ネオペンチルグリコール1モルに4モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオールのジ(メタ)アクリレート、ビスフェノールA1モルに2モルのエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオールのジ(メタ)アクリレート、トリメチロールプロパン1モルに3モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たトリオールのジまたはトリ(メタ)アクリレート、ビスフェノールA1モルに4モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオールのジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールのポリ(メタ)アクリレート、エチレンオキサイド変性リン酸(メタ)アクリレート、エチレンオキサイド変性アルキル化リン酸(メタ)アクリレート等が挙げられる。
以上の(メタ)アクリレートの他に、更に必要に応じてウレタン(メタ)アクリルオリゴマー、エポキシ(メタ)アクリルオリゴマー等のエチレン性二重結合を含有する機能性オリゴマー類を添加することも出来る。また、これらは各々単独または2種類以上を任意の割合で併用して用いることができる。
ここで、ラジカル重合性単量体(D)の使用量は、ノボラック型エポキシ樹脂(A)、酸基含有ラジカル重合性単量体(B)、及び前記ラジカル重合性単量体(D)の合計質量合計量100質量部に対して、10〜30質量部となる割合であることが好ましい。10重量部以上の範囲では繊維基材等への含浸性が良好となり、他方、30重量部以下の範囲では、硬化物である成形品の寸法安定性や高耐熱性に優れたものとなる。
また、本発明の液状エポキシ樹脂組成物は、上記各成分に加え、酸化防止剤を配合することが加熱時の酸化劣化を防止でき、透明性に優れた硬化物が得られる点で好ましい。
ここで使用し得る酸化防止剤としては、例えば、2,6−ジ−t−ブチル−p−クレゾール、ブチル化ヒドロキシアニソール、2,6−ジ−t−ブチル−p−エチルフェノール、ステアリル−β−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、4−メトキシナフトール等のモノフェノール類、ヒドロキノン、2,2'−メチレンビス(4−メチル−6−t−ブチルフェノール)、2,2'−メチレンビス(4−エチル−6−t−ブチルフェノール)、4,4'−チオビス(3−メチル−6−t−ブチルフェノール)、4,4'−ブチリデンビス(3−メチル−6−t−ブチルフェノール)、3,9−ビス[1,1−ジメチル−2−{β−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}エチル]2,4,8,10−テトラオキサスピロ[5,5]ウンデカン等のビスフェノール類、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、テトラキス−[メチレン−3−(3',5'−ジ−t−ブチル−4'−ヒドロキシフェニル)プロピオネート]メタン、ビス[3,3’−ビス−(4'−ヒドロキシ−3'−t−ブチルフェニル)ブチリックアシッド]グリコールエステル、1,3,5−トリス(3',5'−ジ−t−ブチル−4'−ヒドロキシベンジル)−S−トリアジン−2,4,6−(1H,3H,5H)トリオン、トコフェノール等の多官能フェノール類に代表されるフェノール系酸化防止剤;p−ベンゾキノン、トルキノン、ナフトキノンに代表されるキノン系酸化防止剤;ジラウリル−3,3'−チオジプロピオネート、ジミリスチル−3,3'−チオジプロピオネート、ジステアリルル−3,3'−チオジプロピオネート等の硫黄系酸化防止剤;トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、ジイソデシルペンタエリスリトールホスファイト、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシル)ホスファイト、サイクリックネオペンタンテトライルビ(2,4−ジ−t−ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビ(2,4−ジ−t−ブチル−4−メチルフェニル)ホスファイト、ビス[2−t−ブチル−6−メチル−4−{2−(オクタデシルオキシカルボニル)エチル}フェニル]ヒドロゲンホスファイト等のホスファイト類、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10−デシロキシ−9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド等のオキサホスファフェナントレンオキサイド類に代表されるリン系酸化防止剤が挙げられる。上記した酸化防止剤の使用量は、全硬化成分100質量部に対して0.005〜1質量部となる範囲であることが好ましい。
以上詳述した本発明の液状エポキシ樹脂組成物は、更に硬化物に難燃性を付与する観点から難燃剤を併用できる。ここで用いる難燃剤としては、ポリ臭素化ジフェニルエーテル、ポリ臭素化ビフェニル、テトラブロモビスフェノールA、テトラブロモビスフェノールA型エポキシ樹脂等のハロゲン系難燃剤、及び非ハロゲン系難燃剤が挙げられる。これらのなかでも特に近年のノンハロゲンの要求が高いことから非ハロゲン系難燃剤が好ましい。
前記非ハロゲン系難燃剤としては、例えば、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、それらの使用に際しても何等制限されるものではなく、単独で使用しても、同一系の難燃剤を複数用いても良く、また、異なる系の難燃剤を組み合わせて用いることも可能である。
前記リン系難燃剤としては、無機系、有機系のいずれも使用することができる。無機系化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。
また、前記赤リンは、加水分解等の防止を目的として表面処理が施されていることが好ましく、表面処理方法としては、例えば、(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。
前記有機リン系化合物としては、例えば、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン=10−オキシド、10−(2,5−ジヒドロオキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン=10−オキシド、10−(2,7−ジヒドロオキシナフチル)−10H−9−オキサ−10−ホスファフェナントレン=10−オキシド等の環状有機リン化合物、及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等が挙げられる。
それらの配合量としては、リン系難燃剤の種類、所望の難燃性の程度によって適宜選択でき、例えば、エポキシ樹脂、充填材、その他添加剤等全てを配合したエポキシ樹脂組成物100質量部中、赤リンを非ハロゲン系難燃剤として使用する場合は0.1〜2.0質量部の範囲で配合することが好ましく、有機リン化合物を使用する場合は同様に0.1〜10.0質量部の範囲で配合することが好ましく、特に0.5〜6.0質量部の範囲で配合することが好ましい。
また前記リン系難燃剤を使用する場合、該リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用してもよい。
前記窒素系難燃剤としては、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等が挙げられ、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が好ましい。
前記トリアジン化合物としては、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、例えば、(i)硫酸グアニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリアジン化合物、(ii)フェノール、クレゾール、キシレノール、ブチルフェノール、ノニルフェノール等のフェノール類と、メラミン、ベンゾグアナミン、アセトグアナミン、ホルムグアナミン等のメラミン類およびホルムアルデヒドとの共縮合物、(iii)前記(ii)の共縮合物とフェノールホルムアルデヒド縮合物等のフェノール樹脂類との混合物、(iv)前記(ii)、(iii)を更に桐油、異性化アマニ油等で変性したもの等が挙げられる。
前記シアヌル酸化合物の具体例としては、例えば、シアヌル酸、シアヌル酸メラミン等を挙げることができる。
前記窒素系難燃剤の配合量としては、窒素系難燃剤の種類、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂組成物100質量部中、0.05〜10質量部の範囲で配合することが好ましく、特に0.1〜5質量部の範囲で配合することが好ましい。
また前記窒素系難燃剤を使用する際、金属水酸化物、モリブデン化合物等を併用してもよい。
前記シリコーン系難燃剤としては、ケイ素原子を含有する有機化合物であれば特に制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。
前記シリコーン系難燃剤の配合量としては、シリコーン系難燃剤の種類、所望の難燃性の程度によって適宜選択されるものであるが、例えば、液状エポキシ樹脂組成物100質量部中、0.05〜20質量部の範囲で配合することが好ましい。また前記シリコーン系難燃剤を使用する際、モリブデン化合物、アルミナ等を併用してもよい。
前記無機系難燃剤としては、例えば、金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。
前記金属水酸化物の具体例としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム等を挙げることができる。
前記金属酸化物の具体例としては、例えば、モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等を挙げることができる。
前記金属炭酸塩化合物の具体例としては、例えば、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等を挙げることができる。
前記金属粉の具体例としては、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等を挙げることができる。
前記ホウ素化合物の具体例としては、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等を挙げることができる。
前記低融点ガラスの具体例としては、例えば、シープリー(ボクスイ・ブラウン社)、水和ガラスSiO−MgO−HO、PbO−B系、ZnO−P−MgO系、P−B−PbO−MgO系、P−Sn−O−F系、PbO−V−TeO系、Al−HO系、ホウ珪酸鉛系等のガラス状化合物を挙げることができる。
前記無機系難燃剤の配合量としては、無機系難燃剤の種類、液状エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであり、例えば、液状エポキシ樹脂組成物100質量部中、0.05〜20質量部の範囲で配合することが好ましく、特に0.5〜15質量部の範囲で配合することが好ましい。
前記有機金属塩系難燃剤としては、例えば、フェロセン、アセチルアセトナート金属錯体、有機金属カルボニル化合物、有機コバルト塩化合物、有機スルホン酸金属塩、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合物等が挙げられる。
前記有機金属塩系難燃剤の配合量としては、有機金属塩系難燃剤の種類、所望の難燃性の程度によって適宜選択されるものであり、例えば、液状エポキシ樹脂組成物100質量部中、0.005〜10質量部の範囲で配合することが好ましい。
本発明の液状エポキシ樹脂組成物には、必要に応じて無機質充填材を配合することができる。前記無機質充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。前記無機充填材の配合量を特に大きくする場合は溶融シリカを用いることが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め且つ成形材料の溶融粘度の上昇を抑制するためには、球状のものを主に用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は難燃性を考慮して、高い方が好ましく、エポキシ樹脂組成物の全体量に対して65質量%以上が特に好ましい。また導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。
本発明の液状エポキシ樹脂組成物には、必要に応じて、シランカップリング剤、離型剤、イオントラップ剤、顔料等、種々の配合剤を添加することができる。
本発明の液状エポキシ樹脂組成物は、前記した各成分を、均一に撹拌することにより、液状の組成物として容易に得ることができる。
本発明の液状エポキシ樹脂組成物は、前記したとおり、常温液状の組成物であり、有機溶剤無しで、或いは、極少量の使用でワニス化することができる。ここで、アセトン、メチルエチルケトン、トルエン、キシレン、メチルイソブチルケトン、酢酸エチル、エチレングリコールモノメチルエーテル、N,N−ジメチルホルムアミド、メタノール、エタノールなどが挙げられる。この有機溶剤の使用量は、組成物中10重量%以下であることが好ましく、特に実質的に有機溶剤を使用しないことが好ましい。
本発明の液状エポキシ樹脂組成物は、上記した各成分を均一に混合することにより得られる。
本発明の液状エポキシ樹脂組成物の硬化物は、以上詳述した液状エポキシ樹脂組成物をイン・サイチュー反応させることにより得られるものである。ここで、イン・サイチュー反応とは、前記した通り、エポキシ基と酸基との反応と、ラジカル重合性基の重合反応とを特に反応工程として区別することなく両反応を同時乃至連続的に行うものである。よって、本発明では、エポキシ樹脂用の硬化剤としてのみ機能する成分、即ち、それ自体が重合性基を持たない成分を実質的に有しないものであることが好ましい。
かかるイン・サイチュー反応を行う際の硬化温度は、具体的には、50〜200℃の温度範囲であることが好ましく、特に、50〜100℃で硬化させ、タックフリー状の硬化物にした後、更に、120〜180℃の温度条件で処理することが好ましい。
前記した硬化物は、以下詳述する各種用途に応じて、積層物、注型物、接着層、塗膜、フィルム等に用いられることができるが、本発明の液状エポキシ樹脂組成物は、常温(25℃)で液状であり、優れた流動性を有すると共に、硬化後は極めて高い耐熱性を発現するという特徴を有することから、前記液状エポキシ樹脂組成物を繊維基材に含浸してなるプリプレグとして工業的に利用することが望ましく、最終的に該プリプレグを用いて成型してなる構造体として利用することが望ましい。かかる、プリプレグを用いた構造体としては、以下に詳述する各種用途のうち、プリント配線基板用積層板、繊維強化プラスチック製部材が挙げあれる。
本発明の液状エポキシ樹脂組成物の用途は、プリント配線基板用積層板、ビルドアップ基板用層間絶縁材料、ビルドアップ用接着フィルム、半導体封止材料、ダイアタッチ剤、フリップチップ実装用アンダーフィル材、グラブットプ材、TCP用液状封止材、導電性接着剤、液晶シール材、フレキシブル基板用カバーレイ、レジストインキなどの電子回路基板等に用いられる樹脂材料;光導波路や光学フィルムなどの光学用材料、樹脂注型材料、接着剤、絶縁塗料等のコーティング材料;LED、フォトトランジスタ、フォトダイオード、フォトカプラー、CCD、EPROM、フォトセンサーなどの様々な光半導体装置;繊維強化プラスチック製部材が挙げられる。これらの中でも特に優れた流動性と高耐熱性を兼備するといった観点からプリント配線基板用積層板、ビルドアップ基板用層間絶縁材料、ビルドアップ用接着フィルム、繊維強化プラスチック製部材が好ましく、更に、線膨張係数が低く、かつ、低誘電率・低誘電正接といった性能を有する点からプリント配線基板用積層板が特に好ましい。
本発明の液状エポキシ樹脂組成物をプリント回路基板用ワニスとして用いる場合、ノボラック型エポキシ樹脂(A)、酸基含有ラジカル重合性単量体(B)、及びラジカル重合開始剤(C)、その他必要に応じて上記した各成分を配合して得られたワニスを、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などの各種繊維基材に含浸し、用いた溶剤種に応じた加熱温度、好ましくは50〜170℃で加熱することによって、硬化物であるプリプレグを得ることができる。この時用いる樹脂組成物と補強基材の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20〜60質量%となるように調製することが好ましい。また該液状エポキシ樹脂組成物を用いて銅張り積層板を製造する場合は、上記のようにして得られたプリプレグを、常法により積層し、適宜銅箔を重ねて、1〜10MPaの加圧下に170〜250℃で10分〜3時間、加熱圧着させることにより、銅張り積層板を得ることができる。
また、本発明の液状エポキシ樹脂組成物を繊維強化プラスチック製部材用ワニスとして用いる場合、ノボラック型エポキシ樹脂(A)、酸基含有ラジカル重合性単量体(B)、及びラジカル重合開始剤(C)、その他必要に応じて上記した各成分を配合して得られたワニスを、以下に詳述する各種の用途に応じて加工することにより目的とする繊維強化プラスチック製部材を得ることができる。
ここで、繊維強化プラスチック製部材に用いられる繊維基材を構成する強化繊維としては、機械強度や耐久性に優れることから、炭素繊維を用いるのが好ましいが、その他強化繊維として、適度に接着性を高めるために表面処理を施したガラス繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維なども用いることができ、これら繊維は2種以上混在させて用いることもできる。また、炭素繊維は、いわゆる黒鉛繊維を包含するものであり、具体的には、ポリアクリロニトリル系、ピッチ系、レーヨン系などの各種のものが使用できる。中でも、容易に高強度の炭素繊維が得られるポリアクリロニトリル系のものが好ましく使用される。
また、強化繊維は、有撚糸、解撚糸、又は無撚糸などいずれでも良いが、解撚糸や無撚糸が、繊維強化プラスチック製部材の成形性と機械強度を両立することから、好ましい。さらに、強化繊維の形態は、繊維方向が一方向に引き揃えたものや、織物が使用できる。織物では、平織り、朱子織りなどから、使用する部位や用途に応じて自由に選択することができる。
また、炭素繊維は、軽量な釣竿、ゴルフシャフトなどのスポーツ用品を製造するために、少量の材料で充分な製品の剛性を発現させ得るように、弾性率の高いものを用いるのが好ましい。かかる観点から、炭素繊維の引張弾性率は、好ましくは200〜800GPa、より好ましくは225〜800GPaであるのが良い。
また、繊維強化プラスチック製部材用途における該部材中の繊維基材の量は、特に限定されるものではないが、40〜70質量%の範囲であり、特に、強度の点から50〜70質量%の範囲であることが好ましい。
本発明の液状エポキシ樹脂組成物から繊維強化プラスチック製部材を製造する方法は、各種の公知の方法が用いられ、型に繊維骨材を敷き、本発明の液状エポキシ樹脂組成物を多重積層してゆくハンドレイアップ法やスプレーアップ法、あらかじめ骨材を含有するエポキシ樹脂組成物をシート状にしたものを金型で圧縮成型するSMCプレス法、繊維を敷き詰めた合わせ型にエポキシ樹脂組成物を注入するRTM法、強化繊維に液状エポキシ樹脂組成物を含浸させてプリプレグを製造し、これを大型のオートクレーブで焼き固める方法が挙げられる。
ここで、繊維強化プラスチック製部材の具体的用途としては、釣竿、ゴルフシャフト、自転車フレームなどのスポーツ用品、自動車、航空機のフレーム又はボディー材、風力発電機ブレードなどが挙げられる。
本発明の液状エポキシ樹脂組成物をレジストインキとして使用する場合、例えば該液状エポキシ樹脂組成物をスクリーン印刷方式にてプリント基板上に塗布した後、レジストインキ硬化物とする方法が挙げられる。
本発明の液状エポキシ樹脂組成物をビルドアップ基板用層間絶縁材料として用い、ビルドアップ基板を製造するには、例えば、ゴム、フィラーなどを適宜配合した本発明の液状エポキシ樹脂組成物を、回路を形成した配線基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる。その後、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、凹凸を形成させ、銅などの金属をめっき処理する。前記めっき方法としては、無電解めっき、電解めっき処理が好ましく、また前記粗化剤としては酸化剤、アルカリ、有機溶剤等が挙げられる。このような操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップして形成することにより、ビルドアップ基板を得ることができる。但し、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行う。また、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170〜250℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。
本発明の液状エポキシ樹脂組成物を、半導体封止材用或いはフリップチップ実装用アンダーフィル材として用いる場合、充填剤としては、通常シリカが用いられるが、その充填率はエポキシ樹脂組成物100質量部当たり、充填剤を30〜95質量%の範囲が用いることが好ましく、中でも、難燃性や耐湿性や耐ハンダクラック性の向上、線膨張係数の低下を図るためには、70質量部以上が特に好ましく、それらの効果を格段に上げるためには、80質量部以上が一層その効果を高めることができる。
半導体パッケージ成形としては、該組成物を注型、或いはトランスファー成形機、射出成形機などを用いて成形し、さらに50〜200℃で2〜10時間に加熱することにより成形物である本発明の半導体装置を得ることができる。
一方、フリップチップ実装の方法としては、金属バンプを介してICチップ上の複数の電極と回路基板上の所定の電極とを位置合わせした後、これらの電極間の電気接続を行い、次いで、電気絶縁性を有するアンダーフィル材をICチップと回路基板の間に注入、加熱硬化する方法、金属バンプを介しての電極接続と同時に封止用樹脂の硬化を行うリフロー同時硬化法、回路基板の表面に液状エポキシ樹脂を塗布した後に、ICチップをエポキシ樹脂の塗布層上に配置してICチップの背面から加熱加圧して電極接続と封止用樹脂の硬化を一段階で行う圧接法が挙げられる。
本発明の液状エポキシ樹脂組成物からビルドアップ用接着フィルムを製造する方法は、例えば、本発明の液状エポキシ樹脂組成物を、支持フィルム上に塗布し樹脂組成物層を形成させて多層プリント配線板用の接着フィルムとする方法が挙げられる。
本発明の液状エポキシ樹脂組成物をビルドアップ用接着フィルムに用いる場合、該接着フィルムは、真空ラミネート法におけるラミネートの温度条件(通常70℃〜140℃)で軟化し、回路基板のラミネートと同時に、回路基板に存在するビアホール或いはスルーホール内の樹脂充填が可能な流動性(樹脂流れ)を示すことが肝要であり、このような特性を発現するよう上記各成分を配合することが好ましい。
ここで、多層プリント配線板のスルホールの直径は通常0.1〜0.5mm、深さは通常0.1〜1.2mmであり、通常この範囲で樹脂充填を可能とするのが好ましい。なお回路基板の両面をラミネートする場合はスルーホールの1/2程度充填されることが望ましい。
上記した接着フィルムを製造する方法は、具体的には、ワニス状の本発明の液状エポキシ樹脂組成物を調製した後、支持フィルム(Y)の表面に、このワニス状の組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により硬化させてエポキシ樹脂組成物の層(X)を形成させることにより製造することができる。
形成される層(X)の厚さは、通常、導体層の厚さ以上とする。回路基板が有する導体層の厚さは通常5〜70μmの範囲であるので、樹脂組成物層の厚さは10〜100μmの厚みを有するのが好ましい。
なお、本発明における層(X)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。
前記した支持フィルム及び保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。
支持フィルムの厚さは特に限定されないが、通常10〜150μmであり、好ましくは25〜50μmの範囲で用いられる。また保護フィルムの厚さは1〜40μmとするのが好ましい。
上記した支持フィルム(Y)は、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。接着フィルムを加熱硬化した後に支持フィルム(Y)を剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。
次に、上記のようして得られた接着フィルムを用いて多層プリント配線板を製造する方法は、例えば、層(X)が保護フィルムで保護されている場合はこれらを剥離した後、層(X)を回路基板に直接接するように、回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートする。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。またラミネートを行う前に接着フィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。
ラミネートの条件は、圧着温度(ラミネート温度)を好ましくは70〜140℃、圧着圧力を好ましくは1〜11kgf/cm(9.8×10〜107.9×10N/m2)とし、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。
本発明の液状エポキシ樹脂組成物をダイアタッチ材として使用する場合には、例えば、微細導電性粒子を該エポキシ樹脂組成物中に分散させ異方性導電膜用組成物とする方法、室温で液状である回路接続用ペースト樹脂組成物や異方性導電接着剤とする方法が挙げられる。
本発明の液状エポキシ樹脂組成物から光半導体装置を製造するには、例えば上記液状エポキシ樹脂組成物を、例えば、リード線などの電極を取り付けた光半導体に、本発明の液状エポキシ樹脂組成物でトランスファー成形、注型などのモールド方法によって封止し、硬化する方法や、予め光半導体を回路基板に実装し、それを本発明の液状エポキシ樹脂組成物で封止し、硬化する方法が挙げられる。具体的には、光半導体素子をセットした型枠に流し込んだのち、上記温度条件で加熱硬化することにより得ることができる。
光半導体装置は、前記した通り、具体的にはLED、フォトトランジスタ、フォトダイオード、フォトカプラー、CCD、EPROM、フォトセンサーなどの受光素子や発光素子等を封止した光半導体装置が挙げられ、これらのなかでもとりわけLED装置、特に高輝度LED装置がとりわけ好ましく、特に波長350〜550nmに主発光ピークを有する青色乃至白色のLED装置、及び、4元系LED装置であることが特に好ましい。
次に本発明を実施例、比較例により具体的に説明するが、以下において「部」及び「%」は特に断わりのない限り質量基準である。尚、各物性評価は以下の条件にて測定した。
1)ワニス粘度:30℃にてB型粘度計(東機産業(株)製「TVB−10型粘度計」Mタイプ)を使用して測定した。
2)動的粘弾性測定(DMA):硬化物をダイヤモンドカッターで幅5mm、長さ50mmに切り出し、エスアイアイ・ナノテクノロジー社製「DMS6100」を用いて、測定温度範囲:室温〜300℃、昇温速度:3℃/分、周波数:1Hz(正弦波)、歪振幅:10μm、硬化物の両持ち曲げによる動的粘弾性を測定した。tanδ最大値の温度をTgとした。
実施例1
o−クレゾールノボラック型エポキシ樹脂(DIC(株)製「エピクロンN−695」、エポキシ当量:214g/eq、ICI粘度30dPa・s(150℃)、軟化点95℃):673gを1L四つ口フラスコ中で120℃に加熱溶融し、ハイドロキノン:1.0gを添加後、撹拌しながらスチレン:327gを徐々に加えて溶解し、樹脂溶液を得た。
このようにして得られた樹脂溶液1の118.1gにメタクリル酸31.9g、1−シアノエチル−2−エチル−4−メチルイミダゾール(四国化成工業(株)製「2E4MZ−CN」)1.5g、1,1−ジ(t−ヘキシルペルオキシ)シクロヘキサン(日油(株)製「パーヘキサHC」)1.5gを加えて撹拌混合して固形分濃度52質量%のワニスを得、このワニスのワニス粘度を測定した。
次いで、得られたワニスを厚さ3mmのスペーサー(シリコーンチューブ)をガラス板で挟んだ型の間隙に流し込み、200℃で1時間保持して硬化物を得、これを用いて上記方法にて動的粘弾性を測定し、Tgを求めた。
ワニス粘度及びTgの値を表1に示す。
実施例2
o−クレゾールノボラック型エポキシ樹脂(DIC(株)製「エピクロンN−695」、エポキシ当量:214g/eq、ICI粘度30dPa・s(150℃)、軟化点95℃):580gを1L四つ口フラスコ中で120℃に加熱溶融し、ハイドロキノン:1.0gを添加後、撹拌しながらスチレン:212gを徐々に加えて溶解した。次いで無水メタクリル酸:208gを添加して徐冷しながら撹拌混合し、樹脂溶液を得た。
このようにして得られた樹脂溶液の150gにメタクリル酸:9.0g、1−シアノエチル−2−エチル−4−メチルイミダゾール(四国化成工業(株)製「2E4MZ−CN」)1.5g、1,1−ジ(t−ヘキシルペルオキシ)シクロヘキサン(日油(株)製「パーヘキサHC」)1.5gを加え、室温で撹拌混合し固形分濃度54質量%のワニスを得、このワニスのワニス粘度を測定した。
次いで、得られたワニスを厚さ3mmのスペーサー(シリコーンチューブ)をガラス板で挟んだ型の間隙に流し込み、100℃で1時間加熱後、200℃で1時間加熱し硬化物を得、これを用いて上記方法にて動的粘弾性を測定し、Tgを求めた。
ワニス粘度及びTgの値を表1に示す。
実施例3
フェノールノボラック型エポキシ樹脂(DIC製「エピクロンN−775」、エポキシ当量:188g/eq、ICI粘度7.7dPa・s(150℃)、軟化点75℃)548gを1L四つ口フラスコ中で120℃に加熱溶融し、ハイドロキノン1.0gを添加後、撹拌しながらスチレン:228gを徐々に加えて溶解した。次いで無水メタクリル酸:224gを添加して徐冷しながら撹拌混合し、樹脂溶液2を得た。
このようにして得られた樹脂溶液の150gにメタクリル酸9.0g、1−シアノエチル−2−エチル−4−メチルイミダゾール(四国化成工業(株)製「2E4MZ−CN」)1.5g、1,1−ジ(t−ヘキシルペルオキシ)シクロヘキサン(日油(株)製「パーヘキサHC」)1.5gを加え、室温で撹拌混合して固形分濃度51質量%のワニスを得、このワニスのワニス粘度を測定した。
次いで、得られたワニスを厚さ3mmのスペーサー(シリコーンチューブ)をガラス板で挟んだ型の間隙に流し込み、100℃で1時間加熱後、200℃で1時間加熱し硬化物を得、これを用いて上記方法にて動的粘弾性を測定し、Tgを求めた。
ワニス粘度及びTgの値を表1に示す。
比較例1
メタクリル酸242gを四つ口フラスコ中に仕込み、ハイドロキノン:0.4gを添加後、100℃に加熱し、o−クレゾールノボラック型エポキシ樹脂(DIC製エピクロンN−695、エポキシ当量:214、)600gを徐々に加え溶解し、続いてトリフェニルホスフィン:1.68gを添加して120〜125℃で3時間反応させる。反応終了後、スチレン:292gを加えて徐冷しながら均一に溶解させて樹脂溶液を得た。
このようにして得られた樹脂溶液の150gに1−シアノエチル−2−エチル−4−メチルイミダゾール(四国化成工業(株)製「2E4MZ−CN」)1.5g、1,1−ジ(t−ヘキシルペルオキシ)シクロヘキサン(日油(株)製「パーヘキサHC」)1.5gを加え、室温で撹拌混合して固形分濃度82質量%のワニスを得、このワニスのワニス粘度を測定した。
次いで、得られたワニスを厚さ3mmのスペーサー(シリコーンチューブ)をガラス板で挟んだ型の間隙に流し込み、100℃で1時間加熱後、200℃で1時間加熱し硬化物を得、これを用いて上記方法にて動的粘弾性を測定し、Tgを求めた。
ワニス粘度及びTgの値を表1に示す。
比較例2
ビスフェノールA型エポキシ樹脂(DIC株式会社製「エピクロン850S」エポキシ当量188g/eq.)78.8gを四つ口フラスコ中に仕込み、メチルテトラハイドロフタル酸無水物(DIC株式会社製「エピクロンB−570」酸無水物当量166g/eq.)71.3g、ジメチルベンジルアミン1.5gを均一に撹拌混合して固形分濃度52質量%のワニスを得、このワニスのワニス粘度を測定した。
次いで、得られたワニスを厚さ3mmのスペーサー(シリコーンチューブ)をガラス板で挟んだ型の間隙に流し込み、110℃で1時間保持して硬化させ、型から硬化物を取り出した後、更に、165℃に昇温し、165℃に到達した後、該温度で2時間保持して硬化を行い、得られた硬化物を試験片として用い、動的粘弾性を測定し、Tgを求めた。
ワニス粘度及びTgの値を表1に示す。
比較例3
ビスフェノールA型エポキシ樹脂(DIC株式会社製「エピクロン850S」エポキシ当量188g/eq.)のジメタクリレート105gを四つ口フラスコ中に仕込み、スチレンモノマー45g、1,1−ジ(t−ヘキシルペルオキシ)シクロヘキサン(日油(株)製「パーヘキサHC」)1.5gを加え、均一に混合して固形分濃度69質量%のワニスを得、このワニスのワニス粘度を測定した。
次いで、得られたワニスを厚さ3mmのスペーサー(シリコーンチューブ)をガラス板で挟んだ型の間隙に流し込み、100℃で1時間保持して硬化させ、型から硬化物を取り出した後、更に、170℃に昇温し、170℃に到達した後、該温度で1時間保持して硬化を行い、得られた硬化物を試験片として用い、動的粘弾性を測定し、Tgを求めた。
ワニス粘度及びTgの値を表1に示す。
Figure 2010070605

Claims (7)

  1. ノボラック型エポキシ樹脂(A)、酸基含有ラジカル重合性単量体(B)、及びラジカル重合開始剤(C)を必須成分とすることを特徴とする液状エポキシ樹脂組成物。
  2. ノボラック型エポキシ樹脂(A)、酸基含有ラジカル重合性単量体(B)の合計100質量部に対して、前記ノボラック型エポキシ樹脂(A)を55〜95質量部、前記酸基含有ラジカル重合性単量体(B)を5〜55質量部となる割合となる割合で含有する請求項1記載の液状エポキシ樹脂組成物。
  3. 酸基含有ラジカル重合性単量体(B)が、(メタ)アクリル酸又は無水メタクリル酸である請求項1又は2記載のエポキシ樹脂組成物。
  4. 上記(A)〜(C)の各成分に加え、更に前記(B)の他のラジカル重合性単量体(D)を含有する請求項1、2又は3記載の液状エポキシ樹脂組成物。
  5. 請求項1〜4の何れか1つに記載の液状エポキシ樹脂組成物をイン・サイチュー反応させることにより得られる硬化物。
  6. 請求項1〜4の何れか1つに記載の液状エポキシ樹脂組成物をイン・サイチュー反応させることを特徴とする硬化物の製造方法。
  7. 請求項1〜4の何れか1つに記載の液状エポキシ樹脂組成物からなるプリント配線基板用樹脂組成物。
JP2008237848A 2008-09-17 2008-09-17 液状エポキシ樹脂組成物、硬化物、その製造方法、及びプリント配線基板用樹脂組成物 Pending JP2010070605A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008237848A JP2010070605A (ja) 2008-09-17 2008-09-17 液状エポキシ樹脂組成物、硬化物、その製造方法、及びプリント配線基板用樹脂組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008237848A JP2010070605A (ja) 2008-09-17 2008-09-17 液状エポキシ樹脂組成物、硬化物、その製造方法、及びプリント配線基板用樹脂組成物

Publications (2)

Publication Number Publication Date
JP2010070605A true JP2010070605A (ja) 2010-04-02
JP2010070605A5 JP2010070605A5 (ja) 2011-06-23

Family

ID=42202709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008237848A Pending JP2010070605A (ja) 2008-09-17 2008-09-17 液状エポキシ樹脂組成物、硬化物、その製造方法、及びプリント配線基板用樹脂組成物

Country Status (1)

Country Link
JP (1) JP2010070605A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021516A1 (ja) * 2009-08-17 2011-02-24 Dic株式会社 繊維強化複合材料用樹脂組成物、その硬化物、繊維強化複合材料、繊維強化樹脂成形品、及びその製造方法
JP2011079905A (ja) * 2009-10-05 2011-04-21 Hitachi Chem Co Ltd エポキシ樹脂組成物、半導体封止充てん用樹脂組成物及び半導体装置
JP2015067806A (ja) * 2013-09-30 2015-04-13 日本ゼオン株式会社 プリント配線板形成用硬化性組成物およびプリント配線板形成用積層体の製造方法
WO2016189829A1 (ja) * 2015-05-28 2016-12-01 タツタ電線株式会社 実装用導電性ペースト
TWI626284B (zh) * 2017-01-16 2018-06-11 臻鼎科技股份有限公司 樹脂組合物及應用該樹脂組合物的膠片及電路板
WO2020166441A1 (ja) * 2019-02-12 2020-08-20 日本ユピカ株式会社 繊維強化プラスチック中間基材用液状組成物、繊維強化プラスチック中間基材、及び前記繊維強化プラスチック中間基材の製造方法
JP2021113285A (ja) * 2020-01-20 2021-08-05 日本ユピカ株式会社 繊維強化プラスチック中間基材用液状組成物、繊維強化プラスチック中間基材、及び前記繊維強化プラスチック中間基材の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110865A (ja) * 1985-11-08 1987-05-21 Toyobo Co Ltd 回路板上における半田付方法
JPS63145322A (ja) * 1986-12-05 1988-06-17 ローム・アンド・ハース・カンパニー B段階となし得るエポキシ系熱硬化性組成物
JPH0557828A (ja) * 1991-08-30 1993-03-09 Dainippon Ink & Chem Inc 積層板の製法およびエポキシ系樹脂組成物
JP2008291145A (ja) * 2007-05-25 2008-12-04 Panasonic Electric Works Co Ltd 液状熱硬化性樹脂組成物、樹脂硬化物、銅張積層板、銅張積層板の製造方法
JP2009073990A (ja) * 2007-09-21 2009-04-09 Panasonic Electric Works Co Ltd エポキシ樹脂組成物、金属張積層板の連続生産方法及び金属張積層板
JP2010018778A (ja) * 2008-06-11 2010-01-28 Panasonic Electric Works Co Ltd 液状熱硬化性樹脂組成物及びそれを用いた銅張積層板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110865A (ja) * 1985-11-08 1987-05-21 Toyobo Co Ltd 回路板上における半田付方法
JPS63145322A (ja) * 1986-12-05 1988-06-17 ローム・アンド・ハース・カンパニー B段階となし得るエポキシ系熱硬化性組成物
JPH0557828A (ja) * 1991-08-30 1993-03-09 Dainippon Ink & Chem Inc 積層板の製法およびエポキシ系樹脂組成物
JP2008291145A (ja) * 2007-05-25 2008-12-04 Panasonic Electric Works Co Ltd 液状熱硬化性樹脂組成物、樹脂硬化物、銅張積層板、銅張積層板の製造方法
JP2009073990A (ja) * 2007-09-21 2009-04-09 Panasonic Electric Works Co Ltd エポキシ樹脂組成物、金属張積層板の連続生産方法及び金属張積層板
JP2010018778A (ja) * 2008-06-11 2010-01-28 Panasonic Electric Works Co Ltd 液状熱硬化性樹脂組成物及びそれを用いた銅張積層板

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021516A1 (ja) * 2009-08-17 2011-02-24 Dic株式会社 繊維強化複合材料用樹脂組成物、その硬化物、繊維強化複合材料、繊維強化樹脂成形品、及びその製造方法
JP4775520B2 (ja) * 2009-08-17 2011-09-21 Dic株式会社 繊維強化複合材料用樹脂組成物、その硬化物、繊維強化複合材料、繊維強化樹脂成形品、及びその製造方法
US8487052B2 (en) 2009-08-17 2013-07-16 Dic Corporation Resin composition for fiber-reinforced composite material, cured product thereof, fiber-reinforced composite material, molding of fiber-reinforced resin, and process for production thereof
US20130281576A1 (en) * 2009-08-17 2013-10-24 Dic Corporation Resin composition for fiber-reinforced composite material, cured product thereof, fiber-reinforced composite material, molding of fiber-reinforced resin, and process for production thereof
JP2011079905A (ja) * 2009-10-05 2011-04-21 Hitachi Chem Co Ltd エポキシ樹脂組成物、半導体封止充てん用樹脂組成物及び半導体装置
JP2015067806A (ja) * 2013-09-30 2015-04-13 日本ゼオン株式会社 プリント配線板形成用硬化性組成物およびプリント配線板形成用積層体の製造方法
WO2016189829A1 (ja) * 2015-05-28 2016-12-01 タツタ電線株式会社 実装用導電性ペースト
JPWO2016189829A1 (ja) * 2015-05-28 2018-03-15 タツタ電線株式会社 実装用導電性ペースト
TWI626284B (zh) * 2017-01-16 2018-06-11 臻鼎科技股份有限公司 樹脂組合物及應用該樹脂組合物的膠片及電路板
WO2020166441A1 (ja) * 2019-02-12 2020-08-20 日本ユピカ株式会社 繊維強化プラスチック中間基材用液状組成物、繊維強化プラスチック中間基材、及び前記繊維強化プラスチック中間基材の製造方法
CN113454139A (zh) * 2019-02-12 2021-09-28 日本优必佳株式会社 纤维增强塑料中间基材用液体组合物、纤维增强塑料中间基材和上述纤维增强塑料中间基材的制造方法
JP2021113285A (ja) * 2020-01-20 2021-08-05 日本ユピカ株式会社 繊維強化プラスチック中間基材用液状組成物、繊維強化プラスチック中間基材、及び前記繊維強化プラスチック中間基材の製造方法

Similar Documents

Publication Publication Date Title
JP2010070605A (ja) 液状エポキシ樹脂組成物、硬化物、その製造方法、及びプリント配線基板用樹脂組成物
TWI794350B (zh) 環氧化合物、組成物、硬化物及積層體
WO2018180451A1 (ja) エポキシ樹脂、製造方法、エポキシ樹脂組成物及びその硬化物
JP5678976B2 (ja) 硬化性樹脂組成物、その硬化物、及び電子部品用樹脂材料
KR20180063034A (ko) 수지 조성물 및 다층 기판
TWI783090B (zh) 羥基化合物、組成物、硬化物及積層體
JP6376392B2 (ja) エポキシ樹脂組成物、硬化性樹脂組成物、活性エステル、硬化物、半導体封止材料、半導体装置、プレプリグ、フレキシルブル配線基板、回路基板、ビルドアップフィルム、ビルドアップ基板、繊維強化複合材料、成形品
JP2019089967A (ja) アリル基含有カーボネート樹脂、その製造方法、樹脂ワニス、および積層板の製造方法
JP6493027B2 (ja) エポキシ樹脂組成物、硬化性樹脂組成物、活性エステル、硬化物、半導体封止材料、半導体装置、プレプリグ、フレキシルブル配線基板、回路基板、ビルドアップフィルム、ビルドアップ基板、繊維強化複合材料、成形品
JP5424021B2 (ja) 繊維強化複合材料用樹脂組成物、その硬化物、プリント配線基板用樹脂組成物、繊維強化複合材料、繊維強化樹脂成形品、及びその製造方法
KR102624960B1 (ko) 에폭시 수지, 에폭시 수지의 제조 방법, 경화성 수지 조성물 및 그 경화물
KR20170102439A (ko) 폴리(비닐벤질)에테르 화합물, 이것을 포함하는 경화성 수지조성물 및 경화물
WO2018225411A1 (ja) エポキシ樹脂、製造方法、エポキシ樹脂組成物及びその硬化物
JP6809200B2 (ja) エポキシ樹脂、硬化性樹脂組成物及びその硬化物
CN115135692A (zh) 活性酯树脂、环氧树脂组合物、其固化物、预浸料、层叠板和堆积膜
JP2010229218A (ja) 硬化性樹脂組成物、その硬化物、及び電子部品用樹脂材料
JP2010024316A (ja) エポキシ樹脂組成物、その硬化物、及び硬化物の製造方法
JP2010024315A (ja) エポキシ樹脂組成物、硬化物、その製造方法、プリプレグ、及び構造体
JP2020100728A (ja) フェノキシ樹脂、その樹脂組成物、その硬化物、およびその製造方法。
JP5752574B2 (ja) フェノールノボラック樹脂及びそれを用いたエポキシ樹脂組成物
JP5447921B2 (ja) 硬化性樹脂組成物、その硬化物、及び電子部品用樹脂材料
WO2018116757A1 (ja) エポキシ樹脂組成物
JP7415550B2 (ja) 硬化性樹脂組成物、その硬化物、及び半導体封止材料
JP2018100362A (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
TWI722185B (zh) 環氧樹脂、製造方法、環氧樹脂組成物及其硬化物

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130514