JP2009213991A - 金属酸化物触媒 - Google Patents

金属酸化物触媒 Download PDF

Info

Publication number
JP2009213991A
JP2009213991A JP2008058974A JP2008058974A JP2009213991A JP 2009213991 A JP2009213991 A JP 2009213991A JP 2008058974 A JP2008058974 A JP 2008058974A JP 2008058974 A JP2008058974 A JP 2008058974A JP 2009213991 A JP2009213991 A JP 2009213991A
Authority
JP
Japan
Prior art keywords
metal oxide
oxide catalyst
transition metal
metal
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008058974A
Other languages
English (en)
Inventor
Noriko Watari
紀子 亘
Hideji Fujii
秀治 藤井
Ichiro Nagano
一郎 永野
Katsunori Akiyama
勝徳 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008058974A priority Critical patent/JP2009213991A/ja
Publication of JP2009213991A publication Critical patent/JP2009213991A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】白金代替触媒であって、金属オキシナイトライド電極触媒と比べて触媒能をさらに向上させた金属酸化物触媒を提供することにある。
【解決手段】金属酸化物触媒であって、第一の遷移金属と、第二の遷移金属と、酸素に対してp型のドーパントとなるp型ドーパント材とを含有し、第一の遷移金属を、p型ドーパント材に対してn型のドーパントとなる元素とする。
【選択図】なし

Description

本発明は、金属酸化物触媒に関し、特に排ガス処理触媒や電極や光触媒に適用すると有効である。
各種の反応に高い触媒能を示す物質として貴金属である白金が知られている。そして、この白金を基材に担持させた触媒が種々開発されている。しかし、この白金自体が高価であり、この白金の担持量に比例して触媒の製造コストが増大してしまう。そのため、白金の担持量を低減した触媒や、白金の代替材料を基材に担持した白金代替触媒に関する研究開発が種々行われている。
例えば、特許文献1には、白金代替触媒の酸素還元触媒として、TaONなどの遷移金属のオキシナイトライドからなる金属オキシナイトライド電極触媒が提案されている。
特開2005−161203号公報(明細書の段落[0021]〜[0027]、[図1]〜[図4]等参照)
ところで、上述した特許文献1に記載の金属オキシナイトライド電極触媒にて、導電性のさらなる向上が望まれていた。すなわち、白金代替触媒の金属酸化物触媒であって、触媒能のさらなる向上が望まれていた。
そこで、本発明は、前述した問題に鑑み提案されたもので、白金代替触媒であって、金属オキシナイトライド電極触媒と比べて触媒能をさらに向上させた金属酸化物触媒を提供することを目的とする。
上述した課題を解決する第1の発明に係る金属酸化物触媒は、
金属酸化物触媒であって、
第一の遷移金属と、
第二の遷移金属と、
酸素に対してp型のドーパントとなるp型ドーパント材とを含有し、
前記第一の遷移金属が、前記p型ドーパント材に対してn型のドーパントとなる元素である
ことを特徴とする。
上述した課題を解決する第2の発明に係る金属酸化物触媒は、第1の発明に係る金属酸化物触媒であって、
前記p型ドーパント材が、窒素、炭素、ケイ素、またはゲルマニウムである
ことを特徴とする。
上述した課題を解決する第3の発明に係る金属酸化物触媒は、第2の発明に係る金属酸化物触媒であって、
前記第一の遷移金属が第5族元素または第7族元素であり、
前記第一の遷移金属が第5族元素であるときに前記第二の遷移金属が第4族元素であり、前記第一の遷移金属が第7族元素であるときに前記第二の遷移金属が第5族元素である
ことを特徴とする。
上述した課題を解決する第4の発明に係る金属酸化物触媒は、第3の発明に係る金属酸化物触媒であって、
前記第一の遷移金属がV、Nb、Ta、Mnの何れかであり、
前記第一の遷移金属がV、Nb、Taの何れかであるときに、前記第二の遷移金属がTiまたはZrであり、前記第一の遷移金属がMnであるときに、前記第二の遷移金属がV、Nb、Taの何れかである
ことを特徴とする。
上述した課題を解決する第5の発明に係る金属酸化物触媒は、第4の発明に係る金属酸化物触媒であって、
前記第一の遷移金属がTaまたはMnであり、
前記第一の遷移金属がTaであるときに前記第二の遷移金属がZrであり、前記第一の遷移金属がMnであるときに前記第二の遷移金属がNbである
ことを特徴とする。
上述した課題を解決する第6の発明に係る排ガス処理触媒は、第1乃至第5の発明の何れか一つに係る金属酸化物触媒を含有する
ことを特徴とする。
上述した課題を解決する第7の発明に係る電極は、第1乃至第5の発明の何れか一つに係る金属酸化物触媒を含有する
ことを特徴とする。
上述した課題を解決する第8の発明に係る光触媒は、第1乃至第5の発明の何れか一つに係る金属酸化物触媒を含有する
ことを特徴とする。
本発明に係る金属酸化物触媒によれば、第一の遷移金属と、第二の遷移金属と、酸素に対してp型のドーパントとなるp型ドーパント材とを含有し、第一の遷移金属が、p型ドーパント材に対してn型のドーパントとなる元素であることにより、この第一の遷移金属を含有することで、前記第一の遷移金属を含有しない金属オキシナイトライド電極触媒と比べてp型ドーパント材の含有量を増やすことができる。これにより、金属酸化触媒のバンド構造の禁制帯を狭くできる。その結果、活性化エネルギーが小さくなり、触媒能が向上する。すなわち、金属オキシナイトライド電極触媒と比べて触媒能をさらに向上させることができる。
本発明に係る金属酸化物触媒の最良の形態につき、実施形態に具体的に説明する。
[第一の実施形態]
本発明に係る金属酸化物触媒の第一の実施形態につき以下に説明する。
本実施形態に係る金属酸化物触媒は、第一の遷移金属と、第二の遷移金属と、酸素に対してp型のドーパントとなるp型ドーパント材とを含有する触媒である。p型ドーパント材は、窒素、炭素、ケイ素、またはゲルマニウムである。第一の遷移金属は、p型ドーパント材に対してn型のドーパントとなる元素である。第一の遷移金属が第5族元素または第7族元素である。そして、第一の遷移金属が第5族元素であるときに第二の遷移金属が第4族元素であり、第一の遷移金属が第7族元素であるときに第二の遷移金属が第5族元素である。
具体的には、上述した第一の遷移金属がV(バナジウム)、Nb(ニオブ)、Ta(タンタル)、Mn(マンガン)の何れかである。そして、第一の遷移金属がV、Nb、Taの何れかであるときに、第二の遷移金属がTi(チタン)またはZr(ジルコニウム)である。第一の遷移金属がMnであるときに、第二の遷移金属がV、Nb、Taの何れかである。好適には、第一の遷移金属がTaであるときに第二の遷移金属がZrであり、第一の遷移金属がMnであるときに第二の遷移金属がNbである。
ここで、上述した金属酸化物触媒の作製方法としては例えば以下の2つの手法が挙げられる。
[第一番目の金属酸化物触媒の作製方法]
遷移金属M、Nを含む化合物MXy、NXy(式中MとNは第4族元素と第5族元素を示す、または第5族元素と第7族元素を示す。Xは窒素、炭素、ケイ素、またはゲルマニウムを示す。yは化学量論を示す値であり任意である。)の混合物を、酸素濃度30モル%以下の雰囲気にて、400℃−800℃の温度で焼成して上述した金属酸化物触媒が得られる。例えば、ZrN、TaNの粉末各々1gずつをアルミナ製坩堝に入れ、管状型電気炉中で露点−10℃の大気を1L/分で流通させながら昇温速度100℃/時間で500℃まで昇温し、1時間焼成することで、ZrTaONからなる金属酸化物触媒が得られる。
[第二番目の金属酸化物触媒の作製方法]
触媒担体材料を200℃以上に加熱した状態とし、アルゴン分圧1×10-1Pa、窒素分圧4×10-1Pa、酸素分圧1×10-1Paの雰囲気とする。スパッタターゲットとして2種類の金属(例えば、ZrとTa)を用いる、あるいは目的とする2種類の金属を含む合金(例えばZrTa)を用いて、触媒担体材料上に50nm程度の薄膜を作製する。これをナイフで剥ぎ取ることで上述した金属酸化物触媒(ZrTaON)が得られる。
したがって、本実施形態に係る金属酸化物触媒によれば、p型ドーパント材に対してn型のドーパントとなる元素である第一の遷移金属を含有することで、この第一の遷移金属を含有しない金属オキシナイトライド電極触媒と比べてp型ドーパント材の含有量を増やすことができる。これにより、金属酸化物触媒のバンド構造の禁制帯を狭くできる。その結果、活性化エネルギーが小さくなり、触媒能が向上する。すなわち、金属オキシナイトライド電極触媒と比べて触媒能をさらに向上させることができる。さらに、第一の遷移金属がp型ドーパント材に対してn型のドーパントとなる元素であるため、金属酸化物触媒は、高温度域にてp型ドーパント材の脱離を防止できる。
本発明に係る金属酸化物触媒の第1の実施例につき図1〜9を用いて具体的に説明する。
図1はZrTaONのバンド構造を示す図である。図2はZrO2のバンド構造を示す図であり、図3はZr22Oのバンド構造を示す図であり、図4はTaOのバンド構造を示す図であり、図5はTaONのバンド構造を示す図であり、図6はPtO2のバンド構造を示す図である。図7は金属酸化物触媒のCO除去率と排ガス温度との関係を示す図であり、図8は金属酸化物触媒のHC除去率と排ガス温度との関係を示す図であり、図9は金属酸化物触媒のNO除去率と排ガス温度との関係を示す図である。図1〜6に示すバンド構造は、バンド計算(例えば、全電子手法やタイトバインディング法)により求められたバンド構造である。図1〜6にて、縦軸はエネルギー状態を示し、横軸は各電子殻を示す。Ecは伝導帯を示し、Evは価電子帯を示し、Egは禁制帯を示す。
[金属酸化物触媒]
本発明の第1の実施例に係る金属酸化物触媒は、ZrTaONからなる触媒である。すなわち、金属酸化物触媒は、Ta(タンタル)の第一の遷移金属と、Zr(ジルコニウム)の第二の遷移金属と、酸素に対してp型のドーパントとなるp型ドーパント材の窒素とを含有する。そして、Taは、窒素に対してn型のドーパントとなる元素である。
[金属酸化物触媒の調製]
上述した金属酸化物触媒は、スパッタリング装置を用いて製造される。具体的には、スパッタするときに、CeO2粉末の圧粉体を200℃以上に加熱した状態とし、アルゴン分圧を1×10-1Pa、窒素分圧を4×10-1Pa、酸素分圧を1×10-1Paの雰囲気とした。スパッタターゲットとしてZrとTaの二つのターゲットを用い、担持材(圧粉体)上に50nm程度の薄膜を作製した。そして、この薄膜をタングステンナイフでこそぎとり、粉末化した。
得られた粉末をX線光電子分光法により、表面汚染除去後の表面組成分析をした。その結果、金属酸化物触媒の組成は、Ta:17%、Zr:21%、O:35%、N:18%、Ce:9%であった。ここで、Ceは圧粉体より検出されるものであり、CeO2と考えられる。よって、この測定結果からCeO2分を引くと、金属酸化物触媒の組成は、Ta:17%、Zr:21%、O:17%、N:18%となった。そして、Ta:Zr:O:Nの比が23:29:23:25であり、これらの比がほぼ1:1:1:1となることが分かった。すなわち、Ta:Zr:O:Nの比が1:1:1:1となる粉体(金属酸化物触媒)を得たことが分かった。
得られたZrTaON+CeO2を1.1g採取する(ZrTaONが0.7g分)。そして、採取した粉体とエタノール20ccと分散剤とを混合しボールミルにより24時間粉砕し、得られたスラリーにさらにエタノールを添加して、100ccの溶液とした。この溶液に、セリア(CeO2)粉末を99gとPt量0.3g分を含んだジニトロジアミン白金酸水溶液を入れて混合する。続いて、この混合溶液を十分に攪拌しつつ、蒸発乾固(乾燥、固化)して粉末とする。得られた粉末を500℃で2時間、空気中で焼成して本実施例に係る金属酸化物触媒(Pt(0.3wt%)−ZrTaON(0.7wt%)/CeO2)(実施例1)を得た。
ここで、上述した本実施例に係る金属酸化物触媒が含有するZrTaONのバンド構造について図1を参照して説明する。
この図1に示すように、約−2.6eVより上方の領域Ecが伝導帯となる一方、約−3.3eVより下方の領域Evが価電子帯となることが分かった。これらの領域の間の禁制帯(バンドギャップ)Egの大きさが約0.7となることが分かった。
そして、図2に示すZrO2のバンド構造では、約3.6eVよりも上方の領域Ecが伝導帯となる一方、0.0eVよりも下方の領域Evが価電子帯となることが分かった。これらの領域の間の禁制帯Egの大きさが約3.6となることが分かった。図1および図2に示すバンド構造から、本実施例に係る金属酸化物触媒は、ジルコニウムの酸化物に窒素およびタンタルをドープした触媒であることで、ジルコニウムの酸化物からなる触媒と比べてバンドギャップが小さくなることが分かった。
また、図3に示すZr22Oのバンド構造では、約1.2eVよりも上方の領域Ecが伝導帯となる一方、0.0eVよりも下方の領域Edが価電子帯となることが分かった。これらの領域の間の禁制帯Egの大きさが約1.2となることが分かった。図1および図3に示すバンド構造から、本実施例に係る金属酸化物触媒は、ジルコニウムの酸窒化物にタンタルをドープした触媒であることで、ジルコニウムの酸窒化物からなる触媒よりもバンドギャップが小さくなることが分かった。
図4に示すTaOのバンド構造では、約−1.0eVよりも上方の領域Ecが伝導帯となる一方、−4.0eVよりも下方の領域Edが価電子帯となることが分かった。このTaOは導電性であるため禁制帯が無いが、伝導帯Ecの底部と価電子体Evの頂部との間の大きさが約3となることが分かった。図1および図4に示すバンド構造から、本実施例に係る金属酸化物触媒は、タンタルの酸化物に窒素およびジルコニウムをドープした触媒であることで、タンタルの酸化物からなる触媒よりも伝導帯の底部と価電子体の頂部との間の大きさが小さくなることが分かった。
図5に示すTaONのバンド構造では、約2.0eVよりも上方の領域Ecが伝導帯となる一方、0.0eVよりも下方の領域Evが価電子帯となることが分かった。これらの領域の間の禁制帯Egの大きさが約2.0eVとなることが分かった。図1および図5に示すバンド構造から、本実施例に係る金属酸化物触媒は、タンタルの酸窒化物にジルコニウムをドープした触媒であることで、タンタルの酸窒化物からなる触媒よりもバンドギャップが小さくなることが分かった。
図6に示すPtO2のバンド構造では、約0.4eVよりも上方の領域Ecが伝導帯となる一方、0.0eVよりも下方の領域Evが価電子帯となることが分かった。これらの領域の間の禁制帯Egの大きさが約0.4となることが分かった。図1および図6に示すバンド構造から、本実施例に係る金属酸化物触媒はPtO2と比べてバンドギャップの大きさが少し大きいもののほぼ同じ大きさとなることが分かった。
[触媒能の評価]
ここで、上述した本実施例に係る金属酸化物触媒(Pt(0.3wt%)−ZrTaON(0.7wt%)/CeO2)と下記比較触媒の触媒能(CO除去特性、HC除去特性、NOx除去特性)について評価を行った。これら評価結果を図7,8,9に示す。
[比較触媒]
比較触媒として以下の作製方法で作製された触媒を使用した。
エタノール100ccの溶液に、セリア(CeO2)粉末を99gとPt量1.0g分含んだジニトロジアミン白金酸水溶液を入れて混合する。続いて、この混合溶液を十分に攪拌しつつ、蒸発乾固(蒸発、固化)して粉末とする。得られた粉末を500℃で2時間、空気中で焼成して比較触媒(Pt(1wt%)/CeO2)(比較例1)を得た。
[金属酸化物触媒のCO除去特性の評価]
上述した本実施例に係る金属酸化物触媒および比較触媒のそれぞれに下記表1に示す条件で模擬排ガスを流通させて、CO除去性能を測定した。この測定結果を図7に示す。表1において、SVは空間速度(流体の流量/触媒の体積)を示している。図7において、丸印は第1の実施例に係る金属酸化物触媒の場合を示し、三角印は比較触媒の場合を示す。
[表1]
Figure 2009213991
図7に示すように、本実施例に係る金属酸化物触媒は、50℃より高く300℃未満の温度範囲にて比較触媒と比べてCO除去率が高くなることが分かった。この金属酸化物触媒は、300℃以上400℃以下の温度範囲にて比較触媒と同じCO除去率を示すことが分かった。よって、本実施例に係る金属酸化物触媒は、50℃より高く300℃未満の温度範囲で比較触媒よりもCOを除去する触媒能が向上する。
[金属酸化物触媒のHC除去特性の評価]
上述した本実施例に係る金属酸化物触媒および比較触媒のそれぞれに上記表1に示す条件で模擬排ガスを流通させて、HC除去性能を測定した。この測定結果を図8に示す。図8において、丸印は第1の実施例に係る金属酸化物触媒の場合を示し、三角印は比較触媒の場合を示す。
図8に示すように、本実施例に係る金属酸化物触媒は、50℃より高く300℃未満の温度範囲にて比較触媒と比べてHC除去率が高くなることが分かった。この金属酸化物触媒は、300℃以上400℃以下の温度範囲にて比較触媒と同じHC除去率を示すことが分かった。よって、本実施例に係る金属酸化物触媒は、50℃より高く300℃未満の温度範囲で比較触媒よりもHCを除去する触媒能が向上する。
[金属酸化物触媒のNOx除去特性の評価]
上述した本実施例に係る金属酸化物触媒および比較触媒のそれぞれに下記表2に示す条件で模擬排ガスを流通させて、NOx除去性能を測定した。この測定結果を図9に示す。表2において、SVは空間速度(流体の流量/触媒の体積)を示している。図9において、丸印は第1の実施例に係る金属酸化物触媒の場合を示し、三角印は比較触媒の場合を示す。
[表2]
Figure 2009213991
図9に示すように、本実施例に係る金属酸化物触媒は、100℃より高く400℃未満の温度範囲にて比較触媒と比べてNOx除去率が高くなることが分かった。この金属酸化物触媒は、50℃以上100℃以下の温度範囲および400℃にて比較触媒と同じNOx除去率を示すことが分かった。よって、本実施例に係る金属酸化物触媒は、100℃より高く400℃未満の温度範囲で比較触媒よりもNOxを除去する触媒能が向上する。
したがって、本実施例に係る金属酸化物触媒によれば、白金触媒の代替であって、窒素に対してn型のドーパントとなる元素を含有しない金属オキシナイトライド電極触媒と比べて、触媒能をさらに向上させることができる。すなわち、Taを含有することによって窒素を多量に含有できる。その結果、前記金属オキシナイトライド電極触媒と比べて金属酸化物触媒のバンドギャップを小さくできる。さらに、PtO2からなる触媒と同程度まで金属酸化物触媒のバンドギャップを小さくできる。これにより、活性化エネルギーが小さくなり、触媒能が向上する。また、高温度域にてp型ドーパント材の脱離を防止できる。バンドギャップが小さいことにより、導電性も向上する。よって、1次電池、2次電池、燃料電池の何れかにて、金属酸化物触媒を含有する電極として利用することができる。その上、光を吸収したときに励起し易くなり、金属酸化物触媒を含有する光触媒としても利用することができる。
なお、本実施例では、TaとZrとを含有する金属酸化物触媒を用いて説明したが、Zrの代わりに周期律表にてZrと同じ族となるTi(チタン)を含有する金属酸化物触媒や、Taの代わりに周期律表にてTaと同じ族となるV(バナジウム)またはNb(ニオブ)を含有する金属酸化物触媒や、ZrおよびTaの代わりに、TiおよびVを含有する金属酸化物触媒、またはTiおよびNbを含有する金属酸化物触媒とすることも可能である。これらのような金属酸化物触媒であっても、上述した第一の実施例に係る金属酸化物触媒と同様な作用効果を奏する。
本発明に係る金属酸化物触媒の第二の実施例につき図10を用いて具体的に説明する。
図10は金属酸化物触媒(MnNb4NO4)のバンド構造を示す図である。図10に示すバンド構造は、バンド計算(例えば、全電子手法やタイトバインディング法)により求められたバンド構造である。図10にて、縦軸はエネルギー状態を示し、横軸は各電子殻を示す。Ecは伝導帯を示し、Evは価電子帯を示し、Egは禁制帯を示す。
本実施例に係る金属酸化物触媒は、上述した第一の実施例に係る金属酸化物触媒の組成の一部(第一の遷移金属および第二の遷移金属)を変えたものである。
本実施例に係る金属酸化物触媒は、MnNb4NO4からなる触媒である。すなわち、金属酸化物触媒は、Nb(ニオブ)の第一の遷移金属と、Mn(マンガン)の第二の遷移金属と、酸素に対してp型のドーパントとして作用するp型ドーパント材の窒素とを含有する。そして、Mnは、p型ドーパント材に対してn型のドーパントとなる元素である。
上述した金属酸化物触媒のバンド構造について図10を参照して説明する。
この図10に示すように、約−4.9eVよりも上方の領域Ecが伝導帯となる一方、約−5.6よりも下方の領域Evが価電子帯となることが分かった。これらの領域の間の禁制帯Egの大きさが約0.7となることが分かった。すなわち、本実施例に係る金属酸化物触媒は、上述した第一の実施例に係る金属酸化物触媒と同様、バンドギャップが小さいものであることが分かった。
したがって、本実施例に係る金属酸化物触媒によれば、上述した第一の実施例に係る金属酸化物触媒と同様にバンドギャップが小さいことから、白金触媒の代替であって、窒素に対してn型のドーパントとなる元素を含有しない金属オキシナイトライド電極触媒と比べて、触媒能をさらに向上させることができる。すなわち、Mnを含有することによって窒素を多量に含有できる。その結果、前記金属オキシナイトライド電極触媒と比べて金属酸化物触媒のバンドギャップを小さくできる。さらに、PtO2からなる触媒と同程度まで金属酸化物触媒のバンドギャップを小さくできる。これにより、活性化エネルギーを小さくでき、触媒能が向上する。また、高温度域にてp型ドーパント材の脱離を防止できる。
さらに、バンドギャップが小さいことにより、導電性も向上する。よって、1次電池、2次電池、燃料電池の何れかにて、金属酸化物触媒を含有する電極として利用することができる。その上、光を吸収したときに励起し易くなり、金属酸化物触媒を含有する光触媒としても利用することができる。
なお、本実施例では、NbとMnとを含有する金属酸化物触媒を用いて説明したが、Nbの代わりに周期律表にてNbと同じ族となるV(バナジウム)またはTa(タンタル)を含有する金属酸化物触媒とすることも可能である。このような金属酸化物触媒であっても、上述した第二の実施例に係る金属酸化物触媒と同様な作用効果を奏する。
本発明に係る金属酸化物触媒は、自動車やプラントから排出される排ガスを処理する排ガス処理触媒や、電池に使用される電極や、光を吸収して物質の反応を促進する光触媒などに利用することが可能である。
ZrTaONのバンド構造を示す図である。 ZrO2のバンド構造を示す図である。 Zr22Oのバンド構造を示す図である。 TaOのバンド構造を示す図である。 TaONのバンド構造を示す図である。 PtO2のバンド構造を示す図である。 金属酸化物触媒のCO除去率と排ガス温度との関係を示す図である。 金属酸化物触媒のHC除去率と排ガス温度との関係を示す図である。 金属酸化物触媒のNOx除去率と排ガス温度との関係を示す図である。 本発明に係る金属酸化物触媒の第2の実施例のバンド構造を示す図である。

Claims (8)

  1. 金属酸化物触媒であって、
    第一の遷移金属と、
    第二の遷移金属と、
    酸素に対してp型のドーパントとなるp型ドーパント材とを含有し、
    前記第一の遷移金属が、前記p型ドーパント材に対してn型のドーパントとなる元素である
    ことを特徴とする金属酸化物触媒。
  2. 請求項1に記載された金属酸化物触媒であって、
    前記p型ドーパント材が、窒素、炭素、ケイ素、またはゲルマニウムである
    ことを特徴とする金属酸化物触媒。
  3. 請求項2に記載された金属酸化物触媒であって、
    前記第一の遷移金属が第5族元素または第7族元素であり、
    前記第一の遷移金属が第5族元素であるときに前記第二の遷移金属が第4族元素であり、前記第一の遷移金属が第7族元素であるときに前記第二の遷移金属が第5族元素である
    ことを特徴とする金属酸化物触媒。
  4. 請求項3に記載された金属酸化物触媒であって、
    前記第一の遷移金属がV、Nb、Ta、Mnの何れかであり、
    前記第一の遷移金属がV、Nb、Taの何れかであるときに、前記第二の遷移金属がTiまたはZrであり、前記第一の遷移金属がMnであるときに、前記第二の遷移金属がV、Nb、Taの何れかである
    ことを特徴とする金属酸化物触媒。
  5. 請求項4に記載された金属酸化物触媒であって、
    前記第一の遷移金属がTaまたはMnであり、
    前記第一の遷移金属がTaであるときに前記第二の遷移金属がZrであり、前記第一の遷移金属がMnであるときに前記第二の遷移金属がNbである
    ことを特徴とする金属酸化物触媒。
  6. 請求項1乃至請求項5の何れか一項に記載された金属酸化物触媒を含有する
    ことを特徴とする排ガス処理触媒。
  7. 請求項1乃至請求項5の何れか一項に記載された金属酸化物触媒を含有する
    ことを特徴とする電極。
  8. 請求項1乃至請求項5の何れか一項に記載された金属酸化物触媒を含有する
    ことを特徴とする光触媒。
JP2008058974A 2008-03-10 2008-03-10 金属酸化物触媒 Pending JP2009213991A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008058974A JP2009213991A (ja) 2008-03-10 2008-03-10 金属酸化物触媒

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008058974A JP2009213991A (ja) 2008-03-10 2008-03-10 金属酸化物触媒

Publications (1)

Publication Number Publication Date
JP2009213991A true JP2009213991A (ja) 2009-09-24

Family

ID=41186443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008058974A Pending JP2009213991A (ja) 2008-03-10 2008-03-10 金属酸化物触媒

Country Status (1)

Country Link
JP (1) JP2009213991A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085881A (zh) * 2019-04-04 2019-08-02 温州大学 一种铁化合物填充氮磷共掺杂碳纳米管复合材料的制备方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205104A (ja) * 2000-01-27 2001-07-31 Toyota Central Res & Dev Lab Inc 光触媒物質および光触媒体
JP2003171578A (ja) * 2001-12-06 2003-06-20 Sumitomo Chem Co Ltd コーティング液および光触媒機能製品
JP2005082878A (ja) * 2003-09-11 2005-03-31 Matsushita Electric Ind Co Ltd 金属オキシナイトライドの製造方法及び光触媒粒子
JP2006134602A (ja) * 2004-11-02 2006-05-25 Bridgestone Corp 触媒構造体及びそれを用いた固体高分子型燃料電池用膜電極接合体
JP2006161203A (ja) * 2004-12-06 2006-06-22 Kaori Yano 和服
JP2007512154A (ja) * 2003-10-23 2007-05-17 サン−ゴバン グラス フランス 保護薄層で被覆された光触媒層を備えた基材、特にガラス基材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205104A (ja) * 2000-01-27 2001-07-31 Toyota Central Res & Dev Lab Inc 光触媒物質および光触媒体
JP2003171578A (ja) * 2001-12-06 2003-06-20 Sumitomo Chem Co Ltd コーティング液および光触媒機能製品
JP2005082878A (ja) * 2003-09-11 2005-03-31 Matsushita Electric Ind Co Ltd 金属オキシナイトライドの製造方法及び光触媒粒子
JP2007512154A (ja) * 2003-10-23 2007-05-17 サン−ゴバン グラス フランス 保護薄層で被覆された光触媒層を備えた基材、特にガラス基材
JP2006134602A (ja) * 2004-11-02 2006-05-25 Bridgestone Corp 触媒構造体及びそれを用いた固体高分子型燃料電池用膜電極接合体
JP2006161203A (ja) * 2004-12-06 2006-06-22 Kaori Yano 和服

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085881A (zh) * 2019-04-04 2019-08-02 温州大学 一种铁化合物填充氮磷共掺杂碳纳米管复合材料的制备方法及其应用

Similar Documents

Publication Publication Date Title
EP2692432B1 (en) Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and process for producing exhaust gas purification catalyst
JP4982692B2 (ja) 触媒用酸化セリウム粉体およびdpf
JP5431158B2 (ja) 触媒担体又は触媒及びその製造方法
JP5332539B2 (ja) 浄化触媒
JP2010207783A (ja) アンモニア分解触媒、それを用いたアンモニア分解方法、およびアンモニア分解反応装置
JP2010099638A (ja) 触媒、排ガス浄化用触媒及び触媒の製造方法
Corradini et al. Structural and electrochemical characterization of carbon supported Pt–Pr catalysts for direct ethanol fuel cells prepared using a modified formic acid method in a CO atmosphere
JP4331792B1 (ja) 複合酸化物
WO2010095761A2 (en) Catalyst for purification of exhaust gas and method of manufacturing the same
JP2009061432A (ja) 複合酸化物、パティキュレート酸化触媒およびディーゼルパティキュレートフィルタ
JP5574222B2 (ja) Co酸化触媒及びそれを用いた排ガス浄化方法
JP2005050759A (ja) 固体高分子電解質型燃料電池カソード反応触媒
WO2017094688A1 (ja) 炭化水素の水蒸気改質触媒
JP2009213991A (ja) 金属酸化物触媒
JP4697503B2 (ja) 複合酸化物粉末とその製造方法及び触媒
CN102527386B (zh) Co氧化催化剂及利用其的废气净化方法
JP5019019B2 (ja) 排ガス浄化用触媒担体、それを用いた排ガス浄化用触媒及び排ガス浄化方法
JP5605900B2 (ja) 排ガス浄化用触媒
JP5101346B2 (ja) 排ガス浄化触媒及びその製造方法
JP2006223985A (ja) 水性ガスシフト反応触媒
JP5229096B2 (ja) 排ガス浄化用触媒
JP5533782B2 (ja) 排ガス浄化用触媒及びその製造方法
JP6439761B2 (ja) NOx吸蔵還元触媒の製造方法
JP6496932B2 (ja) 被処理ガス中の可燃成分の酸化触媒、被処理ガス中の可燃成分の酸化触媒の製造方法、被処理ガス中の可燃成分の酸化方法、及び、被処理ガス中の窒素酸化物の除去方法
EP3153225A1 (en) Exhaust gas-purifying catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120724