JP2009263215A - 二酸化ウラン焼結体とその製造方法。 - Google Patents

二酸化ウラン焼結体とその製造方法。 Download PDF

Info

Publication number
JP2009263215A
JP2009263215A JP2009080556A JP2009080556A JP2009263215A JP 2009263215 A JP2009263215 A JP 2009263215A JP 2009080556 A JP2009080556 A JP 2009080556A JP 2009080556 A JP2009080556 A JP 2009080556A JP 2009263215 A JP2009263215 A JP 2009263215A
Authority
JP
Japan
Prior art keywords
powder
adu
uranium dioxide
sintered body
uranium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009080556A
Other languages
English (en)
Inventor
Yoshihisa Tamaki
喜久 田巻
Makoto Kusama
誠 草間
Tadahiro Yoshimura
忠宏 吉村
Motohiro Sakaihara
基浩 境原
Hideki Munekata
英樹 宗片
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009080556A priority Critical patent/JP2009263215A/ja
Publication of JP2009263215A publication Critical patent/JP2009263215A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

【課題】平均結晶粒径が大きく、かつ焼結体密度が高い二酸化ウラン焼結体とその製造方法を提供する。
【解決手段】フッ化ウランをアンモニアガスおよび水蒸気と気相反応させてADU粉末を生成させ、副生するフッ化水素ガスを分離し、上記ADU粉末を洗浄した後に、スプレードライ乾燥して残留フッ素濃度1%以下の球状ADU粉末にし、該ADU粉末を焙焼還元して安息角40°以下の二酸化ウラン粉末にし、該二酸化ウラン粉末を成形し焼結することによって焼結密度99.5%TD以上かつ平均結晶粒径30μm以上の二酸化ウラン焼結体を製造する方法。
【選択図】図1

Description

本発明は、原子力発電の燃料などに用いられる二酸化ウラン焼結体とその製造方法に関し、より詳しくは、原子力発電に用いられるMOX燃料や低濃縮ウラン燃料に用いられる二酸化ウラン焼結体について、平均結晶粒径が大きく、かつ焼結体密度が高い二酸化ウラン焼結体とその製造方法に関する。
原子燃料として二酸化ウラン(UO2)の焼結体が用いられている。具体的には、例えば、核分裂反応を起こす同位体ウランU235の品位を天然ウランよりも高めて2〜3%にした低濃縮ウラン酸化物の焼結体ペレットが用いられている。このペレットはジルコニウム合金製の被覆管に密封した燃料棒(燃料要素)に成形され、燃料棒の集合体が原子炉に装入して使用される。
原子炉では高燃焼度化に伴いUO2焼結体ペレットから発生する核分裂生成ガス(以下、FPガスと称す)量が増大し、燃料棒内の空間に蓄積されるFPガス量も増大する。これは燃料棒被覆管の内圧を増加させるとともに、UO2焼結体ペレットと被覆管の間の熱伝達特性を低下させるため、FPガス発生の低減化対策が必要とされている。このFPガス発生低減化対策としてUO2結晶粒を大粒径化することが知られている。この方法は、UO2焼結体ペレットから発生するFPガス量のうち、一部がUO2焼結体ペレットを構成するUO2結晶粒内から移動(主として拡散による)し、粒界を通してペレット外へ放出されることに基づくものであり、UO2焼結体ペレットを構成する結晶粒を大粒径にすることによって、FPガスをUO2の結晶粒内に極力閉じ込めるようにして結晶粒界からの放出を抑制したものであり、具体的には、UO2焼結体ペレットを構成するUO2結晶粒径を最低でも25μmより大きくすることによって、UO2結晶粒内から発生するFPガスをUO2結晶粒内に極力閉じ込め、結晶粒界から抜け出すFPガス量を低減した対策である。
現在、原子燃料用のUO2焼結体ペレットは六フッ化ウラン(UF6)を原料として製造されており、湿式製法と乾式製法が知られている。商用規模の施設で実施されている湿式法の代表例として、UF6から重ウラン酸アンモニウム(ADU)を経由してUO2焼結体ペレットを製造する方法(ADU法)が知られており、乾式法の代表例としてUF6からフッ化ウラニル(UO22)を経由してUO2焼結体ペレットを製造する方法(IDR法またはDCP法)が知られている。
ADU法は、図2に示すように、UF6と水とを液相反応させてUO22水溶液にし(式[1])、これにNH3を添加してADU沈殿物を生成させることによってウランの固体化処理を行い(式[2])、これを焙焼・還元処理してUO2粉末にし(式[3])、該UO2粉末を焼結してUO2焼結体ペレットにする方法である(式中、Gは気相、Lは液相、以下同じ)。
UF6(G) + 2H2O(L) → UO22(L) + 4HF(L) …〔1〕
2UO22(L) + 8HF(L) + 14NH4OH(L) → (NH4)227(S) + 12NH4F(L) +11H2O(L) …〔2〕
(NH4)227(S)+2H2(G) → 2UO2(S)+2NH3(G)+3H2O(G)…〔3〕
一方、IDR法またはDCP法は、図3に示すように、UF6と水蒸気を気相反応させてUO22粉末にし(式[4])、これを焙焼・還元してUO2粉末にし(式[5])、これを焼結してUO2焼結体ペレットにする方法である。
UF6(G) + 2H2O(G) → UO22(S) + 4HF(G) …〔4〕
UO22(S) + H2 → UO2(S)+2HF(G) …〔5〕
ADU法では、式[1][2]に示すように、水溶液中でUF6を加水分解するので、副生したHFが液中に残留する。このHFが残留するUO22水溶液にNH4OHを添加してADU沈澱を生成させるので、液中のHFがADU沈澱に付着し、さらに、ADU沈澱生成と共に副生したNH4FがADU沈澱に付着するので、F含有量の多い沈澱になりやすい。
また、ADU法ではADU沈澱を濾過回収し、乾燥した後に、式[3]に示すように、焙焼還元してUO2粉末にするが、UO2粉末の活性度を確保するために高温加熱ができず、フッ素を十分に分離することが難しい。
そのため、ADU法によって得られるUO2粉末はF含有量が多い。このUO2粉末を焼結する工程において、UO2粉末に残留しているFは気化し、焼結体組織の粒界に沿って外部に抜け出るが、この脱フッ素に伴って空孔が焼結体の粒内や粒界に生じる。この空孔は焼結過程において粒子どうしの接触を阻害するだけでなく、粒子の成長を阻害し、焼結体の高密度化および大粒径化を阻害する要因となるため、ADU法によって得られるUO2ペレット焼結体の密度は97%TD程度、結晶粒径は10μm〜15μm程度である。
一方、従来のIDR法またはDCP法では、式[4][5]に示すように、UO22の還元焙焼時にHFが副生するので、UO2粉末にFが取り込まれやすい。しかも、還元焙焼の段階ではUO2粉末の活性度を確保するために高温加熱ができず、フッ素を十分に分離することが難しい。その結果、F量の多いUO2粉末を焼結することになるため、ADU法と同様に焼結体の高密度化および大粒径化は難しい。従って、IDR法またはDCP法によって得られるUO2焼結体ペレットの密度は97.5%TD程度であり、結晶粒径は10μm〜20μm程度である。
さらに、ADU法およびIDR法またはDCP法によって得られるUO2粉末は何れも低流動性である。具体的には、ADU法によって製造されるUO2粉末の安息角は60°以上であり、IDR法またはDCP法よって製造されるUO2粉末の安息角は55°〜60°程度である。このため、粉体の状態ではペレット成形時にダイスの充填量が一定せず、事前に造粒処理が必要になる。
また、IDR法またはDCP法とADU法を組み合わせた方法も知られており、UF6と水蒸気を気相反応させてUO22粉末を生成させ、このUO22粉末を水に溶解させた水溶液にアンモニア水を添加してADU沈澱を生成させ、これを濾過回収し、焙焼還元してUO2粉末にする製造方法が知られている(特許文献1)。しかし、この製造方法も、フッ素をウランから最終的に分離するのは焙焼・還元工程であるため、UO2ペレット焼結体の密度は96.4%TD(比較例、表2)であり、高密度焼結体を得ることができない。
さらに、ADU法において、UO22とHFを含む水溶液のUO22に対するHFモル比を調整することによってUO2ペレット焼結体の密度と結晶粒径を制御する方法が知られている(特許文献2)。しかし、実際の製造工程では、ADU沈澱条件を制御しても残留F濃度によって焼結体の密度および結晶粒径は大きく異なる問題がある。
特開昭62−197318号公報 特開昭62−297215号公報
本発明は、UO2ペレット焼結体の製造方法について、従来の上記問題を解決したものであり、六フッ化ウランをアンモニアガスおよび水蒸気と気相反応させて重ウラン酸アンモニウム(ADU)粉末を直接生成させ、このADU粉末を洗浄した後に、スプレードライして乾燥することによって、高流動性のUO2粉末を得るとともに焼結密度が高く結晶粒径の大きいUO2焼結体を製造する方法を提供する。
本発明は以下の構成からなる二酸化ウラン焼結体とその製造方法に関する。
〔1〕 六フッ化ウランをアンモニアガスおよび水蒸気と気相反応させて重ウラン酸アンモニウム(ADU)粉末を生成させ、該ADU粉末を洗浄し、さらにスプレードライにより乾燥して球状ADU粉末にし、該ADU粉末を焙焼還元して二酸化ウラン粉末にし、該二酸化ウラン粉末を成形し焼結することを特徴とする二酸化ウラン焼結体の製造方法。
〔2〕 六フッ化ウランをアンモニアガスおよび水蒸気と気相反応させてADU粉末を生成させ、副生するフッ化水素ガスを分離し、上記ADU粉末を洗浄し、さらにスプレードライにより乾燥して残留フッ素濃度1%以下の球状ADU粉末にし、該ADU粉末を焙焼還元して残留フッ素濃度200ppm以下および安息角40°以下の二酸化ウラン粉末にし、該二酸化ウラン粉末を成形し焼結する上記[1]に記載する二酸化ウラン焼結体の製造方法。
〔3〕 六フッ化ウランをアンモニアガスおよび水蒸気と気相反応させてADU粉末を生成させ、副生するフッ化水素ガスを分離し、上記ADU粉末を洗浄した後に、スプレードライにより乾燥して残留フッ素濃度1%以下の球状ADU粉末にし、該ADU粉末を焙焼還元して残留フッ素濃度200ppm以下および安息角40°以下の二酸化ウラン粉末にし、該二酸化ウラン粉末を成形し焼結することによって、焼結密度99.5%TD以上かつ平均結晶粒径30μm以上の焼結体を製造する上記[1]または上記[2]に記載する二酸化ウラン焼結体の製造方法。
本発明の製造方法は、六フッ化ウランをアンモニアガスおよび水蒸気と気相反応させて重ウラン酸アンモニウム(ADU)粉末を直接生成させるので、液相反応によってADU沈澱を生成させる方法や、気相反応によって生成したフッ化ウラニルを水に溶解してアンモニアと反応させる方法に比べて、処理工程が簡単であり、処理コストを低減することができる。
本発明の製造方法は、気相反応によってADU粉末を生成させるので、副生するフッ酸は気体であり、一方、ADU粉末は固体であるので、フッ酸の除去効果が高い。また回収したADUを洗浄し、スプレードライにより乾燥して球状ADU粉末にし、このADU粉末を焙焼還元することによって、残留フッ素濃度200ppm以下であって安息角40°以下、好ましくは安息角30°程度の球状二酸化ウラン粉末を製造することができる。この二酸化ウラン粉末を成形し焼結して、焼結密度99.5%TD以上かつ平均結晶粒径30μm以上の焼結体を得ることができる。
本発明の製造方法を示す処理工程図。 ADU法の処理工程図 IDR法またはDCP法の処理工程図
以下、本発明を実施形態に基づいて具体的に説明する。%は特に示さない限り、および単位固有の場合を除き質量%である。本発明の製造方法を図1に示す。
〔乾式ADU変換工程〕
本発明の製造方法は、第1段階として、フッ化ウランをアンモニアガスおよび水蒸気と気相反応させて重ウラン酸アンモニウム(ADU)粉末を直接生成させ、副生するフッ化水素ガスを分離する。次式[6]に示すように、2モルのフッ化ウラン(UF6)に対して、12モルのHFガスが生成するので、ウランに対して6倍モルのフッ素を分離することができる。
2UF6(G)+7H2O(G)+2NH3(G) → (NH4)227(S)+12HF(G) …〔6〕
〔洗浄乾燥工程〕
上記工程で生成したADU粉末を回収し、これを繰返し洗浄し、さらにスプレードライして乾燥する。ADU粉末を洗浄処理することによって、ADU粉末に付着物として残留するフッ素が除去される。さらに、この洗浄処理したADUスラリーをスプレードライして乾燥することによってADUが球状に微粒子化されると共にADUに残留するフッ素が確実に除去され、残留フッ素濃度の低い球状ADU粉末を得ることができる。
この洗浄乾燥処理によって得られるADU粉末は球状であり流動性に優れている。従って、これを焙焼還元して得た二酸化ウラン粉末を成形して焼結処理するときに充填密度が高く、焼結体密度の高い二酸化ウラン焼結体ペレットを得ることができる。具体的には、上記ADU粉末を焙焼還元して球状の二酸化ウラン粉末を得ることができ、この二酸化ウラン粉末の安息角は40°以下、好ましくは30°程度であり、従来のADU法またはIDR法およびDCP法によって製造した二酸化ウラン粉末よりも格段に流動性が良く、99.4%TD以上の焼結体を得ることができる。
また、洗浄処理とスプレードライによる乾燥の二段処理によって残留フッ素を確実に低減することができる。洗浄処理だけではフッ素除去に限界があるが、洗浄処理後の乾燥手段としてスプレードライすることによって、ADU粒子表面に付着するフッ素がADU粒子の微細化によってさらに除去され、洗浄効率が格段に向上する。具体的には、例えば、洗浄処理によって残留フッ素濃度を60000ppm〜80000ppm程度に低減することができ、スプレードライすることによって残留フッ素濃度を10000ppm以下(1%以下)までさらに低減することができる。スプレードライは、例えば、ADUスラリーの粘度1cP〜800cPで、温度100℃〜300℃の雰囲気に噴射すればよい。
この残留フッ素を低減したADU微粉末を焙焼還元して二酸化ウラン粉末にする際に、還元焙焼処理時に残留フッ素はさらに気化して除去され、残留フッ素濃度200ppm以下の二酸化ウラン粉末を得ることができる。
〔焙焼還元工程〕
洗浄乾燥したADU粉末を焙焼還元して二酸化ウラン粉末にする。焙焼還元は例えば、ADU粉末を装入した炉内に水素および水蒸気を導入し、550〜850℃に加熱して焙焼還元すればよい。ADU粉末は、次式[7]に示すように、焙焼還元されて二酸化ウラン粉末になる。上記二酸化ウラン粉末は球状粒子であり、従って、安息角40°以下、好ましくは30°程度であり、流動性がよい。
(NH4)227(S)+2H2(G) → 2UO2(S)+2NH3(G)+3H2O …〔7〕
〔焼結工程〕
上記二酸化ウラン粉末を加圧成形してペレット状にし、焼結処理して焼結体ペレットを得る。概ね成形時の圧力は2〜6t/cm2、焼結時の雰囲気は加湿H2雰囲気、または無加湿H2雰囲気、焼結温度は1650〜1800℃、焼結時間は2〜6時間程度であればよい。
本発明の製造方法によれば、焼結密度99.5%TD以上かつ平均結晶粒径30μm以上、好ましくは平均粒径40μm〜80μmの結晶粒からなる二酸化ウラン焼結体を安定に製造することができる。
〔実施例1〕
容器内の六フッ化ウラン1000gに水蒸気とアンモニアガスを導入して攪拌し、気相反応させて重ウラン酸アンモニウム(ADU)粉末885gを生成させた。副生するフッ化水素ガスは吸引除去した。次いで、このADU粉末を純水で繰り返し洗浄した後に、スプレードライ乾燥した。このADU粉末880gを炉に入れ、炉内に水素および水蒸気を導入し550℃〜850℃で0.5時間から2時間加熱して二酸化ウラン粉末760gを生成した。この二酸化ウラン粉末の残留フッ素濃度は200ppm以下であり、安息角は33°であった。この二酸化ウラン粉末を圧力2〜6t/cm2でペレット状に成形した後に、このペレットを炉に入れ、水素ガスおよび水蒸気を導入し、1750℃で4時間加熱して二酸化ウラン焼結体を得た。この焼結体の密度は99.5%TDであり、結晶粒の平均粒径は40μmであった。この結果を表1に示した。
〔実施例2〜3〕
表1に示す製造条件に従い、それ以外は実施例1と同様にして、二酸化ウラン焼結体を得た。この結果を表1に示した。
〔比較例1〕
スプレードライ乾燥に代えて通常の加熱乾燥を行い、それ以外は実施例1と同様にして、二酸化ウラン焼結体を得た。この結果を表1に示した。また、比較のため、従来のADU法によって製造した重ウラン酸アンモニウム粉末、IDR法またはDCP法によって製造したフッ化ウラニル粉末中の残留フッ素濃度、および二酸化ウラン焼結体のペレット密度および平均結晶粒径を表2に示した。また、特開昭62−297215号に記載されている製造方法の重ウラン酸アンモニウム粉末の残留フッ素濃度、および結晶粒の密度、平均粒径を表2に示した。
表1、表2に示すように、重ウラン酸アンモニウム粉末またはフッ化ウラニル粉末の残留フッ素濃度は、ADU法では3%〜15%であり、IDR法またはDCP法では12%〜20%であって何れも極めて多く、比較例1でも4%である。一方、実施例1〜3の二酸化ウラン粉末の残留フッ素濃度は0.7%以下であり、フッ素濃度が大幅に低い。また二酸化ウラン粉末の安息角は、ADU法では60°であり、IDR法またはDCP法では55°〜60°であり、比較例1でも55°である。一方、実施例1〜3の二酸化ウラン粉末の安息角は何れも30°〜31°であり、流動性が高い。
さらに、表1、表2に示すように、二酸化ウラン粉末の焼結密度、結晶粒の平均粒径は、実施例1〜3では何れも密度99%以上、平均粒径40〜80μmであるが、ADU法では密度96%台〜97%台、平均粒径10〜13μm、IDR法またはDCP法では密度96%台〜98%台、平均粒径9〜16μmであり、実施例1〜3に比べて焼結密度および平均粒径の何れも低い。また、特開昭62−297215号に記載されている製造方法はUO2粉末を通常の加熱乾燥を行うので、二酸化ウラン粉末の残留フッ素濃度が高く、また安息角が大きい。従って、焼結体の密度が小さい。
Figure 2009263215
Figure 2009263215
〔実施例4〕
六フッ化ウランの量をウラン量換算で約3500gにスケールアップした他は実施例1と同様の条件で処理してUO2粉末を製造し、焼結体を製造した。スプレードライによる造粒粉末について、残留フッ素量、嵩密度、平均粒径、粒子強度を表3に示した。また、UO2粉末の残留フッ素量、焼結体の密度、結晶粒径を表3に示した。
〔比較例2〕
図2に示す従来の製造方法によってADU沈澱を生成し、これを濾過回収して通常の過熱乾燥(乾燥温度100℃)を行い、これを還元焙焼してUO2粉末を製造した後に、このUO2粉末をスプレードライ乾燥した。このUO2粉末を用い、実施例1と同様の焼成条件で二酸化ウラン焼結体を製造した。この結果を表3に示した。
表3に示すように、実施例4のADU造粒粉末の残留フッ素量は比較例2の約1/9であり、さらにADUを還元焙焼して得たUO2粉末の残留フッ素量は比較例2の1/5であり、格段に少ない。また、実施例4の造粒粉末の嵩密度は比較例2より大幅に高く、造粒粉末の強度も比較例2より格段に大きい。さらに、実施例4の焼結体の密度および結晶粒径は何れも比較例2より高密度であり、結晶粒径が大きい。
Figure 2009263215

Claims (3)

  1. 六フッ化ウランをアンモニアガスおよび水蒸気と気相反応させて重ウラン酸アンモニウム(ADU)粉末を生成させ、該ADU粉末を洗浄し、さらにスプレードライにより乾燥して球状ADU粉末にし、該ADU粉末を焙焼還元して二酸化ウラン粉末にし、該二酸化ウラン粉末を成形し焼結することを特徴とする二酸化ウラン焼結体の製造方法。
  2. 六フッ化ウランをアンモニアガスおよび水蒸気と気相反応させてADU粉末を生成させ、副生するフッ化水素ガスを分離し、上記ADU粉末を洗浄し、さらにスプレードライにより乾燥して残留フッ素濃度1%以下の球状ADU粉末にし、該ADU粉末を焙焼還元して残留フッ素濃度200ppm以下および安息角40°以下の二酸化ウラン粉末にし、該二酸化ウラン粉末を成形し焼結する請求項1に記載する二酸化ウラン焼結体の製造方法。
  3. 六フッ化ウランをアンモニアガスおよび水蒸気と気相反応させてADU粉末を生成させ、副生するフッ化水素ガスを分離し、上記ADU粉末を洗浄した後に、スプレードライにより乾燥して残留フッ素濃度1%以下の球状ADU粉末にし、該ADU粉末を焙焼還元して残留フッ素濃度200ppm以下および安息角40°以下の二酸化ウラン粉末にし、該二酸化ウラン粉末を成形し焼結することによって、焼結密度99.5%TD以上かつ平均結晶粒径30μm以上の焼結体を製造する請求項1または請求項2に記載する二酸化ウラン焼結体の製造方法。
JP2009080556A 2008-03-29 2009-03-27 二酸化ウラン焼結体とその製造方法。 Withdrawn JP2009263215A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009080556A JP2009263215A (ja) 2008-03-29 2009-03-27 二酸化ウラン焼結体とその製造方法。

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008088931 2008-03-29
JP2009080556A JP2009263215A (ja) 2008-03-29 2009-03-27 二酸化ウラン焼結体とその製造方法。

Publications (1)

Publication Number Publication Date
JP2009263215A true JP2009263215A (ja) 2009-11-12

Family

ID=41389547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009080556A Withdrawn JP2009263215A (ja) 2008-03-29 2009-03-27 二酸化ウラン焼結体とその製造方法。

Country Status (1)

Country Link
JP (1) JP2009263215A (ja)

Similar Documents

Publication Publication Date Title
EP1985587A1 (en) Two step dry UO2 production process
US4430276A (en) Method of making stable UO2 fuel pellets
JPS629534B2 (ja)
US10457558B2 (en) Method to produce uranium silicides
Lerch et al. Nuclear fuel conversion and fabrication chemistry
JP2009263216A (ja) 二酸化ウラン焼結体とその製造方法。
JP2009263214A (ja) 二酸化ウラン焼結体と二酸化ウラン粉末および製造方法。
US20080025894A1 (en) Two step uo2 production process
JP2009263215A (ja) 二酸化ウラン焼結体とその製造方法。
JPH0627276A (ja) 廃棄物を生じさせずに金属ウランからuo2燃料ペレットを製造するための方法
EP2316794B1 (en) A process for the preparation of uranium dioxide with spherical and irregular grains
KR940006544B1 (ko) Uo₂펠릿의 제조방법
JP3058499B2 (ja) 焼結酸化物ペレット製造方法及び該方法によって得られる析出過酸化物
JP3339535B2 (ja) 六フッ化ウランを二酸化ウランに変換する方法
JPH0940426A (ja) 二酸化ウラン粉末の製造方法
JPH01298027A (ja) Uo↓2ペレットの製造方法
JP4666649B2 (ja) 二酸化ウラン粉末の製造方法及び該方法により得られた二酸化ウラン粉末を用いた二酸化ウラン焼結ペレットの製造方法
KR950005255B1 (ko) 이산화우라늄(uo₂)펠릿의 결정입자지름을 조절하는 방법
JP2536372B2 (ja) 二酸化ウラン焼結ペレットの製造方法
JPS621581B2 (ja)
KR940011896B1 (ko) 6플루오르화 우라늄으로부터 이산화우라늄을 제조하는 방법
JPH07119821B2 (ja) 酸化物核燃料焼結体の製造方法
JP2727726B2 (ja) 二酸化ウラン粉末の製造方法
JP4051732B2 (ja) 核燃料粒子の製造方法
Jo et al. Development of AUH Wet Reconversion Process

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605