JP4687315B2 - 感光性樹脂組成物、それから形成された硬化膜、および硬化膜を有する素子 - Google Patents

感光性樹脂組成物、それから形成された硬化膜、および硬化膜を有する素子 Download PDF

Info

Publication number
JP4687315B2
JP4687315B2 JP2005226395A JP2005226395A JP4687315B2 JP 4687315 B2 JP4687315 B2 JP 4687315B2 JP 2005226395 A JP2005226395 A JP 2005226395A JP 2005226395 A JP2005226395 A JP 2005226395A JP 4687315 B2 JP4687315 B2 JP 4687315B2
Authority
JP
Japan
Prior art keywords
group
compound
siloxane polymer
film
cured film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005226395A
Other languages
English (en)
Other versions
JP2007041361A (ja
Inventor
健典 藤原
弘和 飯森
将秀 妹尾
充史 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005226395A priority Critical patent/JP4687315B2/ja
Publication of JP2007041361A publication Critical patent/JP2007041361A/ja
Application granted granted Critical
Publication of JP4687315B2 publication Critical patent/JP4687315B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Photolithography (AREA)

Description

本発明は、液晶表示素子や有機EL表示素子などの薄膜トランジスタ(TFT)基板用平坦化膜、半導体素子の層間絶縁膜、あるいは光導波路のコアやクラッド材を形成するためのポジ型感光性樹脂組成物、それから形成された硬化膜、およびその硬化膜を有する素子に関する。
近年、液晶ディスプレイや有機ELディスプレイなどにおいて、さらなる高精細、高解像度を実現する方法として、表示装置の開口率を上げる方法が知られている(特許文献1参照)。これは、透明な平坦化膜をTFT基板の上部に保護膜として設けることによって、データラインと画素電極をオーバーラップさせることを可能とし、従来技術に比べて開口率を上げる方法である。
このようなTFT基板用平坦化膜の材料としては、高耐熱性、高透明性、低誘電率性の材料が必要であり、従来、フェノール系樹脂とキノンジアジド化合物を組み合わせた材料(特許文献2参照)、フェノール樹脂とキノンジアジド化合物と架橋剤と熱酸発生剤を組み合わせた材料(特許文献3参照)、あるいはアクリル系樹脂とキノンジアジド化合物を組み合わせた材料(特許文献4、5参照)が知られている。しかしながら、これらの材料は耐熱性が不十分であり、基板の高温処理により硬化膜は着色して透明性が低下するという問題がある。また、ポリイミド樹脂前駆体とキノンジアジド化合物と光酸発生剤を組み合わせた材料(特許文献6参照)、さらにシリカ粒子を組み合わせた材料(特許文献7参照)が知られているが、透明性が低いという問題がある。
一方、高耐熱性、高透明性、低誘電率性の材料としてシロキサンポリマーが知られている。シロキサンポリマーにポジ型の感光性を付与するためのキノンジアジド化合物を組み合わせた系としては、フェノール性水酸基を末端に有するシロキサンポリマーとキノンジアジド化合物を組み合わせた材料(特許文献8参照)、環化熱付加反応によりフェノール性水酸基やカルボキシル基などを付加させたシロキサンポリマーとキノンジアジド化合物を組み合わせた材料(特許文献9参照)、カルボニル基を含有するシロキサンポリマーとキノンジアジド化合物を組み合わせた材料(特許文献10参照)が知られている。しかし、これらの材料は、多量のキノンジアジド化合物を含有していたり、シロキサンポリマー中にフェノール性水酸基が存在するため、塗布膜の白化や熱硬化時の着色が起こりやすく、高透明性の材料として用いることはできない。また、シロキサンポリマーにシリカ粒子を添加した材料は知られている(特許文献11参照)が、透明性を有し、かつ感光性を付与する技術は知られていない。また、膜厚が1μm以上と厚い場合、現像から熱硬化工程を経ることによってパターンがリフローし、解像度が低くなるという問題や、膜が発泡したり、皺が発生したり、硬度が低いという問題もある。また、これらの材料は透明性が低いために、パターン形成時の感度が低いという問題もあった。
特許第2933879号明細書(請求項1) 特開平7−98502号公報(請求項1、2) 特開2004―240144号公報(請求項1、2) 特開平10−153854号公報(請求項1 特開2001−281853号公報(請求項1) 特開昭63−99536号公報(請求項1、2) 特開2005−43883号公報(請求項1、2) 特開2003−255546号公報(請求項1) 特許第2648969号明細書(請求項1) 特許第2700655号明細書(請求項1) 国際公開00/12640号パンフレット(請求項1)
本発明は、上述のような事情に基づいてなされたものであり、熱硬化中にパターンがリフローすることなく、高硬度、高解像度、高耐熱性、高透明性、低誘電率性の特性を有する、TFT基板用平坦化膜、層間絶縁膜、あるいは光導波路のコアやクラッド材の形成に用いられる高感度の感光性樹脂組成物を提供するものである。また、本発明の別の目的は、上記の感光性樹脂組成物から形成されたTFT基板用平坦化膜、層間絶縁膜、コアやクラッド材などの硬化膜、およびその硬化膜を有する表示素子、半導体素子、光導波路などの素子を提供することにある。
すなわち本発明は、(a)シロキサンポリマー、(b)キノンジアジド化合物、(c)シリカ微粒子、(d)溶剤を含有する感光性樹脂組成物である。
本発明の感光性樹脂組成物によれば、高耐熱性、高透明性、低誘電率性のいずれも優れた特性を満足する硬化膜を得ることができ、特に硬化膜の白化や着色、発泡、皺等が発生せず、良好な膜が得られる。また、得られた硬化膜は、高解像度パターン加工が可能であり、TFT基板用平坦化膜や層間絶縁膜として好適に用いることができる。
本発明の感光性樹脂組成物は、(a)シロキサンポリマーおよび/または(c)シリカ微粒子を主成分とする。
シロキサンポリマーは特に制限されないが、好ましくはシロキサンポリマー中のフェノール性水酸基の含有率がSi原子に対して20モル%以下であるポリマーが用いられる。Si原子に対するフェノール性水酸基の含有率が20モル%より多いと、熱硬化時に起こるフェノール性水酸基の分解による着色が顕著になり、硬化膜の無色透明性が低下する。
(a)シロキサンポリマーの好ましい形態としては、一般式(1)で表されるオルガノシランの1種以上を混合、反応させることによって得られるシロキサンポリマー、あるいは、一般式(2)で表される直鎖状ポリシロキサンの1種以上を混合、反応させることによって得られるシロキサンポリマー、あるいは一般式(1)で表されるオルガノシランを1種以上と一般式(2)で表される直鎖状ポリシロキサンの1種以上とを混合、反応させることによって得られるシロキサンポリマーが挙げられる
Figure 0004687315
は水素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数6〜15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。Rは水素、炭素数1〜6のアルキル基、炭素数1〜6のアシル基、炭素数6〜15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。nは0から3の整数を表す。
Figure 0004687315
、R、R、Rはそれぞれ独立して水素、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、炭素数6〜15のアリール基のいずれかを表し、複数のR、Rはそれぞれ同じでも異なっていてもよい。R、Rは、それぞれ独立して水素、炭素数1〜6のアルキル基、炭素数1〜6のアシル基、炭素数6〜15のアリール基のいずれかを表す。mは1から1000の範囲を表す。
一般式(1)のオルガノシランにおいて、Rは、水素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数6〜15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。また、これらのアルキル基、アルケニル基、アリール基はいずれも置換基を有していてもよく、また置換基を有していない無置換体であってもよく、組成物の特性に応じて選択できる。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、t−ブチル基、n−ヘキシル基、n−デシル基、トリフルオロメチル基、2,2,2−トリフルオロエチル基、3,3,3−トリフルオロプロピル基、3−グリシドキシプロピル基、2−(3、4−エポキシシクロヘキシル)エチル基、3−アミノプロピル基、3−メルカプトプロピル基、3−イソシアネートプロピル基が挙げられる。アルケニル基の具体例としては、ビニル基、3−アクリロキシプロピル基、3−メタクリロキシプロピル基が挙げられる。アリール基の具体例としては、フェニル基、トリル基、p−ヒドロキシフェニル基、1−(p−ヒドロキシフェニル)エチル基、2−(p−ヒドロキシフェニル)エチル基、4−ヒドロキシ−5−(p−ヒドロキシフェニルカルボニルオキシ)ペンチル基、ナフチル基が挙げられる。
一般式(1)のRは水素、炭素数1〜6のアルキル基、炭素数1〜6のアシル基、炭素数6〜15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。また、これらのアルキル基、アシル基はいずれも置換基を有していてもよく、また置換基を有していない無置換体であってもよく、組成物の特性に応じて選択できる。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基が挙げられる。アシル基の具体例としては、アセチル基が挙げられる。アリール基の具体例としては、フェニル基が挙げられる。
一般式(1)のnは0から3の整数を表す。n=0の場合は4官能性シラン、n=1の場合は3官能性シラン、n=2の場合は2官能性シラン、n=3の場合は1官能性シランである。
一般式(1)で表されるオルガノシランの具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラアセトキシシラン、テトラフェノキシシランなどの4官能性シラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリn−ブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリイソプロポキシシラン、エチルトリn−ブトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−ブチルトリメトキシシラン、n−ブチルトリエトキシシラン、n−ヘキシルトリメトキシシラン、n−ヘキシルトリエトキシシラン、デシルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、p−ヒドロキシフェニルトリメトキシシラン、1−(p−ヒドロキシフェニル)エチルトリメトキシシラン、2−(p−ヒドロキシフェニル)エチルトリメトキシシラン、4−ヒドロキシ−5−(p−ヒドロキシフェニルカルボニルオキシ)ペンチルトリメトキシシラン、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−メルカプトプロピルトリメトキシシランなどの3官能性シラン、ジメチルジメトキシシラン、ジメチルジエトキシランジメチルジアセトキシシラン、ジn−ブチルジメトキシシラン、ジフェニルジメトキシシランなどの2官能性シラン、トリメチルメトキシシラン、トリn−ブチルエトキシシランなどの1官能性シランが挙げられる。
これらのオルガノシランのうち、硬化膜の耐クラック性と硬度の点から3官能性シランが好ましく用いられる。また、これらのオルガノシランは単独で使用しても、2種以上を組み合わせて使用してもよい。
一般式(2)の直鎖状ポリシロキサンにおいて、R、R、R、Rは、それぞれ独立して水素、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、炭素数6〜15のアリール基のいずれかを表し、複数のR、Rはそれぞれ同じでも異なっていてもよい。また、これらのアルキル基、アルケニル基、アリール基はいずれも置換基を有していてもよく、また置換基を有していない無置換体であってもよく、組成物の特性に応じて選択できる。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基が挙げられる。アルケニル基の具体例としては、ビニル基、アクリロキシプロピル基、メタクリロキシプロピル基が挙げられる。アリール基の具体例としては、フェニル基、トリル基、ナフチル基が挙げられる。
一般式(2)のR、Rは、それぞれ独立して水素、炭素数1〜6のアルキル基、炭素数1〜6のアシル基、炭素数6〜15のアリール基のいずれかを表す。これらのアルキル基、アシル基はいずれも置換基を有していてもよく、また置換基を有していない無置換体であってもよく、組成物の特性に応じて選択できる。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基が挙げられる。アシル基の具体例としては、アセチル基が挙げられる。アリール基の具体例としては、フェニル基が挙げられる。
一般式(2)のmは1から1000の範囲であり、好ましくは2〜100の範囲、さらに好ましくは3〜50の範囲である。mが1000より大きいと、膜が白濁し、透明性が低下する。
一般式(2)で表される直鎖状ポリシロキサンの具体例として、1,1,3,3−テトラメチル−1,3−ジメトキシジシロキサン、1,1,3,3−テトラメチル−1,3−ジエトキシシロキサン、1,1,3,3−テトラエチル−1,3−ジメトキシジシロキサン、1,1,3,3−テトラエチル−1,3−ジエトキシジシロキサン、下記に示すゲレスト社製シラノール末端ポリジメチルシロキサン(商品名)“DMS−S12”(分子量400〜700)、“DMS−S15”(分子量1500〜2000)、“DMS−S21”(分子量4200)、“DMS−S27”(分子量18000)、“DMS−S31”(分子量26000)、“DMS−S32”(分子量36000)、“DMS−S33”(分子量43500)、“DMS−S35”(分子量49000)、“DMS−S38”(分子量58000)、“DMS−S42”(分子量77000)、下記に示すゲレスト社製シラノール末端ジフェニルシロキサン−ジメチルシロキサンコポリマー“PSD−0332”(分子量35000、ジフェニルシロキサンを2.5〜3.5モル%共重合している)、“PDS−1615”(分子量900〜1000、ジフェニルシロキサンを14〜18モル%共重合している)、ゲレスト社製シラノール末端ポリジフェニルシロキサン“PDS−9931”(分子量1000〜1400)が挙げられる。これらの直鎖状ポリシロキサンは、単独で使用しても、2種以上を組み合わせて使用してもよい。
直鎖状ポリシロキサンを用いることで、貯蔵安定性、耐クラック性、耐熱性、透明性、低誘電率性、高硬度のすべてにおいて優れた効果を有する。特に、直鎖状ポリシロキサンを用いると貯蔵安定性が向上する。これは、直鎖状ポリシロキサンの直鎖部分が橋かけ的に存在することによって、未反応シラノール基同士が近づきにくく、組成物を貯蔵している間に副反応である縮合反応が起こりにくくなるためと考えられる。
一般式(1)で表されるオルガノシランと、一般式(2)で表される直鎖状ポリシロキサンを混合して用いる場合の混合比率は特に制限は無いが、好ましくはSi原子モル数でオルガノシラン/直鎖状ポリシロキサン=(100〜50)/(0〜50)である。直鎖状ポリシロキサンが50モル%より多いと相分離が起こり、塗布膜が白濁して透明性が低下する。ただし、前述のように透明性が高い点から、Si原子に対するフェノール性水酸基の含有率が20モル%以下であることが好ましいので、フェノール性水酸基を有するオルガノシランの添加量はSi原子モル数で20モル%以下であることが好ましい。
また、シロキサンポリマー中において、膜の耐クラック性と硬度を両立させる点から、シロキサンポリマー中にあるフェニル基の含有率はSi原子に対して5〜60モル%が好ましく、さらに好ましくは10〜45モル%である。フェニル基の含有率が60モル%より多いと硬度が低下し、フェニル基含有率が5モル%より少ないと耐クラック性が低下する。フェニル基の含有率は、例えば、シロキサンポリマーの29Si−核磁気共鳴スペクトルを測定し、そのフェニル基が結合したSiのピーク面積とフェニル基が結合していないSiのピーク面積の比から求めることができる。
また、本発明で用いるシロキサンポリマーの重量平均分子量(Mw)は特に制限されないが、好ましくはGPCで測定されるポリスチレン換算で1000〜100000、さらに好ましくは2000〜50000である。Mwが1000より小さいと塗膜性が悪くなり、100000より大きいとパターン形成時の現像液への溶解性が悪くなる。
本発明におけるシロキサンポリマーは、上述のオルガノシランまたは/かつ直鎖状ポリシロキサンの混合物を加水分解および部分縮合させることにより得られる。加水分解および部分縮合には一般的な方法を用いることができる。例えば、混合物に溶媒、水、必要に応じて触媒を添加し、50〜150℃で0.5〜100時間程度加熱攪拌する。なお、攪拌中、必要に応じて蒸留によって加水分解副生物(メタノールなどのアルコール)や縮合副生物(水)を留去してもよい。
上記の反応溶媒としては特に制限は無いが、通常は後述する(d)溶剤と同様のものが用いられる。溶媒の添加量はオルガノシランと直鎖状ポリシロキサンの混合物100重量%に対して10〜1000重量%が好ましい。また加水分解反応に用いる水の添加量は、加水分解性基1モルに対して0.5〜2モルが好ましい。
必要に応じて添加される触媒に特に制限はないが、酸触媒、塩基触媒が好ましく用いられる。酸触媒の具体例としては塩酸、硝酸、硫酸、フッ酸、リン酸、酢酸、トリフルオロ酢酸、ギ酸、多価カルボン酸あるいはその無水物、イオン交換樹脂が挙げられる。塩基触媒の具体例としては、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、ジエチルアミン、トリエタノールアミン、ジエタノールアミン、水酸化ナトリウム、水酸化カリウム、アミノ基を有するアルコキシシランが挙げられる。触媒の添加量はオルガノシランまたは/かつ直鎖状ポリシロキサンの混合物100重量%に対して0.01〜10重量%が好ましい。
また、塗膜性、貯蔵安定性の点から、加水分解、部分縮合後のシロキサンポリマー溶液には副生成物のアルコールや水、触媒が含まれないことが好ましい。よって必要に応じてこれらの除去を行ってもよい。除去方法としては特に制限は無いが、好ましくは以下の方法で除去を行う。アルコールや水の除去方法としては、シロキサンポリマー溶液を適当な疎水性溶剤で希釈した後、水で数回洗浄して得られた有機層をエバポレーターで濃縮する方法を用いることができる。また、触媒の除去方法としては、上記の水洗浄に加えて、あるいは単独でイオン交換樹脂で処理する方法を用いることができる。
本発明の感光性樹脂組成物は、(b)キノンジアジド化合物を含有する。キノンジアジド化合物を含有する感光性樹脂組成物は、露光部が現像液で除去されるポジ型を形成する。用いるキノンジアジド化合物の添加量に特に制限は無いが、好ましくは(a)シロキサンポリマーと(c)シリカ粒子の総量に対して0.1〜10重量%である。さらに好ましくは1〜9重量%である。キノンジアジド化合物の添加量が0.1重量%より少ない場合、露光部と未露光部との溶解コントラストが低すぎて、現実的な感光性を有さない。また、さらに良好な溶解コントラストを得るためには1重量%以上が好ましい。一方、キノンジアジド化合物の添加量が10重量%より多い場合、シロキサンポリマーとキノンジアジド化合物との相溶性が悪くなることによる塗布膜の白化が起こったり、熱硬化時に起こるキノンジアジド化合物の分解による着色が顕著になるために、硬化膜の無色透明性が低下する。
用いるキノンジアジド化合物は特に制限されないが、好ましくはフェノール性水酸基を有する化合物にナフトキノンジアジドスルホン酸がエステル結合した化合物であり、当該化合物のフェノール性水酸基のオルト位、およびパラ位がそれぞれ独立して水素、もしくは一般式(3)で表される置換基のいずれかである化合物が用いられる。
Figure 0004687315
式中、R、R10、R11はそれぞれ独立して炭素数1〜10のアルキル基、カルボキシル基、フェニル基、置換フェニル基のいずれかを表す。また、複数のR、R10、R11で環を形成してもよい。
一般式(3)で表される置換基において、R、R10、R11はそれぞれ独立して炭素数1〜10のアルキル基、カルボキシル基、フェニル基、置換フェニル基のいずれかを表す。アルキル基は置換基を有していてもよく、また置換基を有していない無置換体であってもよく、組成物の特性に応じて選択できる。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ヘキシル基、シクロヘキシル基、n−ヘプチル基、n−オクチル基、トリフルオロメチル基、2−カルボキシエチル基が挙げられる。また、フェニル基に置換する置換基としては、水酸基が挙げられる。また、複数のR、R10、R11で環を形成してもよく、具体例としては、シクロペンタン環、シクロヘキサン環、アダマンタン環、フルオレン環が挙げられる。
フェノール性水酸基のオルト位、およびパラ位が上記以外、例えばメチル基の場合、熱硬化によって酸化分解が起こり、キノイド構造に代表される共役系化合物が形成され、硬化膜が着色して無色透明性が低下する。なお、これらのキノンジアジド化合物は、フェノール性水酸基を有する化合物と、ナフトキノンジアジドスルホン酸クロリドとの公知のエステル化反応により合成することができる。
フェノール性水酸基を有する化合物の具体例としては、以下の化合物が挙げられる(商品名、本州化学工業(株)製)。
Figure 0004687315
Figure 0004687315
ナフトキノンジアジドスルホン酸としては、4−ナフトキノンジアジドスルホン酸あるいは5−ナフトキノンジアジドスルホン酸を用いることができる。4−ナフトキノンジアジドスルホン酸エステル化合物はi線(波長365nm)領域に吸収を持つため、i線露光に適している。また、5−ナフトキノンジアジドスルホン酸エステル化合物は広範囲の波長領域に吸収が存在するため、広範囲の波長での露光に適している。露光する波長によって4−ナフトキノンジアジドスルホン酸エステル化合物、5−ナフトキノンジアジドスルホン酸エステル化合物を選択することが好ましい。4−ナフトキノンジアジドスルホン酸エステル化合物と5−ナフトキノンジアジドスルホン酸エステル化合物を混合して用いることもできる。
ナフトキノンジアジド化合物の分子量は、好ましくは300〜1500、さらに好ましくは350〜1200である。ナフトキノンジアジド化合物の分子量が1500より多いと、0.1〜10重量%の添加量ではパターン形成ができなくなる可能性がある。一方、ナフトキノンジアジド化合物の分子量が300より小さいと、無色透明性が低下する可能性がある。
本発明の感光性樹脂組成物は、(c)数平均粒子径が2nm〜200nmであるシリカ粒子を含有する。数平均粒子系はさらに5nm〜70nmであることが好ましい。2nmより小さいとシリカ粒子が2次凝集を起こし、塗液の保存安定性が損なわれ、200nmより大きいと硬化膜が光散乱し透明性が損なわれる。ここで、シリカ微粒子の平均粒子径は、種々のパーティクルカウンターを用いて、数平均の粒子径を測定することができる。塗料に添加する前のシリカ微粒子の粒子径を測定することが好ましい。また、被膜形成後は、電子走査型顕微鏡や透過型電子顕微鏡を用いて、被膜中のシリカ微粒子の粒子径を測定する方法が好ましい。
シリカ微粒子はアルコキキシランの1種または2種以上を水、有機溶媒および塩基(好ましくは、アンモニア)の存在下で加水分解、重縮合させる方法などにより得られる。有機溶媒に分散したシリカ微粒子は水性シリカ微粒子分散媒である水を有機溶媒で置換することで得られる。分散媒の置換は水性シリカ微粒子に有機溶媒を添加し、蒸留などの手段で水を留去させる方法で行うことができる。溶媒の種類によっては低級アルコールを添加し、シリカ粒子の表面を一部エステル化される場合もある。
シリカ粒子の具体例として、粒子径12nmでありイソプロパノールを分散剤としたIPA−ST、粒子径12nmでありメチルイソブチルケトンを分散剤としたMIBK−ST、粒子径45nmでありイソプロパノールを分散剤としたIPA−ST−L、粒子径100nmでありイソプロパノールを分散剤としたIPA−ST−ZL、粒子径15nmであり、プロピレングリコールモノメチルエーテルを分散剤としたPGM−ST(以上、商品名、日産化学工業(株)製)、粒子径12nmでありγ−ブチロラクトンを分散剤としたオスカル(登録商標)101、粒子径60nmでありγ−ブチロラクトンを分散剤としたオスカル(登録商標)105、粒子径120nmでありジアセトンアルコールを分散剤としたオスカル(登録商標)106(以上、商品名、触媒化成工業(株)製)、粒子径16nmでありプロピレングリコールモノメチルエーテルを分散剤としたクォートロンPL−2L−PGME、粒子径17nmでありγ−ブチロラクトンを分散剤としたクォートロンPL−2L−BL、粒子径17nmでありジアセトンアルコールを分散剤としたクォートロンPL−2L−DAA(以上、商品名、扶桑化学工業(株)製)などが挙げられる。
シロキサンポリマーやナフトキノンジアジドとの相溶性の点から、有機溶媒に分散したシリカ微粒子が好ましい。好ましくは下記で述べる(d)溶剤が好ましい。
また、シリカ微粒子表面が反応性基を有することがシロキサンポリマーとシリカ粒子を結合させ、膜の強度が高まる点から好ましい。反応性基として、シラノール、アルコール、フェノールなどの水酸基、ビニル基、アクリル基、エチニル基、エポキシ基、アミノ基、等が挙げられる。シリカ微粒子と反応性基を有するアルコキシシランと反応させることで、反応性基を有するシリカ微粒子が得ることができる。
また、本発明の感光性樹脂組成物は、本発明の効果を損なわない限り、メチル基、フェニル基などの反応性基を持たない置換基を有するシリカ微粒子を用いてもよい。
また、本発明において、シリカ微粒子をシロキサンポリマーと均質化することが膜硬度を向上させる点および現像時のシリカ粒子の析出を防ぐ点から好ましい。なお、ここでいう「均質化している」とはシリカ微粒子のシリカ成分とマトリックスのシロキサンポリマーが反応して均質化している状態を意味する。その状態は、透過型電子顕微鏡(以下、TEMと記述)でシリカ微粒子とシロキサンポリマーの境界部分を観察することによって知ることができる。均質化している場合、TEM観察にてシリカ粒子とシロキサンポリマーとの境界線が観察されない。また、均質化した系は、同量のシリカ微粒子をシロキサンポリマーに添加した系より高解像となる点からも均質化することが好ましい。
(a)シロキサンポリマーと(c)シリカ粒子の重量比は特に制限は無いが、好ましくは(a)シロキサンポリマーに対して、(c)シリカ粒子が0.1〜300重量%、さらに好ましくは1〜200重量%である。
本発明の感光性樹脂組成物は、(d)溶剤を含有する。溶剤に特に制限は無いが、好ましくはアルコール性水酸基を有する化合物および/またはカルボニル基を有する環状化合物が用いられる。これらの溶剤を用いると、シロキサンポリマーとキノンジアジド化合物とが均一に溶解し、組成物を塗布製膜しても膜は白化することなく、高透明性が達成できる。
アルコール性水酸基を有する化合物に特に制限は無いが、好ましくは大気圧下の沸点が110〜250℃である化合物である。沸点が250℃より高いと膜中の残存溶剤量が多くなり熱硬化時の膜収縮が大きくなり、良好な平坦性が得られなくなる。一方、沸点が110℃より低いと、塗膜時の乾燥が速すぎて膜表面が荒れるなど塗膜性が悪くなる。
アルコール性水酸基を有する化合物の具体例としては、アセトール、3−ヒドロキシ−3−メチル−2−ブタノン、4−ヒドロキシ−3−メチル−2−ブタノン、5−ヒドロキシ−2−ペンタノン、4−ヒドロキシ−4−メチル−2−ペンタノン(ジアセトンアルコール)、乳酸エチル、乳酸ブチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノn−プロピルエーテル、プロピレングリコールモノn−ブチルエーテル、プロピレングリコールモノt−ブチルエーテル、3−メトキシ−1−ブタノール、3−メチル−3−メトキシ−1−ブタノールが挙げられる。これらの中でも、さらにカルボニル基を有する化合物が好ましく、特にジアセトンアルコールが好ましく用いられる。これらのアルコール性水酸基を有する化合物は、単独、あるいは2種以上を組み合わせて使用してもよい。
カルボニル基を有する環状化合物に特に制限は無いが、好ましくは大気圧下の沸点が150〜250℃である化合物である。沸点が250℃より高いと膜中の残存溶剤量が多くなり熱硬化時の膜収縮が大きくなり、良好な平坦性が得られなくなる。一方、沸点が150℃より低いと、塗膜時の乾燥が速すぎて膜表面が荒れるなど塗膜性が悪くなる。
カルボニル基を有する環状化合物の具体例としては、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、炭酸プロピレン、δ−バレロラクトン、N−メチルピロリドン、シクロヘキサノン、シクロヘプタノンが挙げられる。これらの中でも、特にγ−ブチロラクトンが好ましく用いられる。これらのカルボニル基を有する環状化合物は、単独、あるいは2種以上を組み合わせて使用してもよい。
上述のアルコール性水酸基を有する化合物とカルボニル基を有する環状化合物は、単独でも、あるいは各々混合して用いても良い。混合して用いる場合、その重量比率に特に制限は無いが、好ましくはアルコール性水酸基を有する化合物/カルボニル基を有する環状化合物=(99〜50)/(1〜50)、さらに好ましくは(97〜60)/(3〜40)である。アルコール性水酸基を有する化合物が99重量%より多い(カルボニル基を有する環状化合物が1重量%より少ない)と、シロキサンポリマーとキノンジアジド化合物との相溶性が悪く、硬化膜が白化して透明性が低下する。また、アルコール性水酸基を有する化合物が50重量%より少ない(カルボニル基を有する環状化合物が50重量%より多い)と、シロキサンポリマー中の未反応シラノール基の縮合反応が起こり易くなり、貯蔵安定性が悪くなる。
また、本発明の感光性樹脂組成物は、本発明の効果を損なわない限り、その他の溶剤を含有してもよい。その他の溶剤としては、酢酸エチル、酢酸n−プロピル、酢酸イソプロピル、酢酸n−ブチル、酢酸イソブチル、プロピレングリコールモノメチルエーテルアセテート、3−メトキシ−1−ブチルアセテート、3−メチル−3−メトキシ−1−ブチルアセテートなどのエステル類、メチルイソブチルケトン、ジイソプロピルケトン、ジイソブチルケトンなどのケトン類、ジエチルエーテル、ジイソプロピルエーテル、ジn−ブチルエーテル、ジフェニルエーテル、ジエチレングリコールメチルエチルエーテル、ジプロピレングリコールジメチルエーテルなどのエーテル類が挙げられる。
溶剤の添加量は、シロキサンポリマーに対して、好ましくは100〜1000重量%の範囲である。
本発明の感光性樹脂組成物は、波長400nmでの膜厚3μmあたりの透過率が95%以上である硬化膜が形成可能であり、さらに好ましくは98%以上を有する。光透過率が95%より低いと、液晶表示素子のTFT基板用平坦化膜として用いた場合、バックライトが通過する際に色変化が起こり、白色表示が黄色味を帯びる。
前記の波長400nmでの膜厚3μmあたりの透過率は、例えば以下の方法により求められる。組成物をテンパックスガラス板にスピンコーターを用いて任意の回転数でスピンコートし、ホットプレートを用いて100℃で2分間プリベークする。その後、ブリーチング露光として、パラレルライトマスクアライナー(PLA)を用いて、膜全面に超高圧水銀灯を6000J/m(波長365nm露光量換算)露光し、オーブンを用いて空気中250℃で1時間熱硬化して膜厚3μmの硬化膜を作製する。得られた硬化膜の紫外可視吸収スペクトルを(株)島津製作所製MultiSpec−1500を用いて測定し、波長400nmでの透過率を求める。
本発明の感光性樹脂組成物は、増感剤を含有することが好ましい。このときの増感剤は熱処理により気化する、および/または膜に残存した場合においても、光照射によって退色する増感剤が好ましい。
上記の熱処理により気化する、および/または光照射によって退色する増感剤の具体例としては、3,3’−カルボニルビス(ジエチルアミノクマリン)などのクマリン、9,10−アントラキノンなどのアントラキノン、ベンゾフェノン、4,4’−ジメトキシベンゾフェノン、アセトフェノン、4−メトキシアセトフェノン、ベンズアルデヒドなどの芳香族ケトン、ビフェニル、1,4−ジメチルナフタレン、9−フルオレノン、フルオレン、フェナントレン、トリフェニレン、ピレン、アントラセン、9−フェニルアントラセン、9−メトキシアントラセン、9,10−ジフェニルアントラセン、9,10−ビス(4−メトキシフェニル)アントラセン、9,10−ビス(トリフェニルシリル)アントラセン、9,10−ジメトキシアントラセン、9,10−ジエトキシアントラセン、9,10−ジプロポキシアントラセン(DPA、川崎化成(株)製)、9,10−ジブトキシアントラセン(DBA、川崎化成(株)製)、9,10−ジペンタオキシアントラセン、2−t−ブチル−9,10−ジブトキシアントラセン、9,10−ビス(トリメチルシリルエチニル)アントラセンなどの縮合芳香族などが挙げられる。
これらの増感剤の中で、熱処理により気化する増感剤は、好ましくは熱処理により昇華、蒸発、熱分解による熱分解物が昇華または蒸発する増感剤である。また、増感剤の気化温度としては、好ましくは130℃〜400℃、さらに好ましくは150℃〜250℃である。増感剤の気化温度が130℃より低いと、増感剤がプリベーク中に気化して露光プロセス中に存在しなくなり高感度化が達成されない。また、プリベーク中の気化を極力抑えるためには、増感剤の気化温度は150℃以上が好ましい。一方、増感剤の気化温度が400℃より高いと、増感剤が熱硬化時に気化せず硬化膜中に残存して、無色透明性が低下する。また、熱硬化時に完全に気化させるためには、増感剤の気化温度は250℃以下が好ましい。
一方、光照射によって退色する増感剤は、透明性の点から可視光領域における吸収が光照射によって退色する増感剤が好ましい。また、さらに好ましい光照射によって退色する化合物は、光照射によって二量化する化合物である。光照射によって二量化することによって、分子量が増大して不溶化するので、耐薬品性向上、耐熱性向上、透明硬化膜からの抽出物の低減という効果が得られる。
また、増感剤は高感度を達成できるという点、光照射によって二量化して退色するという点からアントラセン系化合物が好ましく、さらに、9,10位が水素であるアントラセン系化合物は熱に不安定であるので、9,10−二置換アントラセン系化合物であることが好ましい。さらに、増感剤の溶解性の向上と光二量化反応の反応性の点から一般式(4)で表される9,10−ジアルコキシアントラセン系化合物であることが好ましい。
Figure 0004687315
12、R13、R14、R15、R16、R17、R18、R19はそれぞれ独立して、水素、炭素数1〜20のアルキル基、アルコキシ基、アルケニル基、エチニル基、アリール基、アシル基、およびこれら列挙した有機基がその他の有機基で置換された基を表す。R20、R21は炭素数1〜20のアルコキシ基およびこれら列挙した有機基がその他の有機基で置換された有機基を表す。
一般式(4)のR12〜R19は、それぞれ独立して水素、炭素数1〜20のアルキル基、アルコキシ基、アルケニル基、アリール基、アシル基、およびこれら列挙した有機基がその他の有機基で置換された有機基を表す。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基が挙げられる。アルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基が挙げられる。アルケニル基の具体例としては、ビニル基、アクリロキシプロピル基、メタクリロキシプロピル基が挙げられる。アリール基の具体例としては、フェニル基、トリル基、ナフチル基が挙げられる。アシル基の具体例としては、アセチル基が挙げられる。化合物の気化性、光二量化の反応性の点から、R12〜R19は水素、または炭素数は1〜6までの有機基であることが好ましい。さらに好ましくは、R12、R15、R16、R19は水素であることが好ましい。
一般式(4)のR20、R21は炭素数1〜20のアルコキシ基、およびこれら列挙した有機基がその他の有機基で置換された有機基を表す。アルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基が挙げられるが、化合物の溶解性と光二量化による退色反応の点から、プロポキシ基、ブトキシ基が好ましい。
増感剤を用いる場合、シロキサンポリマーに対して0.001〜5重量%、さらに好ましくは0.005〜1重量%の範囲で添加するのが好ましい。この範囲を外れると、透明性が低下したり、感度が低下したりするので注意を要する。
本発明の感光性樹脂組成物は必要に応じて、溶解促進剤、溶解抑止剤、架橋剤、架橋促進剤、界面活性剤、安定剤、消泡剤などの添加剤を含有することもできる。
溶解促進剤は感度を向上する目的でよく用いられる。溶解促進剤としては、フェノール性水酸基を有する化合物や、N−ヒドロキシジカルボキシイミド化合物が好ましく用いられる。具体例としては、キノンジアジド化合物の合成に用いた上記フェノール性水酸基を有する化合物やN−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミド誘導体が挙げられる。
本発明の感光性樹脂組成物は、熱架橋性化合物を含有することが好ましい。熱架橋性化合物は熱硬化時にシロキサンポリマーを架橋する化合物であり、架橋によりシロキサンポリマー骨格中に取り込まれる化合物である。熱架橋性化合物を含有することによって硬化膜の架橋度が高くなる。これによって硬化膜の耐薬品性が向上し、かつ熱硬化時の微細パターンのリフローによるパターン解像度の低下が抑制される。
熱架橋性化合物は熱硬化時にシロキサンポリマーを架橋し、シロキサンポリマー骨格中に取り込まれる化合物であれば特に制限は無いが、好ましくは一般式(5)で表される基を2個以上有する化合物、および/または一般式(6)で表される化合物が用いられる。
Figure 0004687315
22は水素、炭素数1〜10のアルキル基のいずれかを表す。なお、化合物中の複数のR22はそれぞれ同じでも異なっていてもよい。
Figure 0004687315
23は水素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数6〜15のアリール基のいずれかを表し、複数のR23はそれぞれ同じでも異なっていてもよい。R24は水素、炭素数1〜6のアルキル基、炭素数2〜6のアシル基、炭素数6〜15のアリール基のいずれかを表し、複数のR24はそれぞれ同じでも異なっていてもよい。Lは0から3の整数を表す。
一般式(5)で表される基を2個以上有する化合物において、R23は水素、炭素数1〜10のアルキル基のいずれかを表す。なお、化合物中の複数のR23はそれぞれ同じでも異なっていてもよい。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、t−ブチル基、n−ヘキシル基、n−デシル基が挙げられる。
一般式(5)で表される基を2個以上有する化合物の具体例としては、以下のようなメラミン誘導体や尿素誘導体(商品名、三和ケミカル(株)製)、およびフェノール性化合物(商品名、本州化学工業(株)製)が挙げられる。
Figure 0004687315
一般式(5)で表される基を2個以上有する化合物は、単独で使用しても、2種以上を組み合わせて使用してもよい。
一般式(6)で表される化合物において、R23は、水素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数6〜15のアリール基のいずれかを表し、複数のR23はそれぞれ同じでも異なっていてもよい。また、これらのアルキル基、アルケニル基、アリール基はいずれも置換基を有していてもよく、また置換基を有していない無置換体であってもよく、組成物の特性に応じて選択できる。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、t−ブチル基、n−ヘキシル基、n−デシル基、トリフルオロメチル基、3,3,3−トリフルオロプロピル基、3−グリシドキシプロピル基、2−(3、4−エポキシシクロヘキシル)エチル基、3−アミノプロピル基、3−メルカプトプロピル基、3−イソシアネートプロピル基が挙げられる。アルケニル基の具体例としては、ビニル基、3−アクリロキシプロピル基、3−メタクリロキシプロピル基が挙げられる。アリール基の具体例としては、フェニル基、トリル基、p−ヒドロキシフェニル基、1−(p−ヒドロキシフェニル)エチル基、2−(p−ヒドロキシフェニル)エチル基、4−ヒドロキシ−5−(p−ヒドロキシフェニルカルボニルオキシ)ペンチル基、ナフチル基が挙げられる。
一般式(6)のR24は水素、炭素数1〜6のアルキル基、炭素数2〜6のアシル基、炭素数6〜15のアリール基のいずれかを表し、複数のR24はそれぞれ同じでも異なっていてもよい。また、これらのアルキル基、アシル基、アリール基はいずれも置換基を有していてもよく、また置換基を有していない無置換体であってもよく、組成物の特性に応じて選択できる。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基が挙げられる。アシル基の具体例としては、アセチル基が挙げられる。アリール基の具体例としては、フェニル基が挙げられる。Lは0から2の整数を表す。
一般式(6)で表される化合物の具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラアセトキシシラン、テトラフェノキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリn−ブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリイソプロポキシシラン、エチルトリn−ブトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−ブチルトリメトキシシラン、n−ブチルトリエトキシシラン、n−ヘキシルトリメトキシシラン、n−ヘキシルトリエトキシシラン、デシルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、p−ヒドロキシフェニルトリメトキシシラン、1−(p−ヒドロキシフェニル)エチルトリメトキシシラン、2−(p−ヒドロキシフェニル)エチルトリメトキシシラン、4−ヒドロキシ−5−(p−ヒドロキシフェニルカルボニルオキシ)ペンチルトリメトキシシラン、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−メルカプトプロピルトリメトキシシランなどのジメチルジメトキシシラン、ジメチルジエトキシランジメチルジアセトキシシラン、ジn−ブチルジメトキシシラン、ジフェニルジメトキシシラン、(3−グリシドキシプロピル)メチルジメトキシシラン、(3−グリシドキシプロピル)メチルジエトキシシラン、(3−グリシドキシプロピル)ジメチルエトキシシランなどが挙げられる。なお、これらの化合物は単独で使用しても、2種以上を組み合わせて使用してもよい。
一般式(6)で表される化合物はオルガノシラン化合物であり、シロキサンポリマーとの相溶性が良好であり、硬化膜の透明性を低下することなく耐溶剤性やパターン解像度が向上する。
熱架橋性化合物の添加量は特に制限されないが、好ましくはシロキサンポリマー100重量%に対して0.1〜10重量%の範囲である。熱架橋性化合物の添加量が0.1重量%より少ない場合、シロキサンポリマーの架橋が不十分で効果が少ない。一方、熱架橋性化合物の添加量が10重量%より多い場合、硬化膜の無色透明性が低下したり、組成物の貯蔵安定性が低下する。
シロキサンポリマーの架橋促進剤を含有することが好ましい。シロキサンポリマーの架橋促進剤としては、酸または塩基触媒が使用され、反応に用いた酸あるいは塩基をそのまま残存させることができる。また、熱によって酸、あるいは塩基を発生する化合物、または、光によって酸、あるいは塩基を発生する化合物を用いることが好ましい。シロキサンポリマーの架橋促進剤を含有すると、シロキサンポリマーの架橋促進剤から発生した酸または塩基が触媒となってシロキサンポリマー中の未反応シラノール基が縮合し、膜の硬度が向上する。それによって、熱硬化時のパターンリフローが抑制され、高解像度を達成でき、また、発泡や皺の発生を抑制することができる。
さらに、本発明では、下記に述べる熱架橋性化合物を添加することが好ましい。上記架橋促進剤から発生した酸または塩基は、熱架橋性化合物の触媒ともなる。架橋促進剤は架橋させるための触媒であり、シロキサンポリマー骨格中に取り込まれないが、熱架橋性化合物はシロキサンポリマーを架橋する化合物でありポリマー骨格中に取り込まれる。熱や光で発生した酸や塩基などの架橋促進剤由来の成分はシロキサンポリマー中に残存すると、イオン不純物となり、電気特性(特に絶縁性)が低下するので、シロキサンポリマー骨格中に取り込まれずに揮発または分解することが好ましい。
シロキサンポリマーの架橋促進剤としては、熱により酸または塩基を発生する場合、発生する温度は70〜200℃、好ましくは80℃〜150℃であることが好ましい。70℃より低温であると塗液の貯蔵安定性が劣り、200℃より高温であるとパターンがリフローする。また、パターニング露光光源である超高圧水銀灯(特にi線(波長365nm)、h線(波長405nm)、g線(波長436nm))に対して量子収率の高くないものを用いる。それは、光によって酸または塩基を発生する化合物が、パターニング露光により、酸または塩基が大量に発生するとシロキサンが架橋し、ネガ型の作用を引きおこし、キノンジアジド化合物を用いた場合は、キノンジアジド化合物が有するポジ型の感光性能に悪影響を及ぼすためである。従って、本発明で用いる架橋促進剤は、現像後のブリーチング露光中、または熱硬化中に効率よく架橋促進剤を発生するものが好ましい。以上のことから、感光性を損なうことなく、シロキサンポリマーの架橋促進剤としての効果を引き出すには、シロキサンポリマーの架橋促進剤の添加量はシロキサンポリマーに対して、0.01〜10重量%が好ましく、さらに好ましくは、0.1〜5重量%である。0.01重量%より少ないとシロキサンポリマーの架橋促進剤としての機能が発揮されず低硬度となり、10重量%より多いと、特に感度が低下したり、クラックが発生したり、無色透明性が低下するので注意を要する。
また、熱により酸または塩基を発生する化合物は、熱硬化時に効率的に酸または塩基を発生し、シロキサンポリマーの架橋を効率的に促進するので、熱硬化後の膜強度を高める点から好ましい。
シロキサンポリマーの架橋促進剤のうちの、熱または光により酸を発生する化合物(酸発生剤)は、イオン性化合物と非イオン性化合物がある。イオン性化合物としては、重金属、ハロゲンイオンを含まないものがよく、トリオルガノスルホニウム塩系化合物が好ましい。具体的には、トリフェニルスルホニウム、1−ジメチルチオナフタレン、1−ジメチルチオ−4−ヒドロキシナフタレン、1−ジメチルチオ−4、7−ジヒドロキシナフタレン、4−ヒドロキシフェニルジメチルスルホニウム、トリフルオロメタンスルホン酸塩、カンファースルホン酸塩、p−トルエンスルホン酸塩が挙げられる。またベンジルスルホニウム塩である、SI−60、SI−80、SI−100、SI−110、SI−145、SI−150、SI−80L、SI−100L、SI−110L、SI−145L、SI−150L、SI−160L、SI−180L(以上、商品名、三新化学工業(株)製)などが挙げられる。
非イオン性の酸発生剤としては、ハロゲン含有化合物、ジアゾメタン化合物、スルホン化合物、スルホン酸エステル化合物、カルボン酸エステル化合物、リン酸エステル化合物、スルホンイミド化合物、スルホンベンゾトリアゾール化合物等を用いることができる。
ハロゲン含有化合物の具体例としては、ハロアルキル基含有炭化水素化合物、ハロアルキル基含有ヘテロ環状化合物等が挙げられる。好ましいハロゲン含有化合物としては、1,1−ビス(4−クロロフェニル)−2,2,2−トリクロロエタン、2−フェニル−4,6−ビス(トリクロロメチル)−s−トリアジン、2−ナフチル−4,6−ビス(トリクロロメチル)−s−トリアジン等が挙げられる。
ジアゾメタン化合物の具体例としては、ビス(トリフルオロメチルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(フェニルスルホニル)ジアゾメタン、ビス(p−トリルスルホニル)ジアゾメタン、ビス(2,4−キシリルスルホニル)ジアゾメタン、ビス(p−クロロフェニルスルホニル)ジアゾメタン、メチルスルホニル−p−トルエンスルホニルジアゾメタン、シクロヘキシルスルホニル(1,1−ジメチルエチルスルホニル)ジアゾメタン、ビス(1,1−ジメチルエチルスルホニル)ジアゾメタン、フェニルスルホニル(ベンゾイル)ジアゾメタン等が挙げられる。
スルホン化合物の具体例としては、β−ケトスルホン化合物、β−スルホニルスルホン化合物、ジアリールジスルホン化合物等が挙げられる。好ましいスルホン化合物としては、4−トリスフェナシルスルホン、メシチルフェナシルスルホン、ビス(フェニルスルホニル)メタン、4−クロロフェニル−4−メチルフェニルジスルホン化合物等が挙げられる。
スルホン酸エステル化合物の具体例としては、アルキルスルホン酸エステル、ハロアルキルスルホン酸エステル、アリールスルホン酸エステル、イミノスルホネート等が挙げられる。好ましい具体例として、ベンゾイントシレート、ピロガロールトリメシレート、ニトロベンジル−9,10−ジエトキシアントラセン−2−スルホネート、2,6−ジニトロベンジルベンゼンスルホネート等が挙げられる。イミノスルホネートの具体例として、PAI−101(みどり化学(株)製)、PAI−106(みどり化学(株)製)、CGI−1311(チバスペシャリティケミカルズ(株)製)が挙げられる。
カルボン酸エステル化合物としては、カルボン酸o−ニトロベンジルエステルが挙げられる。
スルホンイミド化合物の具体例としては、N−(トリフルオロメチルスルホニルオキシ)スクシンイミド(SI−105(みどり化学(株)製))、N−(カンファスルホニルオキシ)スクシンイミド(SI−106(みどり化学(株)製))、N−(4−メチルフェニルスルホニルオキシ)スクシンイミド(SI−101(みどり化学(株)製))、N−(2−トリフルオロメチルフェニルスルホニルオキシ)スクシンイミド、N−(4−フルオロフェニルスルホニルオキシ)スクシンイミド、N−(トリフルオロメチルスルホニルオキシ)フタルイミド、N−(カンファスルホニルオキシ)フタルイミド、N−(2−トリフルオロメチルフェニルスルホニルオキシ)フタルイミド、N−(2−フルオロフェニルスルホニルオキシ)フタルイミド、N−(トリフルオロメチルスルホニルオキシ)ジフェニルマレイミド(PI−105(みどり化学(株)製))、N−(カンファスルホニルオキシ)ジフェニルマレイミド、4−メチルフェニルスルホニルオキシ)ジフェニルマレイミド、N−(2−トリフルオロメチルフェニルスルホニルオキシ)ジフェニルマレイミド、N−(4−フルオロフェニルスルホニルオキシ)ジフェニルマレイミド、N−(4−フルオロフェニルスルホニルオキシ)ジフェニルマレイミド、N−(フェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシルイミド(NDI−100(みどり化学(株)製))、N−(4−メチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシルイミド(NDI−101(みどり化学(株)製))、N−(トリフルオロメタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシルイミド(NDI−105(みどり化学(株)製))、N−(ノナフルオロブタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシルイミド(NDI−109(みどり化学(株)製))、N−(カンファスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシルイミド(NDI−106(みどり化学(株)製))、N−(カンファスルホニルオキシ)−7−オキサビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシルイミド、N−(トリフルオロメチルスルホニルオキシ)−7−オキサビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシルイミド、N−(4−メチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシルイミド、N−(4−メチルフェニルスルホニルオキシ)−7−オキサビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシルイミド、N−(2−トリフルオロメチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシルイミド、N−(2−トリフルオロメチルフェニルスルホニルオキシ)−7−オキサビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシルイミド、N−(4−フルオロフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシルイミド、N−(4−フルオロフェニルスルホニルオキシ)−7−オキサビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシルイミド、N−(トリフルオロメチルスルホニルオキシ)ビシクロ[2.2.1]ヘプタン−5,6−オキシ−2,3−ジカルボキシルイミド、N−(カンファスルホニルオキシ)ビシクロ[2.2.1]ヘプタン−5,6−オキシ−2,3−ジカルボキシルイミド、N−(4−メチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプタン−5,6−オキシ−2,3−ジカルボキシルイミド、N−(2−トリフルオロメチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプタン−5,6−オキシ−2,3−ジカルボキシルイミド、N−(4−フルオロフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプタン−5,6−オキシ−2,3−ジカルボキシルイミド、N−(トリフルオロメチルスルホニルオキシ)ナフチルジカルボキシルイミド(NAI−105(みどり化学(株)製))、N−(カンファスルホニルオキシ)ナフチルジカルボキシルイミド(NAI−106(みどり化学(株)製))、N−(4−メチルフェニルスルホニルオキシ)ナフチルジカルボキシルイミド(NAI−101(みどり化学(株)製))、N−(フェニルスルホニルオキシ)ナフチルジカルボキシルイミド(NAI−100(みどり化学(株)製))、N−(2−トリフルオロメチルフェニルスルホニルオキシ)ナフチルジカルボキシルイミド、N−(4−フルオロフェニルスルホニルオキシ)ナフチルジカルボキシルイミド、N−(ペンタフルオロエチルスルホニルオキシ)ナフチルジカルボキシルイミド、N−(ヘプタフルオロプロピルスルホニルオキシ)ナフチルジカルボキシルイミド、N−(ノナフルオロブチルスルホニルオキシ)ナフチルジカルボキシルイミド(NAI−109(みどり化学(株)製))、N−(エチルスルホニルオキシ)ナフチルジカルボキシルイミド、N−(プロピルスルホニルオキシ)ナフチルジカルボキシルイミド、N−(ブチルスルホニルオキシ)ナフチルジカルボキシルイミド(NAI−1004(みどり化学(株)製))、N−(ペンチルスルホニルオキシ)ナフチルジカルボキシルイミド、N−(ヘキシルスルホニルオキシ)ナフチルジカルボキシルイミド、N−(ヘプチルスルホニルオキシ)ナフチルジカルボキシルイミド、N−(オクチルスルホニルオキシ)ナフチルジカルボキシルイミド、N−(ノニルスルホニルオキシ)ナフチルジカルボキシルイミド、等が挙げられる。
上記酸発生剤の中でも、シロキサンポリマーを効率よく架橋させるために、発生する酸は強いことが望ましく、酸のpkaは3以下、好ましくは2以下、さらに好ましくは1以下であることが好ましい。発生する酸の強さの点から、発生する酸はベンゼンスルホン酸、アルキルベンゼンスルホン酸、パーフルオロアルキルスルホン酸、リン酸が好ましい。以上のなかでも、パターンの解像度が熱硬化中にリフローせずに解像度の低下を抑制できるという点から、スルホニウム塩、スルホンイミド化合物が好ましい。
具体例としては、4−ヒドロキシフェニルジメチルスルホニウム、2−メチルベンジル−4−ヒドロキシフェニルメチルスルホニウム、2−メチルベンジル−4−アセチルフェニルメチルスルホニウム、2−メチルベンジル−4−ベンゾイルオキシフェニルメチルスルホニウム、これらのメタンスルホン酸塩、トリフルオロメタンスルホン酸塩、カンファースルホン酸塩、p−トルエンスルホン酸塩が挙げられる。また、SI−60、SI−80、SI−100、SI−110、SI−145、SI−150、SI−80L、SI−100L、SI−110L、SI−145L、SI−150L、SI−160L、SI−180L(以上、商品名、三新化学工業(株)製)、SI−101、SI−105、SI−106、SI−109、PI−105、NDI−101、NDI−105、NDI−109、NAI−101、NAI−105、NAI−109(以上、商品名、みどり化学(株)製)が挙げられる。
シロキサンポリマーの架橋促進剤のうちの、熱または光により塩基を発生する化合物(塩基発生剤)は、コバルトなど遷移金属錯体、オルトニトロベンジルカルバメート類、α,α−ジメチル−3,5−ジメトキシベンジルカルバメート類、アシルオキシイミノ類などを例示することができる。
光照射により発生する塩基の種類としては有機、無機の塩基のいずれの場合も好ましく用いることができるが、光照射による発生効率、シロキサンポリマーの架橋における触媒効果、シロキサンポリマー溶液への溶解性などの点から有機アミン類が特に好ましい。発生する有機アミン類の種類としては脂肪族、芳香族のいずれでも良く、また、1官能でも多官能でも良い。紫外線照射により発生するアミン類の具体例としては、アンモニア、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、シクロヘキシルアミン、デシルアミン、セチルアミン、ヒドラジン、テトラメチレンジアミン、ヘキサメチレンジアミン、ベンジルアミン、アニリン、ナフチルアミン、フェニレンジアミン、トルエンジアミン、ジアミノジフェニルメタン、ヘキサメチルテトラミン、ピペリジン、ピペラジンなどを列記することができる。
好ましい塩基発生剤の具体例として、遷移金属錯体としては、ブロモペンタアンモニアコバルト過塩素酸塩、ブロモペンタメチルアミンコバルト過塩素酸塩、ブロモペンタプロピルアミンコバルト過塩素酸塩、ヘキサアンモニアコバルト過塩素酸塩、ヘキサメチルアミンコバルト過塩素酸塩、ヘキサプロピルアミンコバルト過塩素酸塩などがあげられる。
オルトニトロベンジルカルバメート類としては、[[(2−ニトロベンジル)オキシ]カルボニル]メチルアミン、[[(2−ニトロベンジル)オキシ]カルボニル]プロピルアミン、[[(2−ニトロベンジル)オキシ]カルボニル]ヘキシルアミン、[[(2−ニトロベンジル)オキシ]カルボニル]シクロヘキシルアミン、[[(2−ニトロベンジル)オキシ]カルボニル]アニリン、[[(2−ニトロベンジル)オキシ]カルボニル]ピペリジン、ビス[[(2−ニトロベンジル)オキシ]カルボニル]ヘキサメチレンジアミン、ビス[[(2−ニトロベンジル)オキシ]カルボニル]フェニレンジアミン、ビス[[(2−ニトロベンジル)オキシ]カルボニル]トルエンジアミン、ビス[[(2−ニトロベンジル)オキシ]カルボニル]ジアミノジフェニルメタン、ビス[[(2−ニトロベンジル)オキシ]カルボニル]ピペラジン、[[(2,6−ジニトロベンジル)オキシ]カルボニル]メチルアミン、[[(2,6−ジニトロベンジル)オキシ]カルボニル]プロピルアミン、[[(2,6−ジニトロベンジル)オキシ]カルボニル]ヘキシルアミン、[[(2,6−ジニトロベンジル)オキシ]カルボニル]シクロヘキシルアミン、[[(2,6−ジニトロベンジル)オキシ]カルボニル]アニリン、[[(2,6−ジニトロベンジル)オキシ]カルボニル]ピペリジン、ビス[[(2,6−ジニトロベンジル)オキシ]カルボニル]ヘキサメチレンジアミン、ビス[[(2,6−ジニトロベンジル)オキシ]カルボニル]フェニレンジアミン、ビス[[(2,6−ジニトロベンジル)オキシ]カルボニル]トルエンジアミン、ビス[[(2,6−ジニトロベンジル)オキシ]カルボニル]ジアミノジフェニルメタン、ビス[[(2,6−ジニトロベンジル)オキシ]カルボニル]ピペラジンなどがあげられる。
α,α−ジメチル−3,5−ジメトキシベンジルカルバメート類としては、[[(α,α−ジメチル−3,5−ジメトキシベンジル)オキシ]カルボニル]メチルアミン、[[(α,α−ジメチル−3,5−ジメトキシベンジル)オキシ]カルボニル]プロピルアミン、[[(α,α−ジメチル−3,5−ジメトキシベンジル)オキシ]カルボニル]ヘキシルアミン、[[(α,α−ジメチル−3,5−ジメトキシベンジル)オキシ]カルボニル]シクロヘキシルアミン、[[(α,α−ジメチル−3,5−ジメトキシベンジル)オキシ]カルボニル]アニリン、[[(α,α−ジメチル−3,5−ジメトキシベンジル)オキシ]カルボニル]ピペリジン、ビス[[(α,α−ジメチル−3,5−ジメトキシベンジル)オキシ]カルボ
ニル]ヘキサメチレンジアミン、ビス[[(α,α−ジメチル−3,5−ジメトキシベンジル)オキシ]カルボニル]フェニレンジアミン、ビス[[(α,α−ジメチル−3,5−ジメトキシベンジル)オキシ]カルボニル]トルエンジアミン、ビス[[(α,α−ジメチル−3,5−ジメトキシベンジル)オキシ]カルボニル]ジアミノジフェニルメタン、ビス[[(α,α−ジメチル−3,5−ジメトキシベンジル)オキシ]カルボニル]ピペラジンなどがあげられる。
アシルオキシイミノ類としては、プロピオニルアセトフェノンオキシム、プロピオニルベンゾフェノンオキシム、プロピオニルアセトンオキシム、ブチリルアセトフェノンオキシム、ブチリルベンゾフェノンオキシム、ブチリルアセトンオキシム、アジポイルアセトフェノンオキシム、アジポイルベンゾフェノンオキシム、アジポイルアセトンオキシム、アクロイルアセトフェノンオキシム、アクロイルベンゾフェノンオキシム、アクロイルアセトンオキシムなどがあげられる。上記の塩基発生剤の中でも、シロキサンポリマーを効率よく架橋させるために発生する塩基は強いことが望ましく、塩基のpkaは11以上、好ましくは12以上、さらに好ましくは13以上であることが好ましい。特に好ましいものとしては、[[(2−ニトロベンジル)オキシ]カルボニル]シクロヘキシルアミン、ビス[[(2−ニトロベンジル)オキシ]カルボニル]ヘキサメチレンジアミン、ビス[[(α,α−ジメチル−3,5−ジメトキシベンジル)オキシ]カルボニル]ヘキサメチレンジアミンがあげられる。
本発明の感光性樹脂組成物を用いた硬化膜の形成方法について説明する。本発明の感光性樹脂組成物をスピンナー、ディッピング、スリットなどの公知の方法によって下地基板上に塗布し、ホットプレート、オーブンなどの加熱装置でプリベークする。プリベークは、50〜150℃の範囲で30秒〜30分間行い、プリベーク後の膜厚は、0.1〜15μmとするのが好ましい。
プリベーク後、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナー(PLA)などの紫外可視露光機を用い、10〜4000J/m程度(波長365nm露光量換算)を所望のマスクを介してパターニング露光する。また、本発明の感光性樹脂組成物は、PLAによる露光での感度が100〜4000J/mであることが好ましい。感度が4000J/mより低いと、パターン形成時の放射線露光時間が長くなるために生産性が低下したり、放射線露光量が多くなるために下地基板からの反射量が多くなりパターン形状が悪化する。
前記のPLAによるパターニング露光での感度は、例えば以下の方法により求められる。組成物をシリコンウェハにスピンコーターを用いて任意の回転数でスピンコートし、ホットプレートを用いて90℃で2分間プリベークし、膜厚4μmの膜を作製する。作製した膜をPLA(キヤノン(株)製PLA−501F)を用いて、超高圧水銀灯を感度測定用のグレースケールマスクを介して露光した後、自動現像装置(滝沢産業(株)製AD−2000)を用いて2.38重量%水酸化テトラメチルアンモニウム水溶液で任意の時間パドル現像し、次いで水で30秒間リンスする。形成されたパターンにおいて、10μmのライン・アンド・スペースパターンを1対1の幅で解像する露光量を感度として求める。
パターニング露光後、現像により露光部が溶解し、ポジ型のパターンを得ることができる。現像方法としては、シャワー、ディッピング、パドルなどの方法で現像液に5秒〜10分間浸漬することが好ましい。現像液としては、公知のアルカリ現像液を用いることができる。具体的例としてはアルカリ金属の水酸化物、炭酸塩、リン酸塩、ケイ酸塩、ホウ酸塩などの無機アルカリ、2−ジエチルアミノエタノール、モノエタノールアミン、ジエタノールアミン等のアミン類、水酸化テトラメチルアンモニウム、コリン等の4級アンモニウムを1種あるいは2種以上含む水溶液等が挙げられる。
現像後、水でリンスすることが好ましく、つづいて50〜150℃の範囲で乾燥ベークを行うこともできる。
その後、ブリーチング露光を行うことが好ましい。ブリーチング露光を行うことによって、膜中に残存する未反応のキノンジアジド化合物が光分解して、膜の光透明性がさらに向上する。ブリーチング露光の方法としては、PLAなどの紫外可視露光機を用い、100〜4000J/m程度(波長365nm露光量換算)を全面に露光する。
その後、この膜をホットプレート、オーブンなどの加熱装置で150〜450℃の範囲で1時間程度熱硬化することで、パターンリフロー、発泡、皺の発生がなく、高解像度のスルーホールなどのパターンが形成された硬化膜を得ることができる。解像度は、好ましくは10μm以下である。この硬化膜は表示素子におけるTFT用平坦化膜、半導体素子における層間絶縁膜、あるいは光導波路におけるコアやクラッド材等に好適に使用される。
本発明の素子は、表示素子、半導体素子、あるいは光導波路材が挙げられる。また、本発明の素子は、上述の本発明の高解像度、高硬度、高透明性、高耐熱性、低誘電率性の硬化膜を有するので、特に、TFT用平坦化膜として用いた液晶ディスプレイや有機EL表示素子としたとき、当該表示素子は画面の明るさと信頼性に優れている。
以下、実施例を挙げて、本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されない。
以下の得られたポリマーの重量平均分子量(Mw)は、GPC(ゲルパーミネーションクロマトグラフィー)(展開溶剤:テトラヒドロフラン、展開速度:0.4ml/分)を用いてポリスチレン換算で求めた。
合成例1 シロキサンポリマー溶液(a)の合成
メチルトリメトキシシラン88.53g(0.65モル)、フェニルトリメトキシシラン69.41g(0.35モル)、ジアセトンアルコール(DAA)138.87gを500mLの三口フラスコに仕込み、室温で攪拌しながら水54gにリン酸0.158g(仕込みシラン化合物に対して0.1重量%)を溶かしたリン酸水溶液を30分かけて添加した。その後、フラスコを40℃のオイルバスに浸けて30分攪拌した後、オイルバスを30分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した(内温は100〜110℃)。反応中に副生成物であるメタノール96g、水24g、DAAが留出した。得られたシロキサンポリマーのDAA溶液に、ポリマー濃度が40重量%となるようにDAAを加えてシロキサンポリマー溶液(a)を得た。なお、Si原子に対するフェニル基含有率は35モル%であった。なお、得られたポリマーの重量平均分子量(Mw)は5300であった。
合成例2 シロキサンポリマー溶液(b)の合成
メチルトリメトキシシラン49.03g(0.36モル)、フェニルトリメトキシシラン83.29g(0.42モル)、3−トリフルオロプロピルトリメトキシシラン78.55(0.36モル)、2−(3,4−エポキシシクロヘキシル)トリメトキシシラン14.78g(0.06モル)、DAA209.47gを500mLの三口フラスコに仕込み、室温で攪拌しながら水65.8gにリン酸0.45g(仕込みシラン化合物に対して0.2重量%)を溶かしたリン酸水溶液を30分かけて添加した。その後、フラスコを40℃のオイルバスに浸けて30分攪拌した後、オイルバスを30分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから1.5時間加熱攪拌した(内温は100〜110℃)。反応中に副生成物であるメタノール117g、水33g、DAAが留出した。得られたシロキサンポリマーのDAA溶液が、ポリマー濃度が40重量%となるようにDAAを加えてシロキサンポリマー溶液(b)を得た。なお、Si原子に対するフェニル基含有率は35モル%であった。なお、得られたポリマーの重量平均分子量(Mw)は4800であった。
合成例3 シロキサンポリマー溶液(c)の合成
メチルトリメトキシシラン96.50g(0.71モル)、フェニルトリメトキシシラン90.23g(0.46モル)、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン16.02g(0.065モル)、DAA172.12gを500mLの三口フラスコに仕込み、室温で攪拌しながら水67.6gにリン酸0.41g(仕込みシラン化合物に対して0.2重量%)を溶かしたリン酸水溶液を30分かけて添加した。その後、フラスコを70℃のオイルバスに浸けて1時間攪拌した後、シリカ粒子分散液17.18g(シリカ重量:4.29g、Si原子モル数:5.5モルSiO換算、理論シリカ微粒子含有率:3.5重量%、クォートロンPL−2L−DAA、25wt%分散溶液、扶桑化学工業(株)製)を添加し、オイルバスを60分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した(内温は100〜110℃)。反応中に副生成物であるメタノール120g、水34gが留出した。得られたシロキサンポリマーのDAA溶液に、ポリマー濃度が32重量%、溶剤組成がDAA/GBL(80/20)となるようにDAAとGBLを加えてシロキサンポリマー溶液(c)を得た。フェニル基含有率は35モル%であった。なお、得られたポリマーの重量平均分子量(Mw)は6200であった。
合成例4 アクリルポリマー溶液(d)の合成
2,2’−アゾビス(2,4−ジメチルバレロニトリル)5g、ジエチレングリコールエチルメチルエーテル(EDM)200gを500mLの三口フラスコに仕込んだ。引き続きスチレン25g、メタクリル酸20g、メタクリル酸グリシジル45g、トリシクロ[5.2.1.02,6]デカン−8−イルメタクリレート10gを仕込み、室温でしばらく攪拌した後、フラスコ内を窒素置換した。その後、フラスコを70℃のオイルバスに浸けて、5時間加熱攪拌した。得られたアクリルポリマーのEDM溶液に、ポリマー濃度が30重量%、溶剤組成がEDM(100)となるようにEDMを加えてアクリルポリマー溶液(d)を得た。なお、得られたポリマーの重量平均分子量(Mw)は15000であった。
合成例5 キノンジアジド化合物(a)の合成
乾燥窒素気流下、TrisP−PA(商品名、本州化学工業(株)製)21.23g(0.05モル)と5−ナフトキノンジアジドスルホニル酸クロリド37.62g(0.14モル)を1,4−ジオキサン450gに溶解させ、室温にした。ここに、1,4−ジオキサン50gと混合させたトリエチルアミン15.58g(0.154モル)を系内が35℃以上にならないように滴下した。滴下後30℃で2時間攪拌した。トリエチルアミン塩を濾過し、濾液を水に投入させた。その後、析出した沈殿を濾過で集めた。この沈殿を真空乾燥機で乾燥させ、下記構造のキノンジアジド化合物(a)を得た。
Figure 0004687315
合成例6 キノンジアジド化合物(b)の合成
乾燥窒素気流下、TrisP−PA(商品名、本州化学工業(株)製)21.23g(0.05モル)と5−ナフトキノンジアジドスルホニル酸クロリド33.58g(0.125モル)を1,4−ジオキサン450gに溶解させ、室温にした。ここに、1,4−ジオキサン50gと混合させたトリエチルアミン13.91g(0.14モル)を系内が35℃以上にならないように滴下した。滴下後30℃で2時間攪拌した。トリエチルアミン塩を濾過し、濾液を水に投入させた。その後、析出した沈殿を濾過で集めた。この沈殿を真空乾燥機で乾燥させ、下記構造のキノンジアジド化合物(b)を得た。
Figure 0004687315
合成例7 キノンジアジド化合物(c)の合成
乾燥窒素気流下、TrisP−HAP(商品名、本州化学工業(株)製)15.32g(0.05モル)と5−ナフトキノンジアジドスルホニル酸クロリド22.84g(0.085モル)を1,4−ジオキサン450gに溶解させ、室温にした。ここに、1,4−ジオキサン50gと混合させたトリエチルアミン9.46g(0.0935モル)を系内が35℃以上にならないように滴下した。滴下後30℃で2時間攪拌した。トリエチルアミン塩を濾過し、濾液を水に投入させた。その後、析出した沈殿を濾過で集めた。この沈殿を真空乾燥機で乾燥させ、下記構造のキノンジアジド化合物(c)を得た。
Figure 0004687315
合成例8 キノンジアジド化合物(d)の合成
乾燥窒素気流下、TrisP−HAP(商品名、本州化学工業(株)製)15.32g(0.05モル)と4−ナフトキノンジアジドスルホニル酸クロリド22.84g(0.085モル)を1,4−ジオキサン450gに溶解させ、室温にした。ここに、1,4−ジオキサン50gと混合させたトリエチルアミン9.46g(0.0935モル)を系内が35℃以上にならないように滴下した。滴下後30℃で2時間攪拌した。トリエチルアミン塩を濾過し、濾液を水に投入させた。その後、析出した沈殿を濾過で集めた。この沈殿を真空乾燥機で乾燥させ、下記構造のキノンジアジド化合物(d)を得た。
Figure 0004687315
合成例9 キノンジアジド化合物(e)の合成
乾燥窒素気流下、TrisP−PA(商品名、本州化学工業(株)製)21.23g(0.05モル)と5−ナフトキノンジアジドスルホニル酸クロリド26.87g(0.1モル)を1,4−ジオキサン450gに溶解させ、室温にした。ここに、1,4−ジオキサン50gと混合させたトリエチルアミン11.13g(0.11モル)を系内が35℃以上にならないように滴下した。滴下後30℃で2時間攪拌した。トリエチルアミン塩を濾過し、濾液を水に投入させた。その後、析出した沈殿を濾過で集めた。この沈殿を真空乾燥機で乾燥させ、下記構造のキノンジアジド化合物(e)を得た。
Figure 0004687315
実施例1
合成例1で得られたシロキサンポリマー溶液(a)24g、キノンジアジド化合物(a)0.48g(シロキサンポリマーに対して5重量%)、キノンジアジド化合物(d)0.19g(シロキサンポリマーに対して2重量%)、架橋促進剤2−メチルベンジル−4−ヒドロキシフェニルメチルスルホニウムトリフルオロメタンスルホン酸塩0.05g(シロキサンポリマーに対して0.5重量%)、シリカ微粒子分散液PL−2L−BL(扶桑化学工業(株)製、濃度35重量%)27.42g(シロキサンポリマーに対して100重量%)、シロキサンリマーとシリカ粒子の総量の濃度が25重量%、DAA/γ−ブチロラクトン(GBL)の比が70/30となるようにDAAとGBLを添加し、黄色灯下で混合、攪拌して均一溶液とした後、1.0μmのフィルターで濾過して組成物1を得た。
組成物1をそれぞれテンパックスガラス板(旭テクノガラス板(株)製)、およびシリコンウェハにスピンコーター(ミカサ(株)製1H−360S)を用いて任意の回転数でスピンコートした後、ホットプレート(大日本スクリーン製造(株)製SCW−636)を用いて90℃で2分間プリベークし、膜厚4μmの膜を作製した。作製した膜をPLA(キヤノン(株)製PLA−501F)を用いて、超高圧水銀灯を感度測定用のグレースケールマスクを介して露光した後、自動現像装置(滝沢産業(株)製)を用いて2.38重量%水酸化テトラメチルアンモニウム水溶液であるELM−D(三菱ガス化学(株)製)で表2に示した時間パドル現像(90秒間)し、次いで水で30秒間リンスした。その後、ブリーチング露光として、PLA(キヤノン(株)製PLA−501F)を用いて、膜全面に超高圧水銀灯を6000J/m(波長365nm露光量換算)露光し、次いでホットプレートで110℃で2分間ベークし、オーブン((株)タバイ製IHPS−222)を用いて空気中250℃で1時間熱硬化して硬化膜を作製した。
感光特性、および熱硬化膜特性の評価結果を表2に示す。なお、表中の評価は以下の方法で行った。なお、下記の(1)、(2)、(3)、(4)、(8)の評価はシリコンウェハ基板を、(6)の評価はテンパックスガラス板を用いて行った。
(1)膜厚測定
大日本スクリーン製造(株)製ラムダエースSTM−602を用いて、屈折率1.50で測定を行った。
(2)残膜率の算出
残膜率は以下の式に従って算出した。
残膜率(%)=現像後の未露光部膜厚÷プリベーク後の膜厚×100
(3)感度の算出
露光、現像後、10μmのライン・アンド・スペースパターンを1対1の幅に形成する露光量(以下、これを最適露光量という)を感度とした。
(4)解像度の算出
露光、現像後、最適露光量における最小のパターン寸法を解像度とした。
(5)重量減少率
組成物をアルミセルに約100mg入れ、熱重量測定装置TGA−50(島津製作所(株)製)を用い、窒素雰囲気中、昇温速度10℃/分で300℃まで加熱し、そのまま1時間熱硬化させ、その後昇温速度10℃/分で400℃までで昇温した時の、重量減少率を測定した。300℃に到達したときの重量を測定し、さらに400℃に到達した時の重量を測定し、300℃時の重量との差を求め、減少した重量分を重量減少率として求めた。
(6)透過率
MultiSpec−1500((株)島津製作所)を用いて、まずテンパックスガラス板のみを測定し、その紫外可視吸収スペクトルをリファレンスとした。次に各熱硬化膜をテンパックスガラスに形成し、これをサンプルとし、サンプルを用いてシングルビームで測定し、3μmあたりの波長400nmにおける光透過率を求め、リファレンスとの差異を硬化膜の透過率とした。
(7)誘電率の測定
アルミ基板に、組成物を塗布、プリベーク、ブリーチング露光、熱硬化処理し、薄膜を形成した。その後この薄膜上部にアルミ電極を形成し、1KHzにおける静電容量を横川ヒューレットパッカード(株)製のLCRメーター4284Aを用いて測定し、下記式により誘電率(ε)を求めた。なお現像処理はしていない。
ε=C・d/ε・S
但し、Cは静電容量、dは試料膜厚、εは真空中の誘電率、Sは上部電極面積である。
(8)鉛筆硬度
熱硬化膜を、鉛筆硬度の硬いものから軟らかい順に紙ヤスリで鉛筆の芯をとがらせて引っ掻き、その膜が削れなかった最も硬い鉛筆硬度をその膜の鉛筆硬度とした。
実施例2〜9、比較例1〜3
表1に記載の組成のとおりに、組成物1と同様にして組成物2〜12を調合した。なお、増感剤として用いたDBA、DPA(川崎化成工業(株)製)、酸発生剤として用いたNDI−105、NAI−105、NAI−109(みどり化学(株)製)溶解促進剤として用いた、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミド(NHI)(東京化成工業(株)製)、熱架橋性化合物ニカラックMX−270、エピコート828(商品名、ジャパンエポキシレジン(株)製)は下記に示した構造の化合物である。
Figure 0004687315
Figure 0004687315
組成物2〜11を用い、それぞれ実施例1と同様にして硬化膜を作製した。表1でのPGMはプロピレングリコールモノメチルエーテルである。なお、比較例1においては、プリベーク後の膜厚は3μmとし、現像条件は0.3重量%水酸化テトラメチルアンモニウム水溶液(ELM−Dを水で希釈したもの)でシャワー現像とし、それ以外は実施例1と同様に行った。
Figure 0004687315

Claims (4)

  1. (a)シロキサンポリマー、(b)キノンジアジド化合物、(c)数平均粒子径が2〜200nmのシリカ微粒子(d)溶剤を含有する感光性樹脂組成物。
  2. (c)シリカ微粒子が反応性基を有する請求項1記載の感光性樹脂組成物。
  3. 請求項1または2のいずれか記載の感光性樹脂成物から形成された硬化膜。
  4. 請求項記載の硬化膜を具備する素子。
JP2005226395A 2005-08-04 2005-08-04 感光性樹脂組成物、それから形成された硬化膜、および硬化膜を有する素子 Expired - Fee Related JP4687315B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005226395A JP4687315B2 (ja) 2005-08-04 2005-08-04 感光性樹脂組成物、それから形成された硬化膜、および硬化膜を有する素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005226395A JP4687315B2 (ja) 2005-08-04 2005-08-04 感光性樹脂組成物、それから形成された硬化膜、および硬化膜を有する素子

Publications (2)

Publication Number Publication Date
JP2007041361A JP2007041361A (ja) 2007-02-15
JP4687315B2 true JP4687315B2 (ja) 2011-05-25

Family

ID=37799394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005226395A Expired - Fee Related JP4687315B2 (ja) 2005-08-04 2005-08-04 感光性樹脂組成物、それから形成された硬化膜、および硬化膜を有する素子

Country Status (1)

Country Link
JP (1) JP4687315B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080206997A1 (en) * 2007-02-26 2008-08-28 Semiconductor Energy Laboratory Co., Ltd. Method for Manufacturing Insulating Film and Method for Manufacturing Semiconductor Device
WO2008126902A1 (ja) * 2007-04-11 2008-10-23 Mitsubishi Rayon Co., Ltd. 組成物、保護被膜形成方法及び積層体とその製法
JP4905700B2 (ja) * 2007-05-16 2012-03-28 Jsr株式会社 感放射線性樹脂組成物、層間絶縁膜およびマイクロレンズならびにそれらの形成方法
KR101558442B1 (ko) 2007-11-13 2015-10-07 가부시키가이샤 아데카 포지티브형 감광성 조성물, 포지티브형 영구 레지스트 및 포지티브형 영구 레지스트의 제조 방법
JP5136777B2 (ja) 2008-04-25 2013-02-06 信越化学工業株式会社 ポリオルガノシロキサン化合物、これを含む樹脂組成物及びこれらのパターン形成方法
JP5761890B2 (ja) * 2008-06-27 2015-08-12 日揮触媒化成株式会社 シリカ系塗膜形成用塗布液の調製方法
JP5338258B2 (ja) * 2008-10-30 2013-11-13 Jnc株式会社 ポジ型感光性組成物、この組成物から得られる硬化膜、及びこの硬化膜を有する表示素子
JP2010128065A (ja) * 2008-11-26 2010-06-10 Sumitomo Chemical Co Ltd ポジ型感光性樹脂組成物、その製造方法及びカラーフィルタ
JP5917150B2 (ja) * 2009-11-27 2016-05-11 Jsr株式会社 ポジ型感放射線性組成物、硬化膜及びその形成方法
US9704724B2 (en) 2011-12-26 2017-07-11 Toray Industries, Inc. Photosensitive resin composition and method for producing semiconductor device
JP6318634B2 (ja) * 2013-02-14 2018-05-09 東レ株式会社 感光性シロキサン組成物、硬化膜及び素子
KR20170053442A (ko) * 2015-11-06 2017-05-16 롬엔드하스전자재료코리아유한회사 감광성 수지 조성물 및 이로부터 제조된 경화막
KR20200118067A (ko) * 2018-02-08 2020-10-14 닛산 가가쿠 가부시키가이샤 감광성 수지 조성물
JPWO2022181350A1 (ja) * 2021-02-24 2022-09-01

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001142209A (ja) * 1999-11-15 2001-05-25 Sumitomo Bakelite Co Ltd ポジ型感光性樹脂組成物及び半導体装置
JP2004093816A (ja) * 2002-08-30 2004-03-25 Toray Ind Inc ポジ型感光性樹脂組成物、半導体素子の製造方法および、半導体装置
JP2008202033A (ja) * 2007-01-26 2008-09-04 Toray Ind Inc シロキサン系樹脂組成物、これを用いた光学デバイスおよびシロキサン系樹脂組成物の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001142209A (ja) * 1999-11-15 2001-05-25 Sumitomo Bakelite Co Ltd ポジ型感光性樹脂組成物及び半導体装置
JP2004093816A (ja) * 2002-08-30 2004-03-25 Toray Ind Inc ポジ型感光性樹脂組成物、半導体素子の製造方法および、半導体装置
JP2008202033A (ja) * 2007-01-26 2008-09-04 Toray Ind Inc シロキサン系樹脂組成物、これを用いた光学デバイスおよびシロキサン系樹脂組成物の製造方法

Also Published As

Publication number Publication date
JP2007041361A (ja) 2007-02-15

Similar Documents

Publication Publication Date Title
JP4687315B2 (ja) 感光性樹脂組成物、それから形成された硬化膜、および硬化膜を有する素子
JP4655914B2 (ja) 感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
JP4725160B2 (ja) 感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
JP4670693B2 (ja) 感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
US7374856B2 (en) Positive type photo-sensitive siloxane composition, cured film formed from the composition and device incorporating the cured film
JP4586655B2 (ja) 感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
JP4784283B2 (ja) ポジ型感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
JP4853228B2 (ja) 感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子、並びにパターン形成方法
WO2011078106A1 (ja) ポジ型感光性樹脂組成物、それから形成された硬化膜、および硬化膜を有する素子
JP2007193318A (ja) 感光性シロキサン組成物、それから形成された硬化膜および硬化膜を有する素子
JP5696665B2 (ja) 感光性シロキサン組成物、それから形成された硬化膜および硬化膜を有する素子
JP2007122029A (ja) 感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
JP5659561B2 (ja) 感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
JP2013114238A (ja) ポジ型感光性組成物、そのポジ型感光性組成物から形成された硬化膜、およびその硬化膜を有する素子。
JP4910646B2 (ja) 感光性シロキサン組成物およびその製造方法、感光性シロキサン組成物から形成された硬化膜、および硬化膜を有する素子
JP2012053381A (ja) ポジ型感光性組成物、それから形成された硬化膜、および硬化膜を有する素子
JP2009169343A (ja) 感光性組成物、それから形成された硬化膜、および硬化膜を有する素子
JP2007226214A (ja) 感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
JP5444704B2 (ja) 感光性組成物、それから形成された硬化膜、および硬化膜を有する素子
JP5343649B2 (ja) 感光性組成物、それから形成された硬化膜、および硬化膜を有する素子
JP2010032977A (ja) ポジ型感光性組成物、それから形成された硬化膜、および硬化膜を有する素子
JP5233526B2 (ja) 感光性組成物、それから形成された硬化膜、および硬化膜を有する素子
JP5540632B2 (ja) 感光性組成物、それから形成された硬化膜、および硬化膜を有する素子
JP6186766B2 (ja) 感光性シロキサン組成物、それから形成された硬化膜、およびその硬化膜を有する素子
JP2014149330A (ja) 感光性シロキサン組成物、硬化膜及び素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

R151 Written notification of patent or utility model registration

Ref document number: 4687315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees