JP2009234306A - 後輪トー角可変車両 - Google Patents
後輪トー角可変車両 Download PDFInfo
- Publication number
- JP2009234306A JP2009234306A JP2008079597A JP2008079597A JP2009234306A JP 2009234306 A JP2009234306 A JP 2009234306A JP 2008079597 A JP2008079597 A JP 2008079597A JP 2008079597 A JP2008079597 A JP 2008079597A JP 2009234306 A JP2009234306 A JP 2009234306A
- Authority
- JP
- Japan
- Prior art keywords
- rear wheel
- toe angle
- toe
- rear wheels
- driving force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Power Steering Mechanism (AREA)
- Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Vehicle Body Suspensions (AREA)
Abstract
【課題】後輪駆動の後輪トー角可変車両車両における旋回時の限界加速性能を高めることを目的とする。
【解決手段】左右後輪3Rl,3Rrが駆動輪であり、且つ左右後輪3Rl,3Rrのトー角を個別に変化させることのできる後輪トー角可変自動車Vにおいて、横加速度センサ31から左右後輪の接地荷重を推定し、後輪駆動力推定部22において筒内圧センサ32やギヤ比等から後輪3Rの駆動力Fxを推定し、目標トー角設定部23が、横加速度センサ31から推定した後輪接地荷重(摩擦円FCl,FCr)と、後輪駆動力推定部22によって推定された後輪駆動力Fxとに基づいて旋回駆動走行状態と判定した場合、左右後輪3Rl,3Rrの目標トー角θl,θrをトーイン側に設定するとともに、内輪側の目標トー角θrが外輪側の目標トー角θlよりも大きくなるようにようにする。
【選択図】図7
【解決手段】左右後輪3Rl,3Rrが駆動輪であり、且つ左右後輪3Rl,3Rrのトー角を個別に変化させることのできる後輪トー角可変自動車Vにおいて、横加速度センサ31から左右後輪の接地荷重を推定し、後輪駆動力推定部22において筒内圧センサ32やギヤ比等から後輪3Rの駆動力Fxを推定し、目標トー角設定部23が、横加速度センサ31から推定した後輪接地荷重(摩擦円FCl,FCr)と、後輪駆動力推定部22によって推定された後輪駆動力Fxとに基づいて旋回駆動走行状態と判定した場合、左右後輪3Rl,3Rrの目標トー角θl,θrをトーイン側に設定するとともに、内輪側の目標トー角θrが外輪側の目標トー角θlよりも大きくなるようにようにする。
【選択図】図7
Description
本発明は、後輪駆動または四輪駆動であり、且つ後輪トー角を個別に可変制御する後輪トー角可変車両に関し、オープン・デファレンシャルを装着した車両の他、リミテッド・スリップド・デファレンシャルを装着した車両にも好適である。
後輪駆動の自動車では、旋回走行時に遠心力によって荷重が旋回外側へ移動するため、旋回内側のタイヤのグリップ力を示す摩擦円が小さくなる。オープン・デファレンシャルは、左右輪に作動差(回転差)をつけることは可能であるが、旋回内外輪に駆動力の差をつけることはできないため、旋回時に駆動(加速)すると内輪側後輪がスリップしてしまうことがある。このような問題を解決するため、後輪駆動の車両においては従来から、左右後輪の作動差に制限を加えたリミテッド・スリップ・デファレンシャル(以下、「LSD」と略称する)が知られている。LSDを備えた車両によれば、旋回時に内輪側のタイヤの摩擦円が小さくなって旋回内輪がスリップを起こした場合でも、摩擦円が大きな外輪に駆動力が多く分配されるため、特に高い横加速度が作用する旋回時(以下、「高横加速度旋回時」と呼称する)の加速性能が向上する。
ところで、後輪を支持する左右のサスペンションアームを車幅方向にスライド変位させることによって左右の後輪を対称的に操舵する車両の後輪操舵装置において、車速や前輪舵角、制動状態等の車両の運動状態に応じて後輪をトーインに制御するとともに、トーイン角度を、それぞれ車速や、前輪舵角に応じて段階的に変化させる技術が知られている(特許文献1参照)。これによれば、低速走行時に車両の回頭性を高めるとともに高速走行時に走行安定性を高め、旋回時の車体の尻振りおよび制動時の走行安定性低下の効果的な防止が図られる。
特開平05−178231号公報
しかるに、LSD装着車両において、LSDの効果を十分に発揮させるためにはトルク伝達力を高く設定する必要があるが、そのような設定とした場合、比較的小さな横加速度で旋回する時(以下、「通常横加速度旋回時」と呼称する)には旋回外輪のタイヤにひきずり力が生じてしまうため、或いは、旋回駆動走行時の旋回外輪の駆動力が旋回内輪の駆動力に比べて小さくなってしまうため、車両は旋回しづらい特性となり、運転者が操縦性に対する違和感を覚えてしまう。そのため量産車においては、LSDのトルク伝達力を高く設定することは困難であり、通常横加速度旋回時と高横加速度旋回時とのバランスを考慮した上で、中程度のトルク伝達力に設定する必要がある。
しかしながら、このように中程度のトルク伝達力に設定されたLSD装着車両では、高横加速度旋回時に駆動力を発生させると、内輪側のタイヤの摩擦円が外輪側よりも先に飽和してしまうため、やはり内輪がスリップしてしまうことがある。高横加速度旋回時に旋回内輪がスリップするというこの問題は、LSDを装着していない車両においては特に顕著である。
一方、特許文献1に記載の後輪操舵装置では、旋回走行時の車体の尻振りおよび制動時の走行安定性の低下を防止することはできるが、旋回時の加速性能を高めることはできない。
本発明は、このような背景に鑑みなされたもので、車両旋回時の限界加速性能を高めることを目的とする。
上記課題を解決するために本発明は、左右後輪が駆動輪であり、且つ該左右後輪のトー角を個別に変化させることのできる後輪トー角可変車両において、左右後輪の接地荷重を推定する後輪接地荷重推定手段と、後輪の駆動力を推定する後輪駆動力推定手段と、左右後輪の目標トー角をそれぞれ設定する後輪トー角設定手段とを備え、前記後輪トー角設定手段は、前記後輪接地荷重推定手段の推定結果と前記後輪駆動力推定手段の推定結果とに基づいて旋回駆動走行状態と判定した場合、少なくとも旋回内側の後輪の目標トー角をトーイン側に設定するように構成する。
また、上記後輪トー角可変車両において、前記後輪トー角設定手段は、前記後輪接地荷重推定手段の推定結果と前記後輪駆動力推定手段の推定結果とに基づいて旋回駆動走行状態と判定した場合、前記左右後輪の目標トー角をトーイン側に設定するとともに、旋回内側の後輪の目標トー角を旋回外側の後輪の目標トー角よりもトーイン側に設定するように構成するとよい。
或いは、上記後輪トー角可変車両において、前記後輪トー角設定手段は、少なくとも前記後輪接地荷重推定手段の推定結果に基づいて、左右後輪のタイヤ横力の和が一定となるように前記左右後輪の目標トー角を設定するように構成するとよい。
或いは、上記後輪トー角可変車両において、前記後輪トー角設定手段は、前記後輪駆動力が大きいほど前記左右後輪の目標トー角をトーイン側に設定するように構成するとよい。
或いは、上記後輪トー角可変車両において、前記後輪トー角設定手段は、少なくとも前記後輪接地荷重推定手段の推定結果に基づいて、左右後輪のタイヤの摩擦円をそれぞれ設定し、タイヤ横力と駆動力との合力が該タイヤの摩擦円に収まるように前記左右両後輪の目標トー角を設定するように構成するとよい。
本発明の後輪トー角可変式後輪駆動車両によれば、旋回駆動走行状態と判定した場合に、後輪トー角設定手段が少なくとも旋回内側の目標トー角をトーイン側に設定することにより、スリップを起こし易い旋回内側の後輪のタイヤ横力を減少させてスリップの発生を抑制し、旋回走行時の駆動性能を高めることができる。
また、旋回走行状態と判定した場合に、前記左右後輪の目標トー角をトーイン側に設定するとともに、旋回内側の後輪の目標トー角を旋回外側の後輪の目標トー角よりもトーイン側に設定することにより、スリップを起こし易い旋回内側の後輪のタイヤ横力の減少率を大きくし、内輪側後輪のスリップの発生を一層抑制し、旋回走行時の駆動性能を更に向上させることができる。
また、左右後輪のタイヤ横力の和が一定となるように前記左右後輪の目標トー角を設定することにより、後輪トー角を変化させない場合の車両特性と同様の車両特性を確保し、運転者が操縦性に対する違和感を覚えることを防止することができる。
また、前記後輪駆動力が大きいほど前記左右後輪の目標トー角をトーイン側に設定することにより、後輪駆動力が大きいほどスリップを起こし易い旋回内側の後輪のタイヤ横力を減少させて内輪側後輪のスリップの発生を抑制し、旋回走行時の駆動性能を高めることができる。
また、タイヤ横力と駆動力との合力が、左右後輪についてそれぞれ設定したタイヤの摩擦円に収まるように左右後輪の目標トー角を設定することにより、タイヤのグリップ力を最大限に利用することができる。また、駆動トルクを分配するLSDを装着する場合には、グリップ力に余裕のある外輪側後輪についてグリップ力の限界まで駆動力を引き出すことが可能となり、旋回走行時の駆動性能を更に高めることができる。
≪実施形態の構成≫
以下、図面を参照して、本発明に係る後輪トー角可変自動車Vの一実施形態について詳細に説明する。説明にあたり、車輪3やそれらに対して配置された部材または要素、すなわち、タイヤ2やタイヤ横力Fy等については、それぞれ数字の符号に前後を示す添字FまたはR、並びに左右を示すlまたはrを付して、例えば、左側前輪3Fl、右側前輪3Fr、左側後輪3Rl、右側後輪3Rrと記すとともに、総称する場合には、例えば、後輪3Rと記す。
以下、図面を参照して、本発明に係る後輪トー角可変自動車Vの一実施形態について詳細に説明する。説明にあたり、車輪3やそれらに対して配置された部材または要素、すなわち、タイヤ2やタイヤ横力Fy等については、それぞれ数字の符号に前後を示す添字FまたはR、並びに左右を示すlまたはrを付して、例えば、左側前輪3Fl、右側前輪3Fr、左側後輪3Rl、右側後輪3Rrと記すとともに、総称する場合には、例えば、後輪3Rと記す。
図1は実施形態に係る後輪トー角可変自動車Vの概略構成図である。後輪トー角可変自動車Vは、タイヤ2Fl,2Frが装着された左右前輪3Fl,3Frと、タイヤ2Rl,2Rrが装着された左右後輪3Rl,3Rrとを備えており、これら左右前輪3Fl,3Frおよび左右後輪3Rl,3Rrは、それぞれサスペンションアームや、スプリング、ダンパ等からなる左右のフロントサスペンション4Fl,4Frおよびリヤサスペンション4Rl,4Rrによって車体1に懸架されている。
後輪トー角可変自動車Vは後輪駆動車であり、エンジンEの回転出力は、トランスミッション5を介して減速され、車体1の中心に延在するプロペラシャフト6によって後輪3R側へ伝達されるとともに、所定のトルク伝達力に設定されたトルク感応型ヘリカルLSD7を介して左右のリヤアクスルシャフト8l,8rに分配され、後輪3Rを回転駆動する。
また、後輪トー角可変自動車Vは、ステアリングホイール9の操舵によって左右の前輪3Fを直接転舵する前輪操舵装置10を備えるとともに、電動アクチュエータ13l,13rの伸縮動によって左右後輪3Rl,3Rrのトー角を個別に変化させる後輪トー角制御装置11を備えている。電動アクチュエータ13は、左右のリヤサスペンション4Rl,4Rrを構成する左右のトレーリングアーム12l,12rと車体1とにそれぞれ連結されている。
後輪トー角可変自動車Vには、各種システムを統括制御するECU(Electronic Control Unit)20の他、横加速度を検出する横加速度センサ31(後輪接地荷重推定手段)や、筒内圧センサ32(駆動力推定手段)が設置されている。また、後輪トー角可変自動車Vにはこれら以外にも、車速や吸入空気量、水温、エンジン回転速度等の各種運転状態を検出する図示しない各種センサが設置されており、各センサの検出信号がECU20に入力して車両の制御に供される。
ECU20は、マイクロコンピュータやROM、RAM、周辺回路、入出力インタフェース、各種ドライバ等から構成されており、通信回線(本実施形態では、CAN(Controller Area Network))を介して後述するMCU15や各センサ31,32等と接続されている。ECU20は、各センサ31,32等の検出結果に基づいて左右後輪3Rl,3Rrの目標トー角を設定し、MCU15に対して制御信号を出力する。
左右の電動アクチュエータ13l,13rは、DCブラシモータと減速機構とねじ機構とを組み合わせた回転運動/直線運動変換装置であり、MCU(Motor Control Unit)15によって駆動制御される。なお、アクチュエータとして、流体圧でピストンロッドを直線駆動するシリンダ装置など、公知の適宜な直線変位電動アクチュエータを用いることも可能である。
左右の電動アクチュエータ13l,13rには、出力ロッドのストローク位置を検出するストロークセンサ14l,14rがそれぞれ設置されており、これらの検出信号がMCU15に入力することで、MCU15は電動アクチュエータ13をフィードバック制御する。これにより、左右の電動アクチュエータ13l,13rが正確に所定量だけ伸縮動し、ECU20が設定した目標トー角へ左右後輪3Rl,3Rrを変化させる。
このように構成された後輪トー角可変自動車Vによれば、左右の電動アクチュエータ13l,13rを同時に対称的に変位させることにより、左右後輪3Rl,3Rrのトーイン/トーアウトを適宜な条件の下に自由に制御することができる上、左右の電動アクチュエータ13l,13rの一方を伸ばして他方を縮めれば、後輪3Rを左右に転舵することも可能である。
図2は実施形態に係る後輪トー角可変自動車Vの要部構成を示すブロック図である。図示するように、後輪トー角可変自動車Vは、横加速度センサ31と、筒内圧センサ32と、ECU20と、後輪トー角制御装置11とを構成要素として備えている。
ECU20は、横加速度センサ31や筒内圧センサ32、MCU15等が接続する入力インタフェース21と、筒内圧センサ32の検出結果からエンジントルクを推定した上で、トランスミッション5のギヤ比等に基づいて後輪3Rの駆動力Fx(タイヤ前後力)を推定する後輪駆動力推定部22(後輪駆動力推定手段)と、横加速度センサ31の検出結果と後輪駆動力推定部22の推定結果とにより、左右後輪3Rl,3Rrの目標トー角θl,θrをそれぞれ設定する目標トー角設定部23と、設定した目標トー角の制御信号を後輪トー角制御装置11に対して出力するための出力インタフェース25とを備えている。
後輪トー角制御装置11は、左右の電動アクチュエータ13l,13rと、左右の電動アクチュエータ13l,13rのストロークをそれぞれ検出するストロークセンサ14l,14rと、ECU20から出力されたトー角制御信号に基づいて左右の電動アクチュエータ13l,13rをフィードバック制御するMCU15とを備えている。
≪実施形態の作用≫
次に、本実施形態に係る後輪トー角可変自動車Vによる後輪トー角制御手順について、図3〜図7を参照しながら説明する。図3は実施形態に係る後輪トー角可変自動車Vのトー角制御手順を示すフローチャートである。図示するように、ECU20は、後輪トー角可変自動車VがエンジンEを始動すると、所定のインターバルで以下に示す目標トー角設定処理を実行する。
次に、本実施形態に係る後輪トー角可変自動車Vによる後輪トー角制御手順について、図3〜図7を参照しながら説明する。図3は実施形態に係る後輪トー角可変自動車Vのトー角制御手順を示すフローチャートである。図示するように、ECU20は、後輪トー角可変自動車VがエンジンEを始動すると、所定のインターバルで以下に示す目標トー角設定処理を実行する。
ECU20は先ず、後輪駆動力推定部22において、筒内圧センサ32によって検出されたエンジンEの筒内圧やギヤ比等から駆動力Fxを推定し、車両が加速状態にあるか否かを判定する(ステップ1)。車両が加速状態にない場合(No)、目標トー角設定部23において、左右後輪3Rl,3Rrの目標トー角θl,θrをそれぞれ0に設定する(ステップ5)。一方、車両が加速状態にあると判定した場合(Yes)、目標トー角設定部23において、横加速度センサ31によって検出された横加速度αから車両が旋回状態にあるか否か判定し(ステップ2)、旋回状態にない場合(No)、左右後輪3Rl,3Rrの目標トー角θl,θrを同様にそれぞれ0に設定する(ステップ5)。
一方、ステップ2で旋回状態にあると判定した場合(Yes)、目標トー角設定部23は、図4に示すマップを検索して横加速度αに基づく左側後輪3Rlのトー角θl(α)を求めるとともに、図5に示すマップを検索して横加速度αに基づく右側後輪3Rrのトー角θr(α)を求める(ステップ3)。
なお、図4,図5では、横軸は共に、横加速度αを示し、グラフ右側の右方向の横加速度αが大きいほど、左旋回状態のタイヤ横力Fyが大きい状態を示しており、縦軸は共に、横加速度αに基づく各後輪のトー角θ(α)を示し、グラフ上側に大きいほど、トーイン角度が大きいことを示している。そして両マップは、横加速度α=0の縦軸を中心に左右反転させたものと互いに同一となっている。これは、停止時および直進走行時においては左右後輪3Rl,3Rrの接地荷重が略等しいが、旋回走行時においては、横加速度αが左右方向について大きくなるほど車体1の重心が旋回外側へ移動し、左右後輪3Rl,3Rrの接地荷重が対称的に変化するため、推定される接地荷重の変化に対応するように横加速度αに関連付けて左右後輪3Rl,3Rrのトー角θを設定したものである。
また、図4,図5に示すマップでは、横加速度αが右方向、すなわち左旋回走行時には、左側後輪3Rlのトーイン角が右側後輪3Rrのトーイン角よりも大きくされ、横加速度αが左方向、すなわち右旋回走行時には、右側後輪3Rrのトーイン角が左側後輪3Rlのトーイン角よりも大きくされている。これは、所定角度だけトー角変化させた後輪3Rに働くタイヤ横力Fyが接地荷重に比例して大きくなるため、旋回内側の後輪3Rのトーイン角を旋回外側の後輪3Rのトーイン角よりも大きくすることにより、旋回内側の後輪3Rに働くタイヤ横力Fyの減少率を大きくするためである。また、このトー角θ(α)は、後述するタイヤ横力Fyと駆動力Fx(タイヤ前後力)との合力Rがタイヤの摩擦円FCに収まるように設定されている。
次に、目標トー角設定部23は、導出した横加速度αに基づく左右後輪のトー角θl(α),θr(α)に対し、駆動力Fxに基づいて駆動力ゲインG(Fx)を乗算することにより、左右後輪3Rl,3Rrの目標トー角θl,θrをそれぞれ設定する(ステップ4)。なお、駆動力ゲインG(Fx)は、図6に示すマップを検索することによって求める。図5は、横軸が駆動力Fxを示し、駆動力Fxが小さい場合、縦軸に示す駆動力ゲインG(Fx)を0に設定し、駆動力Fxが所定値以上の場合、駆動力Fxの増大に比例して直線的に1まで増加するようになっている。
これは、旋回走行時には、接地荷重の変化に比例して左右後輪3Rl,3Rrのタイヤの摩擦円の大きさも変化しているが、駆動力Fxが作用していない場合には、接地荷重に比例して働くタイヤ横力Fyとタイヤの摩擦円半径との比率が左右で略同一であるため、トー角を付与する必要がなく、一方、駆動力Fxが大きく作用している場合には、左右後輪3Rl,3Rrの駆動力Fxl,Fxrは摩擦円半径に比例するわけではないため、内輪側の後輪3Rが外輪側の後輪3Rよりもスリップを起こし易いからである。したがって、駆動力Fxが所定値以上の場合、駆動力ゲインG(Fx)は常に1に設定される。
そして、ECU20は、ステップ4またはステップ5で設定した左右後輪3Rl,3Rrの目標トー角θl,θrをMCU15に対して出力し(ステップ6)、上記手順を繰り返す。
以上の後輪トー角制御手順による効果を図7を参照して説明する。(A)は後輪トー角可変制御装置を備えないLSD装着車両V’を示し、(B)は本実施形態に係る、LSDを装着した後輪トー角可変自動車Vを示している。(A)に示すように、LSD装着車両V’が右旋回加速走行状態にあり、左右の後輪3’Rl,3’Rrにそれぞれ合力R’l,R’rが働いて旋回内輪にスリップが生じている場合、左右の後輪3’Rl,3’Rrにはそれぞれ、タイヤ横力Fy’l,Fy’rと、駆動力Fx’l,Fx’rとが働いている。
両タイヤ横力Fy’l,Fy’rは、摩擦円FC’l,FC’rの大きさ(半径)に比例しており、両駆動力Fx’l,Fx’rは、LSDによって旋回外輪が差分dだけ大きくなっている。これは、LSDがスリップした右側後輪3’Rrの差動を制限することによって右側後輪3’Rrの駆動力Fx’rを左側後輪3’Rlに分配しているからである。しかしながら、前述したように、LSDのトルク伝達力を高く設定することは困難であるため、右側後輪3’Rrは依然スリップを生じて駆動力をロスしている。
ところが、左側後輪3’Rlには右側後輪3’Rrの駆動力Fx’rの一部しか伝達されないため、その合力R’lは摩擦円FC’lの半径よりも小さく、駆動力Fx’lを更に大きくすることが可能な状態にある。
一方、(B)に示すように、本実施形態の後輪トー角可変自動車Vでは、左右後輪3Rl,3Rrが共にトーイン側にトー変化され、旋回内側の右側後輪3Rrの目標トー角θrが左側後輪3Rlの目標トー角θlよりも大きくされているため、左側後輪3Rlのタイヤ横力Fylが、(A)のタイヤ横力Fy’lよりもΔFyだけ大きく、右側後輪3Rrのタイヤ横力Fyrが、(A)のタイヤ横力Fy’rよりもΔFyだけ小さくなっている。
そのため、左右後輪3Rl,3Rrの合力はそれぞれRl,Rrへ変化するが、右側後輪3Rrの合力Rrは、摩擦円FCrに収まるため、更にΔFxだけ駆動力Fxrを増やすことが可能となる。一方、左側後輪3Rlは、合力Rlが摩擦円FClの半径よりも十分小さいため、右側後輪3Rrの駆動力Fxrの増大に伴って同じΔFxだけ駆動力Fxlを増大することが可能である。これにより、左右後輪3Rl,3Rrの駆動力Fxが増大することとなる。
上記した後輪トー角制御手順を採ることにより、後輪トー角可変自動車Vは、旋回加速走行状態と判定した場合に、目標トー角設定部23が左右後輪3Rl,3Rrの目標トー角θl,θrをそれぞれトーイン側に設定し、スリップを起こし易い旋回内側の後輪3Rに働くタイヤ横力Fyを減少させる。これにより、内輪側後輪のスリップが防止されるとともに、旋回走行時の駆動性能が高められる。
また、旋回内側の後輪3Rの目標トー角θを旋回外側の後輪3Rの目標トー角θよりもトーイン側に設定するとともに、左右後輪3Rl,3Rrに働くタイヤ横力Fyの和が一定となるように後輪3Rの目標トー角θを設定することにより、スリップを起こし易い旋回内側の後輪3Rに働くタイヤ横力Fyの減少率が大きくなって内輪側後輪のスリップがより確実に防止されるとともに、後輪トー角を変化させない場合の車両特性と同様の車両特性が確保され、旋回走行時の駆動性能が一層向上している。
また、後輪駆動力Fxが大きいほど左右後輪3Rl,3Rrの目標トー角θl,θrをトーイン側に設定することにより、後輪駆動力Fxが大きいほどスリップを起こし易い旋回内側の後輪3Rに働くタイヤ横力Fyを減少させ、タイヤ横力Fyと駆動力Fxとの合力Rが、左右後輪3Rl,3Rrについてそれぞれ設定したタイヤの摩擦円RCに収まるように左右後輪3Rl,3Rrの目標トー角θl,θrをそれぞれ設定することにより、タイヤに働く合力Rを最大限まで引き出すことができる。また、駆動トルクを分配するLSDを装着する場合には、グリップ力に余裕のある外輪側後輪3Rについて摩擦円RCの限界まで駆動力Fxを引き出すことができ、旋回走行時の駆動性能が更に高まっている。
以上で具体的実施形態の説明を終えるが、本発明の態様はこれら実施形態に限られるも
のではない。例えば、上記実施形態では、左右後輪3Rl,3Rrの接地荷重から後輪トー角θl,θrを設定するために、横加速度センサ31を用いて横加速度αを直接検出し、後輪3Rの接地荷重に関連付けたマップ(図4,図5)を用いて横加速度αから目標トー角θl(α),θr(α)を直接求めているが、検出した横加速度αから左右後輪3Rl,3Rrの接地荷重を推定し、算出した接地荷重からトー角θl,θrを設定してもよい。或いは、横加速度センサ31ではなく、左右のダンパストロークから左右後輪3Rl,3Rr接地荷重を推定したり、サスペンションスプリングの歪みから左右後輪3Rl,3Rrの接地荷重を直接検出したり、更には、前輪操舵角と車速とから左右後輪3Rl,3Rrの接地荷重を推定する実施形態としてもよい。
のではない。例えば、上記実施形態では、左右後輪3Rl,3Rrの接地荷重から後輪トー角θl,θrを設定するために、横加速度センサ31を用いて横加速度αを直接検出し、後輪3Rの接地荷重に関連付けたマップ(図4,図5)を用いて横加速度αから目標トー角θl(α),θr(α)を直接求めているが、検出した横加速度αから左右後輪3Rl,3Rrの接地荷重を推定し、算出した接地荷重からトー角θl,θrを設定してもよい。或いは、横加速度センサ31ではなく、左右のダンパストロークから左右後輪3Rl,3Rr接地荷重を推定したり、サスペンションスプリングの歪みから左右後輪3Rl,3Rrの接地荷重を直接検出したり、更には、前輪操舵角と車速とから左右後輪3Rl,3Rrの接地荷重を推定する実施形態としてもよい。
また、エンジントルクを推定するために、筒内圧センサ32とギヤ比を用いるのではなく、トルクセンサを用いて直接検出したり、吸入空気量や水温、エンジン回転速度等の各種運転状態から参照するマップを用いたり、更にはドライブ・バイ・ワイヤによる電子制御式スロットルコントロールによって制御されたエンジントルクを利用したりしてもよい。また、後輪駆動力Fxを検出するために、エンジントルクとギヤ比とを用いるのではなく、前後加速度センサから後輪駆動力Fxを算出してもよい。
更に、上記実施形態では、各種マップを図示しているが、これらは例示として示すものであって当然、マップがこれに限定されるものではない。これらの変更の他、本発明の趣旨を逸脱しない範囲において適宜変更可能である。
3R 後輪
7 LSD(リミテッド・スリップ・デファレンシャル)
11 後輪トー角制御装置
12 トレーリングアーム
13 電動アクチュエータ
20 ECU
22 後輪駆動力推定部
23 目標トー角設定部
31 横加速度センサ
32 筒内圧センサ
E エンジン
FC 摩擦円
G(Fx) 駆動力ゲイン
θl 左側後輪3Rlの目標トー角
θr 右側後輪3Rrの目標トー角
θl(α) 横加速度αに基づく左側後輪3Rlのトー角
θr(α) 横加速度αに基づく右側後輪3Rrのトー角
Fx 駆動力
Fy タイヤ横力
V 後輪トー角可変自動車
7 LSD(リミテッド・スリップ・デファレンシャル)
11 後輪トー角制御装置
12 トレーリングアーム
13 電動アクチュエータ
20 ECU
22 後輪駆動力推定部
23 目標トー角設定部
31 横加速度センサ
32 筒内圧センサ
E エンジン
FC 摩擦円
G(Fx) 駆動力ゲイン
θl 左側後輪3Rlの目標トー角
θr 右側後輪3Rrの目標トー角
θl(α) 横加速度αに基づく左側後輪3Rlのトー角
θr(α) 横加速度αに基づく右側後輪3Rrのトー角
Fx 駆動力
Fy タイヤ横力
V 後輪トー角可変自動車
Claims (5)
- 左右後輪が駆動輪であり、且つ該左右後輪のトー角を個別に変化させることのできる後輪トー角可変車両であって、
左右後輪の接地荷重を推定する後輪接地荷重推定手段と、
後輪の駆動力を推定する後輪駆動力推定手段と、
左右後輪の目標トー角を設定する後輪トー角設定手段と
を備え、
前記後輪トー角設定手段は、前記後輪接地荷重推定手段の推定結果と前記後輪駆動力推定手段の推定結果とに基づいて旋回駆動走行状態と判定した場合、少なくとも旋回内側の後輪の目標トー角をトーイン側に設定することを特徴とする後輪トー角可変車両。 - 前記後輪トー角設定手段は、前記後輪接地荷重推定手段の推定結果と前記後輪駆動力推定手段の推定結果とに基づいて旋回駆動走行状態と判定した場合、前記左右後輪の目標トー角をトーイン側に設定するとともに、旋回内側の後輪の目標トー角を旋回外側の後輪の目標トー角よりもトーイン側に設定することを特徴とする、請求項1に記載の後輪トー角可変車両。
- 前記後輪トー角設定手段は、少なくとも前記後輪接地荷重推定手段の推定結果に基づいて、左右後輪のタイヤ横力の和が一定となるように前記左右後輪の目標トー角を設定することを特徴とする、請求項1または請求項2に記載の後輪トー角可変車両。
- 前記後輪トー角設定手段は、前記後輪駆動力が大きいほど前記左右後輪のトー角をトーイン側に設定することを特徴とする、請求項1〜請求項3のいずれか一項に記載の後輪トー角可変車両。
- 前記後輪トー角設定手段は、少なくとも前記後輪接地荷重推定手段の推定結果に基づいて、左右後輪のタイヤの摩擦円をそれぞれ設定し、タイヤ横力と駆動力との合力が該タイヤの摩擦円に収まるように前記左右後輪の目標トー角を設定することを特徴とする、請求項1〜請求項4のいずれか一項に記載の後輪トー角可変車両。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008079597A JP2009234306A (ja) | 2008-03-26 | 2008-03-26 | 後輪トー角可変車両 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008079597A JP2009234306A (ja) | 2008-03-26 | 2008-03-26 | 後輪トー角可変車両 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009234306A true JP2009234306A (ja) | 2009-10-15 |
Family
ID=41248825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008079597A Pending JP2009234306A (ja) | 2008-03-26 | 2008-03-26 | 後輪トー角可変車両 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009234306A (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012096599A (ja) * | 2010-10-29 | 2012-05-24 | Toyota Motor Corp | 車輪角度調整装置 |
CN104058006A (zh) * | 2014-06-17 | 2014-09-24 | 宁波如意股份有限公司 | 一种车辆横向行驶转向机构 |
KR20150099138A (ko) * | 2014-02-21 | 2015-08-31 | 자동차부품연구원 | 차량의 토우각 제어장치 및 방법 |
US20160121676A1 (en) * | 2014-11-04 | 2016-05-05 | Benteler Automobiltechnik Gmbh | Wheel guide assembly for a vehicle wheel |
EP3782877A1 (en) | 2019-08-20 | 2021-02-24 | Jtekt Corporation | Control device and steering device |
JP2021041775A (ja) * | 2019-09-10 | 2021-03-18 | 株式会社Subaru | 車両制御装置 |
JP2021088229A (ja) * | 2019-12-02 | 2021-06-10 | Toyo Tire株式会社 | タイヤ力表示システムおよびタイヤ力表示方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04287771A (ja) * | 1991-03-14 | 1992-10-13 | Nissan Motor Co Ltd | 車両の後輪操舵装置 |
JP2000118429A (ja) * | 1998-10-12 | 2000-04-25 | Honda Motor Co Ltd | 後輪駆動車の後輪操舵装置 |
JP2006175980A (ja) * | 2004-12-22 | 2006-07-06 | Nissan Motor Co Ltd | 車両用操舵装置 |
-
2008
- 2008-03-26 JP JP2008079597A patent/JP2009234306A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04287771A (ja) * | 1991-03-14 | 1992-10-13 | Nissan Motor Co Ltd | 車両の後輪操舵装置 |
JP2000118429A (ja) * | 1998-10-12 | 2000-04-25 | Honda Motor Co Ltd | 後輪駆動車の後輪操舵装置 |
JP2006175980A (ja) * | 2004-12-22 | 2006-07-06 | Nissan Motor Co Ltd | 車両用操舵装置 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012096599A (ja) * | 2010-10-29 | 2012-05-24 | Toyota Motor Corp | 車輪角度調整装置 |
KR20150099138A (ko) * | 2014-02-21 | 2015-08-31 | 자동차부품연구원 | 차량의 토우각 제어장치 및 방법 |
KR102145357B1 (ko) | 2014-02-21 | 2020-08-18 | 한국자동차연구원 | 차량의 토우각 제어장치 및 방법 |
CN104058006A (zh) * | 2014-06-17 | 2014-09-24 | 宁波如意股份有限公司 | 一种车辆横向行驶转向机构 |
US20160121676A1 (en) * | 2014-11-04 | 2016-05-05 | Benteler Automobiltechnik Gmbh | Wheel guide assembly for a vehicle wheel |
JP2016128313A (ja) * | 2014-11-04 | 2016-07-14 | ベンテラー オートモバイルテクニック ゲーエムベーハー | 自動車車輪用車輪ガイドアセンブリ |
EP3782877A1 (en) | 2019-08-20 | 2021-02-24 | Jtekt Corporation | Control device and steering device |
JP2021030778A (ja) * | 2019-08-20 | 2021-03-01 | 株式会社ジェイテクト | 制御装置、および転舵装置 |
JP7275991B2 (ja) | 2019-08-20 | 2023-05-18 | 株式会社ジェイテクト | 制御装置、および転舵装置 |
JP2021041775A (ja) * | 2019-09-10 | 2021-03-18 | 株式会社Subaru | 車両制御装置 |
JP7304246B2 (ja) | 2019-09-10 | 2023-07-06 | 株式会社Subaru | 車両制御装置 |
JP2021088229A (ja) * | 2019-12-02 | 2021-06-10 | Toyo Tire株式会社 | タイヤ力表示システムおよびタイヤ力表示方法 |
JP7341875B2 (ja) | 2019-12-02 | 2023-09-11 | Toyo Tire株式会社 | タイヤ力表示システムおよびタイヤ力表示方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6476235B2 (ja) | 三輪自動車のための操舵および制御システム | |
JP4618105B2 (ja) | 車両の旋回挙動制御装置 | |
JP4604985B2 (ja) | 車輌の走行制御装置 | |
JP2010208619A (ja) | 車両挙動制御装置 | |
JP2009234306A (ja) | 後輪トー角可変車両 | |
JP4633175B2 (ja) | 後輪トー角制御装置 | |
JP2004066996A (ja) | 車両用接地荷重制御装置 | |
JP2020196359A (ja) | 車両姿勢制御装置 | |
JP2757579B2 (ja) | 能動型サスペンション | |
JP4600161B2 (ja) | スプリット路面上での車輪の駆動滑りを抑制する車輌 | |
JP4389810B2 (ja) | 車両挙動制御装置 | |
JP4600126B2 (ja) | 車両姿勢制御装置 | |
CN211001300U (zh) | 车辆用控制装置 | |
WO2018173303A1 (ja) | 制御装置、および、サスペンション装置 | |
JP2020200020A (ja) | 車両姿勢制御装置 | |
JP4228837B2 (ja) | 車輪速度推定装置、車体速度推定装置、および車両挙動制御装置 | |
JP3809846B2 (ja) | 車両用接地荷重制御装置 | |
JPH0679905B2 (ja) | 走行路面状態判別装置 | |
JP5125669B2 (ja) | 四輪駆動車の車体速推定装置 | |
JP4442092B2 (ja) | 車両の運動制御装置 | |
JP4349204B2 (ja) | 左右独立駆動式車両 | |
JP7350230B2 (ja) | 車両姿勢制御装置 | |
JP5131681B2 (ja) | 車両の後輪トー角可変制御装置 | |
JP5043613B2 (ja) | 車輪状態を検出するトー角可変制御式車両 | |
JP5043804B2 (ja) | 車両挙動制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Effective date: 20110623 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110705 |
|
A02 | Decision of refusal |
Effective date: 20111101 Free format text: JAPANESE INTERMEDIATE CODE: A02 |