JP2009242700A - 冷間圧延用圧延油および冷間圧延方法 - Google Patents

冷間圧延用圧延油および冷間圧延方法 Download PDF

Info

Publication number
JP2009242700A
JP2009242700A JP2008093383A JP2008093383A JP2009242700A JP 2009242700 A JP2009242700 A JP 2009242700A JP 2008093383 A JP2008093383 A JP 2008093383A JP 2008093383 A JP2008093383 A JP 2008093383A JP 2009242700 A JP2009242700 A JP 2009242700A
Authority
JP
Japan
Prior art keywords
rolling
oil
cold rolling
solid particles
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008093383A
Other languages
English (en)
Inventor
Yukio Kimura
幸雄 木村
Yukihiro Matsubara
行宏 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008093383A priority Critical patent/JP2009242700A/ja
Publication of JP2009242700A publication Critical patent/JP2009242700A/ja
Withdrawn legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Lubricants (AREA)

Abstract

【課題】冷間圧延における潤滑性を向上させ、焼付きやチャタリング等の表面欠陥を防止しながら、ワークロールの摩耗を低減させるための冷間圧延用圧延油を提供する。
【解決手段】基油および界面活性剤と、平均粒子径が0.01〜0.5μmの固体粒子とを含有させる。
【選択図】なし

Description

本発明は、金属帯の冷間圧延において、被圧延材とワークロールとの間に適用する圧延油及びこれを用いる冷間圧延方法に関するものである。
鋼板等の冷間圧延においては、ワークロールの摩耗を低減し、また焼付きやチャタリング等による表面欠陥を防止するために、被圧延材とワークロールとの間に供給する圧延油が重要な役割を果たしている。
冷間圧延に用いられる圧延油は、動植物油脂、鉱油およびエステル等の単体もしくは混合物を基油とし、更に界面活性剤、油性向上剤、極圧添加剤、酸化防止剤等が適宜配合されている。通常の冷間圧延では、このような圧延油を水で0.5〜10質量%程度のエマルションに希釈したものが代表的である。
このエマルションは、圧延油が水に安定して懸濁した状態の混合液体であり、圧延中の被圧延材とワークロールとの間に生ずる摩擦を低減させるための潤滑剤としての機能と、圧延時に生ずる摩擦発熱および加工発熱によりロールの温度が過度にならないようにする冷却剤としての機能を併せ持ったものである。また、タンデム圧延などの大型の冷間圧延機においては、前記圧延油をロールあるいは被圧延材に供給しながら、潤滑と冷却の機能を発揮させつつ、フィルター類による清浄化を図りながら循環使用するのが通常である。
近年、被圧延材の高強度化と共に、冷間圧延製品の生産性向上を目的として、冷間圧延の高速化、高圧下率化が求められており、ワークロールの摩耗や表面欠陥を防止するための冷間圧延油の役割が一層重要になってきている。
しかしながら、高強度材の高速圧延や高圧下率化に対応して、高粘度の基油として圧延油を使用すると、次工程での洗浄能力が不足して脱脂不良が発生する場合や、軟質材の冷間圧延において過剰な潤滑によるスリップ等のトラブルが発生しやすくなるという問題が生じる。また、油性向上剤や極圧添加剤の性能向上も図られているものの、ロールバイトでの温度域や被圧延材の種類によっては、効果があまりみられない場合もあり、必ずしも十分な効果があげられているとはいえない。
これに対して、粉末状潤滑剤を使用する圧延油について、例えば特許文献1に提案されている。すなわち、熱間圧延用潤滑剤として、炭酸カルシウムの粉末を基油に添加したものが記載されている。しかしながら、粉末状潤滑剤によるノズル詰まりが発生しやすく、操業が一旦停止した状態から再開する場合に、正常に潤滑剤を供給できなくなるという問題が生じやすい。また、圧延油を循環使用している冷間圧延において、このような圧延油を適用すると、異物除去を行うためのフィルターでの詰まりが生じるため適用は困難である。
また、特許文献2には、冷間圧延においてワックス系固形潤滑剤に粉末状潤滑剤を添加して、ワークロールや被圧延剤に押し付けて供給する方法が開示されている。しかし、この場合も、一旦クーラントに混入した粉末状潤滑剤が循環使用中にノズルやフィルターにおいて詰まりが生じるという問題がある。
さらに、従来の固体潤滑剤の適用が主として熱間圧延に限られていたのは、固体潤滑剤がワークロールと被圧延材との間に導入されると、油膜厚みよりも大きな固体粒子がアブレシブ摩耗を促進させると共に、摩擦係数を増大させることになって、潤滑性能が劣化してしまうからである。
特公昭62−14598公報 特開2000−202508公報
本発明は、冷間圧延における潤滑性を向上させ、焼付きやチャタリング等の表面欠陥を防止しながら、ワークロールの摩耗を低減させるための冷間圧延用圧延油を提供するものであり、従来、摩擦係数やワークロールの摩耗、あるいはノズル詰まり等の問題により循環使用することができなかった固体潤滑剤を活用して、高強度材の高速圧延や高圧下率での圧延に対しても使用しうる冷間圧延用圧延油及び冷間圧延方法を提供するものである。
さて、発明者らは、上記の目的を達成すべく、特に圧延油の潤滑性を改善する手段について鋭意研究を重ねた結果、微細な固体粒子の添加が有効であることを見出し、本発明を完成するに到った。
すなわち、本発明の要旨は次のとおりである。
(1)基油および界面活性剤と、平均粒子径が0.01〜0.5μmの固体粒子とを含有することを特徴とする冷間圧延用圧延油。
(2)前記固体粒子の含有率が0.1〜10質量%である前記(1)に記載の冷間圧延用圧延油。
(3)前記基油は、動植物油脂、鉱油および合成エステルからなる群から選ばれる少なくとも1種類以上である前記(1)または(2)に記載の冷間圧延用圧延油。
(4)前記固体粒子として、グラファイト、二硫化モリブデン、天然雲母、合成雲母、二酸化珪素、二酸化チタン、炭化珪素、窒化硼素、二硫化タングステン、酸化ニッケル、フラーレン、カーボンナノチューブおよびクラスターダイヤモンドから選択された1種又は2種以上である前記(1)ないし(3)のいずれかに記載の冷間圧延用圧延油。
(5)前記(1)ないし(4)のいずれかに記載の冷間圧延用圧延油を、濃度0.5〜10%のエマルションとして循環使用することを特徴とする冷間圧延方法。
本発明によれば、冷間圧延油を循環使用する冷間圧延機においても、ノズル詰まり等の問題を生じることなく固体潤滑剤の効果を発揮させられるため、冷間圧延における潤滑性を向上させ、焼付きやチャタリング等の表面欠陥を防止できる。特に、固体潤滑剤の効果により、ワークロール摩耗を低減させ、焼付きを防止することができるから、高強度材の高速圧延や高圧下率での圧延において偉功を発揮する。
以下、本発明の圧延油について、詳しく説明する。
本発明の圧延油は、金属帯の冷間圧延に適用するものである。冷間圧延機としては、タンデム圧延機およびリバース圧延機等を含む、通常の冷間圧延機が対象となる。被圧延材についても特に限定する必要はないが、主として薄鋼板の冷間圧延の潤滑剤として有効であり、勿論、普通鋼、高炭素鋼およびステンレス鋼等の鉄系材料のほか、アルミニウムや銅などの非鉄金属の冷間圧延に適用してもよい。
本発明の圧延油は、基油および界面活性剤と、平均粒子径が0.01〜0.5μmの固体粒子とを含有することを特徴とする。
まず、冷間圧延用圧延油として使用する基油は、動植物油脂、鉱油および合成エステルから選ばれる少なくとも1種であり、要求性能に合わせて2種以上を混合させて使用することができる。動植物油脂としては、従来冷間圧延に使用されているものを用いることができ、牛脂、パーム油、パーム核油、ナタネ油等の動植物油脂およびそれらの精製品が対象となる。また、マシン油、スピンドル油、タービン油等の鉱油を用いても良い。さらに、一価アルコールと二価脂肪酸とのエステルであるジエステルや、ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール等の多価アルコールと一価脂肪酸との組合せによるポリオールエステル等、通常冷間圧延に使用する合成エステルを、基油として用いることができる。
また、界面活性剤としては、非イオン系およびイオン系のいずれでもよく、エマルションとして平均粒径1〜20μm程度の安定した粒径を循環使用中も維持するものであれば、複数の界面活性剤を組み合わせて使用しても良い。具体的には、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンポリプロピレンエーテル、ポリオキシエチレンおよびソルビタン脂肪酸エステル等が挙げられる。
次に、上記基油および界面活性剤に、平均粒子径が0.01〜0.5μmの固体粒子を含有させることが肝要である。
固体粒子は、冷間圧延時に圧延油としてロールバイト入口に供給され、一部はワークロール表面に付着し、一部は基油と共にロールバイト内部に引き込まれることによって、固体潤滑剤としてワークロールと被圧延材との境界接触部における摩耗や表面損傷を防止する役割を果たすものである。
ただし、これらの固体粒子の平均粒子径は、0.01〜0.5μmのものを使用することが重要である。さらに望ましくは、0.01〜0.1μmのものを使用する。すなわち、冷間圧延におけるロールバイト内での圧延油の膜厚は0.05〜0.5μmの範囲にあるため、固体粒子の平均粒子径が0.5μmを超えると、軟質の変形しやすい固体粒子を除けばロールバイト内でアブレシブ摩耗が生じて、ワークロールの摩耗を促進させてしまうからである。一方、固体粒子の平均粒子径が0.01μm未満であると、圧延油としてロールバイトに供給された固体粒子がロールバイト内部に引き込まれにくくなり、固体潤滑剤成分としての効果が薄れることになる。
ここで、従来、主に熱間圧延における圧延油において使用されている固体潤滑剤は、ロールバイト内でワークロールと被圧延材の直接接触を防止するスペーサのような役割を果たすことによって、焼付きの発生を防止するのが主たる効果であり、従って比較的に大径の固体粒子が用いられている。これに対して、本発明では、上記の平均粒子径を有する微粒子の固体を使用するため、ロールバイト内の混合潤滑状態における油膜の流れ、すなわち流体潤滑性能を阻害することがなく、一方で境界接触部に直接作用して極圧剤としての効果を発揮したり、高い活性度により摩擦面に吸着して焼付き等の防止を図ることができる。
なお、本発明で使用する固体粒子は、いわゆるナノ粒子の製造方法により作製することができる。ナノ粒子の製造方法は、液相法と気相法が代表的である。液相法としては、溶液に沈殿剤や水を添加して化学反応を生じさせ、生じた物質の核生成および成長により微粒子を生成する液相還元法、逆ミセル法などの溶液法、溶融金属を噴霧して微粒子を製造させる噴霧熱分解法、そしてプラズマジェット法などの融液法を適用できる。また、レーザーやプラズマを利用したCVD法やPVD法などの気相法を用いることもできる。さらに、従来は超微粒子の製造には不向きと考えられていた、粉砕法によっても、湿式ビーズミルによりサブミクロンからナノサイズの超微粒子の作製も可能になっている。
該固体粒子は、冷間圧延用圧延油における含有率を0.1〜10質量%の範囲にして、冷間圧延用圧延油として調製することが好ましい。すなわち、固体粒子の含有率が0.1質量%未満では、ロールバイト内に十分な固体粒子が供給されずに、所望の効果を得ることが難しくなる。一方、10質量%を超えると、圧延油全体としての粘度が上昇すると共に、圧延油中で十分に分散せずに凝集物を生じさせ、圧延油配管中に堆積してしまうことがあるからである。
また、圧延油中における界面活性剤の含有率は1〜5質量%とすることが望ましい。これは、基油を水に乳化させてエマルション化した際に、固体粒子を均一分散させるには1質量%以上が必要な含有量であり、一方5質量%を超えて過大に含有させてもエマルションの安定性が飽和するため経済的ではない。なお、残部は基油であるが、次に示す各種添加剤の含有は許容される。
さらに、上記圧延油には、必要に応じて、各種油性向上剤、極圧添加剤、酸化防止剤等の各種添加剤を含有しても良い。例えば、油性向上剤としては炭素数12〜18の一価脂肪酸、炭素数36のダイマー酸、炭素数54のトリマー酸等を用いることができる。極圧添加剤としては、亜リン酸エステル、酸性リン酸エステル、硫化エステル、硫化オレフィン、ポリサルファイド等を用いることができる。
ここで、使用する固体粒子としては、無機系の層状構造化合物である二硫化モリブデン、二硫化タングステン、グラファイトおよびこれらのインターカレーション化合物、フッ化グラファイト、天然雲母、合成雲母などを用いることができる。また、セラミック粒子として二酸化珪素、二酸化チタン、炭化珪素、窒化珪素等の他、金属系の固体粒子として、金、銀、すず、銅などの軟質金属や、金属酸化物である酸化ニッケル、酸化銅、二酸化ジルコニウムを使用しても良い。有機系材料として、PTFE、ポリイミドなどの高分子材料や、ワックスあるいはステアリン酸リチウムなどの金属石鹸なども固体粒子として使用できる。さらに、フラーレン、カーボンナノチューブ、クラスターダイヤモンドなど超微粒子として市販されているものを用いても良い。
固体粒子には、とりわけグラファイト、二硫化モリブデン、二酸化珪素、二酸化チタン、炭化珪素、窒化硼素、二硫化タングステン、酸化ニッケル、酸化銅、二酸化ジルコニウムからなる群から選択された1種又は2種以上を用いることが望ましい。これらは、従来、被圧延材の品質への悪影響が少ないと考えられるからである。また、グラファイト、二硫化モリブデンは層状構造を有するためロールバイト内での境界接触部においても摩擦係数を低減させる効果が得られるからである。一方、二酸化珪素、二酸化チタン、炭化珪素、窒化硼素、二硫化タングステンはセラミックス粒子として、冷間圧延用潤滑剤として循環使用しても変質しにくいためである。また、硬質な粒子であり、劣化しにくい特性を有するからである。さらに、酸化ニッケル、酸化銅、二酸化ジルコニウムは高面圧の条件下で極圧剤としての特性も期待できるからである。
なお、グラファイトについては、従来使用されている粒子径のものに対して、アーク放電法、レーザー蒸発法を適用して微細化することで得られる。二硫化モリブデンについては、湿式媒体撹拌ミルにおいて微小なビーズを用いることで粉砕が可能である。また、二酸化チタンについては、光触媒粒子として市販されており、二酸化珪素についても、蛍光標識試薬材料として市販されたものを入手することができる。さらに、これらの酸化物系セラミックスは、他のセラミックスである炭化珪素、窒化硼素、二硫化タングステンと同様に、粉砕法によって比較的容易にサブミクロン以下の微粒子を得ることができる。
以上の冷間圧延用圧延油は、濃度0.5〜10体積%のエマルションとして循環使用する。すなわち、濃度が0.5体積%未満では、十分な潤滑効果が得られず、一方10体積%を超えると、被圧延材に付着した圧延油成分が、被圧延材と共に圧延機系外へ持ち出されて原単位の悪化を招くからである。
ちなみに、冷間圧延のワークロールとしては、クロムめっきを施したものを用いることが望ましい。クロムめっきロールは、鍛鋼、クロム鋼などを母材として、表面にクロムめっきを施したものである。めっき方法としては、一般的に電解法が用いられており、めっき厚としては3〜30μm程度がよい。クロムめっきロールは、硬質で耐摩耗性に優れているため、硬質なセラミックス系の固体粒子を使用しても、ワークロールを損傷させる、おそれが小さいからである。
以下、ステンレス鋼SUS430の板厚1.2mmのコイルを用いて、これに冷間圧延を行った事例について述べる。
圧延油を作製するに当り、基油には、アルコール基としてトリメチロールプロパン、酸基としてC12ラウリン酸を組み合わせた、動粘度45mm/s(40℃)のポリオールエステルを用いた。界面活性剤には、ポリエチレングリコールエステルおよびポリオキシエチレンアルキルエーテルを基油に対して0.5質量%ずつ含有させたものを用いた。さらに、この基油に対して、表1に示すように、固体粒子を含有させた。
冷間圧延においては、ワークロールとして直径70mmの工具鋼を使用し、ロール表面は各条件共に研磨により平均粗さ0.1μmに仕上げたものを使用した。表1に従って調製した圧延油を、水に対して1.5体積%の割合で混合し、ホモミキサーによって攪拌することでエマルションに調製した。エマルションの平均粒径は5〜8μmの範囲となり、固体粒子の種類によってややばらつきはあるものの、安定したエマルションに調製できた。このエマルション圧延油は、温度50℃に保持されて、圧延中にロールバイト入口から供給した。
冷間圧延は、圧下率40%および圧延長3000mの圧延条件にて行い、圧延後のワークロールの摩耗量を測定するとともに、焼付きの有無を評価した。さらに、エマルション圧延油を循環使用した後に採取した圧延油を2時間放置して、該圧延中の固体粒子が凝集して沈殿あるいは浮遊するか否かを目視で評価した。
表1から、発明例においては、ロール摩耗量がいずれも1μm以下であり、焼付きの発生や粒子の凝縮もなく、良好な結果となっていることがわかる。一方、固体粒子の平均粒子径が0.01μm未満の場合には、固体潤滑剤としての機能が不十分であり、ロール摩耗の低減効果が得られなかった。さらに、固体粒子の平均粒子径が0.5μmを超えると、焼付き防止効果が得られるものもあるが、ロール摩耗を促進させる場合があった。また、固体粒子径が大きい場合に、固体粒子の分散が不十分で粒子の凝縮が生じるものが存在し、ノズル詰まりの原因となっていた。
Figure 2009242700

Claims (5)

  1. 基油および界面活性剤と、平均粒子径が0.01〜0.5μmの固体粒子とを含有することを特徴とする冷間圧延用圧延油。
  2. 前記固体粒子の含有率が0.1〜10質量%である請求項1に記載の冷間圧延用圧延油。
  3. 前記基油は、動植物油脂、鉱油および合成エステルから選ばれる少なくとも1種以上である請求項1または2に記載の冷間圧延用圧延油。
  4. 前記固体粒子として、グラファイト、二硫化モリブデン、天然雲母、合成雲母、二酸化珪素、二酸化チタン、炭化珪素、窒化硼素、二硫化タングステン、酸化ニッケル、フラーレン、カーボンナノチューブおよびクラスターダイヤモンドから選択された1種又は2種以上である請求項1ないし3のいずれかに記載の冷間圧延用圧延油。
  5. 請求項1ないし4のいずれかに記載の冷間圧延用圧延油を、濃度0.5〜10体積%のエマルションとして循環使用することを特徴とする冷間圧延方法。
JP2008093383A 2008-03-31 2008-03-31 冷間圧延用圧延油および冷間圧延方法 Withdrawn JP2009242700A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008093383A JP2009242700A (ja) 2008-03-31 2008-03-31 冷間圧延用圧延油および冷間圧延方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008093383A JP2009242700A (ja) 2008-03-31 2008-03-31 冷間圧延用圧延油および冷間圧延方法

Publications (1)

Publication Number Publication Date
JP2009242700A true JP2009242700A (ja) 2009-10-22

Family

ID=41304972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008093383A Withdrawn JP2009242700A (ja) 2008-03-31 2008-03-31 冷間圧延用圧延油および冷間圧延方法

Country Status (1)

Country Link
JP (1) JP2009242700A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046282A1 (ja) * 2013-09-27 2015-04-02 日立化成株式会社 圧粉磁心、磁心用圧粉体の製造方法、圧粉磁心製造用の押型及び金型装置、並びに、圧粉磁心製造用押型の潤滑組成物
JP2015070028A (ja) * 2013-09-27 2015-04-13 日立化成株式会社 圧粉磁心、磁心用圧粉体の製造方法、圧粉磁心製造用押型及び金型装置、並びに、圧粉磁心製造用押型の潤滑液
CN106544101A (zh) * 2016-10-31 2017-03-29 苏州宇希新材料科技有限公司 一种耐磨润滑油的制备方法
CN109439384A (zh) * 2018-11-29 2019-03-08 诺土(上海)新材料技术有限公司 一种三层核壳结构的纳米润滑油复合添加剂的制备方法
WO2020054337A1 (ja) * 2018-09-11 2020-03-19 株式会社ダイセル 潤滑剤組成物
CN112574804A (zh) * 2020-12-09 2021-03-30 昆明钢铁控股有限公司 一种钛合金轧制用黑磷烯水基润滑液及其制备方法
CN114874833A (zh) * 2022-04-29 2022-08-09 西安建筑科技大学 一种钛合金水基轧制液及其制备方法
CN115885025A (zh) * 2020-08-17 2023-03-31 斯佩拉有限公司 用于冷轧铝的冷却润滑剂

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105659337B (zh) * 2013-09-27 2018-04-10 日立化成株式会社 压粉磁芯、磁芯用压粉体的制造方法、压粉磁芯制造用的压模和模具装置、以及压粉磁芯制造用压模的润滑组合物
JP2018019085A (ja) * 2013-09-27 2018-02-01 日立化成株式会社 圧粉磁心及び圧粉磁心製造用押型の潤滑組成物
WO2015046282A1 (ja) * 2013-09-27 2015-04-02 日立化成株式会社 圧粉磁心、磁心用圧粉体の製造方法、圧粉磁心製造用の押型及び金型装置、並びに、圧粉磁心製造用押型の潤滑組成物
US20160240294A1 (en) * 2013-09-27 2016-08-18 Hitachi Chemical Company, Ltd. Powder magnetic core, method of manufacturing powder compact for magnetic core, die and die assembly for manufacturing powder magnetic core, and die lubricating composition for manufacturing powder magnetic core
JPWO2015046282A1 (ja) * 2013-09-27 2017-03-09 日立化成株式会社 圧粉磁心、磁心用圧粉体の製造方法、圧粉磁心製造用の押型及び金型装置、並びに、圧粉磁心製造用押型の潤滑組成物
CN108288530A (zh) * 2013-09-27 2018-07-17 日立化成株式会社 压粉磁芯、以及磁芯用压粉体的制造方法
US9754710B2 (en) * 2013-09-27 2017-09-05 Hitachi Chemical Company, Ltd. Powder magnetic core, method of manufacturing powder compact for magnetic core, die and die assembly for manufacturing powder magnetic core, and die lubricating composition for manufacturing powder magnetic core
CN108288530B (zh) * 2013-09-27 2020-06-09 日立化成株式会社 压粉磁芯、以及磁芯用压粉体的制造方法
CN105659337A (zh) * 2013-09-27 2016-06-08 日立化成株式会社 压粉磁芯、磁芯用压粉体的制造方法、压粉磁芯制造用的压模和模具装置、以及压粉磁芯制造用压模的润滑组合物
JP2015070028A (ja) * 2013-09-27 2015-04-13 日立化成株式会社 圧粉磁心、磁心用圧粉体の製造方法、圧粉磁心製造用押型及び金型装置、並びに、圧粉磁心製造用押型の潤滑液
CN106544101A (zh) * 2016-10-31 2017-03-29 苏州宇希新材料科技有限公司 一种耐磨润滑油的制备方法
WO2020054337A1 (ja) * 2018-09-11 2020-03-19 株式会社ダイセル 潤滑剤組成物
JP7451412B2 (ja) 2018-09-11 2024-03-18 株式会社ダイセル 潤滑剤組成物
JPWO2020054337A1 (ja) * 2018-09-11 2021-08-30 株式会社ダイセル 潤滑剤組成物
CN109439384A (zh) * 2018-11-29 2019-03-08 诺土(上海)新材料技术有限公司 一种三层核壳结构的纳米润滑油复合添加剂的制备方法
CN115885025B (zh) * 2020-08-17 2024-05-24 斯佩拉有限公司 用于冷轧铝的冷却润滑剂
CN115885025A (zh) * 2020-08-17 2023-03-31 斯佩拉有限公司 用于冷轧铝的冷却润滑剂
CN112574804A (zh) * 2020-12-09 2021-03-30 昆明钢铁控股有限公司 一种钛合金轧制用黑磷烯水基润滑液及其制备方法
CN114874833A (zh) * 2022-04-29 2022-08-09 西安建筑科技大学 一种钛合金水基轧制液及其制备方法

Similar Documents

Publication Publication Date Title
JP2009242700A (ja) 冷間圧延用圧延油および冷間圧延方法
Talib et al. Tribological behaviour of modified jatropha oil by mixing hexagonal boron nitride nanoparticles as a bio-based lubricant for machining processes
Rahmati et al. Morphology of surface generated by end milling AL6061-T6 using molybdenum disulfide (MoS2) nanolubrication in end milling machining
Sayuti et al. Investigation on the morphology of the machined surface in end milling of aerospace AL6061-T6 for novel uses of SiO2 nanolubrication system
JP3709990B2 (ja) 高性能水溶性金属加工油剤
Talib et al. Modified Jatropha nano-lubricant as metalworking fluid for machining process
JP2009242726A (ja) 冷間圧延用潤滑剤および冷間圧延方法
JP5319889B2 (ja) 鋼材用熱間圧延油及び鋼材の熱間圧延方法
Shafi et al. Performance evaluation of hazelnut oil with copper nanoparticles-a new entrant for sustainable lubrication
Anand et al. Bio-based nano-lubricants for sustainable manufacturing
Shaikh et al. Turning of steels under various cooling and lubrication techniques: a review of literature, sustainability aspects, and future scope
CN102492528A (zh) 一种用于双机架可逆轧机的轧制油组合物
JP2570060B2 (ja) 鋼材の熱間圧延潤滑方法
JP3475983B2 (ja) 金属の圧延加工用潤滑剤組成物
JP3753728B2 (ja) 高性能水溶性金属加工油剤を用いた金属製品の製造方法及び水溶性金属加工油剤
CN106811271A (zh) 一种高效重质润滑油及其制备方法
JP3008823B2 (ja) 金属の塑性加工用潤滑剤組成物
JP2009275137A (ja) 熱間圧延油組成物、および、フェライト系ステンレス鋼の熱間圧延方法
JP5369601B2 (ja) 冷間圧延ロールの冷却方法および冷間圧延方法ならびに冷間圧延ロールの冷却装置
JP4851749B2 (ja) 銅材用塑性加工油
JP4990527B2 (ja) 金属加工用潤滑油組成物
JP2011200877A (ja) 金属帯の冷間圧延方法
JP2008037928A (ja) 鋼板冷間圧延油用潤滑油
JP6860366B2 (ja) アルミニウム用熱間圧延油、アルミニウム用熱間圧延クーラント及びアルミニウム圧延板の製造方法
JP2010012514A (ja) 冷間圧延方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607