JP2010033005A - 感光性組成物、それから形成された硬化膜、および硬化膜を有する素子 - Google Patents

感光性組成物、それから形成された硬化膜、および硬化膜を有する素子 Download PDF

Info

Publication number
JP2010033005A
JP2010033005A JP2009067444A JP2009067444A JP2010033005A JP 2010033005 A JP2010033005 A JP 2010033005A JP 2009067444 A JP2009067444 A JP 2009067444A JP 2009067444 A JP2009067444 A JP 2009067444A JP 2010033005 A JP2010033005 A JP 2010033005A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
polysiloxane
photosensitive composition
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009067444A
Other languages
English (en)
Other versions
JP5343649B2 (ja
Inventor
Hiroyuki Nio
宏之 仁王
Takenori Fujiwara
健典 藤原
Mitsufumi Suwa
充史 諏訪
Keiichi Uchida
圭一 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2009067444A priority Critical patent/JP5343649B2/ja
Publication of JP2010033005A publication Critical patent/JP2010033005A/ja
Application granted granted Critical
Publication of JP5343649B2 publication Critical patent/JP5343649B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】高耐熱性、高透明性の特性を有し、かつ高感度で高解像度のパターン形成が可能なポジ型感光性組成物の提供、および、上記のポジ型感光性組成物から形成されたTFT基板用平坦化膜、層間絶縁膜、コアやクラッド材などの硬化膜、およびその硬化膜を有する表示素子、半導体素子、固体撮像素子、光導波路などの素子の提供。
【解決手段】(a)下記一般式(1)で表されるオルガノシランの1種以上と下記一般式(2)で表されるオルガノシランの1種以上を加水分解し縮合させることによって合成されるポリシロキサンと(b)ナフトキノンジアジド化合物、(c)溶剤を含有するポジ型感光性組成物である。
Figure 2010033005

Figure 2010033005

【選択図】なし

Description

本発明は、液晶表示素子や有機EL表示素子などの薄膜トランジスタ(TFT)基板用平坦化膜、半導体素子の層間絶縁膜、固体撮像素子用平坦化膜やマイクロレンズアレイパターン、あるいは光導波路のコアやクラッド材を形成するための感光性組成物、それから形成された硬化膜、およびその硬化膜を有する素子に関する。
近年、液晶ディスプレイや有機ELディスプレイなどにおいて、さらなる高精細、高解像度を実現する方法として、表示装置の開口率を上げる方法が知られている(特許文献1参照)。これは、透明な平坦化膜をTFT基板の上部に保護膜として設けることによって、データラインと画素電極をオーバーラップさせることを可能とし、従来技術に比べて開口率を上げる方法である。
このようなTFT基板用平坦化膜の材料としては、高耐熱性、高透明性の特性を有し、かつTFT基板電極とITO電極との導通確保のため50μm〜数μm程度のホールパターン形成をする必要があり、一般的にポジ型感光性材料が用いられる。代表的な材料としては、アクリル樹脂にキノンジアジド化合物を組み合わせた材料(特許文献2、3、4参照)が知られている。しかしながら、これらの材料は耐熱性や耐薬品性が不十分であり、基板の高温処理や各種薬液処理により硬化膜が着色して透明性が低下するという問題がある。また、これらアクリル系材料は一般に感度が低いため生産性が低く、より高感度の材料が求められている。さらに、ディスプレイの進歩に伴いホールパターン等の開口寸法も年々微細化されており、3μm以下の微細パターン形成を求められる場合もあるが、上記アクリル系材料の解像度では不十分であった。
一方、高耐熱性、高透明性、高耐薬品性といった特性を有する他の材料として、ポリシロキサンが知られており、これにポジ型の感光性を付与するためにキノンジアジド化合物を組み合わせた材料(特許文献5参照)が公知である。この材料は透明性が高く、基板の高温処理によっても透明性は低下すること無く、高透明の硬化膜を得ることができる。しかしながら、この材料に於いても、感度、解像度は十分とは言えず、より高感度、高解像度のポジ型感光性材料が強く求められている。
特開平9−152625号公報(請求項1) 特開2001−281853号公報(請求項1) 特開平5−165214号公報(請求項1) 特開2002−341521号公報(請求項1) 特開2006−178436号公報(請求項1)
本発明は、上述のような事情に基づいてなされたものであり、高耐熱性、高透明性の特性を有し、かつ高感度で高解像度のパターン形成が可能なポジ型感光性組成物を提供する。また、本発明の別の目的は、上記のポジ型感光性組成物から形成されたTFT基板用平坦化膜、層間絶縁膜、コアやクラッド材などの硬化膜、およびその硬化膜を有する表示素子、半導体素子、固体撮像素子、光導波路などの素子を提供する。
上記課題を解決するため、本発明は以下の構成を有する。すなわち、(a)下記一般式(1)で表されるオルガノシランの1種以上と下記一般式(2)で表されるオルガノシランの1種以上を加水分解し縮合させることによって合成されるポリシロキサンと(b)ナフトキノンジアジド化合物、(c)溶剤を含有するポジ型感光性組成物である。
Figure 2010033005
(式中、R1は水素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数6〜15のアリール基のいずれかを表し、複数のR1はそれぞれ同じでも異なっていてもよい。R2は水素、炭素数1〜6のアルキル基、炭素数2〜6のアシル基、炭素数6〜15のアリール基のいずれかを表し、複数のR2はそれぞれ同じでも異なっていてもよい。nは0から3の整数を表す。)
Figure 2010033005
(式中、R3からRはそれぞれ独立に水素、炭素数1〜6のアルキル基、炭素数2〜6のアシル基、炭素数6〜15のアリール基のいずれかを表す。mは2から8の整数を表す。)
本発明の感光性組成物は高耐熱性、高透明性の特性を有し、かつ高感度で高解像度のパターン形成を可能にする。また、得られた硬化膜は、TFT基板用平坦化膜や層間絶縁膜として好適に用いることができる。
本発明の感光性組成物は、(a)下記一般式(1)で表されるオルガノシランの1種以上と下記一般式(2)で表されるオルガノシランの1種以上を加水分解し縮合させることによって合成されるポリシロキサンと(b)ナフトキノンジアジド化合物、(c)溶剤を含有するポジ型感光性組成物である。
本発明のポジ型感光性組成物は、(a)下記一般式(1)で表されるオルガノシランの1種以上と下記一般式(2)で表されるオルガノシランの1種以上を加水分解し縮合させることによって合成されるポリシロキサンを含有する。
Figure 2010033005
一般式(1)で表されるオルガノシランにおいて、Rは、水素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数6〜15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。また、これらのアルキル基、アルケニル基、アリール基はいずれも無置換体、置換体のいずれでもよく、組成物の特性に応じて選択できる。アルキル基およびその置換体の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、t−ブチル基、n−ヘキシル基、n−デシル基、トリフルオロメチル基、3,3,3−トリフルオロプロピル基、3−グリシドキシプロピル基、2−(3,4−エポキシシクロヘキシル)エチル基、〔(3−エチル−3−オキセタニル)メトキシ〕プロピル基、3−アミノプロピル基、3−メルカプトプロピル基、3−イソシアネートプロピル基が挙げられる。アルケニル基およびその置換体の具体例としては、ビニル基、3−アクリロキシプロピル基、3−メタクリロキシプロピル基が挙げられる。アリール基およびその置換体の具体例としては、フェニル基、トリル基、p−ヒドロキシフェニル基、1−(p−ヒドロキシフェニル)エチル基、2−(p−ヒドロキシフェニル)エチル基、4−ヒドロキシ−5−(p−ヒドロキシフェニルカルボニルオキシ)ペンチル基、ナフチル基が挙げられる。
一般式(1)のRは水素、炭素数1〜6のアルキル基、炭素数2〜6のアシル基、炭素数6〜15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。また、これらのアルキル基、アシル基、アリール基はいずれも無置換体、置換体のどちらでもよく、組成物の特性に応じて選択できる。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基が挙げられる。アシル基の具体例としては、アセチル基が挙げられる。アリール基の具体例としては、フェニル基が挙げられる。
一般式(1)のnは0から3の整数を表す。n=0の場合は4官能性シラン、n=1の場合は3官能性シラン、n=2の場合は2官能性シラン、n=3の場合は1官能性シランである。
一般式(1)で表されるオルガノシランの具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラアセトキシシラン、テトラフェノキシシランなどの4官能性シラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリn−ブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリイソプロポキシシラン、エチルトリn−ブトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−ブチルトリメトキシシラン、n−ブチルトリエトキシシラン、n−ヘキシルトリメトキシシラン、n−ヘキシルトリエトキシシラン、デシルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、p−ヒドロキシフェニルトリメトキシシラン、1−(p−ヒドロキシフェニル)エチルトリメトキシシラン、2−(p−ヒドロキシフェニル)エチルトリメトキシシラン、4−ヒドロキシ−5−(p−ヒドロキシフェニルカルボニルオキシ)ペンチルトリメトキシシラン、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、〔(3−エチル−3−オキセタニル)メトキシ〕プロピルトリメトキシシラン、〔(3−エチル−3−オキセタニル)メトキシ〕プロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−トリメトキシシリルプロピルコハク酸などの3官能シラン、ジメチルジメトキシシラン、ジメチルジエトキシラン、ジメチルジアセトキシシラン、ジn−ブチルジメトキシシラン、ジフェニルジメトキシシラン、(3−グリシドキシプロピル)メチルジメトキシシラン、(3−グリシドキシプロピル)メチルジエトキシシランなどの2官能シラン、トリメチルメトキシシラン、トリn−ブチルエトキシシラン、(3−グリシドキシプロピル)ジメチルメトキシシラン、(3−グリシドキシプロピル)ジメチルエトキシシランなどの1官能シランが挙げられる。なお、これらのオルガノシランは単独で使用しても、2種以上を組み合わせて使用してもよい。これらのオルガノシランの中でも、硬化膜の耐クラック性や硬度の点から3官能シランが好ましく用いられる。
Figure 2010033005
一般式(2)で表されるオルガノシランにおいて、式中、R3からRはそれぞれ独立に水素、炭素数1〜6のアルキル基、炭素数2〜6のアシル基、炭素数6〜15のアリール基のいずれかを表す。これらのアルキル基、アシル基、アリール基はいずれも無置換体、置換体のどちらでもよく、組成物の特性に応じて選択できる。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基が挙げられる。アシル基の具体例としては、アセチル基が挙げられる。アリール基の具体例としては、フェニル基が挙げられる。一般式(2)のmは2から8の整数であり、mは分布を有してもよい。
一般式(2)で表されるオルガノシランを用いることで、高い耐熱性や透明性を維持しつつ、感度と解像度に優れたポジ型感光性組成物が得られる。
(a)のポリシロキサンにおける一般式(2)で表されるオルガノシランの含有比は、ポリシロキサン全体のSi原子モル数に対するSi原子モル比で5%以上30%以下であることが好ましい。30%より多いと、ポリシロキサンとナフトキノンジアジド化合物との相溶性が悪化し、硬化膜の透明性が低下する。また、5%より少ないと、高感度、高解像度を発現し得ない場合がある。一般式(2)で表されるオルガノシランの含有比は、1H−NMR、13C−NMR、29Si−NMR、IR、TOF−MS、元素分析法および灰分測定などを組み合わせて求めることができる
一般式(2)で表されるオルガノシランの具体例としては、メチルシリケート51(扶桑化学工業株式会社製)、Mシリケート51、シリケート40、シリケート45(多摩化学工業株式会社製)、メチルシリケート51、メチルシリケート53A、エチルシリケート40、エチルシリケート48(コルコート株式会社製)などが挙げられる。
(a)のポリシロキサンの態様として、前述の一般式(1)で表されるオルガノシランの1種以上と、一般式(2)で表されるオルガノシランの1種以上、およびシリカ粒子を反応させることによって合成されるポリシロキサンを用いても良い。シリカ粒子を反応させることで、パターン解像度が向上する。これは、ポリシロキサン中にシリカ粒子が組み込まれることで、膜のガラス転移温度が高くなり熱硬化時のパターンだれが抑えられるためと考えられる。
シリカ粒子の数平均粒子径は、好ましくは2nm〜200nmであり、さらに好ましくは5nm〜70nmである。2nmより小さいとパターン解像度の向上効果が十分ではなく、200nmより大きいと硬化膜が光散乱し透明性が低下する。ここで、シリカ粒子の数平均粒子径は、比表面積法換算値を用いる場合には、シリカ粒子を乾燥後、焼成し、得られた粒子の比表面積を測定した後に、粒子を球と仮定して比表面積から粒子径を求め、数平均として平均粒子径を求める。用いる機器は特に限定されないが、アサップ2020(商品名、Micromeritics社製)などを用いることができる。
シリカ粒子の具体例としては、イソプロパノールを分散媒とした粒子径12nmのIPA−ST、メチルイソブチルケトンを分散媒とした粒子径12nmのMIBK−ST、イソプロパノールを分散媒とした粒子径45nmのIPA−ST−L、イソプロパノールを分散媒とした粒子径100nmのIPA−ST−ZL、プロピレングリコールモノメチルエーテルを分散媒とした粒子径15nmのPGM−ST(以上商品名、日産化学工業(株)製)、γ−ブチロラクトンを分散媒とした粒子径12nmの“オスカル”101、γ−ブチロラクトンを分散媒とした粒子径60nmの“オスカル”105、ジアセトンアルコールを分散媒とした粒子径120nmの“オスカル”106、分散溶液が水である粒子径5〜80nmの“カタロイド”−S(以上商品名、触媒化成工業(株)製)、プロピレングリコールモノメチルエーテルを分散媒とした粒子径16nmの“クォートロン”PL−2L−PGME、γ−ブチロラクトンを分散媒とした粒子径17nmの“クォートロン”PL−2L−BL、ジアセトンアルコールを分散媒とした粒子径17nmの“クォートロン”PL−2L−DAA、分散溶液が水である粒子径18〜20nmの“クォートロン”PL−2L、GP−2L(以上商品名、扶桑化学工業(株)製)、粒子径が100nmであるシリカ(SiO)SG−SO100(商品名、共立マテリアル(株)製)、粒子径が5〜50nmであるレオロシール(商品名、(株)トクヤマ製)などが挙げられる。また、これらのシリカ粒子は単独で使用しても、2種以上を組み合わせて使用してもよい。
シリカ粒子を用いる場合の混合比率は特に制限されないが、ポリシロキサン全体のSi原子モル数に対するSi原子モル比で50%以下が好ましい。シリカ粒子が50%より多いと、ポリシロキサンとナフトキノンジアジド化合物との相溶性が悪くなり、硬化膜の透明性が低下する。
また、本発明で用いられる(a)のポリシロキサンにおいて、後述するナフトキノンジアジド化合物などとの十分な相溶性を確保し、相分離することなく均一な硬化膜を形成させる目的から、ポリシロキサン中にあるフェニル基の含有率がSi原子に対して30モル%以上が好ましく、さらに好ましくは40モル%以上である。フェニル基の含有率が30モル%より少ないと、ポリシロキサンとナフトキノンジアジド化合物が塗布、乾燥、熱硬化中などにおいて、相分離を引き起こし、膜が白濁してしまい、硬化膜の透過率が低下する。また、フェニル基の含有率は70モル%以下であることが好ましく、60%以下であることがさらに好ましい。フェニル基の含有率が70モル%より多いと、熱硬化時の架橋が十分に起こらずに硬化膜の耐薬品性が低下してしまう。フェニル基の含有率は、例えば、ポリシロキサンの29Si−NMRを測定し、そのフェニル基が結合したSiのピーク面積とフェニル基が結合していないSiのピーク面積の比から求めることができる。
また、本発明で用いるポリシロキサンの重量平均分子量(Mw)は特に制限されないが、好ましくはGPC(ゲルパーミネーションクロマトグラフィ)で測定されるポリスチレン換算で1000〜100000、さらに好ましくは2000〜50000である。Mwが1000より小さいと塗膜性が悪くなり、100000より大きいとパターン形成時の現像液に対する溶解性が悪くなる。
本発明におけるポリシロキサンは、一般式(1)、(2)で表されるオルガノシランなどのモノマーを加水分解および部分縮合させることにより合成される。加水分解および部分縮合には一般的な方法を用いることができる。例えば、混合物に溶媒、水、必要に応じて触媒を添加し、50〜150℃で0.5〜100時間程度加熱攪拌する。なお、攪拌中、必要に応じて、蒸留によって加水分解副生物(メタノールなどのアルコール)や縮合副生物(水)の留去を行ってもよい。
上記の反応溶媒としては特に制限は無いが、通常は後述の(c)溶剤と同様のものが用いられる。溶媒の添加量はオルガノシランなどのモノマー100重量部に対して10〜1000重量部が好ましい。また加水分解反応に用いる水の添加量は、加水分解性基1モルに対して0.5〜2モルが好ましい。
必要に応じて添加される触媒に特に制限はないが、酸触媒、塩基触媒が好ましく用いられる。酸触媒の具体例としては塩酸、硝酸、硫酸、フッ酸、リン酸、酢酸、トリフルオロ酢酸、ギ酸、多価カルボン酸あるいはその無水物、イオン交換樹脂が挙げられる。塩基触媒の具体例としては、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、ジエチルアミン、トリエタノールアミン、ジエタノールアミン、水酸化ナトリウム、水酸化カリウム、アミノ基を有するアルコキシシラン、イオン交換樹脂が挙げられる。触媒の添加量はオルガノシランなどのモノマー100重量部に対して0.01〜10重量部が好ましい。
また、組成物の貯蔵安定性の観点から、加水分解、部分縮合後のポリシロキサン溶液には上記触媒が含まれないことが好ましく、必要に応じて触媒の除去を行うことができる。除去方法に特に制限は無いが、操作の簡便さと除去性の点で、水洗浄、および/またはイオン交換樹脂の処理が好ましい。水洗浄とは、ポリシロキサン溶液を適当な疎水性溶剤で希釈した後、水で数回洗浄して得られた有機層をエバポレーター等で濃縮する方法である。イオン交換樹脂での処理とは、ポリシロキサン溶液を適当なイオン交換樹脂に接触させる方法である。
本発明のポジ型感光性組成物は、(b)ナフトキノンジアジド化合物を含有する。ナフトキノンジアジド化合物を含有する感光性組成物は、露光部が現像液で除去されるポジ型を形成する。用いるナフトキノンジアジド化合物に特に制限は無いが、好ましくはフェノール性水酸基を有する化合物にナフトキノンジアジドスルホン酸がエステル結合した化合物であり、当該化合物のフェノール性水酸基のオルト位、およびパラ位がそれぞれ独立して水素、もしくは一般式(4)で表される置換基のいずれかである化合物が用いられる。
Figure 2010033005
式中、R11、R12、R13はそれぞれ独立して炭素数1〜10のアルキル基、カルボキシル基、フェニル基、置換フェニル基のいずれかを表す。また、R11、R12、R13で環を形成してもよい。アルキル基は無置換体、置換体のいずれでもよく、組成物の特性に応じて選択できる。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ヘキシル基、シクロヘキシル基、n−ヘプチル基、n−オクチル基、トリフルオロメチル基、2−カルボキシエチル基が挙げられる。また、フェニル基上の置換基としては、水酸基、メトキシ基などが挙げられる。また、R11、R12、R13で環を形成する場合の具体例としては、シクロペンタン環、シクロヘキサン環、アダマンタン環、フルオレン環が挙げられる。
フェノール性水酸基のオルト位、およびパラ位が上記以外、例えばメチル基の場合、熱硬化によって酸化分解が起こり、キノイド構造に代表される共役系化合物が形成され、硬化膜が着色して無色透明性が低下する。なお、これらのナフトキノンジアジド化合物は、フェノール性水酸基を有する化合物と、ナフトキノンジアジドスルホン酸クロリドとの公知のエステル化反応により合成することができる。
フェノール性水酸基を有する化合物の具体例としては、以下の化合物が挙げられる(いずれも本州化学工業(株)製)。
Figure 2010033005
Figure 2010033005
原料となるナフトキノンジアジドスルホン酸クロリドとしては、4−ナフトキノンジアジドスルホン酸クロリドあるいは5−ナフトキノンジアジドスルホン酸クロリドを用いることができる。4−ナフトキノンジアジドスルホン酸エステル化合物はi線(波長365nm)領域に吸収を持つため、i線露光に適している。また、5−ナフトキノンジアジドスルホン酸エステル化合物は広範囲の波長領域に吸収が存在するため、広範囲の波長での露光に適している。露光する波長によって4−ナフトキノンジアジドスルホン酸エステル化合物、5−ナフトキノンジアジドスルホン酸エステル化合物を選択することが好ましい。4−ナフトキノンジアジドスルホン酸エステル化合物と5−ナフトキノンジアジドスルホン酸エステル化合物を混合して用いることもできる。
本発明で好ましく用いられるナフトキノンジアジド化合物として、下記一般式(3)で表される化合物が挙げられる。
Figure 2010033005
式中、Rは水素、または炭素数1〜8から選ばれるアルキル基を示す。R、R、R10は水素原子、炭素数1〜8から選ばれるアルキル基、アルコキシル基、カルボキシル基、エステル基のいずれかを示す。各R、R、R10は同じであっても異なっていても良い。Qは5―ナフトキノンジアジドスルホニル基、水素原子のいずれかを表し、Qの全てが水素原子になることはない。a、b、c、α、βは0〜4の整数を表す。ただし、α+β≧3である。一般式(3)で表されるナフトキノンジアジド化合物を用いることで、パターン加工に於ける感度や、解像度が向上する。
ナフトキノンジアジド化合物の添加量は特に制限されないが、好ましくは樹脂(ポリシロキサン)100重量部に対して2〜30重量部であり、さらに好ましくは4〜20重量部である。ナフトキノンジアジド化合物の添加量が1重量部より少ない場合、露光部と未露光部との溶解コントラストが低すぎて、実用に足る感光性を発現しない。また、さらに良好な溶解コントラストを得るためには5重量部以上が好ましい。一方、ナフトキノンジアジド化合物の添加量が30重量部より多い場合、ポリシロキサンとナフトキノンジアジド化合物との相溶性が悪くなることによる塗布膜の白化が起こったり、熱硬化時に起こるキノンジアジド化合物の分解による着色が顕著になるために、硬化膜の無色透明性が低下する。また、さらに高透明性の膜を得るためには15重量部以下が好ましい。
本発明のポジ型感光性組成物は、(c)溶剤を含有する。使用する溶剤に特に制限はないが、好ましくはアルコール性水酸基を有する化合物が用いられる。これらの溶剤を用いると、ポリシロキサンとキノンジアジド化合物とが均一に溶解し、組成物を塗布成膜しても膜は白化することなく、高透明性が達成できる。
上記アルコール性水酸基を有する化合物は特に制限されないが、好ましくは大気圧下の沸点が110〜250℃である化合物である。沸点が250℃より高いと膜中の残存溶剤量が多くなりキュア時の膜収縮が大きくなり、良好な平坦性が得られなくなる。一方、沸点が110℃より低いと、塗膜時の乾燥が速すぎて膜表面が荒れるなど塗膜性が悪くなる。
アルコール性水酸基を有する化合物の具体例としては、アセトール、3−ヒドロキシ−3−メチル−2−ブタノン、4−ヒドロキシ−3−メチル−2−ブタノン、5−ヒドロキシ−2−ペンタノン、4−ヒドロキシ−4−メチル−2−ペンタノン(ジアセトンアルコール)、乳酸エチル、乳酸ブチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノn−プロピルエーテル、プロピレングリコールモノn−ブチルエーテル、プロピレングリコールモノt−ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、3−メトキシ−1−ブタノール、3−メチル−3−メトキシ−1−ブタノールなどが挙げられる。なお、これらのアルコール性水酸基を有する化合物は、単独、あるいは2種以上を組み合わせて使用してもよい。
また、本発明の感光性組成物は、本発明の効果を損なわない限り、その他の溶剤を含有してもよい。その他の溶剤としては、酢酸エチル、酢酸n−プロピル、酢酸イソプロピル、酢酸n−ブチル、酢酸イソブチル、プロピレングリコールモノメチルエーテルアセテート、3−メトキシ−1−ブチルアセテート、3−メチル−3−メトキシ−1−ブチルアセテート、アセト酢酸エチルなどのエステル類、メチルイソブチルケトン、ジイソプロピルケトン、ジイソブチルケトン、アセチルアセトンなどのケトン類、ジエチルエーテル、ジイソプロピルエーテル、ジn−ブチルエーテル、ジフェニルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジメチルエーテル、などのエーテル類、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、炭酸プロピレン、N−メチルピロリドン、シクロペンタノン、シクロヘキサノン、シクロヘプタノンなどが挙げられる。
溶剤の添加量に特に制限はないが、好ましくは樹脂(ポリシロキサン)100重量部に対して100〜2000重量部の範囲である。
さらに、本発明の感光性組成物は必要に応じて、シランカップリング剤、架橋剤、架橋促進剤、増感剤、熱ラジカル発生剤、溶解促進剤、溶解抑止剤、界面活性剤、安定剤、消泡剤などの添加剤を含有することもできる。
本発明の感光性組成物は、シランカップリング剤を含有しても良い。シランカップリング剤を含有することで、基板との密着性が向上する。
シランカップリング剤の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−ブチルトリメトキシシラン、n−ブチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、〔(3−エチル−3−オキセタニル)メトキシ〕プロピルトリメトキシシラン、〔(3−エチル−3−オキセタニル)メトキシ〕プロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−ウレイドプロピルトリエトキシシラン、3−イソシアネートプロピルトリエトキシシラン、3−トリメトキシシリルプロピルコハク酸、N−t−ブチル−3−(3−トリメトキシシリルプロピル)コハク酸イミドなどが挙げられる。
シランカップリング剤の添加量に特に制限は無いが、好ましくは樹脂(アクリル樹脂+ポリシロキサン)100重量部に対して0.1〜10重量部の範囲である。添加量が0.1重量部より少ないと密着性向上の効果が十分ではなく、10重量部より多いと保管中にシランカップリン剤同士が縮合反応し、現像時の溶け残りの原因となる。
本発明の感光性組成物は、界面活性剤を含有しても良い。界面活性剤を含有することで、塗布ムラが改善し均一な塗布膜が得られる。フッ素系界面活性剤や、シリコーン系界面化成剤が好ましく用いられる。
フッ素系界面活性剤の具体的な例としては、1,1,2,2−テトラフロロオクチル(1,1,2,2−テトラフロロプロピル)エーテル、1,1,2,2−テトラフロロオクチルヘキシルエーテル、オクタエチレングリコールジ(1,1,2,2−テトラフロロブチル)エーテル、ヘキサエチレングリコール(1,1,2,2,3,3−ヘキサフロロペンチル)エーテル、オクタプロピレングリコールジ(1,1,2,2−テトラフロロブチル)エーテル、ヘキサプロピレングリコールジ(1,1,2,2,3,3−ヘキサフロロペンチル)エーテル、パーフロロドデシルスルホン酸ナトリウム、1,1,2,2,8,8,9,9,10,10−デカフロロドデカン、1,1,2,2,3,3−ヘキサフロロデカン、N−[3−(パーフルオロオクタンスルホンアミド)プロピル]−N,N′−ジメチル−N−カルボキシメチレンアンモニウムベタイン、パーフルオロアルキルスルホンアミドプロピルトリメチルアンモニウム塩、パーフルオロアルキル−N−エチルスルホニルグリシン塩、リン酸ビス(N−パーフルオロオクチルスルホニル−N−エチルアミノエチル)、モノパーフルオロアルキルエチルリン酸エステルなどの末端、主鎖および側鎖の少なくとも何れかの部位にフルオロアルキルまたはフルオロアルキレン基を有する化合物からなるフッ素系界面活性剤を挙げることができる。また、市販品としては、“メガファック”F142D、同F172、同F173、同F183、同F475(以上、大日本インキ化学工業(株)製)、“エフトップ”EF301、同303、同352(新秋田化成(株)製)、“フロラード”FC−430、同FC−431(住友スリーエム(株)製))、“アサヒガード”AG710、“サーフロン”S−382、同SC−101、同SC−102、同SC−103、同SC−104、同SC−105、同SC−106(旭硝子(株)製)、BM−1000、BM−1100(裕商(株)製)、NBX−15、FTX−218、DFX−218((株)ネオス製)などのフッ素系界面活性剤がある。
シリコーン系界面活性剤の市販品としては、SH28PA、SH7PA、SH21PA、SH30PA、ST94PA(いずれも東レ・ダウコーニング・シリコーン(株)製)、BYK−333(ビックケミー・ジャパン(株)製)などが挙げられる。
界面活性剤の含有量は、感光性組成物中、0.0001〜1重量%とするのが一般的である。
本発明の感光性組成物は、架橋剤を含有してもよい。架橋剤は熱硬化時にアクリル樹脂やポリシロキサンを架橋し、樹脂中に取り込まれる化合物であり、含有することによって硬化膜の架橋度が高くなる。これによって、硬化膜の耐薬品性が向上し、かつ熱硬化時のパターンだれによるパターン解像度の低下が抑制される。
架橋剤に特に制限は無いが、好ましくは一般式(5)で表される基、エポキシ構造、オキセタン構造の群から選択される構造を2個以上有する化合物が挙げられる。上記構造の組み合わせは特に限定されないが、選択される構造は同じものであることが好ましい。
Figure 2010033005
一般式(5)で表される基を2個以上有する化合物において、R14は水素、炭素数1〜10のアルキル基のいずれかを表す。なお、化合物中の複数のR14はそれぞれ同じでも異なっていてもよい。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、t−ブチル基、n−ヘキシル基、n−デシル基が挙げられる。
一般式(5)で表される基を2個以上有する化合物の具体例としては、以下のようなメラミン誘導体や尿素誘導体(商品名、三和ケミカル(株)製)が挙げられる。
Figure 2010033005
エポキシ構造を2個以上有する化合物の具体例としては、“エポライト”40E、同100E、同200E、同400E、同70P、同200P、同400P、同1500NP、同80MF、同4000、同3002(以上商品名、共栄社化学工業(株)製)、“デナコール”EX−212L、同EX−214L、同EX−216L、同EX−850L、同EX−321L(以上商品名、ナガセケムテックス(株)製)、GAN、GOT、EPPN502H、NC3000、NC6000(以上商品名、日本化薬(株)製)、“エピコート”828、同1002、同1750、同1007、YX8100−BH30、E1256、E4250、E4275(以上商品名、ジャパンエポキシレジン(株)製)、“エピクロン”EXA−9583、同HP4032、同N695、同HP7200(以上商品名、大日本インキ化学工業(株)製)、“テピック”S、同G、同P(以上商品名、日産化学工業(株)製)、“エポトート”YH−434L(商品名、東都化成(株)製)などが挙げられる。
オキセタン構造を2個以上有する化合物の具体例としては、OXT−121、OXT−221、OX−SQ−H、OXT−191、PNOX−1009、RSOX(以上商品名、東亜合成(株)製)、“エタナコール”OXBP、同OXTP(以上商品名、宇部興産(株)製)などが挙げられる。
なお、上記の架橋剤は、単独で使用しても、2種以上を組み合わせて使用してもよい。
架橋剤の添加量は特に制限されないが、好ましくは樹脂(ポリシロキサン+アクリル樹脂)100重量部に対して0.1〜10重量部の範囲である。架橋剤の添加量が0.1重量部より少ないと、樹脂の架橋が不十分で効果が少ない。一方、架橋剤の添加量が10重量部より多いと、硬化膜の無色透明性が低下したり、組成物の貯蔵安定性が低下する。
本発明の感光性組成物は、架橋促進剤を含有しても良い。架橋促進剤とは、熱硬化時のポリシロキサンの架橋を促進する化合物であり、熱硬化時に酸を発生する熱酸発生剤や、熱硬化前のブリーチング露光時に酸を発生する光酸発生剤が用いられる。熱硬化時に膜中に酸が存在することによって、ポリシロキサン中の未反応シラノール基の縮合反応が促進され、硬化膜の架橋度が高くなる。これによって、硬化膜の耐薬品性が向上し、かつ熱硬化時のパターンだれによるパターン解像度の低下が抑制される。
本発明で用いられる熱酸発生剤は、熱硬化時に酸を発生する化合物であり、組成物塗布後のプリベーク時には酸を発生しない、もしくは少量しか発生しないことが好ましい。故に、プリベーク温度以上、例えば100℃以上で酸を発生する化合物であることが好ましい。プリベーク温度以下で酸が発生すると、プリベーク時にポリシロキサンの架橋が起こりやすくなり感度が低下したり、現像時に溶け残りが発生する場合がある。
好ましく用いられる熱酸発生剤の具体例としては、SI−60、SI−80、SI−100、SI−110、SI−145、SI−150、SI−60L、SI−80L、SI−100L、SI−110L、SI−145L、SI−150L、SI−160L、SI−180L、(以上商品名、三新化学工業(株)製)4−ヒドロキシフェニルジメチルスルホニウムトリフルオロメタンスルホナート、ベンジル−4−ヒドロキシフェニルメチルスルホニウムトリフルオロメタンスルホナート、2−メチルベンジル−4−ヒドロキシフェニルメチルスルホニウムトリフルオロメタンスルホナート、4−アセトキシフェニルジメチルスルホニウムトリフルオロメタンスルホナート、4−アセトキシフェニルベンジルメチルスルホニウムトリフルオロメタンスルホナート、4−メトキシカルボニルオキシフェニルジメチルスルホニウムトリフルオロメタンスルホナート、ベンジル−4−メトキシカルボニルオキシフェニルメチルスルホニウムトリフルオロメタンスルホナート(以上、三新化学工業(株)製)などが挙げられる。なお、これらの化合物は単独で使用しても、2種以上を組み合わせて使用してもよい。
本発明で用いられる光酸発生剤は、ブリーチング露光時に酸を発生する化合物であり、露光波長365nm(i線)、405nm(h線)、436nm(g線)、もしくはこれらの混合線の照射によって酸を発生する化合物である。したがって、同様の光源を用いるパターン露光においても酸が発生する可能性はあるが、パターン露光はブリーチング露光と比べて露光量が小さいために、少量の酸しか発生せずに問題とはならない。また、発生する酸としてはパーフルオロアルキルスルホン酸、p−トルエンスルホン酸などの強酸であることが好ましく、カルボン酸が発生するキノンジアジド化合物はここでいう光酸発生剤の機能は有しておらず、本発明における架橋促進剤とは異なるものである。
好ましく用いられる光酸発生剤の具体例としては、SI−100、SI−101、SI−105、SI−106、SI−109、PI−105、PI−106、PI−109、NAI−100、NAI−1002、NAI−1003、NAI−1004、NAI−101、NAI−105、NAI−106、NAI−109、NDI−101、NDI−105、NDI−106、NDI−109、PAI−01、PAI−101、PAI−106、PAI−1001(以上商品名、みどり化学(株)製)、SP−077、SP−082(以上商品名、(株)ADEKA製)、TPS−PFBS(以上商品名、東洋合成工業(株)製)、CGI−MDT、CGI−NIT(以上商品名、チバジャパン(株)製)、WPAG−281、WPAG−336、WPAG−339、WPAG−342、WPAG−344、WPAG−350、WPAG−370、WPAG−372、WPAG−449、WPAG−469、WPAG−505、WPAG−506(以上商品名、和光純薬工業(株)製)などが挙げられる。なお、これらの化合物は単独で使用しても、2種以上を組み合わせて使用してもよい。
また、架橋促進剤として、上述した熱酸発生剤と光酸発生剤とを併用して用いることも可能である。
架橋促進剤の添加量は、特に制限は無いが、好ましくは樹脂(ポリシロキサン)100重量部に対して0.01〜5重量部の範囲である。添加量が0.01重量部より少ないと効果が十分ではなく、5重量部より多いとプリベーク時やパターン露光時にポリシロキサンの架橋が起こる場合がある。
本発明の感光性組成物は、増感剤を含有しても良い。増感剤を含有することによって、感光剤であるナフトキノンジアジド化合物の反応が促進されて感度が向上するとともに、架橋促進剤として光酸発生剤が含有されている場合は、ブリーチング露光時の反応が促進されて硬化膜の耐溶剤性とパターン解像度が向上する。
本発明で用いられる増感剤は特に制限されないが、好ましくは熱処理により気化する、および/または光照射によって退色する増感剤が用いられる。この増感剤は、パターン露光やブリーチング露光における光源の波長である365nm(i線)、405nm(h線)、436nm(g線)に対して吸収をもつことが必要であるが、そのまま硬化膜に残存すると可視光領域に吸収が存在するために無色透明性が低下してしまう。そこで、増感剤による無色透明性の低下を防ぐために、用いられる増感剤は、熱硬化などの熱処理で気化する化合物(増感剤)、および/またはブリーチング露光などの光照射によって退色する化合物(増感剤)が好ましい。
上記の熱処理により気化する、および/または光照射によって退色する増感剤の具体例としては、3,3’−カルボニルビス(ジエチルアミノクマリン)などのクマリン、9,10−アントラキノンなどのアントラキノン、ベンゾフェノン、4,4’−ジメトキシベンゾフェノン、アセトフェノン、4−メトキシアセトフェノン、ベンズアルデヒドなどの芳香族ケトン、ビフェニル、1,4−ジメチルナフタレン、9−フルオレノン、フルオレン、フェナントレン、トリフェニレン、ピレン、アントラセン、9−フェニルアントラセン、9−メトキシアントラセン、9,10−ジフェニルアントラセン、9,10−ビス(4−メトキシフェニル)アントラセン、9,10−ビス(トリフェニルシリル)アントラセン、9,10−ジメトキシアントラセン、9,10−ジエトキシアントラセン、9,10−ジプロポキシアントラセン、9,10−ジブトキシアントラセン、9,10−ジペンタオキシアントラセン、2−t−ブチル−9,10−ジブトキシアントラセン、9,10−ビス(トリメチルシリルエチニル)アントラセンなどの縮合芳香族などが挙げられる。
これらの増感剤の中で、熱処理により気化する増感剤は、好ましくは熱処理により昇華、蒸発、熱分解による熱分解物が昇華または蒸発する増感剤である。また、増感剤の気化温度としては、好ましくは130℃〜400℃、さらに好ましくは150℃〜250℃である。増感剤の気化温度が130℃より低いと、増感剤がプリベーク中に気化して露光プロセス中に存在しなくなり感度が高くならない場合がある。また、プリベーク中の気化を極力抑えるためには、増感剤の気化温度は150℃以上が好ましい。一方、増感剤の気化温度が400℃より高いと、増感剤が熱硬化時に気化せず硬化膜中に残存して、無色透明性が低下する場合がある。また、熱硬化時に完全に気化させるためには、増感剤の気化温度は250℃以下が好ましい。
一方、光照射によって退色する増感剤は、透明性の観点から可視光領域における吸収が光照射によって退色する増感剤が好ましい。また、さらに好ましい光照射によって退色する化合物は、光照射によって二量化する化合物である。光照射によって二量化することによって、分子量が増大して不溶化するので、耐薬品性向上、耐熱性向上、透明硬化膜からの抽出物の低減という効果が得られる。
また、増感剤は高感度を達成できるという点、光照射によって二量化して退色するという点からアントラセン系化合物が好ましく、さらに、9,10位が水素であるアントラセン系化合物は熱に不安定であるので、9,10−二置換アントラセン系化合物であることが好ましい。さらに、増感剤の溶解性の向上と光二量化反応の反応性の観点から一般式(6)で表される9,10−ジアルコキシアントラセン系化合物であることが好ましい。
Figure 2010033005
一般式(6)のR15〜R22は、それぞれ独立して水素、炭素数1〜20のアルキル基、アルコキシ基、アルケニル基、アリール基、アシル基、およびそれらが置換された有機基を表す。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基が挙げられる。アルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基が挙げられる。アルケニル基の具体例としては、ビニル基、アクリロキシプロピル基、メタクリロキシプロピル基が挙げられる。アリール基の具体例としては、フェニル基、トリル基、ナフチル基が挙げられる。アシル基の具体例としては、アセチル基が挙げられる。化合物の気化性、光二量化の反応性の点から、R15〜R22は水素、または炭素数は1〜6までの有機基であることが好ましい。さらに好ましくは、R15、R18、R19、R22は水素であることが好ましい。
一般式(6)のR23、R24は炭素数1〜20のアルコキシ基、およびそれらが置換された有機基を表す。アルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基が挙げられるが、化合物の溶解性と光二量化による退色反応の点から、プロポキシ基、ブトキシ基が好ましい。
増感剤の添加量は、特に制限は無いが、好ましくは樹脂(ポリシロキサン)100重量部に対して0.01〜5重量部の範囲で添加するのが好ましい。この範囲を外れると、透明性が低下したり、感度が低下したりする。
本発明の感光性組成物は、アクリル樹脂を含有してもよい。アクリル樹脂を用いることにより、下地基板との密着性やパターン加工性が改善される場合がある。アクリル樹脂に特に制限は無いが、好ましくは不飽和カルボン酸の重合体が挙げられる。不飽和カルボン酸の例としては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸などが挙げられる。これらは単独で用いても良いが、他の共重合可能なエチレン性不飽和化合物と組み合わせて用いても良い。共重合可能なエチレン性不飽和化合物の例としては、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸n−プロピル、メタクリル酸n−プロピル、アクリル酸イソプロピル、メタクリル酸イソプロピル、アクリル酸n−ブチル、メタクリル酸n−ブチル、アクリル酸sec−ブチル、メタクリル酸sec−ブチル、アクリル酸イソブチル、メタクリル酸イソブチル、アクリル酸t−ブチル、メタクリル酸t−ブチル、アクリル酸n−ペンチル、メタクリル酸n−ペンチル、アクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシエチル、アクリル酸グリシジル、メタクリル酸グリシジル、ベンジルアクリレート、ベンジルメタクリレート、スチレン、p−メチルスチレン、o−メチルスチレン、m−メチルスチレン、α−メチルスチレン、トリシクロ[5.2.1.02,6]デカン−8−イルアクリレート、トリシクロ[5.2.1.02,6]デカン−8−イルメタクリレートなどが挙げられる。
また、上記アクリル樹脂の重量平均分子量(Mw)に特に制限は無いが、好ましくはGPCで測定されるポリスチレン換算で5000〜50000、さらに好ましくは8000〜35000である。Mwが5000より小さいと、熱硬化時にパターンだれが起こり解像度が低下する。一方、Mwが50000より大きいと、ポリシロキサンとアクリル樹脂が相分離し膜が白濁してしまい、硬化膜の透過率が低下する。
また、本発明で用いるアクリル樹脂は、アルカリ可溶性であることが好ましく、アクリル樹脂の酸価は好ましくは50〜150mgKOH/g、さらに好ましくは70〜130mgKOH/gである。樹脂酸価が50mgKOH/gより小さいと、現像時に溶け残りが発生しやすくなってしまう。一方、酸価が150mgKOH/gより大きいと、現像時に未露光部の膜減りが大きくなってしまう。
また、該アクリル樹脂は、側鎖にエチレン性不飽和基が付加したアクリル樹脂であることが好ましい。側鎖にエチレン性不飽和基が付加されることによって、熱硬化時にアクリル樹脂の架橋が起こり、硬化膜の耐薬品性が向上する。エチレン性不飽和基としては、ビニル基、アリル基、アクリル基、メタクリル基等がある。アクリル樹脂の側鎖にエチレン性不飽和基を付加させる方法としては、水酸基、アミノ基、グリシジル基などの官能基とエチレン性不飽和基とを含有する化合物を用いて、この官能基をアクリル樹脂中のカルボニル基に反応させる方法が挙げられる。ここでいう水酸基、アミノ基、グリシジル基などの官能基とエチレン性不飽和基とを含有する化合物としては、アクリル酸2−ヒドロキシルエチル、メタクリル酸2−ヒドロキシエチル、アクリル酸2−アミノエチル、メタクリル酸2−アミノエチル、アクリル酸グリシジル、メタクリル酸グリシジルなどが挙げられる。
本発明の感光性組成物を用いた硬化膜の形成方法について説明する。本発明の感光性組成物をスピナー、スリットなどの公知の方法によって下地基板上に塗布し、ホットプレート、オーブンなどの加熱装置でプリベークする。プリベークは、50〜150℃の範囲で30秒〜30分間行い、プリベーク後の膜厚は、0.1〜15μmとするのが好ましい。
プリベーク後、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナー(PLA)などの紫外可視露光機を用い、10〜4000J/m程度(波長365nm露光量換算)を所望のマスクを介してパターン露光する。
露光後、現像により露光部が溶解し、ポジパターンを得ることができる。現像方法としては、シャワー、ディップ、パドルなどの方法で現像液に5秒〜10分間浸漬することが好ましい。現像液としては、公知のアルカリ現像液を用いることができる。具体的例としてはアルカリ金属の水酸化物、炭酸塩、リン酸塩、ケイ酸塩、ホウ酸塩などの無機アルカリ、2−ジエチルアミノエタノール、モノエタノールアミン、ジエタノールアミン等のアミン類、水酸化テトラメチルアンモニウム、コリン等の4級アンモニウム塩を1種あるいは2種以上含む水溶液等が挙げられる。また、現像後は水でリンスすることが好ましく、必要であればホットプレート、オーブンなどの加熱装置で50〜150℃の範囲で脱水乾燥ベークを行うこともできる。
その後、ブリーチング露光を行うことが好ましい。ブリーチング露光を行うことによって、膜中に残存する未反応のナフトキノンジアジド化合物が光分解して、膜の光透明性がさらに向上する。ブリーチング露光の方法としては、PLAなどの紫外可視露光機を用い、100〜20000J/m程度(波長365nm露光量換算)を全面に露光する。
ブリーチング露光した膜を、必要であればホットプレート、オーブンなどの加熱装置で50〜150℃の範囲で30秒〜30分間ソフトベークを行った後、ホットプレート、オーブンなどの加熱装置で150〜450℃の範囲で1時間程度キュアすることで、表示素子におけるTFT用平坦化膜、半導体素子における層間絶縁膜、あるいは光導波路におけるコアやクラッド材といった硬化膜が形成される。
本発明の感光性組成物を用いて作製した硬化膜は、波長400nmにおける膜厚3μmあたりの光透過率が90%以上であり、さらに好ましくは92%以上である。光透過率が90%より低いと、液晶表示素子のTFT基板用平坦化膜として用いた場合、バックライトが通過する際に色変化が起こり、白色表示が黄色味を帯びる。
前記の波長400nmにおける膜厚3μmあたりの透過率は、以下の方法により求められる。組成物をテンパックスガラス板にスピンコーターを用いて任意の回転数でスピンコートし、ホットプレートを用いて100℃で2分間プリベークする。その後、ブリーチング露光として、PLAを用いて、膜全面に超高圧水銀灯を3000J/m(波長365nm露光量換算)露光し、オーブンを用いて空気中220℃で1時間熱硬化して膜厚3μmの硬化膜を作製する。得られた硬化膜の紫外可視吸収スペクトルを(株)島津製作所製MultiSpec−1500を用いて測定し、波長400nmでの透過率を求める。
この硬化膜は表示素子におけるTFT用平坦化膜、半導体素子における層間絶縁膜、あるいは光導波路におけるコアやクラッド材等に好適に使用される。
本発明における素子は、上述のような高耐熱性、高透明性の硬化膜を有する表示素子、半導体素子、あるいは光導波路材を指し、特に、TFT用平坦化膜として有する液晶、ならびに有機EL表示素子に好適である。
以下、実施例を挙げて、本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されない。なお、用いた化合物のうち、略語を使用しているものについて、以下に示す。
DAA:ダイアセトンアルコール
PGMEA:プロピレングリコールモノメチルエーテルアセテート
GBL:γ−ブチロラクトン
EDM:ジエチレングリコールメチルエチルエーテル
また、ポリシロキサン溶液、アクリル樹脂溶液の固形分濃度、およびポリシロキサン、アクリル樹脂の重量平均分子量(Mw)は、以下の通り求めた。
(1)固形分濃度
アルミカップにポリシロキサン溶液またはアクリル樹脂溶液を1g秤取し、ホットプレートを用いて250℃で30分間加熱して液分を蒸発させた。加熱後のアルミカップに残った固形分を秤量して、アクリル樹脂またはポリシロキサン溶液の固形分濃度を求めた。
(2)重量平均分子量
重量平均分子量はGPC(Waters社製410型RI検出器、流動層:テトラヒドロフラン)にてポリスチレン換算により求めた。
合成例1 ポリシロキサン溶液(a)の合成
500mlの三口フラスコにメチルトリメトキシシランを49.03g(0.36mol)、フェニルトリメトキシシランを130.88g(0.66mol)、シリケート40(多摩化学工業株式会社製)を26.82g(0.18mol)、DAAを190g仕込み、室温で攪拌しながら水62.9gにリン酸0.62g(仕込みモノマーに対して0.3重量%)を溶かしたリン酸水溶液を10分かけて添加した。その後、フラスコを40℃のオイルバスに浸けて30分攪拌した後、オイルバスを30分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌し(内温は100〜110℃)、ポリシロキサン溶液(a)を得た。なお、加熱攪拌中、窒素を0.05l(リットル)/min流した。反応中に副生成物であるメタノール、水が合計145g留出した。
得られたポリシロキサン溶液(a)の固形分濃度は42重量%、ポリシロキサンの重量平均分子量は6200であった。なお、ポリシロキサン中のフェニル基含有比はSi原子モル比で55%、一般式(2)で表されるオルガノシランの含有比はSi原子モル比で15%であった。
合成例2 ポリシロキサン溶液(b)の合成
500mlの三口フラスコにメチルトリメトキシシランを35.41g(0.26mol)、フェニルトリメトキシシランを141.78g(0.715mol)、(2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランを14.78g(0.065mol)、Mシリケート51(多摩化学工業株式会社製)を28.20g(0.18mol)、PGMEAを205g仕込み、室温で攪拌しながら水63.7gにリン酸1.1g(仕込みモノマーに対して0.5重量%)を溶かしたリン酸水溶液を10分かけて添加した。その後、フラスコを40℃のオイルバスに浸けて30分攪拌した後、オイルバスを30分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌し(内温は100〜110℃)、ポリシロキサン溶液(b)を得た。なお、加熱攪拌中、窒素を0.05l(リットル)/min流した。反応中に副生成物であるメタノール、水が合計194g留出した。
得られたポリシロキサン溶液(b)の固形分濃度は44重量%、ポリシロキサンの重量平均分子量は7400であった。なお、ポリシロキサン中のフェニル基含有比はSi原子モル比で55%、一般式(2)で表されるオルガノシランの含有比はSi原子モル比で20%であった。
合成例3 ポリシロキサン溶液(c)の合成
500mlの三口フラスコにメチルトリメトキシシランを40.86g(0.30mol)、フェニルトリメトキシシランを99.15g(0.50mol)、Mシリケート51(多摩化学工業株式会社製)を11.75g(0.10mol)、シリカゾル粒子分散液“クォートロン”PL−2L(扶桑化学工業株式会社製、分散媒:水 シリカ粒子含有量19.7w%)30.50g(0.10mol)、DAA190gを仕込み、室温で攪拌しながら水23.21gにリン酸0.47g(仕込みモノマーに対して0.3重量%)を溶かしたリン酸水溶液を10分かけて添加した。その後、フラスコを40℃のオイルバスに浸けて30分攪拌した後、オイルバスを30分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌し(内温は100〜110℃)、ポリシロキサン溶液(c)を得た。なお、加熱攪拌中、窒素を0.05l(リットル)/min流した。反応中に副生成物であるメタノール、水が合計230g留出した。
得られたポリシロキサン溶液(c)の固形分濃度は47重量%、ポリシロキサンの重量平均分子量はシリカ粒子を含むため正確に測定不能であった。なお、ポリシロキサン中のフェニル基含有比はSi原子モル比で50%、一般式(2)で表されるオルガノシランの含有比はSi原子モル比で10%であった。
合成例4 ポリシロキサン溶液(d)の合成
500mlの三口フラスコにメチルトリメトキシシランを52.30g(0.38mol)、フェニルトリメトキシシランを142.78g(0.72mol)、(2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランを14.78g(0.06mol)、Mシリケート51(多摩化学工業株式会社製)を4.23g(0.04mol)、PGMEAを195g仕込み、室温で攪拌しながら水65.6gにリン酸0.65g(仕込みモノマーに対して0.3重量%)を溶かしたリン酸水溶液を10分かけて添加した。その後、フラスコを40℃のオイルバスに浸けて30分攪拌した後、オイルバスを30分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌し(内温は100〜110℃)、ポリシロキサン溶液(d)を得た。なお、加熱攪拌中、窒素を0.05l(リットル)/min流した。反応中に副生成物であるメタノール、水が合計151g留出した。
得られたポリシロキサン溶液(d)の固形分濃度は44重量%、ポリシロキサンの重量平均分子量は5600であった。なお、ポリシロキサン中のフェニル基含有比はSi原子モル比で60%、一般式(2)で表されるオルガノシランの含有比はSi原子モル比で3%であった。
合成例5 ポリシロキサン溶液(e)の合成
500mlの三口フラスコにメチルトリメトキシシランを24.52g(0.18mol)、フェニルトリメトキシシランを118.98g(0.60mol)、Mシリケート51(多摩化学工業株式会社製)を49.35g(0.42mol)、DAAを174g仕込み、室温で攪拌しながら水61.0gにリン酸0.58g(仕込みモノマーに対して0.3重量%)を溶かしたリン酸水溶液を10分かけて添加した。その後、フラスコを40℃のオイルバスに浸けて30分攪拌した後、オイルバスを30分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌し(内温は100〜110℃)、ポリシロキサン溶液(e)を得た。なお、加熱攪拌中、窒素を0.05l(リットル)/min流した。反応中に副生成物であるメタノール、水が合計177g留出した。
得られたポリシロキサン溶液(e)の固形分濃度は45重量%、ポリシロキサンの重量平均分子量は6600であった。なお、ポリシロキサン中のフェニル基含有比はSi原子モル比で50%、一般式(2)で表されるオルガノシランの含有比はSi原子モル比で35%であった。
合成例6 ポリシロキサン溶液(f)の合成
500mlの三口フラスコにメチルトリメトキシシランを57.20g(0.35mol)、フェニルトリメトキシシランを95.18g(0.40mol)、(2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランを14.78g(0.05mol)、Mシリケート51(多摩化学工業株式会社製)を28.20g(0.20mol)、PGMEAを174g仕込み、室温で攪拌しながら水63.8gにリン酸0.59g(仕込みモノマーに対して0.3重量%)を溶かしたリン酸水溶液を10分かけて添加した。その後、フラスコを40℃のオイルバスに浸けて30分攪拌した後、オイルバスを30分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌し(内温は100〜110℃)、ポリシロキサン溶液(f)を得た。なお、加熱攪拌中、窒素を0.05l(リットル)/min流した。反応中に副生成物であるメタノール、水が合計151g留出した。
得られたポリシロキサン溶液(f)の固形分濃度は46重量%、ポリシロキサンの重量平均分子量は8100であった。なお、ポリシロキサン中のフェニル基含有比はSi原子モル比で40%であった。
合成例7 ポリシロキサン溶液(g)の合成
500mlの三口フラスコにメチルトリメトキシシランを54.48g(0.40mol)、フェニルトリメトキシシランを109.07g(0.55mol)、(2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランを14.78g(0.05mol)、PGMEAを151g仕込み、室温で攪拌しながら水65.9gにリン酸0.54g(仕込みモノマーに対して0.3重量%)を溶かしたリン酸水溶液を10分かけて添加した。その後、フラスコを40℃のオイルバスに浸けて30分攪拌した後、オイルバスを30分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌し(内温は100〜110℃)、ポリシロキサン溶液(f)を得た。なお、加熱攪拌中、窒素を0.05l(リットル)/min流した。反応中に副生成物であるメタノール、水が合計156g留出した。
得られたポリシロキサン溶液(g)の固形分濃度は43重量%、ポリシロキサンの重量平均分子量は6900であった。なお、ポリシロキサン中のフェニル基含有比はSi原子モル比で55%であった。
合成例8 アクリル樹脂溶液(a)の合成
500mlのフラスコに2,2’−アゾビス(イソブチロニトリル)を5g、t−ドデカンチオールを5g、PGMEAを180g仕込んだ。その後、メタクリル酸を30g、ベンジルメタクリレートを35g、トリシクロ[5.2.1.02,6]デカン−8−イルメタクリレートを35g仕込み、室温で攪拌してフラスコ内を窒素置換した後、70℃で5時間加熱攪拌した。次に、得られた溶液にメタクリル酸グリシジルを15g、ジメチルベンジルアミンを1g、p−メトキシフェノールを0.2g添加し、90℃で4時間加熱攪拌し、アクリル樹脂溶液(a)を得た。
得られたアクリル樹脂溶液(a)の固形分濃度は40重量%、アクリル樹脂の重量平均分子量は12000、酸価は91mgKOH/gであった。
合成例9 キノンジアジド化合物(a)の合成
乾燥窒素気流下、TrisP−PA(商品名、本州化学工業(株)製)21.23g(0.05mol)と5−ナフトキノンジアジドスルホニル酸クロリド37.62g(0.14mol)を1,4−ジオキサン450gに溶解させ、室温にした。ここに、1,4−ジオキサン50gと混合させたトリエチルアミン15.58g(0.154mol)を系内が35℃以上にならないように滴下した。滴下後30℃で2時間攪拌した。トリエチルアミン塩を濾過し、濾液を水に投入させた。その後、析出した沈殿を濾過で集めた。この沈殿を真空乾燥機で乾燥させ、下記構造のキノンジアジド化合物(a)を得た。
Figure 2010033005
合成例10 キノンジアジド化合物(b)の合成
乾燥窒素気流下、TrisP−HAP(商品名、本州化学工業(株)製)15.32g(0.05mol)と5−ナフトキノンジアジドスルホニル酸クロリド26.87g(0.1mol)を1,4−ジオキサン450gに溶解させ、室温にした。ここに、1,4−ジオキサン50gと混合させたトリエチルアミン11.13g(0.11mol)を系内が35℃以上にならないように滴下した。滴下後30℃で2時間攪拌した。トリエチルアミン塩を濾過し、濾液を水に投入させた。その後、析出した沈殿を濾過で集めた。この沈殿を真空乾燥機で乾燥させ、下記構造のキノンジアジド化合物(b)を得た。
Figure 2010033005
合成例11 キノンジアジド化合物(c)の合成
乾燥窒素気流下、Ph−cc−AP−MF(商品名、本州化学工業(株)製)15.32g(0.05mol)と5−ナフトキノンジアジドスルホニル酸クロリド37.62g(0.14mol)を1,4−ジオキサン450gに溶解させ、室温にした。ここに、1,4−ジオキサン50gと混合させたトリエチルアミン15.58g(0.154mol)を系内が35℃以上にならないように滴下した。滴下後30℃で2時間攪拌した。トリエチルアミン塩を濾過し、濾液を水に投入させた。その後、析出した沈殿を濾過で集めた。この沈殿を真空乾燥機で乾燥させ、下記構造のキノンジアジド化合物(c)を得た。
Figure 2010033005
合成例12 キノンジアジド化合物(d)の合成
5−ナフトキノンジアジドスルホニル酸クロリドの添加量を33.59g(0.125mol)に変更する以外は合成例10と同様に、下記構造のキノンジアジド化合物(d)を得た。
Figure 2010033005
合成例13 キノンジアジド化合物(e)の合成
5−ナフトキノンジアジドスルホニル酸クロリドの添加量を26.87g(0.10mol)に変更する以外は合成例8と同様に、下記構造のキノンジアジド化合物(e)を得た。
Figure 2010033005
実施例1
合成例1で得られたポリシロキサン溶液(a)21.88g、合成例9で得られたキノンジアジド化合物(a)0.98g、溶剤としてDAA2.92g、GBL3.96gを黄色灯下で混合、攪拌して均一溶液とした後、0.45μmのフィルターで濾過して組成物1を調製した。
組成物1をシリコンウェハおよびOA−10ガラス板(日本電気硝子(株)製)にスピンコーター(ミカサ(株)製1H−360S)を用いて任意の回転数でスピンコートした後、ホットプレート(大日本スクリーン製造(株)製SCW−636)を用いて100℃で2分間プリベークし、膜厚3μmの膜を作製した。作製した膜をパラレルライトマスクアライナー(以下、PLAと略する)(キヤノン(株)製PLA−501F)を用いて、超高圧水銀灯を感度測定用のグレースケールマスクを介してパターン露光した後、自動現像装置(滝沢産業(株)製AD−2000)を用いて2.38重量%水酸化テトラメチルアンモニウム水溶液であるELM−D(商品名、三菱ガス化学(株)製)で60秒間シャワー現像し、次いで水で30秒間リンスした。その後、ブリーチング露光として、PLA(キヤノン(株)製PLA−501F)を用いて、膜全面に超高圧水銀灯を3000J/m(波長365nm露光量換算)露光した。その後、ホットプレートを用いて110℃で2分間ソフトベークし、次いでオーブン(タバイエスペック(株)製IHPS−222)を用いて空気中220℃で1時間キュアして硬化膜を作製した。
感光特性、および硬化膜特性の評価結果を表2に示す。なお、表中の評価は以下の方法で行った。なお、下記の(3)〜(7)の評価はシリコンウェハ基板を、(8)の評価はOA−10ガラス板を用いて行った。
(3)膜厚測定
ラムダエースSTM−602(商品名、大日本スクリーン製)を用いて、屈折率1.50で測定を行った。
(4)残膜率の算出
残膜率は以下の式に従って算出した。
残膜率(%)=現像後の未露光部膜厚÷プリベーク後の膜厚×100
(5)感度の算出
露光、現像後、10μmのライン・アンド・スペースパターンを1対1の幅に形成する露光量(以下、これを最適露光量という)を感度とした。
(6)解像度の算出
最適露光量における現像後の最小パターン寸法を現像後解像度、キュア後の最小パターン寸法をキュア後解像度とした。
(7)耐熱性
実施例1記載の方法で作成した硬化膜を基板から削りとり、アルミセルに約10mg入れ、熱重量測定装置(TGA−50、(株)島津製作所製)を用い、窒素雰囲気中、昇温速度10℃/分で150℃まで加熱し150℃で1時間温度保持した後、昇温速度10℃/分で400℃まで昇温した。この際に重量減少が1%となる温度Td1%を測定し、比較した。Td1%が高いほど、耐熱性は良好である。
(8)光透過率の測定
MultiSpec−1500(商品名、(株)島津製作所)を用いて、まずOA−10ガラス板のみを測定し、その紫外可視吸収スペクトルをリファレンスとした。次にOA−10ガラス板上に組成物の硬化膜を形成(パターン露光は行わない)し、このサンプルをシングルビームで測定し、3μmあたりの波長400nmでの光透過率を求め、リファレンスとの差異を硬化膜の光透過率とした。
実施例2〜8、比較例1、2
組成物1と同様に、組成物2〜13を表1に記載の組成にて調製した。なお、シランカップリング剤として用いたKBM303は信越化学工業(株)製の(2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランである。架橋剤として用いたニカラックMX−270、ニカラックMW−30HM(商品名、三和ケミカル(株)製)は下記に示した構造の化合物である。また、架橋促進剤として用いたWPAG−469(商品名、和光純薬工業(株)製)は4−メチルフェニルジフェニルスルホニウムパーフルオロブタンスルホナート20%PGMEA溶液、増感剤として用いたDPA(商品名、川崎化成工業(株)製)は9,10−ジプロポキシアントラセンである。
Figure 2010033005
Figure 2010033005
得られた各組成物を用いて、実施例1と同様にして各組成物の評価を行った。ただし、比較例2の評価において、現像は0.4重量%水酸化テトラメチルアンモニウム水溶液で60秒間シャワー現像して行った。
結果を表2に示す。
Figure 2010033005

Claims (5)

  1. (a)下記一般式(1)で表されるオルガノシランの1種以上と下記一般式(2)で表されるオルガノシランの1種以上を加水分解し縮合させることによって合成されるポリシロキサンと(b)ナフトキノンジアジド化合物、(c)溶剤を含有するポジ型感光性組成物。
    Figure 2010033005
    (式中、R1は水素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数6〜15のアリール基のいずれかを表し、複数のR1はそれぞれ同じでも異なっていてもよい。R2は水素、炭素数1〜6のアルキル基、炭素数2〜6のアシル基、炭素数6〜15のアリール基のいずれかを表し、複数のR2はそれぞれ同じでも異なっていてもよい。nは0から3の整数を表す。)
    Figure 2010033005
    (式中、R3からRはそれぞれ独立に水素、炭素数1〜6のアルキル基、炭素数2〜6のアシル基、炭素数6〜15のアリール基のいずれかを表す。mは2から8の整数を表す。)
  2. (a)のポリシロキサンにおける一般式(2)で表されるオルガノシランの含有比が、ポリシロキサン全体のSi原子モル数に対するSi原子モル比で5%以上30%以下であることを特徴とする請求項1記載のポジ型感光性組成物。
  3. (b)ナフトキノンジアジド化合物が、下記一般式(3)で表されるナフトキノンジアジド化合物であることを特徴とする請求項1および2記載のポジ型感光性組成物。
    Figure 2010033005
    (式中、Rは水素、または炭素数1〜8から選ばれるアルキル基を示す。R、R、R10は水素原子、炭素数1〜8から選ばれるアルキル基、アルコキシル基、カルボキシル基、エステル基のいずれかを示す。各R、R、R10は同じであっても異なっていても良い。Qは5―ナフトキノンジアジドスルホニル基、水素原子のいずれかを表し、Qの全てが水素原子になることはない。a、b、c、α、βは0〜4の整数を表す。ただし、α+β≧3である。)
  4. 請求項1から3のいずれかに記載のポジ型感光性組成物から形成された硬化膜であって、波長400nmにおける膜厚3μmあたりの光透過率が90%以上である硬化膜。
  5. 請求項4記載の硬化膜を具備する素子。
JP2009067444A 2008-06-23 2009-03-19 感光性組成物、それから形成された硬化膜、および硬化膜を有する素子 Active JP5343649B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009067444A JP5343649B2 (ja) 2008-06-23 2009-03-19 感光性組成物、それから形成された硬化膜、および硬化膜を有する素子

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008162813 2008-06-23
JP2008162813 2008-06-23
JP2009067444A JP5343649B2 (ja) 2008-06-23 2009-03-19 感光性組成物、それから形成された硬化膜、および硬化膜を有する素子

Publications (2)

Publication Number Publication Date
JP2010033005A true JP2010033005A (ja) 2010-02-12
JP5343649B2 JP5343649B2 (ja) 2013-11-13

Family

ID=41737503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009067444A Active JP5343649B2 (ja) 2008-06-23 2009-03-19 感光性組成物、それから形成された硬化膜、および硬化膜を有する素子

Country Status (1)

Country Link
JP (1) JP5343649B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181866A (ja) * 2009-01-07 2010-08-19 Fujifilm Corp ポジ型感光性樹脂組成物、硬化膜、層間絶縁膜、有機el表示装置、および液晶表示装置
WO2011040248A1 (ja) * 2009-09-29 2011-04-07 東レ株式会社 ポジ型感光性樹脂組成物、それを用いた硬化膜および光学デバイス
WO2011078106A1 (ja) * 2009-12-22 2011-06-30 東レ株式会社 ポジ型感光性樹脂組成物、それから形成された硬化膜、および硬化膜を有する素子
WO2011155382A1 (ja) * 2010-06-09 2011-12-15 東レ株式会社 感光性シロキサン組成物、それから形成された硬化膜および硬化膜を有する素子
WO2013099785A1 (ja) * 2011-12-26 2013-07-04 東レ株式会社 感光性樹脂組成物および半導体素子の製造方法
WO2022059506A1 (ja) * 2020-09-16 2022-03-24 セントラル硝子株式会社 珪素含有モノマー混合物、ポリシロキサン、樹脂組成物、感光性樹脂組成物、硬化膜、硬化膜の製造方法、パターン硬化膜及びパターン硬化膜の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005081065A1 (ja) * 2004-02-20 2005-09-01 Nippon Soda Co., Ltd. 光感応性基体及びパターニング方法
JP2006018249A (ja) * 2004-06-02 2006-01-19 Toray Ind Inc 感光性樹脂組成物
JP2006276598A (ja) * 2005-03-30 2006-10-12 Toray Ind Inc 感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
JP2007178974A (ja) * 2005-12-26 2007-07-12 Cheil Industries Inc フォトレジスト下層膜用ハードマスク組成物及びこれを利用した半導体集積回路デバイスの製造方法
JP2007199606A (ja) * 2006-01-30 2007-08-09 Fujifilm Corp 感光性樹脂組成物及びそれを用いた半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005081065A1 (ja) * 2004-02-20 2005-09-01 Nippon Soda Co., Ltd. 光感応性基体及びパターニング方法
JP2006018249A (ja) * 2004-06-02 2006-01-19 Toray Ind Inc 感光性樹脂組成物
JP2006276598A (ja) * 2005-03-30 2006-10-12 Toray Ind Inc 感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
JP2007178974A (ja) * 2005-12-26 2007-07-12 Cheil Industries Inc フォトレジスト下層膜用ハードマスク組成物及びこれを利用した半導体集積回路デバイスの製造方法
JP2007199606A (ja) * 2006-01-30 2007-08-09 Fujifilm Corp 感光性樹脂組成物及びそれを用いた半導体装置の製造方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181866A (ja) * 2009-01-07 2010-08-19 Fujifilm Corp ポジ型感光性樹脂組成物、硬化膜、層間絶縁膜、有機el表示装置、および液晶表示装置
JP5423802B2 (ja) * 2009-09-29 2014-02-19 東レ株式会社 ポジ型感光性樹脂組成物、それを用いた硬化膜および光学デバイス
WO2011040248A1 (ja) * 2009-09-29 2011-04-07 東レ株式会社 ポジ型感光性樹脂組成物、それを用いた硬化膜および光学デバイス
US8828642B2 (en) 2009-09-29 2014-09-09 Toray Industries, Inc. Positive photosensitive resin composition, cured film obtained using same, and optical device
WO2011078106A1 (ja) * 2009-12-22 2011-06-30 東レ株式会社 ポジ型感光性樹脂組成物、それから形成された硬化膜、および硬化膜を有する素子
CN102667625B (zh) * 2009-12-22 2015-11-25 东丽株式会社 正型感光性树脂组合物、由该组合物形成的固化膜及具有固化膜的元件
CN102667625A (zh) * 2009-12-22 2012-09-12 东丽株式会社 正型感光性树脂组合物、由该组合物形成的固化膜及具有固化膜的元件
CN102918460A (zh) * 2010-06-09 2013-02-06 东丽株式会社 感光性硅氧烷组合物、由其形成的固化膜和具有固化膜的元件
JP5696665B2 (ja) * 2010-06-09 2015-04-08 東レ株式会社 感光性シロキサン組成物、それから形成された硬化膜および硬化膜を有する素子
TWI482802B (zh) * 2010-06-09 2015-05-01 Toray Industries 感光性矽氧烷組成物、由其形成的硬化膜及具有硬化膜的元件
CN102918460B (zh) * 2010-06-09 2015-07-22 东丽株式会社 感光性硅氧烷组合物、由其形成的固化膜和具有固化膜的元件
WO2011155382A1 (ja) * 2010-06-09 2011-12-15 東レ株式会社 感光性シロキサン組成物、それから形成された硬化膜および硬化膜を有する素子
KR101761181B1 (ko) 2010-06-09 2017-07-25 도레이 카부시키가이샤 감광성 실록산 조성물, 그것으로부터 형성된 경화막 및 경화막을 갖는 소자
CN104011596A (zh) * 2011-12-26 2014-08-27 东丽株式会社 感光性树脂组合物和半导体元件的制造方法
WO2013099785A1 (ja) * 2011-12-26 2013-07-04 東レ株式会社 感光性樹脂組成物および半導体素子の製造方法
KR20140109866A (ko) * 2011-12-26 2014-09-16 도레이 카부시키가이샤 감광성 수지 조성물 및 반도체 소자의 제조 방법
JPWO2013099785A1 (ja) * 2011-12-26 2015-05-07 東レ株式会社 感光性樹脂組成物および半導体素子の製造方法
US9704724B2 (en) 2011-12-26 2017-07-11 Toray Industries, Inc. Photosensitive resin composition and method for producing semiconductor device
KR101997485B1 (ko) * 2011-12-26 2019-07-08 도레이 카부시키가이샤 감광성 수지 조성물 및 반도체 소자의 제조 방법
WO2022059506A1 (ja) * 2020-09-16 2022-03-24 セントラル硝子株式会社 珪素含有モノマー混合物、ポリシロキサン、樹脂組成物、感光性樹脂組成物、硬化膜、硬化膜の製造方法、パターン硬化膜及びパターン硬化膜の製造方法

Also Published As

Publication number Publication date
JP5343649B2 (ja) 2013-11-13

Similar Documents

Publication Publication Date Title
JP4670693B2 (ja) 感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
WO2011078106A1 (ja) ポジ型感光性樹脂組成物、それから形成された硬化膜、および硬化膜を有する素子
JP4784283B2 (ja) ポジ型感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
JP4853228B2 (ja) 感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子、並びにパターン形成方法
JP5099140B2 (ja) 感光性組成物、それから形成された硬化膜、および硬化膜を有する素子
JP5765235B2 (ja) 感光性組成物、それから形成された硬化膜および硬化膜を有する素子
JP4655914B2 (ja) 感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
JP4687315B2 (ja) 感光性樹脂組成物、それから形成された硬化膜、および硬化膜を有する素子
JP5696665B2 (ja) 感光性シロキサン組成物、それから形成された硬化膜および硬化膜を有する素子
JP4725160B2 (ja) 感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
JP2007193318A (ja) 感光性シロキサン組成物、それから形成された硬化膜および硬化膜を有する素子
JP6318634B2 (ja) 感光性シロキサン組成物、硬化膜及び素子
JP2013114238A (ja) ポジ型感光性組成物、そのポジ型感光性組成物から形成された硬化膜、およびその硬化膜を有する素子。
JP5659561B2 (ja) 感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
JP5444704B2 (ja) 感光性組成物、それから形成された硬化膜、および硬化膜を有する素子
JP4910646B2 (ja) 感光性シロキサン組成物およびその製造方法、感光性シロキサン組成物から形成された硬化膜、および硬化膜を有する素子
JP2012053381A (ja) ポジ型感光性組成物、それから形成された硬化膜、および硬化膜を有する素子
JP5343649B2 (ja) 感光性組成物、それから形成された硬化膜、および硬化膜を有する素子
JP2009169343A (ja) 感光性組成物、それから形成された硬化膜、および硬化膜を有する素子
JP2007226214A (ja) 感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
JP2010032977A (ja) ポジ型感光性組成物、それから形成された硬化膜、および硬化膜を有する素子
JP5540632B2 (ja) 感光性組成物、それから形成された硬化膜、および硬化膜を有する素子
JP5233526B2 (ja) 感光性組成物、それから形成された硬化膜、および硬化膜を有する素子
JP5169027B2 (ja) 感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
JP6186766B2 (ja) 感光性シロキサン組成物、それから形成された硬化膜、およびその硬化膜を有する素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R151 Written notification of patent or utility model registration

Ref document number: 5343649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151