JP2010012754A - 透明基板 - Google Patents

透明基板 Download PDF

Info

Publication number
JP2010012754A
JP2010012754A JP2008177219A JP2008177219A JP2010012754A JP 2010012754 A JP2010012754 A JP 2010012754A JP 2008177219 A JP2008177219 A JP 2008177219A JP 2008177219 A JP2008177219 A JP 2008177219A JP 2010012754 A JP2010012754 A JP 2010012754A
Authority
JP
Japan
Prior art keywords
resin
refractive index
transparent
glass fiber
transparent substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008177219A
Other languages
English (en)
Inventor
Koji Kishimoto
広次 岸本
Toru Nakashiba
徹 中芝
Naoyuki Kondo
直幸 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008177219A priority Critical patent/JP2010012754A/ja
Publication of JP2010012754A publication Critical patent/JP2010012754A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】表面の平滑性が高い透明基板を提供する。
【解決手段】ガラス繊維より屈折率の大きい高屈折率樹脂と、ガラス繊維より屈折率の小さい低屈折率樹脂とを混合して、屈折率がガラス繊維の屈折率に近似するように調整された樹脂組成物を、ガラス繊維基材に含浸・硬化して作製される透明積層板1を備える。表面を平滑に形成するための透明な平滑化層2が、転写フィルム3に塗装して設けた樹脂層4を転写することによって、透明積層板1の表面に形成されている。
【選択図】図1

Description

本発明は、液晶ディスプレイなどに用いられる透明基板に関するものである。
透明積層板によって形成される透明基板は、液晶ディスプレイ、プラズマディスプレイ、ELディスプレイ等のフラットパネルディスプレイなどにおいて、ガラス板に代わる材料として検討されている(例えば特許文献1等)。
透明基板として用いられるこのような透明積層板の一例として、ガラスクロスなどガラス繊維からなる基材に、ガラス繊維と屈折率が近似する透明熱硬化性樹脂を含浸してプリプレグを調製し、このプリプレグを加熱加圧成形することによって作製したものを挙げることができる。透明熱硬化性樹脂としては一般にエポキシ樹脂が使用されているが、樹脂の屈折率をガラス繊維の屈折率に近似させるために、ガラス繊維より屈折率の大きいエポキシ樹脂と、ガラス繊維より屈折率の小さいエポキシ樹脂とを混合し、屈折率がガラス繊維の屈折率に近似するように混合比率を調整した樹脂組成物を用いるようにしている。このように基材のガラス繊維とマトリクス樹脂の屈折率を合わせることによって、透明積層板内での光の屈折を抑え、視認性に優れたディスプレイの透明基板として使用することができるものである。
図2はこのような透明積層板によって形成される透明基板Aを用いて作製した液晶ディスプレイの概略構成の一例を示すものであり、一対の透明基板Aを平行に配置し、この透明基板A間に駆動素子10が搭載されるようになっている。この駆動素子10は、一方の透明基板Aに設けられた画素電極11とTFT12、他方の透明基板Aに設けられた共通電極13、透明基板A間に充填される液晶分子14などを備えて形成されるものである。
特開2004−307851号公報
上記のような液晶ディスプレイにあって、対向して配置される透明基板Aの間隔が不均一であると、充填されている液晶分子14の厚みが不均一になって、液晶分子14の配向性が部分的に乱れ、光の散乱が生じるおそれがある。
しかし透明基板Aは、ガラス基材に樹脂を含浸・硬化して作製した透明積層板によって形成されているため、表面の平滑性をガラス基板のように高く形成することは困難であり、特にガラスクロスなどで形成されるガラス基材の凹凸が表面に表れて、平滑性が低くなる傾向にある。従ってこのような透明基板Aを液晶ディスプレイの基板として用いると、対向して配置される透明基板Aの間隔が不均一になって、充填されている液晶分子14に配向の乱れが生じて光の散乱が起こり、鮮明な画像を得ることができなくなるおそれがあるという問題があった。
本発明は上記の点に鑑みてなされたものであり、表面の平滑性が高い透明基板を提供することを目的とするものである。
本発明に係る透明基板は、ガラス繊維より屈折率の大きい高屈折率樹脂と、ガラス繊維より屈折率の小さい低屈折率樹脂とを混合して、屈折率がガラス繊維の屈折率に近似するように調整された樹脂組成物を、ガラス繊維基材に含浸・硬化して作製される透明積層板1を備え、表面を平滑に形成するための透明な平滑化層2が、転写フィルム3に塗布して設けた樹脂層4を転写することによって、透明積層板1の表面に形成されていることを特徴とするものである。
本発明によれば、転写フィルム3の樹脂層4を透明積層板1の表面に転写する際に透明積層板1の凹凸を埋めて平坦にならした状態で、平滑性が高い平滑化層2を形成することができ、表面の平滑性を高めることができるものであり、しかも転写という簡単な操作で透明積層板1の表面に容易に平滑化層2を形成することができるものである。
また本発明において、転写フィルム3に設けられた樹脂層4は、エポキシ樹脂を含む常温で固形の樹脂からなるものであることを特徴とするものである。
このように樹脂層4が固形であることによって、転写フィルム3の取り扱いが容易になり、また常温で固体のエポキシ樹脂は分子量が大きいために硬化収縮が小さく、透明積層板1に平滑化層2を形成する際に反り等の変形が生じることを防ぐことができるものである。
また本発明において、転写は、樹脂層4の樹脂が溶融する温度で、且つ透明積層板1の樹脂のガラス転移温度以下の温度で加熱しながら、転写フィルム3の樹脂層4を透明積層板1の表面に真空ラミネートすることによって行なわれることを特徴とするものである。
このように樹脂層4を溶融状態にして透明積層板1の表面に転写を行なうことによって、透明積層板1の表面の凹凸を樹脂層4で埋めて平坦にならした状態で転写することができ、表面がより平滑な平滑化層2を形成することができるものであり、しかも透明積層板1の樹脂のガラス転移温度以下の温度であるため、透明積層板1に変形等が生じることを防ぐことができ、表面の平滑性がより高い透明基板を得ることができるものである。
また本発明において、転写は、転写フィルムの樹脂層4を透明積層板1の表面に真空ラミネートすることによって行なわれることを特徴とするものである。
このように真空ラミネートすることによって、透明積層板1の表面に樹脂層4を密着させた状態で転写することができ、表面がより平滑な平滑化層2を形成することができるものである。
また本発明において、平滑化層2は、透明積層板1の表面に転写された樹脂層4を、紫外線硬化で半硬化させた後に、熱硬化させたものであることを特徴とするものである。
このように樹脂層4をまず紫外線硬化させて表面形状が変化し難い状態にした後、樹脂層4を熱硬化して完全に硬化させることによって、平面がより平滑な平滑化層2を形成することができるものである。
また本発明において、硬化した平滑化層2のガラス転移温度は、150℃以上であることを特徴とするものである。
平滑化層2のガラス転移温度がこのように高いことによって、加熱処理等がなされても変形が発生し難く、表面の平滑性が高い透明基板を得ることができるものである。
また本発明において、硬化した平滑化層2の屈折率は、透明積層板1のガラス繊維の屈折率±0.02以内であることを特徴とするものである。
平滑化層2と透明積層板1の屈折率の差が小さくなり、より透明性の高い透明基板を得ることができるものである。
本発明によれば、転写フィルム3の樹脂層4を透明積層板1の表面に転写する際に透明積層板1の凹凸を埋めて平坦にならした状態で、平滑性が高い平滑化層2を形成することができるものであり、表面の平滑性が高い透明基板を得ることができるものである。しかも転写という簡単な操作で透明積層板1の表面に容易に平滑化層2を形成することができるものである。
以下、本発明を実施するための最良の形態を説明する。
まず、本発明において使用する透明積層板について説明する。この透明積層板は、ガラス繊維より屈折率の大きい高屈折率樹脂と、ガラス繊維より屈折率の小さい低屈折率樹脂とを混合して、屈折率がガラス繊維の屈折率に近似するように調整された樹脂組成物を、ガラス繊維基材に含浸・硬化して作製されるものである。
上記のガラス繊維より高屈折率の樹脂として、シアネートエステル樹脂を用いるのが好ましい。シアネートエステル樹脂は、1分子中に2個以上のシアネート基を有するシアネートエステル化合物が3量化でトリアジン環を生成して重合したものであり、シアネートエステル化合物としては、例えば、2,2−ビス(4−シアナートフェニル)プロパン、ビス(3,5−ジメチル−4−シアナートフェニル)メタン、2,2−ビス(4−シアナートフェニル)エタン等、あるいはこれらの誘導体など、芳香族シアネートエステル化合物を用いることができる。これらは単独で用いる他、複数種を組み合わせて用いるようにしてもよい。このシアネートエステル樹脂は剛直な分子骨格を有するものであり、このため、硬化物に高いガラス転移温度を与えるものである。またシアネートエステル樹脂は常温で固形であるので、後述のように樹脂組成物をガラス繊維の基材に含浸して乾燥することによってプリプレグを調製する際に、指触乾燥することが容易になるので、プリプレグの取り扱い性が良好になるものである。
ここで、ガラス繊維の屈折率が例えば1.562である場合、高屈折率樹脂として用いるシアネートエステル樹脂は屈折率が1.6前後のものが好ましく、ガラス繊維の屈折率をnとすると、n+0.03〜n+0.06の範囲のものであることが望ましい。尚、本発明において、樹脂の屈折率は、いずれも硬化した樹脂の状態での屈折率をいうものであり、ASTM D542で試験した値である。
一方、上記のガラス繊維より低屈折率の樹脂としては、低屈折率であれば任意のエポキシ樹脂を用いることができるが、水添ビスフェノール型エポキシ樹脂を用いるのが好ましい。ガラス繊維の屈折率が例えば1.562である場合、この低屈折率のエポキシ樹脂としては屈折率が1.5前後のものが好ましく、ガラス繊維の屈折率をnとすると、n−0.04〜n−0.08の範囲のものであることが望ましい。
低屈折率の水添ビスフェノール型エポキシ樹脂において、ビスフェノール型としては、ビスフェノールA型の他に、ビスフェノールF型、ビスフェノールS型などを用いることもできる。
また、低屈折率の水添ビスフェノール型エポキシ樹脂としては、常温で固形の固形型水添ビスフェノール型エポキシ樹脂を用いるのが好ましい。常温で液状の液状型水添ビスフェノール型エポキシ樹脂を使用することもできるが、プリプレグを調製する際に、指触で粘着性のある状態にまでしか乾燥することができず、プリプレグの取り扱い性が悪くなるので、固形型水添ビスフェノール型エポキシ樹脂を使用するのが好ましいのである。さらに、低屈折率のエポキシ樹脂として、水添ビスフェノール型エポキシ樹脂以外のものを併用することも可能であり、例えば1,2−エポキシ−4−(2−オキシラニル)シクロヘキサンを含むエポキシ樹脂を併用することができる。このエポキシ樹脂は屈折率を微調整するために併用するものであり、また常温で固体であるために透明積層板の製造を容易にするためにも最適な樹脂である。
そして、上記の高屈折率のシアネートエステル樹脂と、低屈折率の水添ビスフェノール型エポキシ樹脂などエポキシ樹脂とを混合して、ガラス繊維の屈折率に近似した樹脂組成物を調製して用いるものである。高屈折率のシアネートエステル樹脂と低屈折率のエポキシ樹脂の混合比率は、ガラス繊維の屈折率に近似させるように、任意に調整されるものである。ここで、樹脂組成物の屈折率はガラス繊維の屈折率にできるだけ近いことが望ましいが、ガラス繊維の屈折率をnとすると、n−0.02〜n+0.02の範囲で近似するように調整するのが好ましい。
またこの樹脂組成物は、その硬化樹脂のガラス転移温度(Tg)が170℃以上になるように調製されるのが好ましい。ガラス転移温度が170℃以上であることによって、透明積層板の耐熱性を高めることができるものである。ガラス転移温度の上限は特に設定されるものではないが、実用的には280℃程度がガラス転移温度の上限である。ガラス転移温度の調整は、樹脂組成物中の上記のシアネートエステル樹脂の配合比率を変えることによって行なうことができるものであり、併用する低屈折率樹脂の種類に左右されるが、樹脂組成物の樹脂分中、シアネートエステル樹脂が約30質量%以上であれば、樹脂組成物のガラス転移温度を170℃以上に調整することができる。ここで、本発明において、ガラス転移温度は、JIS C6481 TMA法に準拠して測定した値である。
さらに樹脂組成物には、硬化開始剤(硬化剤)を配合することができる。この硬化開始剤としては、有機金属塩を用いることができる。そしてこの有機金属塩としては、例えば、オクタン酸、ステアリン酸、アセチルアセトネート、ナフテン酸、サリチル酸等の有機酸と、Zn、Cu、Fe等の金属との塩を挙げることができる。これらは一種を単独で用いる他に、二種以上を併用することもできるが、中でも、オクタン酸亜鉛が好ましい。硬化開始剤としてオクタン酸亜鉛を用いることによって、硬化樹脂のガラス転移温度を高めることができるものである。樹脂組成物中のオクタン酸亜鉛など有機金属塩の含有量は、特に限定されるものではないが、0.01〜0.1PHRの範囲が好ましい。
また硬化開始剤として、カチオン系硬化剤を用いることもできる。このようにカチオン系硬化剤を用いることによって樹脂の透明性を高めることができるものである。カチオン系硬化剤としては、特に限定されるものではないが、芳香族スルホニウム塩、芳香族ヨードニウム塩、アンモニウム塩、アルミニウムキレート、三フッ化ホウ素アミン錯体などを用いることができる。樹脂組成物中のカチオン系硬化剤の含有量は、特に限定されるものではないが、0.2〜3.0PHRの範囲が好ましい。
さらに硬化開始剤として、トリエチルアミン、トリエタノールアミン等の3級アミン、2−エチル−4−イミダゾール、4−メチルイミダゾール、2−エチル−4−メチル−イミダゾール(2E4MZ)などの硬化触媒を用いることもできる。樹脂組成物中の硬化触媒の含有量は、特に限定されるものではないが、0.5〜5PHRの範囲が好ましい。
上記のように高屈折率のシアネートエステル樹脂、低屈折率の水添ビスフェノール型エポキシ樹脂などエポキシ樹脂、硬化開始剤を配合することによって樹脂組成物を調製することができるものである。この樹脂組成物は、必要に応じて溶剤に溶解乃至分散して樹脂ワニスとして使用するものである。この溶剤としては、特に限定されるものではないが、ベンゼン、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、アセトン、メタノール、エタノール、イソプロピルアルコール、2−ブタノール、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジアセトンアルコール、N,N’−ジメチルアセトアミドなどを用いることができる。
一方、ガラス繊維としては、透明積層板の耐衝撃性を高める効果の点からEガラスやNEガラスであることが好ましい。Eガラスは無アルカリガラスとも称され、樹脂強化用ガラス繊維として汎用されるガラスであり、NEガラスはNewEガラスのことである。またガラス繊維には、耐衝撃性を向上させる目的で、ガラス繊維処理剤として通常使用されているシランカップリング剤によって表面処理しておくことが好ましい。ガラス繊維の屈折率は1.55〜1.57の範囲であることが好ましく、1.555〜1.565の範囲であることがさらに好ましい。ガラス繊維の屈折率がこの範囲であれば、視認性に優れた透明積層板を得ることができるものである。ガラス繊維の基材としては、ガラス繊維の織布あるいは不織布を使用することができる。
そしてガラス繊維の基材に樹脂組成物のワニスを含浸し、加熱して乾燥することによって、プリプレグを調製することができる。乾燥条件は特に限定されるものではないが、乾燥温度100〜160℃、乾燥時間1〜10分間の範囲が好ましい。
次にこのプリプレグを1枚、あるいは複数枚重ね、加熱加圧成形することによって、樹脂組成物を硬化させて、透明積層板を得ることができるものである。加熱加圧成形の条件は、特に限定されるものではないが、温度150〜200℃、圧力1〜4MPa、時間10〜120分間の範囲が好ましい。
上記のようにして得られる透明積層板にあって、高屈折率のシアネートエステル樹脂と低屈折率の水添ビスフェノール型エポキシ樹脂などのエポキシ樹脂が重合して形成される樹脂マトリクスは、シアネートエステル樹脂を含有することによってガラス転移温度が高いものであり、耐熱性に優れた透明積層板を得ることができるものである。またシアネートエステル樹脂や水添ビスフェノール型エポキシ樹脂などのエポキシ樹脂はいずれも透明性に優れるものであり、高い透明性を確保した透明積層板を得ることができるものである。この透明積層板において、ガラス繊維の基材の含有率は25〜65質量%の範囲であることが好ましく、この範囲であれば、ガラス繊維による補強効果で高い耐衝撃性を得ることができると共に、十分な透明性を得ることができるものである。
ここで、ガラス繊維の基材としては、透明性を高く得るために、厚みの薄いものを複数枚重ねて用いるのが好ましい。具体的には、ガラス繊維基材として厚み50μm以下のものを用い、この50μm以下の厚みのガラス繊維基材を2枚以上重ねて使用するのが好ましい。ガラス繊維基材の厚みの下限は特に限定されるものではないが、10μm程度が実用上の下限である。またガラス繊維基材の枚数も特に限定されるものではないが、20枚程度が実用上の上限である。このように複数枚のガラス繊維基材を用いて透明積層板を製造する場合、各ガラス繊維基材に樹脂組成物を含浸・乾燥してプリプレグを作製し、このプリプレグを複数枚重ねて加熱加圧成形することによって透明積層板を得ることができるが、複数枚のガラス繊維基材を重ねた状態で樹脂組成物を含浸・乾燥してプリプレグを作製し、このプリプレグを加熱加圧成形して透明積層板を得るようにしてもよい。
そして、上記のように作製した透明積層板1の表面に透明な平滑化層2を形成することによって、図1(c)に示すような本発明に係る透明基板Aを得ることができるものである。
本発明においてこの平滑化層2は、図1(a)に示すように転写フィルム3の表面に設けた樹脂層4を、透明積層板1の表面に転写することによって、形成することができる。この樹脂層4としては、透明であればよく特に限定されるものではなく、例えばアクリル系樹脂、ウレタン系樹脂、エポキシ系樹脂、ポリエステル樹脂、ポリビニルアルコール、エチレンビニルアルコール共重合体、ポリアミド、セルロースなど、任意の樹脂で形成することができる。
これらのなかでも、樹脂層4を形成する樹脂としてはエポキシ樹脂が好ましい。エポキシ樹脂は硬化収縮が小さいので、樹脂層4を透明基板1の表面に転写して硬化させることによって平滑化層2を形成する際に、反り等の変形が生じることを防ぐことができるものである。また樹脂層4は常温で固形であることが好ましい。このように転写フィルム3に設けた樹脂層4が常温で固形であることによって、転写フィルム3の取り扱いが容易になり、透明積層板1に樹脂層4を転写する工程の作業性が良好なものになるものである。
転写フィルム3としては、PETフィルムなど、樹脂層4との離型性に優れた樹脂フィルムを用いることができるものであり、この転写フィルム3の片面に樹脂ワニスなど液状に調製した樹脂液を塗布し、これを乾燥することによって、樹脂層4を形成することができるものである。
そして、図1(b)に示すように、透明積層板1の表面に、転写フィルム3を樹脂層4の側で重ね、加熱して樹脂層4を透明積層板1の表面に溶着させることによって、透明積層板1の表面に樹脂層4を転写させることができる。このように透明積層板1の表面に転写した樹脂層4を硬化させることによって平滑化層2を形成することができるものであり、平滑化層2を透明積層板1の表面に積層した、図1(c)のような透明基板Aを得ることができるものである。転写フィルム3の剥離は、樹脂層4を硬化させた後、あるいは硬化させる前のいずれでもよく、また後述のように樹脂層4を半硬化させた状態で剥離を行なうようにしてもよい。
ここで、上記のように樹脂層4を透明積層板1の表面に転写する際に、透明積層板1の表面の凹凸は樹脂層4で埋められてならされるものであり、そして樹脂層4の表面には転写フィルム3がラミネートされているため、平滑化層2の表面は転写フィルム3の平滑な表面によって高い平滑面に形成されている。このため、平滑化層2によって高い平滑性を有する透明基板Aを得ることができるものである。
また上記のように透明積層板1の表面に転写フィルム3を樹脂層4の側で重ねて転写を行なうにあたっては、樹脂層4の樹脂が溶融する温度で、且つ、透明積層板1の樹脂のガラス転移温度以下の温度で、加熱しながら、真空ラミネートをして行なうようにするのが好ましい。このように樹脂層4の樹脂が溶融する温度、すなわち樹脂の融点より高い温度で加熱して真空ラミネートすることによって、透明積層板1の表面の凹凸と樹脂層4の間の空気を排除しながら、透明積層板1の表面の凹凸を埋めて平坦にならした状態で樹脂層4を透明積層板1の表面に密着させて転写することができるものであり、この樹脂層4によって表面がより平滑な平滑化層2を形成することができるものである。また加熱温度は透明積層板1の樹脂のガラス転移温度以下の温度である、この転写の際の加熱によって透明積層板1に変形等が生じることを防ぐことができるものであり、表面の平滑性がより高い透明基板Aを得ることができるものである。
また、樹脂層4としては、紫外線硬化性と熱硬化性を併せ持つ樹脂から形成されたものであることが好ましい。このように樹脂層4が紫外線硬化性と熱硬化性を有すると、上記のように透明積層板1の表面に転写フィルム3を樹脂層4の側で重ねてラミネートし、まず透明な転写フィルム3を通して紫外線を照射することによって、樹脂層4を半硬化(部分硬化)させ、そして次に加熱して樹脂層4を完全硬化させることによって、平滑化層2を形成することができる。このとき、紫外線硬化で樹脂層4を半硬化させることによって、樹脂層4は表面形状が変形し難い状態になっているものであり、この状態で加熱硬化させて完全硬化させると、表面形状が変化しないまま平滑化層2が形成されるものである。従って、樹脂層4を加熱硬化だけで完全に硬化させるようにする場合よりも、表面がより平滑な平滑化層2を形成することができるものである。またこのときには、樹脂層4を半硬化させた状態で転写フィルム3の剥離を行なうのが好ましく、未硬化の状態で剥離する場合のように樹脂層4の表面が転写フィルム3の剥離の際に荒れたり、完全硬化後に剥離を行なう場合のように剥離が困難になることがないものである。
上記のように透明積層板1の表面に平滑化層2を形成するにあたって、平滑化層2の膜厚は、特に限定されるものではないが、1〜100μmの範囲が好ましい。平滑化層2の膜厚が1μm未満であると、平滑化層2の形成による透明基板Aの表面の平滑化の効果が不十分になるおそれがある。逆に平滑化層2の膜厚が100μmを超えると、樹脂層4を硬化させて平滑化層2を形成する際に、平滑化層2に反りやクラックが発生し易くなり、この場合も平滑化層2の形成による透明基板Aの表面の平滑化の効果が不十分になるおそれがある。
またこのように形成される平滑化層2は、ガラス転移温度が150℃以上であることが好ましい。平滑化層2のガラス転移温度がこのように高いことによって、加熱処理等がなされても変形が発生し難いものであり、表面の平滑性がより高い透明基板Aを得ることができるものである。平滑化層2のガラス転移温度の上限は特に設定されるものではないが、実用的には300℃程度を上限とするのが好ましい。
さらにこのように形成される平滑化層2は、その屈折率が、透明積層板1のガラス繊維の屈折率±0.02以内であることが好ましい。すなわち平滑化層2の屈折率と透明積層板1のガラス繊維の屈折率の差が0.02以下であることが好ましい。この場合には、平滑化層2と透明積層板1の屈折率の差が小さくなり、より透明性の高い透明基板Aを得ることができるものである。勿論、平滑化層2と透明積層板1の屈折率の差が±0.02以内であることが好ましい。
上記のように、本発明に係る透明基板Aは、透明積層板1の表面に平滑化層2を積層することによって高い平滑性を有する表面に形成されているものであり、既述の図2のように一対の透明基板Aを平行に配置して駆動素子10の液晶分子14を充填するにあたって、透明基板A間の間隔を均一な寸法に設定することができ、液晶分子14に配向の乱れが生じることを防いで、光の散乱が発生することを防止することができるものであり、鮮明な画像のディスプレイを作製することができるものである。
平滑化層2によって形成される透明基板Aの表面の平滑性は、表面粗さRaが30nm以下であることが望ましい。表面粗さRaが30nm以下であることによって、透明基板A間の間隔をより均一に設定することができ、液晶分子14に配向の乱れが生じることをより確実に防いで、光の散乱が発生することを防止することができるものである。表面粗さRaは小さければ小さいほど望ましいのはいうまでもない。ここで、表面粗さRaはJIS B0601(1994)で規定される算術平均粗さである。
次に、本発明を実施例によって具体的に説明する。
(実施例1)
高屈折率樹脂として、固形型のシアネートエステル樹脂(Lonza社製「BADCy」、2,2−ビス(4−シアナートフェニル)プロパン:屈折率1.59)を52質量部、低屈折率樹脂として、固形型の1,2−エポキシ−4−(2−オキシラニル)シクロヘキサンを含むエポキシ樹脂(ダイセル化学工業(株)製「EHPE3150」:屈折率1.51)を48質量部配合し、さらに硬化開始剤としてオクタン酸亜鉛を0.02質量部配合し、これにトルエン50質量部、メチルエチルケトン50質量部を添加して、温度70℃で攪拌溶解することによって、樹脂組成物のワニスを調製した。この樹脂組成物の硬化物の屈折率は1.56であり、またガラス転移温度Tgは230℃であった。
次に、厚み25μmのガラス繊維クロス(旭化成エレクトロニクス(株)製品番「1037」、Eガラス、屈折率1.562)に、上記の樹脂組成物のワニスを含浸し、150℃で5分間加熱することによって、溶剤を除去すると共に樹脂を半硬化させてプリプレグを調製した。
そしてこのプリプレグを2枚重ね、離型処理をしたガラス板に挟んでプレス機にセットし、170℃、2MPa、15分の条件で加熱加圧成形することによって、樹脂の含有率が63質量%、厚みが80μmの透明積層板1を得た。
一方、3,4−エポキシシクロヘキセニル骨格を有するエポキシ樹脂(ダイセル化学工業(株)製「セロキサイド2081」)を10質量部、液状ビスフェノール型エポキシ樹脂(大日本インキ化学工業(株)製「エピクロン830S」)を15質量部、固形ビスフェノール型エポキシ樹脂(ジャパンエポキシレジン(株)製「JER1006FS」)を40質量部、固形ビスフェノール型エポキシ樹脂(ジャパンエポキシレジン(株)製「JER4007」)を35質量部、光カチオン硬化開始剤((株)アデカ製「SL−170」)を1質量部、表面調整剤(大日本インキ化学工業(株)製「F470」)を0.1質量部、さらにトルエンを21質量部、メチルエチルケトンを49質量部、ガラス容器に秤量し、還流下60℃で溶解した後、目開き1μmのPTFE製メンブランフィルターで濾過することによって、樹脂ワニスを調製した。
そして転写フィルム3としてPETフィルム(帝人デュポン(株)製「OX−50」)を用い、樹脂ワニスを転写フィルム3の表面にコンマコーターヘッドのマルチコーター((株)ヒラノテクシード製)を用いて塗布し、これを乾燥することによって、固形エポキシ樹脂からなる厚み10μmの樹脂層4を形成した。この樹脂層4の溶融開始温度は50℃であった。
次に、透明積層板1の片面に転写フィルム3を樹脂層4の側で重ね、加圧式真空ラミネーター(ニチゴー・モートン(株)製「V−130」)を用いて、加熱80℃、減圧0.2MPaの条件で、真空ラミネートを行ない、そして1800mJ/cmの強度の紫外線を照射して半硬化させた後、転写フィルム3を剥がし、次いで150℃で30分間加熱処理して、樹脂層4を完全硬化させることよって平滑化層2を形成した。
このようにして透明積層板1の表面に平滑化層2を形成した透明基板Aを得た。またこの透明基板Aにおいて平滑化層2の屈折率を測定したところ、1.59であった。
(実施例2)
3,4−エポキシシクロヘキセニル骨格を有するエポキシ樹脂(ダイセル化学工業(株)製「セロキサイド2021P」)を12質量部、2,2−ビス(ヒドロキシメチル)−1−ブタノールの1,2−エポキシ−4−(2−オキサニル)シクロヘキサン付加物のエポキシ樹脂(ダイセル化学工業(株)製「EHPE3150」)を12質量部、固形ビスフェノール型エポキシ樹脂(ジャパンエポキシレジン(株)製「JER1006FS」)を37質量部、液状ビスフェノール型エポキシ樹脂(大日本インキ化学工業(株)製「エピクロン850S」)を10質量部、固形3官能エポキシ樹脂(三井化学工業(株)製「VG−3101」)を15質量部、ノボラック型エポキシ樹脂(日本化薬(株)製「EPPN201」)を18質量部、光カチオン硬化開始剤((株)アデカ製「SL−170」)を1質量部、表面調整剤(大日本インキ化学工業(株)製「F470」)を0.1質量部、さらにトルエンを15質量部、メチルエチルケトンを35質量部、ガラス容器に秤量し、還流下60℃で溶解した後、目開き1μmのPTFE製メンブランフィルターで濾過することによって、樹脂ワニスを調製した。
そして実施例1と同様に樹脂ワニスを転写フィルム3の表面に塗布して乾燥することによって、固形エポキシ樹脂からなる厚み10μmの樹脂層4を形成した。この樹脂層4の溶融開始温度は50℃であった。
その他は、実施例1と同様にして、透明積層板1の表面に平滑化層2を形成した透明基板Aを得た。またこの透明基板Aにおいて平滑化層2の屈折率を測定したところ、1.576であった。
(実施例3)
真空ラミネートの加熱条件を50℃に設定するようにした他は、実施例2と同様にして、透明積層板1の表面に平滑化層2を形成した透明基板Aを得た。またこの透明基板Aにおいて平滑化層2の屈折率を測定したところ、1.576であった。
(実施例4)
高屈折率樹脂として、固形型のビスフェノール型エポキシ樹脂(ジャパンエポキシレジン(株)製「エピコート1006」:屈折率1.60)を48質量部と、液状のビスフェノール型エポキシ樹脂(大日本インク化学工業(株)製「エピクロン830S」:屈折率1.60)を7質量部、低屈折率樹脂として、固形型の水添ビスフェノール型エポキシ樹脂(ジャパンエポキシレジン(株)製「YL7170」:屈折率1.50)を44質量部配合し、さらに硬化剤(三新化学工業(株)製「SI−150L」を1.8質量部配合し、これにトルエン50質量部、メチルエチルケトン50質量部を添加して、温度70℃で攪拌溶解することによって、樹脂組成物のワニスを調製した。この樹脂組成物の硬化物の屈折率は1.56であり、またガラス転移温度Tgは110℃であった。
そして実施例1と同様に、ガラス繊維クロスにワニスを含浸して加熱乾燥することによってプリプレグを調製した。そしてこのプリプレグを2枚重ね、離型処理をしたガラス板に挟んでプレス機にセットし、170℃、2MPa、15分の条件で加熱加圧成形することによって、樹脂の含有率が62質量%、厚みが79μmの透明積層板1を得た。
その他は、実施例1と同様にして、透明積層板1の表面に平滑化層2を形成した透明基板Aを得た。
(実施例5)
実施例2において、真空ラミネートの後の、樹脂層4の硬化を、紫外線照射を行なわず、150℃で30分間加熱処理して、加熱硬化だけで樹脂層4を硬化させることよって平滑化層2を形成した。
その他は、実施例1と同様にして、透明積層板1の表面に平滑化層2を形成した透明基板Aを得た。またこの透明基板Aにおいて平滑化層2の屈折率を測定したところ、1.567であった。
(比較例1)
実施例1で作製した透明積層板1に平滑化層を形成しないものをそのまま用いた。
(比較例2)
実施例4で作製した透明積層板1に平滑化層を形成しないものをそのまま用いた。
(比較例3)
日本合成化学(株)製「UV−7640」75質量部に対し、メチルエチルケトン25質量部、チバスペシャリティケミカル(株)製光重合開始剤「イルガキュア907」3質量部を混合して、平滑化用コーティング剤を調製した。
そして実施例1と同様にして作製した透明積層板1の表面に、この平滑化用コーティング液をバーコータにて溶剤乾燥後の膜厚が10μmとなるように塗装し、80℃で5分乾燥した後、500mJ/cmの強度の紫外光を照射して硬化させることによって、平滑化層2を形成した透明基板Aを得た。
上記の実施例1〜5及び比較例1〜3で得た透明基板Aについて、ヘイズ、表面粗さRa、反り、クラックを評価し、結果を表1に示す。
ヘイズの測定は、日本電色工業(株)製のヘイズメーター「NDH2000」を用いて行なった。
表面粗さRaについては、加熱処理前の表面粗さRaと、170℃で30分の加熱処理をした後の表面粗さRaを測定した。ここで、実施例1〜5及び比較例3では平滑化層2の表面粗さRaを、比較例1,2では透明積層板1の表面粗さRaを測定した。表面粗さRaを測定は、株式会社東京精密製の蝕針式表面粗さ計「SURFCOM 130A」を用いて、表面凹凸を縦、横、45°バイアス方向についてそれぞれ3点測定することによって行ない、合計9点の測定値の平均値をRa値とした。
また反り及びクラックは、目視で判定して評価した。
Figure 2010012754
表1にみられるように、各実施例のものは、平滑化層2を形成することによって表面粗さRaが小さくなっており、表面平滑性が向上していることが確認される。
本発明の実施の形態の一例を示すものであり、(a)(b)(c)はそれぞれ概略図である。 液晶ディスプレイの概略構成を示す図である。
符号の説明
1 透明積層板
2 平滑化層
3 転写フィルム
4 樹脂層

Claims (7)

  1. ガラス繊維より屈折率の大きい高屈折率樹脂と、ガラス繊維より屈折率の小さい低屈折率樹脂とを混合して、屈折率がガラス繊維の屈折率に近似するように調整された樹脂組成物を、ガラス繊維基材に含浸・硬化して作製される透明積層板を備え、表面を平滑に形成するための透明な平滑化層が、転写フィルムに塗布して設けた樹脂層を転写することによって、透明積層板の表面に形成されていることを特徴とする透明基板。
  2. 転写フィルムに設けられた樹脂層は、エポキシ樹脂を含む常温で固形の樹脂からなるものであることを特徴とする請求項1に記載の透明基板。
  3. 転写は、樹脂層の樹脂が溶融する温度で、且つ透明積層板の樹脂のガラス転移温度以下の温度で加熱しながら行なわれることを特徴とする請求項1又は2に記載の透明基板。
  4. 転写は、転写フィルムの樹脂層を透明積層板の表面に真空ラミネートすることによって行なわれることを特徴とする請求項1乃至3のいずれか1項に記載の透明基板。
  5. 平滑化層は、透明積層板の表面に転写された樹脂層を、紫外線硬化で半硬化させた後に、熱硬化させたものであることを特徴とする請求項1乃至4のいずれか1項に記載の透明基板。
  6. 硬化した平滑化層のガラス転移温度は、150℃以上であることを特徴とする請求項1乃至5のいずれか1項に記載の透明基板。
  7. 硬化した平滑化層の屈折率は、透明積層板のガラス繊維の屈折率±0.02以内であることを特徴とする請求項1乃至6のいずれか1項に記載の透明基板。
JP2008177219A 2008-07-07 2008-07-07 透明基板 Withdrawn JP2010012754A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008177219A JP2010012754A (ja) 2008-07-07 2008-07-07 透明基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008177219A JP2010012754A (ja) 2008-07-07 2008-07-07 透明基板

Publications (1)

Publication Number Publication Date
JP2010012754A true JP2010012754A (ja) 2010-01-21

Family

ID=41699328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008177219A Withdrawn JP2010012754A (ja) 2008-07-07 2008-07-07 透明基板

Country Status (1)

Country Link
JP (1) JP2010012754A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167180A (ja) * 2011-02-14 2012-09-06 Daicel Corp 繊維強化複合材料用熱硬化性エポキシ樹脂組成物
JP2014226914A (ja) * 2013-05-27 2014-12-08 株式会社トッパン・コスモ 透明不燃性シートとその製造方法
JP2016060670A (ja) * 2014-09-18 2016-04-25 三菱樹脂株式会社 ガラス積層体の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167180A (ja) * 2011-02-14 2012-09-06 Daicel Corp 繊維強化複合材料用熱硬化性エポキシ樹脂組成物
JP2014226914A (ja) * 2013-05-27 2014-12-08 株式会社トッパン・コスモ 透明不燃性シートとその製造方法
JP2016060670A (ja) * 2014-09-18 2016-04-25 三菱樹脂株式会社 ガラス積層体の製造方法

Similar Documents

Publication Publication Date Title
JP5599628B2 (ja) 透明フィルム
EP2940053B1 (en) Resin composition, prepreg, and film
JP5022265B2 (ja) 透明積層板
JP4496828B2 (ja) 透明複合基板の製造方法
JP2009066931A (ja) 透明積層板
WO2018181513A1 (ja) Frp前駆体の製造方法及びfrpの製造方法
JP2011116957A (ja) 透明フィルム
JP5426330B2 (ja) 透明基板/ガラス板/透明基板複合フィルムとその用途
JP2010012754A (ja) 透明基板
JP2009244757A (ja) 透明基板
WO2011149018A1 (ja) 透明フィルム
JP2011105888A (ja) 透明フィルム
JP4273990B2 (ja) 透明複合基板の製造方法
JP2009241521A (ja) 透明基板
JP2012219155A (ja) 透明樹脂複合材
JP2009244756A (ja) 透明基板
JP2009242715A (ja) 透明積層板の平滑化処理方法
JP2009244755A (ja) 透明基板
JP2012219171A (ja) 透明複合体
JP2011203696A (ja) 耐擦傷性フィルム
JP2009241522A (ja) 透明基板
JP5732609B2 (ja) 透明フィルム
JP2011068020A (ja) 透明繊維強化樹脂シート
JP4951310B2 (ja) 透明シート
JP2009244758A (ja) 透明基板

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100806

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111004