JP2010055916A - 燃料電池セルスタックおよびこれを用いた燃料電池モジュール - Google Patents

燃料電池セルスタックおよびこれを用いた燃料電池モジュール Download PDF

Info

Publication number
JP2010055916A
JP2010055916A JP2008219238A JP2008219238A JP2010055916A JP 2010055916 A JP2010055916 A JP 2010055916A JP 2008219238 A JP2008219238 A JP 2008219238A JP 2008219238 A JP2008219238 A JP 2008219238A JP 2010055916 A JP2010055916 A JP 2010055916A
Authority
JP
Japan
Prior art keywords
fuel cell
zinc oxide
surface layer
current collecting
cell stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008219238A
Other languages
English (en)
Other versions
JP5311931B2 (ja
Inventor
Masahiko Azuma
昌彦 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008219238A priority Critical patent/JP5311931B2/ja
Publication of JP2010055916A publication Critical patent/JP2010055916A/ja
Application granted granted Critical
Publication of JP5311931B2 publication Critical patent/JP5311931B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】 集電部材と燃料電池セルとの間の接合力および表面層自体の強度を高めるとともに、燃料電池セルの出力電圧の低下を抑制できる燃料電池セルスタックと、これを用いた燃料電池モジュールを提供する。
【解決手段】 燃料電池セル1と集電部材3とが導電性接着材5を介して交互に複数接合されてなり、前記集電部材3は少なくとも前記導電性接着材5と接触する部位に酸化亜鉛を主成分とする表面層35を有するとともに、前記酸化亜鉛が球状晶35Sの酸化亜鉛と柱状晶35Pの酸化亜鉛とから構成されていることから、表面層35の内部にクラックが発生した場合にも、表面層35中に柱状晶の酸化亜鉛が存在するためクラックの進展を抑制でき、これにより集電部材3と導電性接着材5との間の導電性を高めることができ、結果的に燃料電池セルスタックの出力電圧を高くできる。
【選択図】図2

Description

本発明は、燃料電池セルと集電部材とが導電性接着材を介して交互に複数接合されてなる燃料電池セルスタックおよびこれを用いた燃料電池モジュールに関する。
近年、世界的な地球環境問題への取組みやエネルギー資源の有効利用を模索する動きから、次世代エネルギーとして、種々の燃料電池モジュールが提案されている。固体酸化物形の燃料電池モジュールは、複数の燃料電池セルを電気的に接続した燃料電池セルスタックを収納容器に収容して構成され、高温に保持された状態で、燃料電池セルの燃料極側に水素含有ガス(燃料ガス)を流し、空気極(酸素極ともいう)側に酸素含有ガス(空気)を流すことにより発電を行うことができる(例えば、特許文献1参照)。
ところで、本出願人は、このような燃料電池セルにおいて、燃料電池セル間の接続信頼性を向上させる技術として、特許文献2に開示されている燃料電池セルスタックを提案した。
この技術は、集電部材を、Crを含有する合金により形成した基材上にCr拡散防止層を形成し、さらに、その表面に酸化亜鉛を主成分とし、外面に凹凸を有する表面層を形成する構成とすることにより、燃料電池セルと集電部材との間の剥離を防止しようとするものであった。
特開2008−34202号公報 特開2008−34203号公報
しかしながら、特許文献2に記載の燃料電池セルスタックでは、集電部材の表面に形成した凹部に導電性接着材が入り込むことによるアンカー効果によって、集電部材と燃料電池セルとの接合力の強化が図れるものの、導電性接着材と集電部材との熱膨張係数の違いによる応力のために、表面層の内部にクラックが発生しやくなっており、しかも発生したクラックが進展しやすいことから、燃料電池セル間の電気的接続が損なわれ、燃料電池モジュールの出力電圧が低下するという問題があった。
それゆえ、本発明は、集電部材と燃料電池セルとの間の接合力および表面層自体の強度を高めるとともに、燃料電池セルの出力電圧の低下を抑制できる燃料電池セルスタックと、これを用いた燃料電池モジュールを提供することを目的とする。
本発明の燃料電池セルスタックは、燃料電池セルと集電部材とが導電性接着材を介して交互に複数接合されてなり、前記集電部材は少なくとも前記導電性接着材と接触する部位に酸化亜鉛を主成分とする表面層を有するとともに、前記酸化亜鉛が球状晶の酸化亜鉛と柱状晶の酸化亜鉛とから構成されていることを特徴とする。
このような構成を有する燃料電池セルスタックでは、集電部材の少なくとも導電性接着材と接触する部位の表面に、球状晶の酸化亜鉛および柱状晶の酸化亜鉛を含む表面層を有することから、表面層の導電性接着材と接触する表面に凹凸が形成される。そのため、表面層の凹部に導電性接着材が入り込み、アンカー効果によって集電部材と導電性接着材とが強固に接合され、これにより集電部材と導電性接着材との剥離を抑制することができる。
また、本発明では、上述のように、表面層が球状晶の酸化亜鉛だけでなく、柱状晶の酸化亜鉛を含むことから、表面層の内部にクラックが発生した場合でも、表面層中に柱状晶の酸化亜鉛が存在するためにクラックの進展を抑制できることから表面層自体を強化できる。そのため、集電部材と導電性接着材との間の導電性を高めることができ、結果的に燃料電池セルスタックの出力電圧を高くできる。
本発明の燃料電池セルスタックでは、前記柱状晶の平均長さが前記球状晶の平均粒径よりも大きいことが望ましい。表面層を構成する柱状晶の平均長さを球状晶の平均粒径よりも大きくすると、酸化亜鉛の結晶同士の接触点数を減らすことができ、その結果、表面層の導電性が高まり燃料電池セルスタックの出力電圧を高くできる。
本発明の燃料電池セルスタックでは、前記表面層の研磨面に見られる前記球状晶の面積をA1、前記柱状晶の面積をA2としたときに、A2/(A1+A2)が0.07〜0.4であることが望ましい。
本発明においてはさらに、球状晶および柱状晶の面積比を上記比率にしたときは、燃料電池セルスタックの出力電圧をさらに高めることができる。
また、本発明の燃料電池モジュールは、上記燃料電池セルスタックが収納容器内に収納されていることを特徴とする。
それゆえ、集電部材と燃料電池セルとを強固に接続でき、これらの間の電気的接続信頼性を向上でき、出力電圧の低下を低減し、長期信頼性が向上した燃料電池モジュールを提供することができる。
本発明によれば、集電部材と燃料電池セルとの間の接合力および表面層自体の強度を高めることができるため、燃料電池セルの出力電圧の低下を抑制できる燃料電池セルスタックと、これを用いた燃料電池モジュールを提供することができる。
以下、本発明の実施形態について説明する。
図1は、本発明の燃料電池セルスタックの一例を示す断面模式図である。図2は、図1における集電部材と導電性接着材との接合部分Cの拡大模式図である。図3は、図1における集電部材の斜視図である。図4は、図1における燃料電池セルの一部を破断した斜視図である。
本発明の燃料電池セルスタックは、燃料電池セル1と集電部材3とが導電性接着材5を介して交互に複数接合されて構成されている。
集電部材3は、図3に示すように耐熱性合金の板を櫛歯状に加工し、隣り合う歯を交互に反対側に折り曲げて形成されたものであり、Crを含有する合金からなる集電基体31の表面に、酸化物からなる緻密なCr拡散防止層33と、酸化亜鉛を主成分とする表面層35とがこの順に形成されたものである。
ここで集電部材3を構成している集電基体31の材料としては、導電性とともに耐熱性を持たせるために、Crを10〜30質量%含有するとともに微量のMnを含有していることが望ましく、例えば、Fe−Cr系合金、Ni−Cr系合金等のうちいずれか1種を用いることが好ましい。
Cr拡散防止層33は、集電基体31に含まれるCrの拡散を防止するための材料として、Zn、Mn、Fe、CoおよびNi等の金属酸化物の群から適宜選択された酸化物が好適であり、特に、Znを含有し、スピネル構造をもつ複合酸化物がより好ましい。なお、この層はCrの拡散を有効に防止できるという点で相対密度が93%以上、特に、95%以上であるのがよい。
集電部材3を構成する表面層35は、図2に示すように、酸化亜鉛の結晶として球状晶35Sと柱状晶35Pとから形成されており、これら球状晶35Sおよび柱状晶35Pの形状の違いに起因して表面層35の表面に凹凸が形成されている。ここで表面層35の表面に凹凸が形成されているという状態は、走査型電子顕微鏡等を用いて断面観察した際に、観察範囲において、凸部の頂点から凹部の底までの高さが球状晶35Sの平均粒径よりも大きい場合をいう。
これにより表面層35の凹部に導電性接着材5が入り込み、アンカー効果によって集電部材3と導電性接着材5とが強固に接合され、これら集電部材3と導電性接着材5との間の剥離を防止することができるとともに、表面層35にクラックが生じても、そのクラックの進展を抑制できることから、燃料電池セルスタックの出力電圧を高めることができる。
即ち、表面層35が球状晶35Sの酸化亜鉛から構成され、柱状晶35Pの酸化亜鉛を含まない場合には、表面層35を緻密なものにできるものの、表面層35の内部においてクラックの進展を妨げる役目を担う結晶が存在しないことから、表面層35においてクラックが進展しやすく、この場合には燃料電池セルスタックの出力電圧を高くすることが困難になる。
一方、表面層35が柱状晶35Pから構成され、球状晶35Sを含まない場合には、緻密な表面層35の形成が困難になることに起因して表面層35の内部にクラックが発生しやすく、また、緻密化を担う球状晶35Sが無いことから導電性接着材5との間の接着面積が低下するために導電性接着材5との間の接着力が弱まり剥離しやすくなるおそれがある。
このため本発明の燃料電池セルスタックでは、集電部材3を構成する表面層35を、球状晶35Sの酸化亜鉛と柱状晶35Pの酸化亜鉛とから構成したものとしている。
また本発明では、柱状晶35Pの平均長さが球状晶35Sの平均粒径よりも大きいことが望ましく、これによりさらに酸化亜鉛の結晶同士の接触点数を減らすことができ、その結果、表面層35の導電性が高まり燃料電池セルスタックの出力電圧を高くできる。
さらに、この球状晶35Sの平均粒径は表面層35を緻密化できるという理由から0.3〜1μmが望ましい。なお、この柱状晶35Pは、上述したように表面層35の内部においてクラックの進展を抑えるという役割を担うものであるが、表面層35の密度を低下させないという理由から、柱状晶35Pの長さは表面層35の平均厚みの1/2以下であるのがよい。
また、表面層35を構成する球状晶35Sおよび柱状晶35Pの酸化亜鉛はともに微量のFeまたはAlなどのドナーイオンを固溶させることによって導電性が付与されている。固溶させるドナーイオンの量は酸化亜鉛の結晶中に他の化合物の形成を抑えつつ、高い導電性が得られるという理由から1〜5モル%であることが好ましい。また、この酸化亜鉛の結晶により構成されている表面層35は750℃における熱膨張係数が6〜8×10−6/℃である。
ここで、球状晶とは集電部材3の表面層35を研磨した研磨面を走査型電子顕微鏡等の分析機器を用いて観察したときに、その研磨面に見られる結晶粒子の縦横比(最長径の長さ/最短径の長さ)がおおよそ1.5以下を示す結晶粒子をいい、一方、柱状晶とは、同じ研磨面における結晶粒子の縦横比(長軸方向の長さ/短軸方向の長さ)がおおよそ1.7以上の結晶粒子のことであり、この場合、例えば、立体的に見た場合に平板状の結晶も含むものとする。
また、柱状晶35Pの平均長さとは柱状晶35Pの長軸方向の長さのことをいうが、具体的には、集電部材3の表面層35を研磨した研磨面を走査型電子顕微鏡等の分析機器を用いて観察したときに、その研磨面に見られる柱状晶35Pの最長径の平均値のことである。なお、球状晶35Sおよび柱状晶35Pの縦横比については、同様の分析によって結晶粒子の長軸方向の長さ(最長径)と短軸方向の長さ(最短径)から求められる。この場合、観察する領域は球状晶35Sおよび柱状晶35Pが約50個入る円を描き、この円周上に存在する結晶まで含めた領域とする。
さらに、前記集電部材3の表面層35の研磨面に見られる前記球状晶の面積をA1、前記柱状晶の面積をA2としたときに、A2/(A1+A2)が0.07〜0.4であることが望ましく、これにより燃料電池セルスタックの出力電圧をさらに高めることができる。
この場合、表面層35における球状晶35Sおよび柱状晶35Pの面積比は、上記した球状晶35Sおよび柱状晶35Pの縦横比を求めて、球状晶35Sと柱状晶35Pとを、予め区別した試料の研磨面について、走査電子顕微鏡にて撮影した画像をコンピュータに取り込んで、各粒子の総面積を比較して求める。
燃料電池セル1は、図4に示すように平板状の支持基板10の一方の主面に、多孔質の燃料極層12、緻密な固体電解質層13、及び多孔質の酸素極層14をこの順に順次積層してなり、他方の主面に、緻密なインターコネクタ15、及び酸素極材料層(P型半導体層)16をこの順に順次積層したものであり、支持基板10は、さらに内部に、長手方向に伸びる複数の燃料ガス通路17を有するように構成されている。
ここで、支持基板10は多孔質の導電性セラミック(若しくはサーメット)から形成され、ガス透過性であるとともに導電性を有するものとなっている。
燃料極層12は、多孔質の導電性セラミックス、例えば希土類元素が固溶しているZrO(安定化ジルコニアと称されている)と、NiまたはNiO、若しくはNiおよびNiOの複合体とから形成されている。
固体電解質層13は、通常、3〜15モル%の希土類元素が固溶したZrOから形成されており、これにより電極間の電子の橋渡しをする電解質としての機能を有すると同時に、燃料ガスと空気とのリークを防止するためのガス遮断性の機能を有するものとなっている。
酸素極層14は、いわゆるペロブスカイト型結晶構造をもつ、LaFeO系(750℃における熱膨張係数が15〜17×10−6/℃)またはLaMnO系(750℃における熱膨張係数が10〜11×10−6/℃)などの導電セラミックスから形成されており、ガス透過性を有していることが必要なことから、開気孔率が20%以上であることが好ましい。
インターコネクタ15は、水素ガスなどの燃料ガスおよび空気などの酸素含有ガスと接触するものであることから、耐還元性および耐酸化性の両方の性質を有することが必要であり、このためにランタンクロマイト系のペロブスカイト型酸化物(LaCrO系酸化物)が好適に使用される。
酸素極材料は、例えば、ペロブスカイト構造のLaFeO系やLaMnO系等の導電性セラミックスにより形成されている。
このような構造の燃料電池セル1は、燃料極層12の酸素極層14と対面している部分が燃料極として作動して発電する。即ち、酸素極層14の外側に空気等の酸素含有ガスを流しつつ支持基板10内のガス通路17に燃料ガス(水素含有ガス)を流し、所定の作動温度まで加熱することにより、燃料極層12側で電子が生成し、酸素極層14側との間で起電力が発生し電流が流れ発電が行われる。
導電性接着材5としては、通常、酸素極材料、または酸素極材料とCr拡散防止層33を構成する材料を一部含有する材料が用いられる。本発明においては、集電部材3を構成する表面層35を上述のように球状晶35Sの酸化亜鉛および柱状晶35Pの酸化亜鉛の混合物により形成したことにより、表面層35と導電性接着材5との間で大きな熱膨張係数差があっても表面層35と導電性接着材5との間の剥離を防止でき、それとともに表面層35自体の強度も高めることができる。
本発明においては、球状晶35Sの酸化亜鉛と柱状晶35Pの酸化亜鉛とから構成された表面層35を有する集電部材3が、一方の燃料電池セル1の酸素極層14に導電性接着材5を介して接合されるとともに、隣設する他方の燃料電池セル1の酸素極材料層16に導電性接着材5を介して接合される。これにより複数の燃料電池セル1が電気的に直列に接続され燃料電池セルスタックが構成されている。そして、集電部材3の表面層35を構成する酸化亜鉛が、球状晶35Sの酸化亜鉛と柱状晶35Pの酸化亜鉛とから構成されていることから、表面層35の表面は凹凸に形成されており、表面層35の凹部に導電性接着材5が入り込み、アンカー効果によって集電部材3と導電性接着材5とが強固に接合される。そして、これら集電部材3と導電性接着材5との間の剥離を防止することができるとともに、表面層35にクラックが生じても、そのクラックの進展を抑制できる。このため、集電部材3と燃料電池セル1とが強固に接続され、これらの間の電気的接続信頼性を向上でき、出力電圧の低下を低減し、長期信頼性を向上した燃料電池セルスタックを得ることができる。なお、本発明の燃料電池セルスタックでは、集電部材3の少なくとも導電性接着材5と接触する部位に、酸化亜鉛を主成分とする表面層35があればよく、これにより上記効果を発揮できる。
また、図示しないが、本発明の燃料電池モジュールは、上記燃料電池セルスタックを構成する各燃料電池セル1の下端部が、各燃料電池セル1に燃料ガスを供給するためのマニホールドに固定されてセルスタック装置が構成され、そのセルスタック装置が収納容器内に収納されたものである。この場合、マニホールドに供給された燃料ガスが燃料電池セル1の燃料ガス通路17内を流れ、燃料極層12側において電子が生成し発電が行われる。本発明では、上述のように、燃料電池セルスタックを構成する集電部材3として、本発明の集電部材3を用いることで、高い出力電圧を得ることができ、発電性能に優れた燃料電池モジュールを得ることが可能になる。
本発明の燃料電池セルスタックを構成する集電部材3は以下の方法により作製される。
まず、集電基体31として、Crを10〜30質量%含有するとともに微量のMnを含む合金(例えば、Fe−Cr系合金、Ni−Cr系合金等のうちいずれか1種)を用いる。
次に、酸化亜鉛(ZnO)の粉末と、酸化鉄(Fe)粉末またはアルミナ(Al)と、溶剤、結合バインダー、分散剤等を所定の割合で混合したスラリーを調製する。
酸化亜鉛粉末としては球状および柱状の酸化亜鉛粉末を用いる。この場合、球状の酸化亜鉛粉末の平均粒径は0.5〜1.5μmであることが望ましく、一方、柱状の酸化亜鉛粉末は縦横比が2以上であり、最長径の平均長さが1〜3μmであるものを用いるのがよい。
なお、球状および柱状の酸化亜鉛粉末の平均粒径および縦横比についても、上述した集電部材3の表面層35の解析と同様に透過電子顕微鏡にて観察する方法により求めることができる。この場合、観察する試料は酸化亜鉛粉末を樹脂埋めしたものを用いるのがよい。
酸化鉄(Fe)粉末またはアルミナ(Al)粉末は、酸化亜鉛粉末と混合したときの均一性を高められるという点で球状の酸化亜鉛粉末と同等の形状および粒径を持つものが好ましい。
また、これら酸化鉄(Fe)粉末またはアルミナ(Al)粉末の割合は、酸化亜鉛粉末との合計量中に1〜5モル%であることが好ましい。
また、球状の酸化亜鉛粉末および柱状の酸化亜鉛粉末の割合については、熱処理した集電部材3の表面層35における球状晶の面積A1と柱状晶の面積A2との割合が(A2/(A1+A2)=0.07〜0.4となるように定めるのが好ましい。
次に、調製したスラリーを集電基体31の表面に噴霧し熱処理する。熱処理温度は800〜1100℃が好ましく、これにより集電基体31の表面に、Zn−Mn系スピネルからなるCr拡散防止層33を形成でき、さらに、このCr拡散防止層33の上面側に、表面層35として、球状晶35Sの酸化亜鉛と柱状晶35Pの酸化亜鉛との混合層を形成できる。
次に、燃料電池セルスタックの製造は、複数の燃料電池セル1と複数の集電部材3とを交互に積層することによって行われる。初めに、導電性接着材25をスクリーン印刷法により燃料電池セル1の電極部(酸素極層14、酸素極材料層16)に塗布する。
次に、燃料電池セル1の電極部に集電部材3を載置し、さらにその上に次の燃料電池セル1を載置する。これを必要数繰り返して、燃料電池セル1と集電部材3との積層体を作製する。
次に、該積層体を900℃〜1100℃の温度に加熱して、導電性接着材5を燃料電池セル1の電極部と集電部材3に焼き付けて、燃料電池セルスタックを作製する。このとき集電部材3上のCr拡散防止層33の表面には、球状晶35Sの酸化亜鉛と柱状晶35Pの酸化亜鉛とから構成される表面層35が凹凸を有するように形成されていることから、酸素極材料を含有する導電性接着材5が、この表面層35の凹部に入り込んで接合される。
また、燃料電池モジュールは、上記燃料電池セルスタックを、燃料ガスおよび空気の導入管を有するマニホールドに固定し、このマニホールドに固定された燃料電池セルスタックを収納容器に収容して形成する。
以上、本発明について詳細に説明したが、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々の変更、改良等が可能である。
例えば、本発明の集電部材として、耐熱性合金の板を櫛刃状に加工し、隣り合う刃を交互に反対側に折り曲げて形成された形状の集電部材を用いて説明したが、他の形状の集電部材を用いることもできる。
図5および図6は、本発明の燃料電池セルスタック装置において用いることができる他の集電部材を示したものであり、図5(a)は平面図、(b)は断面図であり、図6(a)は正面図、(b)は一部を抜粋して示す斜視図である。
図5に示す集電部材18は、一対の接触部19と、一対の接触部19のうち一方の接触部19の一端と他方の接触部19の一端とを接続する接続部20とを有する複数の導電片を、燃料電池セル1の長手方向に連続して形成されている。
また、図6に示す集電部材21は、隣接する一方の燃料電池セル1に当接する一方の接触部22と、隣接する一方の燃料電池セル1の端部から隣接する他方の燃料電池セル1の他方の端部へと傾斜して延びる導電体片23と、他方の燃料電池セル1に当接する他方の接触部22と、他方の燃料電池セル1の一方の端部から一方の燃料電池セル1の他方の端部へと傾斜して延びる導電体片23と、各接触部と各導電体片を接続する接続部24とを基本要素として具備し、この基本要素である導電体片を燃料電池セル1の長手方向に沿って連続して形成されている。
このような集電部材であっても、集電部材を構成する酸化亜鉛を主成分とする表面層(図示せず)を、球状晶35Sの酸化亜鉛と柱状晶35Pの酸化亜鉛とから構成することで、集電部材3と燃料電池セル1との間の接合力および表面層35自体の強度を高めることができる。
初めに、集電部材を以下の方法により作製した。まず、平均粒径が1.0μmで球状の酸化亜鉛粉末、および、長軸の平均長さが1.5μm、平均の縦横比が3の柱状の酸化亜鉛粉末を準備した。次いで、これら2種の酸化亜鉛粉末を、熱処理後に球状晶の面積A1と柱状晶の面積A2との割合が表1に示す割合になるようにボールミルに投入し、これに平均粒径が1.5μmのFe粉末をFe換算で2mol%添加した。
続いて、これらの酸化亜鉛粉末およびFe粉末が入ったボールミルに、溶剤、結合バインダー、および分散剤を添加して約24時間の混合を行いスラリーを調製した。
次に、調製したスラリーをCrを22質量%、Mnを1質量%含有するFe−Cr系合金からなる集電基体の表面に、スプレードライ装置を用いて、温度25℃、圧力0.5MPaの条件で噴霧して塗膜を形成し、次いで、この塗膜を形成した集電基体を1000℃で2時間加熱して集電部材を得た。このとき表面層の平均厚みは10μmになるようにスラリーの塗布厚みを調整した。
なお、この集電部材については、比較例として、球状の酸化亜鉛粉末のみ用いたもの(試料No.1およびNo.11)、および柱状の酸化亜鉛粉末のみ用いたもの(試料No.10)を作製した。
この場合、球状の酸化亜鉛粉末のみ用いたものについては、上述の条件(圧力が0.5MPa)で作製したもの以外に、表面層における下層部側の塗膜を噴霧圧力0.5MPaで形成するとともに、下層部の表面上に上層部側の塗膜として噴霧圧力0.1MPaで形成した2層タイプの塗膜を作製し、同様の評価を行った(試料No.11)。この試料は表面層の凹凸が形成されていた。
作製した集電部材のうち球状の酸化亜鉛粉末および柱状の酸化亜鉛粉末の両粉末を用いたものは、走査型電子顕微鏡を用いて断面観察した結果、いずれも表面層に凹凸が形成され、その凹部に導電性接着材が入り込んだ状態となっていた。
次に、上記集電部材を予め作製しておいた燃料電池セルの間に設置し、(La,Sr)(Co,Fe)O系の導電性セラミックスを導電性接着材として用いて、図1に示すような構成になるように固着させ、1000℃、2時間の条件で焼付けを行って燃料電池セルスタックを作製した。燃料電池セルスタックの構成は1つの燃料電池セルに各1つの集電部材が接合された構造である。燃料電池セルスタックは各試料につき1個作製した。
次に、作製した燃料電池セルスタックの発電試験は、温度750℃で行い、3000時間まで行い、3000時間後の出力電圧を測定した。
続いて、作製した燃料電池セルスタックについて、以下の評価を行った。
表面層を構成する球状晶の平均粒径および柱状晶の平均長さと縦横比、ならびに球状晶および柱状晶の総面積に対する柱状晶の面積比は、集電部材の表面層を研磨した研磨面を走査型電子顕微鏡を用いて撮影し画像解析により求めた。このとき観察する領域は球状晶および柱状晶が約50個入る円を描き、この円周上に存在する結晶まで含めた領域とした。
また、柱状晶の平均長さは結晶粒子の最長径の平均値から求めた。球状晶および柱状晶の縦横比は結晶粒子の長軸方向の長さ(最長径)と短軸方向の長さ(最短径)から求めた。この場合、縦横比が1.5以下の結晶粒子を球状晶とし、縦横比が1.7以上の結晶粒子を柱状晶とした。
また、表面層における球状晶および柱状晶の面積比は、球状晶および柱状晶の縦横比を上記のようにして求めて、球状晶と柱状晶とを区別し、撮影した柱状晶の画像をコンピュータに取り込んで、各結晶の総面積(球状晶:A1,柱状晶:A2)からA2/(A1+A2)比として求めた。なお、表面層と導電性接着材との間に剥離が有る状態は表面層と導電性接着材との界面にほぼ沿って球状晶の平均粒径の2倍以上の長さの空隙が形成されている場合とし、また表面層にクラックが有る状態は表面層内に球状晶の平均粒径の2倍以上の長さの亀裂が形成されている場合とした。これらの評価には作製した燃料電池モジュールから取り外した1つの集電部材を用いた。
作製した集電部材において、表面層を構成する結晶粒子のうち、球状晶の酸化亜鉛として評価した結晶粒子の平均粒径は上記評価の結果、いずれの試料においても0.7μmであった。
燃料電池セルスタックの出力電圧は、燃料電池セルに接合された2つの集電部材にリード線を接続し、このリード線間に電圧計を置いて測定した。
Figure 2010055916
表1の結果から明らかなように、本発明の構成の燃料電池セルスタックである試料No.2〜9では、表面層と導電性接着材との界面での剥離が無く、また、表面層の内部においてクラックの進展が無く、燃料電池セルスタックの出力電圧が600mV以上であった。
本発明の試料において、柱状晶の平均長さを球状晶の平均粒径よりも大きくした試料No.3〜9では、燃料電池セルスタックの出力電圧が620mV以上であり、特に、表面層の研磨面に見られる球状晶の面積をA1、柱状晶の面積をA2としたときに、A2/(A1+A2)を0.07〜0.4とした試料No.3〜7では、燃料電池セルスタックの出力電圧が730mV以上であった。
これに対して、表面層が球状晶の酸化亜鉛のみか、若しくは柱状晶の酸化亜鉛のみで構成した本発明の範囲外の試料No.1,10および11では、少なくとも表面層にクラックが見られ、燃料電池セルスタックの出力電圧が600mV未満であった。
本発明の燃料電池セルスタックの一例を示す断面模式図である。 図1における集電部材と導電性接着材との接合部分Cの拡大模式図である。 図1における集電部材の斜視図である。 図1における燃料電池セルの一部を破断した斜視図である。 本発明の燃料電池セルスタックにおける集電部材の他の一例を示し、(a)は平面図、(b)は断面図である。 本発明の燃料電池セルスタックにおける集電部材のさらに他の一例を示し、(a)は正面図、(b)は一部を抜粋して示す斜視図である。
符号の説明
1 燃料電池セル
3 集電部材
5 導電性接着材
35 表面層
35S 球状晶
35P 柱状晶

Claims (4)

  1. 燃料電池セルと集電部材とが導電性接着材を介して交互に複数接合されてなり、前記集電部材は少なくとも前記導電性接着材と接触する部位に酸化亜鉛を主成分とする表面層を有するとともに、前記酸化亜鉛が球状晶の酸化亜鉛と柱状晶の酸化亜鉛とから構成されていることを特徴とする燃料電池セルスタック。
  2. 前記柱状晶の平均長さが前記球状晶の平均粒径よりも大きいことを特徴とする請求項1に記載の燃料電池セルスタック。
  3. 前記表面層の研磨面に見られる前記球状晶の面積をA1、前記柱状晶の面積をA2としたときに、A2/(A1+A2)が0.07〜0.4であることを特徴とする請求項1または2に記載の燃料電池セルスタック。
  4. 請求項1乃至3のうちいずれかに記載の燃料電池セルスタックが収納容器内に収納されていることを特徴とする燃料電池モジュール。
JP2008219238A 2008-08-28 2008-08-28 燃料電池セルスタックおよびこれを用いた燃料電池モジュール Active JP5311931B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008219238A JP5311931B2 (ja) 2008-08-28 2008-08-28 燃料電池セルスタックおよびこれを用いた燃料電池モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008219238A JP5311931B2 (ja) 2008-08-28 2008-08-28 燃料電池セルスタックおよびこれを用いた燃料電池モジュール

Publications (2)

Publication Number Publication Date
JP2010055916A true JP2010055916A (ja) 2010-03-11
JP5311931B2 JP5311931B2 (ja) 2013-10-09

Family

ID=42071615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008219238A Active JP5311931B2 (ja) 2008-08-28 2008-08-28 燃料電池セルスタックおよびこれを用いた燃料電池モジュール

Country Status (1)

Country Link
JP (1) JP5311931B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219020A (ja) * 2012-04-06 2013-10-24 Korea Inst Of Energy Research 平管型固体酸化物単位セル、これを用いた平管型固体酸化物燃料電池および平管型固体酸化物水電解装置
JP2017123240A (ja) * 2016-01-06 2017-07-13 日本特殊陶業株式会社 電気化学反応単セル、インターコネクタ−電気化学反応単セル複合体、および、電気化学反応セルスタック

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060462A (ja) * 1999-08-23 2001-03-06 Mitsubishi Heavy Ind Ltd セルチューブのシール構造
JP2002313406A (ja) * 2001-04-17 2002-10-25 Nissan Motor Co Ltd 固体電解質型燃料電池および固体電解質型燃料電池用電極の製造方法
JP2006032102A (ja) * 2004-07-15 2006-02-02 Mitsubishi Heavy Ind Ltd 燃料電池セル管と金属との結合構造
WO2007062117A2 (en) * 2005-11-23 2007-05-31 The Regents Of The University Of California Electrochemical cell holder and stack
JP2008034203A (ja) * 2006-07-27 2008-02-14 Kyocera Corp 燃料電池用集電部材および燃料電池セルスタック、ならびに燃料電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060462A (ja) * 1999-08-23 2001-03-06 Mitsubishi Heavy Ind Ltd セルチューブのシール構造
JP2002313406A (ja) * 2001-04-17 2002-10-25 Nissan Motor Co Ltd 固体電解質型燃料電池および固体電解質型燃料電池用電極の製造方法
JP2006032102A (ja) * 2004-07-15 2006-02-02 Mitsubishi Heavy Ind Ltd 燃料電池セル管と金属との結合構造
WO2007062117A2 (en) * 2005-11-23 2007-05-31 The Regents Of The University Of California Electrochemical cell holder and stack
JP2009520315A (ja) * 2005-11-23 2009-05-21 ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア 電気化学電池のホルダ及びスタック
JP2008034203A (ja) * 2006-07-27 2008-02-14 Kyocera Corp 燃料電池用集電部材および燃料電池セルスタック、ならびに燃料電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219020A (ja) * 2012-04-06 2013-10-24 Korea Inst Of Energy Research 平管型固体酸化物単位セル、これを用いた平管型固体酸化物燃料電池および平管型固体酸化物水電解装置
US8999594B2 (en) 2012-04-06 2015-04-07 Korea Institute Of Energy Research Unit cell for flat-tubular solid oxide fuel cell or solid oxide electrolyzer, and flat-tubular solid oxide fuel cell and flat-tubular solid oxide electrolyzer using the same
JP2017123240A (ja) * 2016-01-06 2017-07-13 日本特殊陶業株式会社 電気化学反応単セル、インターコネクタ−電気化学反応単セル複合体、および、電気化学反応セルスタック

Also Published As

Publication number Publication date
JP5311931B2 (ja) 2013-10-09

Similar Documents

Publication Publication Date Title
JP6343728B1 (ja) 合金部材、セルスタック及びセルスタック装置
JP5456135B2 (ja) 燃料電池のスタック構造体
JP5356624B1 (ja) 固体酸化物形燃料電池の発電部間が電気的に接続された接合体
JP5075183B2 (ja) 電気化学装置
JP5072305B2 (ja) 耐熱性合金部材及び燃料電池用集電部材並びに燃料電池セルスタック、燃料電池
JP5839756B1 (ja) 燃料電池のスタック構造体
JP2008034203A (ja) 燃料電池用集電部材および燃料電池セルスタック、ならびに燃料電池
TW201011967A (en) Metal-supported, segmented-in-series high temperature electrochemical device
JP5072304B2 (ja) 燃料電池セルおよび燃料電池セルスタック、ならびに燃料電池
JP5013750B2 (ja) セルスタック及び燃料電池
JP5080749B2 (ja) 燃料電池用集電部材、セルスタック、及び燃料電池
JP5162724B1 (ja) 接合材、及び、その接合材を用いた燃料電池のスタック構造体
JP5062789B1 (ja) 固体酸化物形燃料電池
JP5311931B2 (ja) 燃料電池セルスタックおよびこれを用いた燃料電池モジュール
JP4130135B2 (ja) 集電部材の表面処理方法
JP5501484B1 (ja) 燃料電池のスタック構造体
JP5107509B2 (ja) 固体酸化物形燃料電池の製造方法
JP4707985B2 (ja) 燃料電池セル及びセルスタック
JP4173029B2 (ja) 集電部材
JP4913257B1 (ja) 固体酸化物形燃料電池
JP5873947B1 (ja) 接合体
JP4881479B2 (ja) 燃料電池セル
JP6335267B2 (ja) 燃料電池スタック
JP2007087696A (ja) 燃料電池セル、燃料電池セルスタック及び燃料電池
JP6063368B2 (ja) 燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5311931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150