JP2009272545A - 不揮発性半導体記憶装置及びその製造方法 - Google Patents

不揮発性半導体記憶装置及びその製造方法 Download PDF

Info

Publication number
JP2009272545A
JP2009272545A JP2008123548A JP2008123548A JP2009272545A JP 2009272545 A JP2009272545 A JP 2009272545A JP 2008123548 A JP2008123548 A JP 2008123548A JP 2008123548 A JP2008123548 A JP 2008123548A JP 2009272545 A JP2009272545 A JP 2009272545A
Authority
JP
Japan
Prior art keywords
film
gate electrode
pair
adjacent
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008123548A
Other languages
English (en)
Other versions
JP5358121B2 (ja
Inventor
Masahiko Yanagi
雅彦 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008123548A priority Critical patent/JP5358121B2/ja
Publication of JP2009272545A publication Critical patent/JP2009272545A/ja
Application granted granted Critical
Publication of JP5358121B2 publication Critical patent/JP5358121B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Read Only Memory (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

【課題】メモリセル当たり2ビットを記憶可能な不揮発性半導体記憶装置を提供することを課題とする。
【解決手段】半導体基板の表面層に備えられたチャネル領域を挟む一対の不純物拡散領域と、チャネル領域上に備えられたゲート絶縁膜をチャネル長方向で挟む一対の電荷保持膜と、ゲート絶縁膜及び一対の電荷保持膜上に備えられた単一層からなるゲート電極とを含むメモリセルを、チャネル長方向及びチャネル幅方向のそれぞれに少なくとも2つずつ隣接して有し、チャネル長方向に隣接するメモリセル間の不純物拡散領域が、隣接するメモリセルで共有され、チャネル長方向に隣接するメモリセルのゲート電極上に、チャネル長方向に隣接するメモリセルで共有されるワード線を備え、一対の不純物拡散領域が、チャネル幅方向で隣接するメモリセルにおいてそれぞれビット線として共有された不揮発性半導体記憶装置により上記課題を解決する。
【選択図】図1

Description

本発明は、不揮発性半導体記憶装置及びその製造方法に関する。更に詳しくは、本発明は、不揮発性半導体記憶装置を構成するメモリセル当たり2ビットを記憶可能な不揮発性半導体記憶装置及びその製造方法に関する。
近年、不揮発性半導体記憶装置の需要が益々増えてきている。MOSトランジスタ構造を備える不揮発性半導体記憶装置のメモリセルは、大別してシリコン酸化膜(SiO2)−シリコン窒化膜(SiN)−シリコン酸化膜(SiO2)の3層膜(以下、「ONO膜」と略称する)のような電荷保持膜に電荷をトラップさせる電荷トラップ型と、フローティングゲートに電荷を保持するフローティングゲート(FG)型がある。電荷トラップ型メモリセルでは、ゲート電極の左右に記憶サイトがあり夫々独立に書き込みできるのでメモリセル当たり2ビットを記憶できる。近年記憶するデータが、文書から静止画、更に動画となるに従い、必要な記憶容量が飛躍的に増大している。そのため、不揮発性半導体記憶装置も安価で大容量のものが求められている。そのため、1セルで2ビット記憶できる電荷トラップ型の不揮発性半導体記憶装置に対する需要も高まっている。
従来の最も簡単な構造の電荷トラップ型メモリセルの製造工程(第1従来例)を、図20(a)〜(d)に示し、その製造工程を順に説明する。図20(a)に示すように、半導体基板(シリコン基板)1上にシリコン酸化膜21(膜厚:3nm〜10nm)、シリコン窒化膜22(膜厚:5nm〜12nm)、シリコン酸化膜23(膜厚:8nm〜15nm)を堆積する。次に、図20(b)に示すように、ゲート電極膜3(例えば、多結晶シリコン膜等)を堆積する。引き続き、図20(c)に示すように、ゲート電極膜3をメモリセルトランジスタに必要な形状及び寸法に加工してゲート電極4を形成する。引き続き、図20(d)に示すように、ゲート電極4をマスクにして、不純物注入によりゲート電極4の左右に不純物拡散領域7を形成して、電荷トラップ型メモリセルが完成する。
電荷トラップ型メモリセルの記憶原理は、図21に示す。図21において、左右に分離して形成された記憶サイト24の破線楕円で示している部分にチャネルホットエレクトロンで注入された電子が、当該記憶サイト24内のシリコン窒化膜22中に捕獲され保持されることである。消去は半導体基板1と不純物拡散領域7間に所定の正電圧(例えば、+5V)を印加し、ゲート電極4に所定の負電圧(例えば、−5V)を印加することにより、バンドベンディングによるバンド間トンネリングで発生するホール−電子対のホールが記憶サイト24に注入されることにより保持されている電荷が消去される。しかし、図21に示す第1従来例の製造方法で作製された電荷トラップ型メモリセルでは、微細化が進むと左右の記憶サイト間の距離が短くなり、両記憶サイト間にあるシリコン窒化膜中を電子がドリフト移動して保持電荷である電子が分散してしまうため、記憶保持が困難となる問題がある。
この問題を改善すべく、幾つかの改良方法が報告されており、例えば、特開2003−318290号公報(特許文献1)及び特開2003−163292号公報(特許文献2)に記載の方法(第2従来例)がある。
これらの改良法を図22(a)〜(i)を用いて説明する。
まず、図22(a)に示すように、上記の第1従来例と同様に、半導体基板(シリコン基板)1上にONO膜21,22,23を堆積する。次に、図22(b)に示すように、シリコン窒化膜25を堆積する。引き続き、図22(c)に示すように、シリコン窒化膜25をゲート電極とはネガポジ逆のマスクで加工する。ここで、ONO膜21,22,23の上2層のシリコン酸化膜21とシリコン窒化膜22までエッチングし、下層のシリコン酸化膜23は残しておく。引き続き、図22(d)に示すように、下層のシリコン酸化膜23をHF溶液で除去洗浄して、熱酸化を行う。これにより、シリコン基板1の露出表面上にシリコン酸化膜27が形成され、シリコン窒化膜25上にシリコン酸化膜26が形成される。次に、図22(e)に示すように、ゲート電極材料を堆積して、シリコン窒化膜25を加工してできた溝を充填した後に、化学機械研磨(CMP)法で余分な部分を研磨して除去し、ゲート電極28を形成する。次に、図22(f)に示すように、ウェットエッチングでシリコン酸化膜26とシリコン窒化膜25をエッチングする。引き続き、図22(g)に示すように、第2ゲート電極材料を堆積した後、エッチバックして側壁にゲート電極スペーサ29を形成する。次に、図22(h)に示すように、ゲート電極28とゲート電極スペーサ29をマスクにして、不純物を注入して不純物拡散層7を形成する。最後に、図22(i)に示すように、ゲート電極28とゲート電極スペーサ29をマスクにして、ONO膜21,22,23をエッチングして、電荷トラップ型メモリセルが完成する。
特開2003−318290号公報 特開2003−163292号公報
しかし、上記第2従来例に示されているONO膜の記憶サイトの分離方法には、以下に示す2つの課題がある。
第1の課題は、メモリセルの形成に複雑なエッチング工程と堆積工程を繰り返す必要がある点である。第2従来例に示したように、堆積とエッチバック又はCMPが数回繰り返されている。上記第2従来例以外にも幾つかの改良発明が提案されているが、全て堆積とエッチングを繰り返す必要がある。そのため製造工程が長くなり製造コストが高騰する。
第2の課題は、記憶領域又は記憶領域に挟まれた中央のチャネル部分のシリコン基板上をドライエッチングする必要がある点である。そのため、シリコン基板表面へのエッチングダメージが避けられなかった。
かくして本発明によれば、半導体基板の表面層に備えられたチャネル領域及び前記チャネル領域を挟むソース領域及びドレイン領域としての一対の不純物拡散領域と、前記チャネル領域上に備えられたゲート絶縁膜及び前記ゲート絶縁膜をチャネル長方向で挟む一対の電荷保持膜と、前記ゲート絶縁膜及び前記一対の電荷保持膜上に備えられた単一層からなるゲート電極とを含むメモリセルを、チャネル長方向及びチャネル幅方向のそれぞれに少なくとも2つずつ隣接して有し、
前記チャネル長方向に隣接するメモリセル間の不純物拡散領域が、前記隣接するメモリセルで共有され、
前記チャネル長方向に隣接するメモリセルのゲート電極上に、前記チャネル長方向に隣接するメモリセルで共有されるワード線を備え、
前記一対の不純物拡散領域が、前記チャネル幅方向で隣接するメモリセルにおいてそれぞれビット線として共有されていることを特徴とする不揮発性半導体記憶装置が提供される。
更に、本発明によれば、上記不揮発性半導体記憶装置の製造方法であって、
半導体基板の全面にチャネル幅方向に伸びる一対の絶縁膜とゲート電極膜とをこの順で堆積する工程と、
前記絶縁膜を等方性エッチングすることで、前記一対のゲート電極膜の周縁部下側に位置する前記絶縁膜を横方向から除去してゲート絶縁膜とする工程と、
前記一対のゲート電極膜の周縁部下側の前記絶縁膜がエッチング除去された後の間隙部に電荷保持膜を充填する工程と、
前記一対のゲート電極膜をマスクにして前記半導体基板に不純物を注入することで、前記一対のゲート電極膜間及び外側の前記半導体基板の表面層にチャネル幅方向に伸びるソース領域及びドレイン領域となる不純物拡散領域を形成する工程と、
前記ゲート電極膜をパターニングすることで、チャネル長方向及びチャネル幅方向のそれぞれに少なくとも2つずつ隣接するようにゲート電極を形成する工程と、
前記チャネル長方向に隣接するメモリセルのゲート電極上に、前記チャネル長方向に隣接するメモリセルで共有されるワード線を形成する工程とを有することを特徴とする不揮発性半導体記憶装置の製造方法が提供される。
本発明によれば、メモリセル当たりに2つの記憶サイトを有する電荷トラップ型メモリセルを複数備えた不揮発性半導体記憶装置に好適な構造が提供できる。
また、本発明によれば、チャネル長方向に隣接するメモリセル間で不純物拡散領域が共有され、チャネル幅方向に隣接するメモリセル間で不純物拡散領域がビット線として共有され、チャネル長方向に隣接するメモリセル間で共有されるワード線がゲート電極上に形成されているため、セル面積を縮小できる。
更に、本発明によれば、半導体基板表面へのダメージを抑制して記憶サイトを簡便に分離可能な製造方法が提供できる。
本発明の不揮発性半導体記憶装置は、チャネル長方向及びチャネル幅方向のそれぞれに少なくとも2つずつ隣接するメモリセルを有している。言い換えるとチャネル長方向に2つ及びチャネル幅方向に2つの少なくとも4つのメモリセルを有する。このような位置関係のメモリセルを少なくとも備えさえすれば、5つ以上のメモリセルを備えていてもよく、メモリセル以外のロジックトランジスタ、キャパシタ、抵抗等の他の半導体装置が混載されていてもよい。
各メモリセルは、半導体基板の表面層に備えられたチャネル領域及びチャネル領域を挟むソース領域及びドレイン領域としての一対の不純物拡散領域と、チャネル領域上に備えられたゲート絶縁膜及びゲート絶縁膜をチャネル長方向で挟む一対の電荷保持膜と、ゲート絶縁膜及び一対の電荷保持膜上に備えられたゲート電極とを含んでいる。
半導体基板としては、不揮発性半導体記憶装置に使用されるものであれば特に限定されるものではなく、例えば、シリコン、ゲルマニウム等の元素半導体、SiGe、GaAs、InGaAs、ZnSe、GaN等の化合物半導体によるバルク基板、SOI基板等が挙げられる。この内、シリコン基板が製造の容易性の観点から好ましい。
半導体基板は、所定の濃度でp型又はn型の不純物が拡散されていてもよい。
半導体基板の表面層に備えられたソース領域及びドレイン領域としての一対の不純物拡散領域は、p型又はn型の導電型を有する。不純物拡散領域の不純物濃度は、例えば、不純物としてAsを使用した場合、1020〜1021cm-3程度である。また、不純物拡散領域の深さは、例えば、100〜200nmとできる。
ソース領域とドレイン領域との間にはチャネル領域が位置する。チャネル領域の幅は、例えば90〜180nmとでき、長さは、例えば、100〜250nmとできる。
チャネル領域上のゲート絶縁膜としては、通常、不揮発性半導体記憶装置に使用されるものであれば特に限定されるものではなく、例えば、シリコン酸化膜、シリコン窒化膜等の絶縁膜;酸化アルミニウム膜、酸化チタニウム膜、酸化タンタル膜、酸化ハフニウム膜等の高誘電体膜の単層膜又は積層膜を使用できる。なかでも、シリコン酸化膜が好ましい。ゲート絶縁膜は、例えば、1〜20nm程度、好ましく1〜6nm程度の膜厚とできる。
ゲート絶縁膜は、チャネル領域上のチャネル長方向において、一対の電荷保持膜に挟まれている。電荷保持膜は、電荷を蓄え、保持するか、電荷をトラップするか、電荷分極状態を保持する機能を有する。具体的には、シリコン窒化膜を含む絶縁膜;導電膜もしくは半導体層を内部に含む絶縁膜;導電体もしくは半導体ドットを1つ以上含む絶縁膜;電界により内部電荷が分極し、その状態が保持される強誘電体膜を含む絶縁膜等の単層又は積層構造が挙げられる。なかでも、シリコン窒化膜を含む絶縁膜は、電荷をトラップする準位が多数存在するため大きなヒステリシス特性を得ることができ、また、電荷保持時間が長く、リークパスの発生による電荷漏れの問題が生じにくいため保持特性が良好であり、好ましい。
シリコン窒化膜を含む絶縁膜としては、シリコン酸化膜、シリコン窒化膜及びシリコン酸化膜の積層体(ONO膜)が、電荷保持特性と工程の容易さの観点から特に好ましい。このような積層体を有する不揮発性半導体記憶装置は、一般にMONOS型メモリセルと称される。ここで、シリコン窒化膜を含む絶縁膜の厚さは、ゲート絶縁膜と同程度であり、この絶縁膜中、シリコン窒化膜の厚さが占める割合は、良好な電荷保持性を確保する観点から、25〜35%程度とできる。
ゲート絶縁膜及び一対の電荷保持膜上にはゲート電極が位置する。本発明では、ゲート電極は1つのメモリセルに1つとできる。従って、図22に示すような複数のゲート電極を有する従来の装置に比べて、セル面積を縮小できる。
ゲート電極としては、通常、半導体装置に使用されるものであれば特に限定されるものではなく、導電膜、例えば、ポリシリコン:銅、アルミニウム等の金属:タングステン、コバルト、チタン、タンタル等の高融点金属:高融点金属とのシリサイド等の単層膜又は積層膜等が挙げられる。ゲート電極の厚さは、例えば50〜400nm程度とできる。
なお、ゲート電極下において、電荷保持膜がチャネル長方向に占める割合(左右合計値)は、電荷保持膜への電荷の蓄積を確保し、電荷保持膜間の電荷の移動を防止する観点から、50%以上であることが好ましく、50〜65%であることがより好ましい。具体的には、200〜250nmのチャネル長の場合、個々の電荷保持膜の幅を50〜80nmとできる。
更に、本発明では、チャネル長方向に隣接するメモリセル間の不純物拡散領域が、隣接するメモリセルで共有されている。このため、1つのメモリセルごとにソース領域及びドレイン領域を設ける必要がなく、不純物拡散領域を1つ省略できるので、セル面積を縮小できる。なお、このような複数のセルを備えた構造は、通常、仮想接地型の構造と称される。
また、本発明では、チャネル長方向に隣接するメモリセルのゲート電極上に、チャネル長方向に隣接するメモリセルで共有されるワード線を備えている。それぞれのメモリセルのゲート電極には、ワード線を介して電圧が印加される。このようなワード線を備えることで、個々のメモリセルのゲート電極毎に電圧を印加するためのコンタクトを形成する必要がないため、セル面積を縮小できる。
なお、隣接するゲート電極間で、ワード線下には、通常、層間絶縁膜が形成されている。層間絶縁膜の厚さは、ワード線と層間絶縁膜と不純物拡散層との間で寄生容量が生じない程度であることが好ましい。
更に、本発明では、一対の不純物拡散領域が、チャネル幅方向で隣接するメモリセルにおいてそれぞれビット線として共有されている。それぞれのメモリセルのソース領域及びドレイン領域には、ビット線を介して電圧が印加される。このようなビット線を備えることで、個々のメモリセルのソース領域及びドレイン領域毎に電圧を印加するためのコンタクトを形成する必要がないため、セル面積を縮小できる。
ビット線及びワード線へのコンタクトは、メモリセルの形成領域外に位置することが、セル面積を縮小する観点から好ましい。例えば、ビット線及びワード線を、メモリセルの形成領域外に延在させ、延在したビット線及びワード線上にコンタクトを形成する構成が挙げられる。
次に、上記本発明の不揮発性半導体記憶装置の製造方法の一例を説明する。
まず、半導体基板の全面にチャネル幅方向に伸びる一対の絶縁膜とゲート電極膜とをこの順で堆積する。絶縁膜はゲート絶縁膜の形成用の膜であり、ゲート電極膜はゲート電極の形成用の膜である。絶縁膜の形成方法は、特に限定されず、熱酸化法、CVD法等が挙げられる。ゲート電極膜の形成方法は、特に限定されず、CVD法、蒸着法等が挙げられる。一対の絶縁膜とゲート電極膜への成形は、公知のフォトリソグラフィ法及びエッチング法により行うことができる。
次いで、絶縁膜を等方性エッチングすることで、一対のゲート電極膜の周縁部下側に位置する絶縁膜を横方向から除去して、残存する絶縁膜をゲート絶縁膜とできる。等方性エッチングに使用されるエッチャントとしては、例えばフッ酸が挙げられる。
更に、一対のゲート電極膜の周縁部下側の絶縁膜がエッチング除去された後の間隙部に電荷保持膜が充填される。充填方法は、電荷保持膜の種類に応じて適宜選択できる。例えば、電荷保持膜が、ONO膜の場合、シリコン窒化膜を挟む1対のシリコン酸化膜を、CVD法、熱酸化法等の気相成長法により形成できる。特に、800〜850℃の比較的高い雰囲気下で行う高温CVD法が、間隙部の上面、下面及び側面へのシリコン酸化膜の形成容易性から好ましい。次に、シリコン窒化膜をシリコン酸化膜で囲まれた間隙部に充填することで、ONO膜が形成できる。
電荷保持膜は、ゲート電極下にのみ位置するように、間隙部に充填された電荷保持膜以外のゲート電極膜の側面に位置する電荷保持膜を除去してもよい。除去方法としては、シリコン酸化膜についてはフッ酸、シリコン窒化膜については熱燐酸が使用できる。ここで、熱燐酸とは、130〜170℃に加温した燐酸を意味する。
次いで、一対のゲート電極膜をマスクにして半導体基板に不純物を注入することで、一対のゲート電極膜間及び外側の半導体基板の表面層にチャネル幅方向に伸びるソース領域及びドレイン領域となる不純物拡散領域を形成できる。この不純物拡散領域は、チャネル幅方向に延在しており、ビット線として機能する。
更に、ゲート電極膜をパターニングしてチャネル幅方向に分割することで、チャネル長方向及びチャネル幅方向のそれぞれに少なくとも2つずつ隣接するようにゲート電極を形成できる。
次に、チャネル長方向に隣接するメモリセルのゲート電極上に、チャネル長方向に隣接するメモリセルで共有されるワード線を形成する。ワード線の形成方法は、特に限定されず、公知の方法をいずれも使用できる。例えば、隣接するゲート電極間を、CVD法、塗布焼成法等により層間絶縁膜で埋めた後、ワード線形成用の導電膜を積層し、公知のフォトリソグラフィ法及びエッチング法によりパターニングすることで形成できる。
以上の工程により、本発明の不揮発性半導体記憶装置が得られる。
更に、本発明の不揮発性半導体記憶装置では、ビット線及びワード線を、チャネル長方向及びチャネル幅方向のそれぞれに少なくとも2つずつ隣接するメモリセルの形成領域外に延在させ、延在したビット線及びワード線上にコンタクトを形成できる。コンタクトを構成する材料としては、例えば、アルミニウム、銅、シリコン等が挙げられる。
以下、本発明の不揮発性半導体記憶装置を、図面を参照しつつ以下の実施形態で更に詳細に説明する。但し、以下の実施形態における各層の材料、膜厚、成膜条件等は、好適な一例を示したものであって、本発明は、これら実施の形態に限定されず、適宜変更可能である。
(第1実施形態)
図1〜5に、本発明の不揮発性半導体記憶装置の概略説明図を示す。図1は不揮発性半導体記憶装置の概略斜視図であり、図2は図1の回路図であり、図3は図1の概略平面図であり、図4は図3のA−A’線の概略断面図であり、図5は図3のB−B’線の概略断面図である。図1〜5では、9つのメモリセルが3×3で整列し、アレイ状となっている。個々のメモリセルは、この実施形態では、2つの記憶サイトを有するMONOS型メモリセル(以下、単に「メモリセル」と称す)である。
図4に示すように、メモリセルの基本構造は、シリコン基板(半導体基板)1上に形成されたシリコン酸化膜からなるゲート絶縁膜2と、ゲート電極4と、ゲート電極4を挟んだ両側のシリコン基板1表面に形成された不純物拡散領域7からなるソース及びドレイン領域を備えたMOSトランジスタ構造である。
更に、メモリセルは、ゲート電極4の周縁部下側部分のゲート絶縁膜2がエッチング除去された後に間隙部が形成され、その間隙部の上面、側面、下面(それぞれ、ゲート電極4の周縁部の下面、ゲート絶縁膜2の側面、シリコン基板1表面に相当)に沿って、間隙部内が全て充填されない膜厚でシリコン酸化膜5aと5bが形成され、そのシリコン酸化膜5aと5bに挟まれた領域にシリコン窒化膜6が形成されている。言い換えると、ゲート絶縁膜2の両側に位置する2個所の間隙部内に夫々、シリコン酸化膜5a−シリコン窒化膜6−シリコン酸化膜5bからなる3層のONO膜(電荷蓄積膜)が形成されている。従って、メモリセルは、ゲート電極4の2個所の周縁部においてMONOS構造が形成されている。そのため、各ONO膜内に形成される2つの記憶サイトがゲート絶縁膜2で分離されている。この結果、メモリセル当たり2つの記憶サイトを有するMONOS型メモリセルとなっている。更に、ゲート電極4間は、シリコン酸化膜からなる層間絶縁膜8で分離されている。
図1〜5では、
(1)チャネル長方向に隣接するメモリセル間の不純物拡散領域7は、隣接するメモリセルで共有され、
(2)チャネル長方向に隣接するメモリセルのゲート電極4上に、チャネル長方向に隣接するメモリセルで共有されるワード線9を備え、
(3)一対の不純物拡散領域7は、チャネル幅方向で隣接するメモリセルにおいてそれぞれビット線7bitとして共有されている。
なお、図1〜5では、不純物拡散領域7の不純物濃度を2×1020cm-3(不純物種As)とし、チャネル幅を110nm、チャネル長を200nmとし、ゲート絶縁膜2の厚さを15nm、ゲート絶縁膜2のチャネル長方向の幅を100nmとし、シリコン酸化膜5の厚さを5nmとし、シリコン窒化膜6の厚さを5nmとし、一方の膜5及び6からなるONO膜のチャネル長方向の幅を50nmとし、ゲート電極4の厚さを250nm、幅を220nmとし、層間絶縁膜8の厚さを250nm、チャネル長方向の幅を110nmとしている。
次に、不揮発性半導体記憶装置の製造方法を図6〜14を参照して説明する。
まず、図6に示すように、シリコン基板1上に、熱酸化によりゲート絶縁膜2を形成する。引き続き、図7に示すように、ゲート電極4となるゲート電極膜3(例えば、多結晶シリコン膜)を全面に堆積する。次に、図8に示すように、ゲート電極膜3がチャネル幅方向に分離されるようにエッチング加工する。現在の微細加工技術では、ゲート長は200nm程度であるが、勿論今後の微細加工技術の発展により更に縮小可能である。
次に、図9に示すように、等方性エッチチングによりゲート絶縁膜2のゲート電極膜3の周縁部下側部分を横方向にエッチングする。ゲート絶縁膜2の等方性エッチングは、例えば、23℃〜25℃の1%HF溶液中に浸し、横方向エッチング量を液に浸す時間で制御するウェットエッチングにより行う。ゲート絶縁膜2の横方向エッチング量は、左右合わせて、ゲート電極膜3のゲート長の50%以下程度に制御している。ゲート電極膜3の周縁部下側部分のゲート絶縁膜2がエッチング除去された後に、ゲート絶縁膜2の膜厚と同じ高さ15nmの間隙部2aが形成される。
次に、図10に示すように、シリコン酸化膜5を全面に堆積する。例えば、高温CVD酸化膜(HTO)を5nm程度の膜厚で堆積する。15nmあった間隙部2aの上面、側面及び下面に夫々シリコン酸化膜5aと5bが堆積し、高さが5nm程度の間隙部2bが残る。
なお、シリコン酸化膜5aと5bの他の堆積方法として、熱酸化により、シリコン酸化膜5を6nm程度の膜厚で堆積する。熱酸化法の場合は、シリコン基板1とゲート電極膜3のSiが夫々約3nmずつ消費されてシリコン酸化膜が成長し、高さが9nm程度の間隙部2bが残る。またCVD法(化学気相堆積法)と熱酸化法を組み合わせて、シリコン酸化膜5aと5bを堆積することも可能である。
次に、図11に示すように、シリコン窒化膜6をCVD法により全面に堆積する。シリコン窒化膜6を堆積すると、図11に示す間隙部2bにシリコン窒化膜6が充填される結果、ゲート電極膜3の両方の周縁部下側にONO膜(記憶サイト)が形成される。このONO膜をMONOSの記憶サイトとして利用する。全面に堆積するシリコン窒化膜6の膜厚は、間隙部2bの高さの半分以上が必要である。
次に、図12に示すように、ゲート電極膜3をマスクにして、シリコン基板1と逆の導電型の不純物を注入して不純物拡散領域7を形成する。これにより、ゲート電極膜3のチャネル長方向の両側のシリコン基板1表面にソース及びドレイン領域が形成される。
次に、図13に示すように、シリコン酸化膜5a、5bとシリコン窒化膜6を、ゲート電極膜3をマスクにして異方性エッチングによりエッチバックする。これにより、ゲート電極膜3の周縁部下側部分の間隙部2a内のONO膜、及び、ゲート電極膜3の両側壁部分のシリコン酸化膜5a、5bとシリコン窒化膜6がエッチングされずに残存し、ゲート電極膜3及び不純物拡散領域7の上面のシリコン酸化膜5a、5bとシリコン窒化膜6がエッチング除去される。
次に、図14に示すように、CVD法によりシリコン酸化膜を全面に堆積し、化学機械研磨(CMP)法によりゲート電極膜3の表面が露出するまでシリコン酸化膜を研磨することで、層間絶縁膜8を得る。
最後に、図4に示すように、全面にポリシリコン膜を堆積し、公知のフォトリソグラフィ法及びエッチング法により整形して、ワード線9を形成する。このエッチング時にゲート電極膜3が、チャネル幅方向に分離されて、ゲート電極4となる。
以上の工程において、不揮発性半導体記憶装置と共に通常のMOSトランジスタも形成可能である。例えば、ゲート絶縁膜2の等方性エッチング及びシリコン酸化膜5a、5bとシリコン窒化膜6の堆積の各処理をレジストパターン等でマスクして行わなければ、通常のMOSトランジスタを、不揮発性半導体記憶装置と同時に形成できる。
ここで、不揮発性半導体記憶装置及び通常のMOSトランジスタのゲート電極4及び不純物拡散領域7の露出面に対して、高融点金属(例えば、タングステン、チタン、コバルト等)をスパッタリング等で堆積し、熱処理を施し、周辺の未反応金属膜を除去して、ゲート電極4及び不純物拡散領域7の露出面のみを選択的にシリサイド化するようにしてもよい。なお、通常のMOSトランジスタは、不揮発性半導体記憶装置とは別工程で形成しても構わない。
次いで、層間絶縁膜(シリコン酸化膜)8を堆積し、所定個所に、不揮発性半導体記憶装置の形成領域外のビット線及びワード線上に電気的接続用のコンタクトホール10を形成して、その中にコンタクトプラグ金属(タングステン等)を充填し、層間絶縁膜8及びコンタクトプラグ金属の上面に金属配線11を形成することにより、図1〜5の不揮発性半導体記憶装置が得られる。
次に、個々のメモリセルの基本的なメモリ動作について、図15(a)〜(d)を参照して簡単に説明する。まず、書き込み動作について説明する。図15(a)に示すように、シリコン基板1と第1の不純物拡散領域(ソース領域)7aの各電位を接地電位(0V)とし、第2の不純物拡散領域(ドレイン領域)7bに3〜5Vの電位を、ゲート電極4に4〜6Vの電位を印加する。これにより、ソース領域7aからドレイン領域7bへ矢示するような電子の流れ(逆方向はチャネル電流)が生じ、ドレイン領域7bとチャネル領域の境界近傍でチャネルホットエレクトロン(CHE)が発生し、その一部がドレイン領域7b側のONO膜のシリコン酸化膜5aの電位障壁を乗り越えてシリコン窒化膜6の捕獲領域に捕獲され電荷が保持されることでデータが書き込まれる。第1及び第2拡散領域(ソース及びドレイン領域)7a、7bに印加する電位を入れ替えると、チャネル電流の向きが反転して、ソース領域7aとチャネル領域の境界近傍でチャネルホットエレクトロン(CHE)が発生し、その一部がソース領域7a側のONO膜のシリコン酸化膜5aの電位障壁を乗り越えてシリコン窒化膜6の捕獲領域に捕獲され電荷が保持されることでデータが書き込まれる。これにより、メモリセル当たり2ビットのデータを書き込みできる。
次に、消去動作について説明する。図15(b)に示すように、シリコン基板1の電位を接地電位(0V)とし、第1及び第2拡散領域(ソース及びドレイン領域)7a、7bの消去したいONO膜側の何れか一方又は両方に4V〜6Vの電位を印加する。消去しない側ONO膜側の電位は、接地電位(0V)とする。図15(b)は、ドレイン領域7b側のONO膜を消去する場合を示している。これにより、ドレイン領域7b(又はソース領域7a)の端部のゲート電極4と重なる部分でバンド−バンド間トンネリング現象によりホール・電子対が発生し、ホールの一部がONO膜のシリコン酸化膜5の電位障壁を越えてシリコン窒化膜6中の捕獲領域に入り、捕獲されている電子と打ち消しあって、シリコン窒化膜6中の捕獲電子による記憶データが消去される。以上、本発明メモリセルでは、メモリセル単位又は記憶サイト単位での消去動作が可能である。
次に、読み出し動作について説明する。図15(c)に示すように、ドレイン領域7b側のONO膜(記憶サイト)のデータを読み出す場合には、シリコン基板1と第2の不純物拡散領域(ドレイン領域)7bの各電位を接地電位(0V)とし、第1の不純物拡散領域(ソース領域)7aに1〜2Vの電位を、ゲート電極4に2〜4Vの電位を印加する。これにより、ドレイン領域7b側のONO膜に電子が捕獲されている書き込み状態では、当該捕獲電子による電界の影響でトランジスタの閾値電圧が高くなり、ソース領域7a側からドレイン領域7b側へ電流が流れない。また、ドレイン領域7b側のONO膜に電子が捕獲されていない消去状態では、ソース領域7aがドレイン領域7bより高電位であるため、ソース領域7a側のONO膜の電子の捕獲状態に関係なく、トランジスタの閾値電圧が低くなり、ソース領域7a側からドレイン領域7b側へ電流が流れる。従って、ドレイン領域7b側のONO膜の電子の捕獲状態による記憶データの読み出しが可能となる。逆に、第1及び第2拡散領域(ソース及びドレイン領域)7a、7bに印加する電位を入れ替えれば、ソース領域7a側のONO膜(記憶サイト)のデータを読み出すことができる。
本発明メモリセルは、図4に示すように、ゲート絶縁膜2を挟んで左右2つのONO膜内に夫々形成される記憶サイトは、ゲート絶縁膜2で電気的に分離されているので、左右の記憶サイト間で電荷の干渉がない。左右の記憶サイトに対して独立に書き込み動作を行うため、一方の記憶サイトが消去状態で、他方の記憶サイトが書き込み状態の場合も有り得る。この場合、消去状態が必ずしも中性とは限らず、消去動作時に注入されるホールが過剰な場合、捕獲電子と中和されなかった余剰ホールがONO膜内に保持されている場合がある。図15(d)に示すように、第2の不純物拡散領域(ドレイン領域)7b側に電子13が捕獲され、第1の不純物拡散領域(ソース領域)7a側にホール14が捕獲されている場合、ソース領域7a側の記憶サイトの正電位に引き寄せられて、ドレイン領域7b側の記憶サイトに捕獲された電子13が拡散する場合、従来の図21に示すMONOS型メモリセルでは、当該捕獲電子の拡散によってデータが消失してしまう虞があったが、本発明メモリセルでは、2つの記憶サイト間にゲート酸化膜2が介在するため捕獲電子の拡散が防止され、記憶データの保持特性が向上する。
更に、複数のメモリセルを備える不揮発性半導体記憶装置において、特定の電荷保持膜へ情報を書き込み、消去し及び読み出す方法を図16を用いて説明する。図16は、2列×2行(2×2ブロック)でメモリセルが4つ並んだ不揮発性半導体記憶装置の回路図である。この回路図において、右下のメモリセル中の左側の電荷保持膜へ情報を書き込み、消去し及び読み出す方法を説明する。
この場所の電荷保持膜へ情報を書き込み、消去し及び読み出すために、ビット線1〜3と、ワード線1及び2とに印加する電圧の一例を表1に示す。
Figure 2009272545
書込み時には、右下のメモリセルでは、図15(a)の原理により左側の電荷保持膜に電子が注入されることで、情報が書き込まれる。このメモリセル以外のメモリセルでは、ワード線に電圧が印加されていない又は両側のビット線の電圧が同電位であることから、チャネル領域を電子が移動しないため、電荷保持膜に電子は注入されない。
なお、左側の電荷保持膜への情報の書き込みは、ビット線2に0V、ビット線3に5Vを印加することにより行うことができる。
上記消去では、2×2ブロック全体の情報が一括して消去(ブロック消去)されている。消去は図15(b)の原理により行われる。
読み出しは、図15(c)に原理を示すように、電荷保持膜に電子が注入されないビット線及びワード線に電圧を印加し、チャネル領域を電子が流れるか否かで行われる。情報が書き込まれたメモリセル以外のメモリセルでは、ワード線に電圧が印加されていない又は両側のビット線の電圧が同電位であることから、チャネル領域を電子が移動しないため、読み出しはされない。
なお、左側の電荷保持膜への情報の読み出しは、ビット線2に1V、ビット線3に0Vを印加することにより行うことができる。
(第2実施形態)
第2実施形態を、図17を参照して説明する。第2の実施形態は、周辺MOSトランジスタの側壁スペーサをメモリセルの製造に調和させた製造例を示す。
第1実施形態では、図13に示すシリコン酸化膜5a、5bとシリコン窒化膜6を、ゲート電極4をマスクにしてエッチバックしている。第2実施形態では、上記工程に代えて、次の工程を行う。まず、図11に示すシリコン窒化膜6を堆積し、周辺MOSトランジスタの不純物拡散領域より先に、メモリセルの不純物拡散領域7を、ゲート電極4をマスクにして形成する。この後に、周辺MOSトランジスタのゲート電極の側壁スペーサ12となるスペーサ用絶縁膜を堆積し、図17に示すように、スペーサ用絶縁膜を異方性エッチングによりエッチバックする。この時、スペーサ用絶縁膜の異方性エッチングと共に、シリコン酸化膜5a、5bとシリコン窒化膜6のエッチバックも行われる。
なお、上記メモリセルでは、不純物拡散領域をゲート電極をマスクとして行なっているが、ゲート電極及び側壁スペーサをマスクとして行ってもよい
(第3実施形態)
第3実施形態について、概略工程断面図である図18(a)〜(g)を参照して説明する。
第3実施形態では、図18(a)に示すように、ゲート絶縁膜2の等方性エッチングの終了までは、第1実施形態と同じである。
図18(a)は、図9と同様に、ゲート電極4の周縁部下側部分のゲート絶縁膜2がエッチング除去された後の状態を示している。間隙部2aは、ゲート絶縁膜2の膜厚と同じ高さ15nmの高さである。
次に、図18(b)に示すように、犠牲酸化膜15を熱酸化によって形成する。熱酸化では、成長膜厚の約半分の膜厚分のSiを消費する。例えば、8nmの膜厚の犠牲酸化膜15では、シリコン基板1側のSiを4nm、ゲート電極4側のSiを4nm、夫々消費し、上下合わせて8nmのSiを消費する。
引き続き、図18(c)に示すように、ウェットエッチングにより犠牲酸化膜15を除去する。具体的には、犠牲酸化膜15を除去するに必要な時間、23〜24℃1%HF溶液中に浸す。例えば、膜厚8nmの犠牲酸化膜15に対しては、8〜10nmの酸化膜をウェットエッチングするのに十分な時間、HF溶液に浸す。これにより、シリコン基板1とゲート電極4の間の犠牲酸化膜15を除去後の間隙部2cの高さは、犠牲酸化前の15nmより、犠牲酸化膜15が消費したSi分(例えば、8nm)広がるので、ゲート酸化膜2の膜厚より大きくできる。
次に、図18(d)に示すように、シリコン酸化膜5aと5bを、例えば熱酸化法あるいはCVD法を用いて、間隙部2bが残る程度の膜厚(例えば、6〜8nm)で全面に堆積する。シリコン酸化膜5aと5bの堆積は、CVD法でシリコン酸化膜を形成後に、熱酸化を行い形成できる。シリコン酸化膜5aと5bの堆積は、第1実施形態(図10参照)と同じである。
次に、図18(e)に示すように、シリコン窒化膜6をCVD法により全面に堆積する。その膜厚は、間隙部2bの高さの半分以上が必要である。図10に示す間隙部2bにシリコン窒化膜6が充填される結果、ゲート電極4の両方の周縁部下側にONO膜(記憶サイト)が形成される。一例として、ゲート絶縁膜2の膜厚を15nmとし、犠牲酸化膜15の膜厚を8nmとし、シリコン酸化膜5aと5bの膜厚を6nmとすると、間隙部2bの高さは11nmとなる。シリコン窒化膜を8nm堆積すると間隙部2bの高さ(11nm)が埋まり、結果として6nm、11nm、6nm(合計23nm)のONO膜が形成され、容量から見た換算膜厚は17.5nmのシリコン酸化膜とほぼ等価な膜厚になる。犠牲酸化膜厚を調整することで、ゲート絶縁膜2の膜厚より薄い換算膜厚から厚い換算膜厚まで調整が可能で、要求されるトランジスタ特性に容易に適合可能となる。
次に、図18(f)に示すように、ゲート電極4をマスクにして、シリコン基板1と逆の導電型の不純物を注入して不純物拡散領域7を形成する。これにより、ゲート電極4の両側のシリコン基板1表面にソース及びドレイン領域が形成される。不純物拡散領域7の形成は、第1実施形態(図12参照)と同じである。
次に、図18(g)に示すように、シリコン酸化膜5a、5bとシリコン窒化膜6を、ゲート電極4をマスクにして異方性エッチングによりエッチバックする。これにより、ゲート電極4の周縁部下側部分の犠牲酸化膜15除去後の間隙部2c内のONO膜、及び、ゲート電極4の両側壁部分のシリコン酸化膜5a、5bとシリコン窒化膜6がエッチングされずに残存し、ゲート電極4及び不純物拡散領域7の上面のシリコン酸化膜5a、5bとシリコン窒化膜6がエッチング除去され、本発明メモリセルが完成する。シリコン酸化膜5とシリコン窒化膜6の異方性エッチングは、第1実施形態(図13参照)と同じである。
この後は、第1実施形態と同様にして、不揮発性半導体記憶装置が得られる。
(第4実施形態)
第4実施形態を、図19を参照して説明する。第4実施形態は、周辺MOSトランジスタの側壁スペーサをメモリセルの製造に調和させた製造例を示す。
第3実施形態では、図18(g)に示すシリコン酸化膜5a、5bとシリコン窒化膜6を、ゲート電極4をマスクにしてエッチバックしている。第2実施形態では、上記工程に代えて、次の工程を行う。まず、図18(e)に示すシリコン窒化膜6を堆積し、周辺MOSトランジスタの不純物拡散領域より先に、メモリセルの不純物拡散領域7を、ゲート電極4をマスクにして形成する。この後に、周辺MOSトランジスタのゲート電極の側壁スペーサ12となるスペーサ用絶縁膜を堆積し、図19に示すように、スペーサ用絶縁膜を異方性エッチングによりエッチバックする。この時、スペーサ用絶縁膜の異方性エッチングと共に、シリコン酸化膜5a、5bとシリコン窒化膜6のエッチバックも行われる。
なお、上記メモリセルでは、不純物拡散領域をゲート電極をマスクとして行なっているが、ゲート電極及び側壁スペーサをマスクとして行ってもよい。
この実施形態では、電荷保持膜であるONO膜の物理的な膜厚と、ゲート絶縁膜の膜厚とを独立に制御できる。そのため、電荷保持特性の最適なONO膜を形成できる。
本発明の不揮発性半導体記憶装置の概略斜視図である。 本発明の不揮発性半導体記憶装置の回路図である。 本発明の不揮発性半導体記憶装置の概略平面図である。 本発明の不揮発性半導体記憶装置の概略断面図である。 本発明の不揮発性半導体記憶装置の概略断面図である。 本発明の不揮発性半導体記憶装置の概略工程断面図である。 本発明の不揮発性半導体記憶装置の概略工程断面図である。 本発明の不揮発性半導体記憶装置の概略工程断面図である。 本発明の不揮発性半導体記憶装置の概略工程断面図である。 本発明の不揮発性半導体記憶装置の概略工程断面図である。
本発明の不揮発性半導体記憶装置の概略工程断面図である。 本発明の不揮発性半導体記憶装置の概略工程断面図である。 本発明の不揮発性半導体記憶装置の概略工程断面図である。 本発明の不揮発性半導体記憶装置の概略工程断面図である。 本発明の不揮発性半導体記憶装置のメモリ動作の概略説明図である。 本発明の不揮発性半導体記憶装置の動作方法の概略説明図である。 本発明の不揮発性半導体記憶装置の概略断面図である。 本発明の不揮発性半導体記憶装置の概略工程断面図である。 本発明の不揮発性半導体記憶装置の概略断面図である。 従来の不揮発性半導体記憶装置の概略工程断面図である。 従来の不揮発性半導体記憶装置の概略断面図である。 従来の不揮発性半導体記憶装置の概略工程断面図である。
符号の説明
1:半導体基板、2:ゲート絶縁膜、2a、2b、2c:間隙部、
3:ゲート電極膜、4、28:ゲート電極、
5a、5b、21、23、26、27:シリコン酸化膜
6、22、25:シリコン窒化膜、7:不純物拡散領域
7a:第1の不純物拡散領域(ソース領域)、
7b:第2の不純物拡散領域(ドレイン領域)
7bit:ビット線、8:層間絶縁膜、9:ワード線、
10:コンタクトホール、11:金属配線
12:側壁スペーサ(スペーサ用絶縁膜)、13:電子、14:ホール
15:犠牲酸化膜、24:記憶サイト、29:ゲート電極スペーサ

Claims (6)

  1. 半導体基板の表面層に備えられたチャネル領域及び前記チャネル領域を挟むソース領域及びドレイン領域としての一対の不純物拡散領域と、前記チャネル領域上に備えられたゲート絶縁膜及び前記ゲート絶縁膜をチャネル長方向で挟む一対の電荷保持膜と、前記ゲート絶縁膜及び前記一対の電荷保持膜上に備えられた単一層からなるゲート電極とを含むメモリセルを、チャネル長方向及びチャネル幅方向のそれぞれに少なくとも2つずつ隣接して有し、
    前記チャネル長方向に隣接するメモリセル間の不純物拡散領域が、前記隣接するメモリセルで共有され、
    前記チャネル長方向に隣接するメモリセルのゲート電極上に、前記チャネル長方向に隣接するメモリセルで共有されるワード線を備え、
    前記一対の不純物拡散領域が、前記チャネル幅方向で隣接するメモリセルにおいてそれぞれビット線として共有されていることを特徴とする不揮発性半導体記憶装置。
  2. 前記ビット線及び前記ワード線が、前記チャネル長方向及びチャネル幅方向のそれぞれに少なくとも2つずつ隣接するメモリセルの形成領域外に延在し、前記延在したビット線及びワード線上に更にコンタクトを備える請求項1に記載の不揮発性半導体記憶装置。
  3. 前記電荷保持膜が、シリコン酸化膜、シリコン窒化膜及びシリコン酸化膜の積層体である請求項1又は2に記載の不揮発性半導体記憶装置。
  4. 請求項1〜3のいずれか1つに記載の不揮発性半導体記憶装置の製造方法であって、
    半導体基板の全面にチャネル幅方向に伸びる一対の絶縁膜とゲート電極膜とをこの順で堆積する工程と、
    前記絶縁膜を等方性エッチングすることで、前記一対のゲート電極膜の周縁部下側に位置する前記絶縁膜を横方向から除去してゲート絶縁膜とする工程と、
    前記一対のゲート電極膜の周縁部下側の前記絶縁膜がエッチング除去された後の間隙部に電荷保持膜を充填する工程と、
    前記一対のゲート電極膜をマスクにして前記半導体基板に不純物を注入することで、前記一対のゲート電極膜間及び外側の前記半導体基板の表面層にチャネル幅方向に伸びるソース領域及びドレイン領域となる不純物拡散領域を形成する工程と、
    前記ゲート電極膜をパターニングすることで、チャネル長方向及びチャネル幅方向のそれぞれに少なくとも2つずつ隣接するようにゲート電極を形成する工程と、
    前記チャネル長方向に隣接するメモリセルのゲート電極上に、前記チャネル長方向に隣接するメモリセルで共有されるワード線を形成する工程とを有することを特徴とする不揮発性半導体記憶装置の製造方法。
  5. 前記一対のゲート電極膜の周縁部下側の前記絶縁膜がエッチング除去された後の間隙部に電荷保持膜を充填する工程が、前記間隙部を含む前記ゲート電極膜の全面に電荷保持膜形成用膜を堆積した後、前記ゲート電極膜の側面の前記電荷保持膜形成用膜を除去することで、間隙部に電荷保持膜を充填する工程である請求項4に記載の不揮発性半導体記憶装置の製造方法。
  6. 前記電荷保持膜形成用膜が、シリコン酸化膜、シリコン窒化膜及びシリコン酸化膜の積層体であり、前記ゲート電極膜の側面の前記電荷保持膜形成用膜を構成する前記シリコン酸化膜がフッ酸により、前記シリコン窒化膜が熱燐酸により除去される請求項5に記載の不揮発性半導体記憶装置の製造方法。
JP2008123548A 2008-05-09 2008-05-09 不揮発性半導体記憶装置及びその製造方法 Expired - Fee Related JP5358121B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008123548A JP5358121B2 (ja) 2008-05-09 2008-05-09 不揮発性半導体記憶装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008123548A JP5358121B2 (ja) 2008-05-09 2008-05-09 不揮発性半導体記憶装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2009272545A true JP2009272545A (ja) 2009-11-19
JP5358121B2 JP5358121B2 (ja) 2013-12-04

Family

ID=41438823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008123548A Expired - Fee Related JP5358121B2 (ja) 2008-05-09 2008-05-09 不揮発性半導体記憶装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP5358121B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283740A (ja) * 2008-05-23 2009-12-03 Spansion Llc 半導体装置の製造方法及び半導体装置
US9461162B2 (en) 2010-04-16 2016-10-04 SK Hynix Inc. Semiconductor integrated circuit device having reduced unit cell area

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164446A (ja) * 2000-09-12 2002-06-07 Sony Corp 不揮発性半導体記憶装置、動作方法および製造方法
JP2004341132A (ja) * 2003-05-14 2004-12-02 Sharp Corp 表示用駆動装置及び表示装置、並びに携帯電子機器
JP2005277190A (ja) * 2004-03-25 2005-10-06 Fujitsu Ltd 半導体記憶装置及びその製造方法
JP2006040442A (ja) * 2004-07-28 2006-02-09 Innotech Corp データ読出し回路
JP2009094285A (ja) * 2007-10-09 2009-04-30 Spansion Llc 半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164446A (ja) * 2000-09-12 2002-06-07 Sony Corp 不揮発性半導体記憶装置、動作方法および製造方法
JP2004341132A (ja) * 2003-05-14 2004-12-02 Sharp Corp 表示用駆動装置及び表示装置、並びに携帯電子機器
JP2005277190A (ja) * 2004-03-25 2005-10-06 Fujitsu Ltd 半導体記憶装置及びその製造方法
JP2006040442A (ja) * 2004-07-28 2006-02-09 Innotech Corp データ読出し回路
JP2009094285A (ja) * 2007-10-09 2009-04-30 Spansion Llc 半導体装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283740A (ja) * 2008-05-23 2009-12-03 Spansion Llc 半導体装置の製造方法及び半導体装置
US9461162B2 (en) 2010-04-16 2016-10-04 SK Hynix Inc. Semiconductor integrated circuit device having reduced unit cell area

Also Published As

Publication number Publication date
JP5358121B2 (ja) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5985293B2 (ja) 半導体装置および半導体装置の製造方法
JP5288877B2 (ja) 不揮発性半導体記憶装置
TWI726125B (zh) 半導體裝置及其製造方法
JP5521555B2 (ja) 不揮発性記憶装置およびその製造方法
JP2010182751A (ja) 不揮発性半導体記憶装置及びその製造方法
JP5389074B2 (ja) 不揮発性半導体記憶装置及びその製造方法
KR100766233B1 (ko) 플래쉬 메모리 소자 및 그의 제조 방법
JP2008135715A (ja) 不揮発性メモリ素子及びその製造方法
JP2018200936A (ja) 半導体装置および半導体装置の製造方法
JP2003218242A (ja) 不揮発性半導体記憶装置およびその製造方法
TW201939587A (zh) 半導體裝置及其製造方法
JP5438300B2 (ja) 不揮発性半導体記憶装置の製造方法
JP5358121B2 (ja) 不揮発性半導体記憶装置及びその製造方法
JP5319092B2 (ja) 半導体装置およびその製造方法
CN1953161A (zh) 半导体存储装置及其制造方法
JP2005260197A (ja) 半導体素子及びその製造方法
US10312254B2 (en) Semiconductor device and a manufacturing method thereof
JP2009194221A (ja) 半導体装置およびその製造方法
KR20080040537A (ko) 비휘발성 메모리 소자, 그 적층 구조, 그 동작 방법, 그제조방법 및 비휘발성 메모리 소자를 이용한 시스템
JP5308024B2 (ja) 半導体装置およびその製造方法
JP2011210777A (ja) 半導体装置およびその製造方法
JP4572230B2 (ja) 不揮発性半導体記憶装置の製造方法
JP2007081294A (ja) 不揮発性半導体記憶装置およびその製造方法
JP2010153479A (ja) 半導体装置及び半導体装置の製造方法
KR20080039097A (ko) 반도체 소자 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees