JP2009200157A - 可変容量素子、整合回路素子、および携帯端末装置 - Google Patents

可変容量素子、整合回路素子、および携帯端末装置 Download PDF

Info

Publication number
JP2009200157A
JP2009200157A JP2008038808A JP2008038808A JP2009200157A JP 2009200157 A JP2009200157 A JP 2009200157A JP 2008038808 A JP2008038808 A JP 2008038808A JP 2008038808 A JP2008038808 A JP 2008038808A JP 2009200157 A JP2009200157 A JP 2009200157A
Authority
JP
Japan
Prior art keywords
electrode
variable capacitance
capacitance element
signal line
movable electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008038808A
Other languages
English (en)
Other versions
JP5363005B2 (ja
Inventor
Takeaki Shimauchi
岳明 島内
Masahiko Imai
雅彦 今井
Mi Xiaoyu
シヤオユウ ミイ
Tomoshi Ueda
知史 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2008038808A priority Critical patent/JP5363005B2/ja
Priority to EP09152019.7A priority patent/EP2093778B1/en
Priority to US12/366,417 priority patent/US8665579B2/en
Priority to KR1020090013902A priority patent/KR101041326B1/ko
Priority to CN2009100076669A priority patent/CN101515503B/zh
Publication of JP2009200157A publication Critical patent/JP2009200157A/ja
Application granted granted Critical
Publication of JP5363005B2 publication Critical patent/JP5363005B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/16Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of distance between electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Micromachines (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

【課題】駆動電圧を小さく設定することができ、その用いられたデバイスの小型化が可能な可変容量素子を提供する。
【解決手段】基板1の表面にグランド電極3と信号が流れる信号線路2とを設け、当該信号線路2およびグランド電極3に対向し、当該信号線路2およびグランド電極3に対して接離する方向に変位可能に可動電極4を設ける。可動電極4に駆動電圧を印加することにより、信号線路2およびグランド電極3との間に静電引力を生じさせ、可動電極4を当該駆動電圧の大きさに応じて変位させる。
【選択図】図2

Description

本発明は、可変容量素子に関し、特に、MEMS(Micro Electro Mechanical System)技術を用いた可変容量素子、この可変容量素子を用いた整合回路素子、およびこの可変容量素子または整合回路素子を用いた携帯端末装置に関する。
可変容量素子は、可変周波数発振器、同調増幅器、位相シフタ、インピーダンス整合回路などの電気回路において重要な部品であり、近年、携帯端末装置への搭載が増えてきている。携帯端末装置の技術分野では、高機能を実現するために搭載される部品の増加などに伴い、使用する部品の小型化に対する要求が高まっている。このような要求に応えるべく、可変容量素子について、MEMS(Micro Electro Mechanical System)技術の利用による微小化が進められている。MEMS技術を用いて作成された可変容量素子は、現在、主に使用されているバラクタダイオードと比べて、損失が小さくてQ値を高くできるという利点があり、その開発が急がれている。
MEMS技術を用いて作成された可変容量素子として、例えば特開2007−273932号公報には、対向する2つの電極間の距離を変化させて容量を変化させる可変容量素子が記載されている。
図28および図29は、従来の一般的な可変容量素子F1の断面図である。可変容量素子F1は、基板101、固定電極102、可動電極104、誘電体層105、および一対の支持部106を備える。固定電極102は、基板101の上面(図28における上側の面)に設けられている。可動電極104は、固定電極102の上方に、一対の支持部106を架橋するように設けられている。可動電極104は、固定電極102に対向する部位を有する。誘電体層105は、固定電極102の上面に、固定電極102と可動電極104との接触による短絡を防止するために設けられている。基板101は、シリコン材料よりなり、固定電極102および可動電極104は、各々、所定の金属材料よりなる。
可変容量素子F1においては、固定電極102および可動電極104の間に電圧を加えると、両電極102,104間に静電引力が発生し、当該静電引力により可動電極104は固定電極102に引き寄せられて、両電極102,104間の距離が変化する。この距離の変化によって両電極102,104間の静電容量は変化する。したがって、可変容量素子F1においては、固定電極102および可動電極104の間に加える電圧を変化させることにより、静電容量を変化させることが可能である。
可変容量素子F1の静電容量は、誘電体層105の膜厚が極めて薄いので、可動電極104と固定電極102との間の距離dが誘電体層の容量値への影響を無視できない領域(例えば、可動電極104が固定電極102に近接した領域)は別として、それ以外の領域ではほぼ距離dに反比例する特性を有する。
従って、可変容量素子F1の静電容量は、固定電極102と可動電極104とが離れた状態(電極間の距離dが最大となる状態、図28参照)で最小となり、固定電極102と可動電極104とが誘電体層105を介して接触した状態(電極間の距離dが最小となる状態、図29参照)で最大となる。
図30は、固定電極102および可動電極104の間に加えられる駆動電圧と、可変容量素子F1の静電容量との関係を示す。横軸が駆動電圧であり、縦軸が静電容量である。静電容量は、駆動電圧を大きくしていくと、急激に増加した後、一定の値(最大静電容量)(P1点参照)となる。また、駆動電圧を小さくしていくと、急激に減少した後、一定の値(最小静電容量)(P2点参照)となる。
図30における静電容量の変化時の特性は、上述したように電極間の距離dに反比例した特性となっており、P1点は固定電極102が誘電体層105を介して可動電極104に接触した点であり、P2点は固定電極102と可動電極104との間の静電引力がなくなった点である。P1点における駆動電圧を駆動電圧Vonとし、P2点における駆動電圧を駆動電圧Voffとすると、可変容量素子F1は、駆動電圧Voffと駆動電圧Vonとで静電容量の切り替えを行なう容量型スイッチとして使用することができる。
特開2007−273932号公報
しかしながら、可変容量素子F1を容量型スイッチとして実際に使用する場合、可動電極104の駆動電圧(直流電圧)は当該可動電極104にだけ印加され、可変容量素子F1に接続される他の回路には印加されないように、可動電極104の駆動電圧を遮断するための回路(以下、この回路を「DC遮断ブロック」という。)を設ける必要がある。
図31は、容量型スイッチとして用いるための可変容量素子F1を不平衡型の交流信号の信号線路に並列接続したときの等価回路図を示す。
この場合、固定電極102と可動電極104がそれぞれグランド側と、例えばRF信号(交流信号)が流れる信号線路110側とに接続され、可動電極104にDC電源113から駆動電圧が印加される構成となる。したがって、DC電源113からの駆動電圧が信号線路110に印加されないようにするために、信号線路110と可変容量素子F1との間にDC遮断ブロックとしてのコンデンサ111が設けられている。また、信号線路110を流れるRF信号がコンデンサ111とDC電源113の経路でグランドにバイパスされるのを防止するために、駆動電圧を可動電極104に加えるためのDC電源113と可動電極104との間にRF信号を遮断するための回路(以下、この回路を「RF遮断ブロック」という。)としてのインダクタ114が設けられている。
可変容量素子F1の特性に影響を与えないようにするために、コンデンサ111の容量は可変容量素子F1に対して十分に大きなものとしなければならない。容量の大きいコンデンサ111は形状が大きくなるので、可変容量素子F1を用いたデバイスを小型化するには制限があった。
また、駆動電圧Voffは、信号線路110を流れるRF信号により固定電極102と可動電極104との間に加えられる電圧より大きい電圧にする必要がある。したがって、信号線路110を大電力のRF信号が流れる場合、駆動電圧Voffを大きく設定する必要がある。この場合、図30の特性から明らかなように、駆動電圧Vonは駆動電圧Voffよりも大きく設定されることになるので、オンのとき(最大静電容量のとき)には固定電極102と可動電極104との間には大きな駆動電圧が加えられることになり、誘電体層105の帯電現象が起こりやすくなる。
本発明は上記した事情のもとで考え出されたものであって、駆動電圧を小さく設定することができ、その用いられたデバイスの小型化が可能な可変容量素子を提供することをその目的としている。
上記課題を解決するため、本発明では、次の技術的手段を講じている。
本発明の第1の側面によって提供される可変容量素子は、基板と、基板の表面に設けられた、信号が流れる信号線路と、基板の表面に設けられたグランド電極と、信号線路およびグランド電極に対向し、当該信号線路およびグランド電極に対して接離する方向に変位可能に設けられた可動電極と、を備える。
本発明の好ましい実施の形態においては、可動電極は、当該可動電極に駆動電圧が印加されることによって信号線路およびグランド電極との間に生じる静電引力で変位し、その変位量は駆動電圧の大きさに応じて変化する。
この構成によると、信号線路と可動電極とが構成する可変コンデンサと、グランド電極と可動電極とが構成する可変コンデンサとが直列接続された構成となる。これにより、信号線路に加えられる電圧が、2つの可変コンデンサにより分圧されることになる。したがって、信号線路およびグランド電極と可動電極との間に静電引力を働かせるために必要な駆動電圧を小さく設定することができる。また、可動電極に加えられる駆動電圧が2つの可変コンデンサにより遮られるので、別途DC遮断ブロックとしてのコンデンサを設ける必要が無い。したがって、当該可変容量素子を用いたデバイスを小型化することができる。
本発明の好ましい実施の形態においては、可動電極は、両端部およびその間の所定の部分が基板の表面に支持部によって固定されている。この構成によると、製造工程における残留応力などによる可動電極の反りを抑制することができる。
本発明の好ましい実施の形態においては、信号線路および/またはグランド電極は、基板の表面に対して垂直方向に可動自在に設けられている。この構成によると、可動電極を信号線路および/またはグランド電極に引き付けるために必要な静電引力を小さくできるので、可動電極に加える駆動電圧を低く抑えることができる。
本発明の好ましい実施の形態においては、信号線路およびグランド電極はCPW(Coplanar Waveguide:コプレナ導波路)構造で形成されている。この構成によると、信号線路のインピーダンスを容易に制御することができる。
本発明の好ましい実施の形態においては、信号線路および/またはグランド電極と可動電極との間には、誘電体層が設けられている。この構成によると、信号線路またはグランド電極と可動電極との接触による短絡を防止することができる。
本発明の第2の側面によって提供される可変容量素子は、基板と、基板の表面に設けられた、信号が入力される入力電極と、基板の表面に設けられ、入力電極と電気的に接続されていない、信号を出力する出力電極と、入力電極および出力電極に対向し、当該信号線路およびグランド電極に対して接離する方向に変位可能に設けられた可動電極と、を備る。
本発明の好ましい実施の形態においては、可動電極は、当該可動電極に駆動電圧が印加されることによって入力電極および出力電極との間に生じる静電引力で変位し、その変位量は駆動電圧の大きさに応じて変化する。
この構成によると、入力電極と可動電極とが構成する可変コンデンサと、出力電極と可動電極とが構成する可変コンデンサとが直列接続された構成となる。これにより、可動電極に加えられる駆動電圧が2つの可変コンデンサにより遮られるので、別途DC遮断ブロックとしてのコンデンサを設ける必要が無い。したがって、当該可変容量素子を用いたデバイスを小型化することができる。
本発明の好ましい実施の形態においては、可動電極は、両端部およびその間の所定の部分が基板の表面に支持部によって固定されている。この構成によると、製造工程における残留応力などによる可動電極の反りを抑制することができる。
本発明の好ましい実施の形態においては、入力電極および/または出力電極は、基板の表面に対して垂直方向に可動自在に設けられている。この構成によると、可動電極を入力電極および/または出力電極に引き付けるために必要な静電引力を小さくできるので、可動電極に加える駆動電圧を低く抑えることができる。
本発明の好ましい実施の形態においては、入力電極および出力電極との間でCPW構造を形成するグランド電極を更に備えている。この構成によると、入力電極および出力電極のインピーダンスを容易に制御することができる。
本発明の好ましい実施の形態においては、入力電極および/または出力電極と可動電極との間には、誘電体層が設けられている。この構成によると、入力電極または出力電極と可動電極との接触による短絡を防止することができる。
本発明の第3の側面によって提供される整合回路素子は、第1の側面または第2の側面によって提供される可変容量素子を用いている。したがって、駆動電圧を小さく設定することができ、信頼性を保つことができる。また、小型化することができる。
本発明の第4の側面によって提供される携帯端末装置は、第1の側面もしくは第2の側面によって提供される可変容量素子、または、第3の側面によって提供される整合回路素子を用いている。したがって、駆動電圧を小さく設定することができ、信頼性を保つことができる。また、小型化することができる。
本発明のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。
以下、本発明の好ましい実施の形態を、図面を参照して具体的に説明する。
図1および図2は、本発明に係る可変容量素子の第1実施形態を説明するための図である。図1はこの可変容量素子A1の平面図であり、図2は図1のII−II断面図である。
可変容量素子A1は、基板1、信号線路2、グランド電極3、可動電極4、誘電体層5、および一対の支持部6を備える。可変容量素子A1は、当該可変容量素子A1が搭載される基板に配線された電気回路の信号線路とグランドに信号線路2とグランド電極3とをそれぞれ接続して、例えば容量型スイッチとして用いられる。なお、実際には誘電体層5の図1における左右方向の幅は可動電極4の幅と略同じで、平面図では誘電体層5が可動電極4に隠れてしまう。したがって、図1では、誘電体層5の存在が分かるようにするために、誘電体層5の左右方向の幅を可動電極4の幅よりも広く描いている。また、誘電体層5の図1における上下方向の幅は信号線路2およびグランド電極3の幅と略同じであるが、誘電体層5の存在を明示するために、誘電体層5の上下方向の幅も実際より広く描いている。以下の各可変容量素子の平面図においても同様である。
基板1は、シリコン材料よりなる、平面視矩形状の板である。基板1の長辺および短辺は、例えば、1〜2mm程度であり、その厚さは、例えば300μm程度である。
信号線路2は、RF信号が流れる線路である。信号線路2は、基板1の上面(図2における上側の面)に、基板1の長辺と平行に、基板1の長辺方向(図1では横方向)の両端部付近まで延びるように設けられている。グランド電極3は、グランド接続される電極である。グランド電極3は、基板1の上面に、信号線路2と平行に、基板1の長辺方向の両端部付近まで延びるように設けられている。信号線路2およびグランド電極3は、アルミニウム(Al)や銅(Cu)などの導電材料よりなる。
可動電極4は、基板1の長辺方向の中央を短辺と平行に、短辺方向(図1では縦方向)の両端部付近まで、後述する一対の支持部6を架橋するように設けられており、基板1の上面に対して垂直方向(図2の上下方向)に可動自在となっている。可動電極4は、信号線路2およびグランド電極3と直交するように設けられており、それぞれと対向する部位を有する。この対向する部分の面積は、例えば、40000(200×200)〜90000(300×300)μm2程度である。可動電極4の厚さT1は、例えば1〜2μm程度であり、可動電極4と信号線路2およびグランド電極3との距離L1は、0.5〜2μm程度である(図2参照)。可動電極4は、アルミニウムや銅などの導電材料よりなる。
誘電体層5は、信号線路2およびグランド電極3の可動電極4と対向する部位の上面に設けられている。誘電体層5は、信号線路2およびグランド電極3と可動電極4との接触による短絡を防止するためのものであり、その厚さは、例えば0.1〜0.5μm程度である。誘電体層5は、例えばアルミナ(Al23)、酸化シリコン(SiO2)、窒化シリコン(SiNX)などの誘電体材料よりなる。
支持部6は、可動電極4を支持する部材であり、可動電極4と同じ導電材料よりなる。2つの支持部6は、可動電極4の長辺方向の端部をそれぞれ支持している。基板1の上面には、支持部6を介した可動電極4や信号線路2およびグランド電極3と電気的に接続する所定の配線パターン(図示略)が設けられている。
なお、基板1、信号線路2、グランド電極3、可動電極4、誘電体層5、および支持部6の大きさ、形状、材質、配置などは上記に限定されるものではない。
可変容量素子A1は、いわゆるMEMS技術を用いて製造される。すなわち、まず、基板1上に信号線路2およびグランド電極3と誘電体層5とを積層形成する。次に、犠牲膜を形成した後、可動電極4を形成する。最後に、ウエットエッチング法により犠牲膜を除去する。これにより、可動電極4の可動空間が形成される。可動電極4と信号線路2およびグランド電極3との距離L1は、犠牲膜の厚さを調整することにより、調整される。なお、可変容量素子A1の製造方法は、上記に限られない。
図3は、可変容量素子A1に駆動電圧を供給するDC電源を接続したときの等価回路図を示す。同図において、可変容量素子A1は、2つの直列接続された可変コンデンサ11,12で表される。信号線路2と可動電極4とが可変コンデンサ11を構成し、グランド電極3と可動電極4とが可変コンデンサ12を構成する。可変容量素子A1の可動電極4はRF遮断ブロックとしてのインダクタ14を介してDC電源13に接続されている。
可動電極4には、DC電源13から駆動電圧が印加され、可変容量素子A1は、図30に示した特性で容量が変化する。駆動電圧がVoffのとき、可動電極4と信号線路2およびグランド電極3との間に働く静電引力は小さく、可動電極4と信号線路2およびグランド電極3とは離れた状態となっており、可変容量素子A1の静電容量は最小となる。一方、駆動電圧がVonのとき、可動電極4と信号線路2およびグランド電極3との間に働く静電引力は大きく、可動電極4と信号線路2およびグランド電極3とは誘電体層5を介して接触した状態となっており、可変容量素子A1の静電容量は最大となる。これにより、可変容量素子A1は、DC電源13から加えられる駆動電圧をVoffとVonとで切り換えられることにより、容量型スイッチとして働く。
図3に示すように、可変容量素子A1は、2つの可変コンデンサ11,12を直列接続した構成となっている。したがって、RF信号によって信号線路2上に生じる電圧は可変コンデンサ11,12で分圧され、各可変コンデンサ11,12の両端に印加される電圧(可動電極4と信号線路2との間の電圧と可動電極4とグランド電極3との間の電圧)は、可変コンデンサ11、12の容量が同じ場合は、その電圧の約半分となる。したがって、可変容量素子A1の駆動電圧Voffを、従来の可変容量素子F1(図28および図29参照)の駆動電圧Voffより小さく設定することができる。この場合、駆動電圧Vonも小さく設定することができるので、誘電体層5の帯電現象を抑制することができる。また、RF信号によって生じる信号線路2の電圧のほぼ半分の電圧しか各可変コンデンサ11,12の両端には加わらないので、信号線路2の電圧変動による可変コンデンサ11,12への負荷が小さくなり、可動電極4の弾性定数の経時変化を小さく抑えることができる。したがって、可変容量素子A1の信頼性を保つことができる。
また、可変コンデンサ11によりDC電源13から加えられる駆動電圧が遮断され、駆動電圧が信号線路2を通して基板に形成される他の電気回路に印加されることを防ぐことができる。すなわち、可変コンデンサ11がDC遮断ブロックとして機能するので、従来の可変容量素子F1を用いる場合に必要であったDC遮断ブロックとしてのコンデンサが不要となる。したがって、可変容量素子A1を用いたデバイスを小型化することができる。
図4は、可変容量素子A1の第1変形例を示す断面図である。第1変形例の平面図は、図1と同じであるので、省略し、図2に相当する断面図のみを示している。図4に示す可変容量素子A2は、信号線路2とグランド電極3との間に支持部6’が設けられている点で可変容量素子A1と異なる。可変容量素子A2の可動電極4は、長辺方向の中央付近で支持部6’に支持されるので、製造工程における残留応力などによる反りを抑制することができる。したがって、可変容量素子A2の可動電極4の反りによる不良率は、可変容量素子A1よりも減少する。したがって、歩留まりの向上を図ることができる。
図5は、可変容量素子A1の第2変形例を示す平面図である。なお、可変容量素子A1の図2に相当する断面図は省略している。図5に示す可変容量素子A3は、信号線路2に対してグランド電極3と反対側(図5における上側)に、グランド電極3’が設けられている点で可変容量素子A1と異なる。可変容量素子A3の信号線路2およびグランド電極3,3’は、CPW構造を形成している。したがって、可変容量素子A3においては、信号線路2のインピーダンスの設計を容易に調整することができる。
図6および図7は、可変容量素子A1の第3変形例を示す図である。図6は、可変容量素子A4の平面図であり、図7は、図6のVII−VII断面図である。図6および図7に示す可変容量素子A4は、基板1の上面に凹部1aが設けられている点で可変容量素子A1と異なる。凹部1aは、信号線路2およびグランド電極3が可動電極4と対向する部位の下方に設けられている。
この凹部1aにより、信号線路2およびグランド電極3の可動電極4と対向する部位は、基板1の上面に対して垂直方向(図7の上下方向)に可動自在となる。可動電極4と信号線路2およびグランド電極3とがともに可動自在となるので、可動電極4と信号線路2およびグランド電極3とを互いに引き付けるために必要な静電引力を小さくすることができ、可動電極4に加える駆動電圧を低く抑えることができる。また、凹部1aにより、信号線路2およびグランド電極3が基板1と接する面積が小さくなり、信号線路2およびグランド電極3から基板1に漏れる電荷を抑制することができるので、可変容量素子A4のQ値を向上させることができる。
なお、第3変形例において、凹部1aは1つの大きな凹部とされているが、これに限られない。例えば、信号線路2が可動電極4と対向する部位の下方とグランド電極3が可動電極4と対向する部位の下方とに別々にそれぞれ凹部1aを設けてもよい。また、凹部1aが設けられていなくても、信号線路2およびグランド電極3の可動電極4と対向する部位が垂直方向に可動自在となる構成であれば、可動電極4に加える駆動電圧を低く抑えることができるという効果を奏することができる。このとき、一方のみ可動自在として、他方を固定としてもよい。
図8は、可変容量素子A1の第4変形例を示す断面図である。なお、第4変形例の平面図は、図6と同様なので、省略し、図7に相当する断面図のみを示している。図8に示す可変容量素子A5は、信号線路2とグランド電極3との間に支持部6’が設けられている点と、基板1の上面に凹部1aが設けられている点で可変容量素子A1と異なる。凹部1aは、信号線路2およびグランド電極3が可動電極4と対向する部位の下方にそれぞれ設けられている。可変容量素子A5は、上記第1変形例および第3変形例の両方の効果を有する。
なお、上述した第1実施形態およびその変形例では、信号線路2およびグランド電極3の上面に誘電体層5が設けられている場合について説明したが、これに限られない。誘電体層5が可動電極4の下面にも設けられていてもよいし、信号線路2およびグランド電極3の上面には設けられず可動電極4の下面にのみ設けられていてもよい。また、駆動電圧が最大となっても可動電極4と信号線路2およびグランド電極3とが接触しないように構成されている場合は、誘電体層5が設けられていなくてもよい。また、可変コンデンサ11と可変コンデンサ12(図3参照)の容量値に差をつける場合などには、一方のみ誘電体層5を設けて、他方には誘電体層5を設けないようにしてもよい。
上述した第1実施形態では、可変容量素子を並列接続で用いる場合について説明したが、以下に直列接続で用いられる可変容量素子について説明する。
図9は、本発明に係る可変容量素子の第2実施形態を説明するための図であり、直列接続で用いられる可変容量素子B1を示す平面図である。同図において、上記第1実施形態と同一または類似の要素には、同一の符号を付している。図9に示す可変容量素子B1は、グランド電極3に代えて信号線路2’が設けられている点と、信号線路2,2’の形状が可変容量素子A1と異なる。
図9に示すように、可変容量素子B1において、信号線路2は基板1の長辺方向の一方(図9における左側)端部付近から可動電極4と対向する部位までとされ、信号線路2’は基板1の長辺方向の他方(図9における右側)端部付近から可動電極4と対向する部位までとされている。これは、信号線路2,2’を図1のように平行に延ばすと、その平行に延びた部分で信号線路2,2’間に寄生容量が生じるので、その寄生容量を生じないようにするためである。
図10は、可変容量素子B1に駆動電圧を供給するDC電源を接続したときの等価回路図を示す。同図において、可変容量素子B1は、2つの直列接続された可変コンデンサ11’,12’で表される。信号線路2と可動電極4とが可変コンデンサ11’を構成し、信号線路2’と可動電極4とが可変コンデンサ12’を構成する。可変容量素子B1の可動電極4はRF遮断ブロックとしてのインダクタ14を介してDC電源13に接続されている。
可変容量素子B1は、RF信号の信号線路上に直列に接続されて使用され、RF信号が信号線路2から信号線路2’に流れる点で可変容量素子A1と異なるが、DC電源13から加えられる駆動電圧をVoffとVonとで切り換えられることにより、容量型スイッチとして動作する点では可変容量素子A1と共通する。
また、図10に示すように、可変容量素子B1は、2つの可変コンデンサ11’,12’を直列接続した構成となっている。したがって、可変コンデンサ11’,12’によりDC電源13から加えられる駆動電圧が遮断され、駆動電圧が基板に形成される他の電気回路に信号線路2,2’を通して印加されることを防ぐことができる。すなわち、可変コンデンサ11’,12’がDC遮断ブロックとして機能するので、従来の可変容量素子F1を用いる場合に必要であったDC遮断ブロックとしてのコンデンサが不要となる。したがって、可変容量素子B1を用いたデバイスを小型化することができる。
第2実施形態においても、信号線路2と信号線路2’との間に支持部6’を設けることにより(図4参照)、上記第1実施形態の第1変形例と同様の効果を奏することができる。また、基板1の上面に凹部1aを設けることにより(図6および図7参照)、上記第1実施形態の第3変形例と同様の効果を奏することができる。さらに、信号線路2と信号線路2’との間に支持部6’を設けて、基板1の上面に凹部1aを設けることにより(図8参照)、上記第1実施形態の第4変形例と同様の効果を奏することができる。
上述した第2実施形態においても、誘電体層5が可動電極4の下面にも設けられていてもよいし、信号線路2,2’の上面には設けられず可動電極4の下面にのみ設けられていてもよい。また、駆動電圧が最大となっても可動電極4と信号線路2,2’とが接触しないよう構成されている場合は、誘電体層5が設けられていなくてもよい。また、可変コンデンサ11’と可変コンデンサ12’(図10参照)の容量値に差をつける場合などには、一方のみ誘電体層5を設けて、他方には誘電体層5を設けないようにしてもよい。
なお、信号線路2,2’の形状は第2実施形態のものに限られず、寄生容量が無視できるものであれば、信号線路2,2’を基板1の長辺方向の両端部付近まで延ばしても構わない。また、可動電極4の形状も第2実施形態のものに限定されない。
図11、図12および図13は、本発明に係る可変容量素子の第3実施形態を説明するための図である。図11はこの可変容量素子C1の平面図であり、図12は図11のXII−XII断面図であり、図13は図11のXIII−XIII断面図である。これらの図において、上記第2実施形態と同一または類似の要素には、同一の符号を付している。可変容量素子C1は、信号線路2,2’および可動電極4’の形状が可変容量素子B1と異なる。
信号線路2は、基板1の短辺方向の中央を長辺と平行に、長辺方向の一方端部付近から中央手前付近まで延びるように設けられている。信号線路2’は、基板1の短辺方向の中央を長辺と平行に、長辺方向の他方端部付近から中央手前付近まで延びるように設けられている。信号線路2と信号線路2’との間には、電気的に接続されないように、また、寄生容量を発生させないように、所定の間隔が設けられている。可動電極4’は、平面視略ロ字形状をなし、基板1の中央付近に、短辺方向の両端部付近に設けられた一対の支持部6を架橋するように設けられており、基板1の上面に対して垂直方向に可動自在となっている。可動電極4’は、信号線路2,2’と対向する部位を有する。誘電体層5は、信号線路2,2’の可動電極4’と対向する部位の上面に設けられている。
可変容量素子C1は、可変容量素子B1の信号線路2,2’および可動電極4’の形状を変更しただけであるので、駆動電圧を供給するDC電源を接続したときの等価回路図は図10と同じである。したがって、可変容量素子C1も、DC遮断ブロックとしてのコンデンサが不要となり、その用いられたデバイスを小型化することができるという可変容量素子B1と同様の効果を奏する。
図14は、可変容量素子C1の第1変形例を示す平面図である。なお、可変容量素子C1の図12および図13に相当する断面図は省略している。図14に示す可変容量素子C2は、信号線路2,2’を挟むように一対のグランド電極3’が設けられている点で可変容量素子C1と異なる。可変容量素子C2の信号線路2,2’および一対のグランド電極3’は、CPW構造を形成している。したがって、可変容量素子C2においては、信号線路2,2’のインピーダンスの設計を容易に調整することができる。
図15は、可変容量素子C1の第2変形例を示す断面図である。なお、可変容量素子C1の図11に相当する平面図および図12に相当する断面図は省略している。図15に示す可変容量素子C3は、基板1の上面に凹部1aが設けられている点で可変容量素子C1と異なる。凹部1aは、信号線路2,2’が可動電極4’と対向する部位の下方に設けられている。
この凹部1aにより、信号線路2,2’が可動電極4’と対向する部位は、基板1の上面に対して垂直方向(図15で上下方向)に可動自在となる。可動電極4’と信号線路2,2’とがともに可動自在となるので、図6,図7に示した可変容量素子A4と同様に、可動電極4’に加える駆動電圧を低く抑えることができる。また、凹部1aにより、信号線路2,2’が基板1と接する面積が小さくなり、信号線路2,2’から基板1に漏れる電荷を抑制することができるので、可変容量素子C3のQ値を向上させることができる。
なお、第2変形例において、凹部1aは1つの大きな凹部とされているが、これに限られない。例えば、信号線路2が可動電極4’と対向する部位の下方と信号線路2’が可動電極4’と対向する部位の下方とに別々にそれぞれ凹部1aを設けてもよい。また、凹部1aが設けられていなくても、信号線路2,2’の可動電極4’と対向する部位が垂直方向に可動自在となる構成であれば、可動電極4’に加える駆動電圧を低く抑えることができるという効果を奏することができる。このとき、一方のみ可動自在として、他方を固定としてもよい。
上述した第3実施形態およびその変形例においても、誘電体層5が可動電極4’の下面にも設けられていてもよいし、信号線路2,2’の上面には設けられず可動電極4’の下面にのみ設けられていてもよい。また、駆動電圧が最大となっても可動電極4’と信号線路2,2’とが接触しないよう構成されている場合は、誘電体層5が設けられていなくてもよい。また、可変コンデンサ11’と可変コンデンサ12’(図10参照)の容量値に差をつける場合などには、一方のみ誘電体層5を設けて、他方には誘電体層5を設けないようにしてもよい。
また、直列接続で用いられる可変容量素子において、各電極の形状および配置を第3実施形態と同様にしてもよい。
図16は、本発明に係る可変容量素子の第4実施形態を説明するための図であり、並列接続で用いられる可変容量素子D1を示す平面図である。同図において、上記第3実施形態と同一または類似の要素には、同一の符号を付している。図16に示す可変容量素子D1は、信号線路2’の替わりに、グランド電極3が設けられている点と、信号線路2およびグランド電極3の形状が可変容量素子C1と異なる。
図16に示すように、可変容量素子D1において、信号線路2およびグランド電極3は平面視T字形状をなしているが、可変容量素子C1における信号線路2,2’と同様としてもよい。
可変容量素子D1は、可変容量素子A1の信号線路2、グランド電極3および可動電極4の形状を変更しただけであるので、駆動電圧を供給するDC電源を接続したときの等価回路図は図3と同じである。したがって、RF信号によって信号線路2上に生じる電圧は可変コンデンサ11,12で分圧され、各可変コンデンサ11,12の両端に印加される電圧(可動電極4と信号線路2との間の電圧と可動電極4とグランド電極3との間の電圧)はその電圧の約半分となる。したがって、可変容量素子D1も、可変容量素子A1と同様の効果を奏する。
第4実施形態においても、基板1の上面に凹部1aを設けることにより(図15参照)、上記第3実施形態の第2変形例と同様の効果を奏することができる。
上述した第4実施形態においても、誘電体層5が可動電極4’の下面にも設けられていてもよいし、信号線路2およびグランド電極3の上面には設けられず可動電極4’の下面にのみ設けられていてもよい。また、駆動電圧が最大となっても可動電極4’と信号線路2およびグランド電極3とが接触しないよう構成されている場合は、誘電体層5が設けられていなくてもよい。また、可変コンデンサ11と可変コンデンサ12(図3参照)の容量値に差をつける場合などには、一方のみ誘電体層5を設けて、他方には誘電体層5を設けないようにしてもよい。
なお、上述した第1ないし第4実施形態では、可変容量素子を容量型スイッチとして用いる場合について説明したが、これに限られない。可動電極4または4’に加えられる駆動電圧の変化に応じて静電容量がなだらかに変化するように構成されていれば、駆動電圧により静電容量を制御する可変容量素子として用いることができる。
次に、可変容量素子を用いた整合回路素子について説明する。
図17は、図5に示す可変容量素子A3の信号線路2にインダクタ2aを設けたΓ型整合回路素子E1を示す平面図である。図18は、Γ型整合回路素子E1に駆動電圧を供給するDC電源を接続したときの等価回路図を示す。図19は、図5に示す可変容量素子A3にさらに可動電極4を追加して、信号線路2の2つの可動電極4の間にインダクタ2aを設けたΠ型整合回路素子E2を示す平面図である。図20は、Π型整合回路素子E2に駆動電圧を供給するDC電源を接続したときの等価回路図を示す。
図21は、図16に示す可変容量素子D1の信号線路2にインダクタ2aを設けたΓ型整合回路素子E3を示す平面図である。Γ型整合回路素子E3に駆動電圧を供給するDC電源を接続したときの等価回路図は、図18と同じである。図22は、図16に示す可変容量素子D1にさらに可動電極4’を追加して、信号線路2の2つの可動電極4’の間にインダクタ2aを設けたΠ型整合回路素子E4を示す平面図である。Π型整合回路素子E4に駆動電圧を供給するDC電源を接続したときの等価回路図は図20と同じである。
これらの整合回路素子は、上述した第1実施形態または第4実施形態に係る可変容量素子を用いるので、従来の整合回路素子と比べて、駆動電圧を小さく設定することができ、信頼性を保つことができる。また、これらの整合回路素子は、従来の整合回路素子と比べて小型化することができる。
図23は、図14に示す可変容量素子C2の信号線路2とグランド電極3’との間にインダクタ2aを設けたΓ型整合回路素子F1を示す平面図である。図24は、Γ型整合回路素子F1に駆動電圧を供給するDC電源を接続したときの等価回路図を示す。図25は、図14に示す可変容量素子C2の信号線路2とグランド電極3’との間および信号線路2’とグランド電極3’との間にそれぞれインダクタ2aおよびインダクタ2’aを設けたΠ型整合回路素子F2を示す平面図である。図26は、Π型整合回路素子F2に駆動電圧を供給するDC電源を接続したときの等価回路図を示す。
これらの整合回路素子は、上述した第3実施形態に係る可変容量素子を用いるので、従来の整合回路素子と比べて小型化することができる。
本発明に係る可変容量素子および整合回路素子は、携帯端末装置の電子部品として用いることができる。図27は、本発明に係る可変容量素子および整合回路素子が電子部品として用いられている携帯端末装置のフロントエンド部を示すブロック図である。
携帯端末装置のフロントエンド部G1は、位相器を用いたアダプティブアレイアンテナG101、チューナブルフィルタG102、デュプレクサG104、インピーダンス整合回路G103,G105,G107、整合回路付き増幅器G106,G108、VCO(Voltage Controlled Oscillator)からなる可変周波数発振器G109を備えている。
フロントエンド部G1では、アダプティブアレイアンテナG101で受信されるRF信号からチューナブルフィルタG102で特定の受信帯域のRF信号(受信信号)が取り出され、デュプレクサG104によって増幅器G108に入力される。受信信号は、増幅器G108で増幅された後、可変周波数発振器G109から出力されるローカル信号とミキシングされて所定の中間周波数に変換された後、図略の受信部に出力される。また、図略の送信部から入力されるFR信号(送信信号)は、増幅器G106によって増幅された後、デュプレクサG104によってチューナブルフィルタG102に入力される。送信信号は、チューナブルフィルタG102で特定の送信帯域以外の成分が除去されてアダプティブアレイアンテナG101から放射される。各部分G101〜G109の構成や機能は、一般的なものなので、説明を省略する。
図27に示す携帯端末装置のフロントエンド部G1には、チューナブルフィルタG102、可変周波数発振器G109の周波数変更用の素子として本発明に係る可変容量素子が用いられており、アダプティブアレイアンテナG101の位相器、インピーダンス整合回路G103,G105,G107および増幅器G106,G108の整合回路に本発明に係る整合回路素子が用いられている。したがって、フロントエンド部G1を従来の可変容量素子および整合回路素子を用いた場合より小さく設計することができるので、携帯端末装置を小型化することができる。また、各可変容量素子および整合回路素子の駆動電圧を小さく設定することができるので、信頼性を保つことができる。
なお、図27に示す全ての電子部品に本発明に係る可変容量素子および整合回路素子を用いる必要はなく、一部に用いた携帯端末装置においても、同様の効果を奏することができる。
本発明に係る可変容量素子、整合回路素子および携帯端末装置は、上述した実施形態に限定されるものではない。本発明に係る可変容量素子、整合回路素子および携帯端末装置の各部の具体的な構成は、種々に設計変更自在である。
以上のまとめとして、本発明の構成およびそのバリエーションを以下に付記として列挙する。
(付記1)基板と、前記基板の表面に設けられた、信号が流れる信号線路と、前記基板の表面に設けられたグランド電極と、前記信号線路および前記グランド電極に対向し、当該信号線路および前記グランド電極に対して接離する方向に変位可能に設けられた可動電極と、
を備える可変容量素子。
(付記2)前記可動電極は、当該可動電極に駆動電圧が印加されることによって前記信号線路および前記グランド電極との間に生じる静電引力で変位し、その変位量は駆動電圧の大きさに応じて変化する、付記1に記載の可変容量素子。
(付記3)前記可動電極は、両端部およびその間の所定の部分が前記基板の表面に支持部によって固定されている、付記1または2に記載の可変容量素子。
(付記4)前記信号線路および/または前記グランド電極は、前記基板の表面に対して垂直方向に可動自在に設けられている、付記1ないし3のいずれかに記載の可変容量素子。
(付記5)前記信号線路および前記グランド電極はCPW構造で形成されている、付記1ないし4のいずれかに記載の可変容量素子。
(付記6)前記信号線路および/または前記グランド電極と前記可動電極との間には、誘電体層が設けられている、付記1ないし5のいずれかに記載の可変容量素子。
(付記7)基板と、前記基板の表面に設けられた、信号が入力される入力電極と、前記基板の表面に設けられ、前記入力電極と電気的に接続されていない、前記信号を出力する出力電極と、前記入力電極および前記出力電極に対向し、当該信号線路および前記グランド電極に対して接離する方向に変位可能に設けられた可動電極と、を備る可変容量素子。
(付記8)前記可動電極は、当該可動電極に駆動電圧が印加されることによって前記入力電極および前記出力電極との間に生じる静電引力で変位し、その変位量は駆動電圧の大きさに応じて変化する、付記7に記載の可変容量素子。
(付記9)前記可動電極は、両端部およびその間の所定の部分が前記基板の表面に中間支持部によって固定されている、付記7または8に記載の可変容量素子。
(付記10)前記入力電極および/または前記出力電極は、前記基板の表面に対して垂直方向に可動自在に設けられている、付記7ないし9のいずれかに記載の可変容量素子。
(付記11)前記入力電極および前記出力電極との間でCPW構造を形成するグランド電極を更に備えている、付記7ないし10のいずれかに記載の可変容量素子。
(付記12)前記入力電極および/または前記出力電極と前記可動電極との間には、誘電体層が設けられている、付記7ないし11のいずれかに記載の可変容量素子。
(付記13)付記1ないし12のいずれかに記載の可変容量素子を用いている整合回路素子。
(付記14)付記1ないし12のいずれかに記載の可変容量素子または付記13に記載の整合回路素子を用いている携帯端末装置。
本発明に係る可変容量素子の第1実施形態を示す平面図である。 図1のII−II断面図である。 図1に示す可変容量素子にDC電源を接続したときの等価回路図である。 本発明に係る可変容量素子の第1実施形態の第1変形例を示す断面図である。 本発明に係る可変容量素子の第1実施形態の第2変形例を示す平面図である。 本発明に係る可変容量素子の第1実施形態の第3変形例を示す平面図である。 図6のVII−VII断面図である。 本発明に係る可変容量素子の第1実施形態の第4変形例を示す断面図である。 本発明に係る可変容量素子の第2実施形態を示す平面図である。 図9に示す可変容量素子にDC電源を接続したときの等価回路図である。 本発明に係る可変容量素子の第3実施形態を示す平面図である。 図11のXII−XII断面図である。 図11のXIII−XIII断面図である。 本発明に係る可変容量素子の第3実施形態の第1変形例を示す平面図である。 本発明に係る可変容量素子の第3実施形態の第2変形例を示す断面図である。 本発明に係る可変容量素子の第4実施形態を示す平面図である。 図5に示す可変容量素子を用いたΓ型整合回路素子を示す平面図である。 図17に示すΓ型整合回路素子にDC電源を接続したときの等価回路図である。 図5に示す可変容量素子を用いたΠ型整合回路素子を示す平面図である。 図19に示すΠ型整合回路素子にDC電源を接続したときの等価回路図である。 図16に示す可変容量素子を用いたΓ型整合回路素子を示す平面図である。 図16に示す可変容量素子を用いたΠ型整合回路素子を示す平面図である。 図14に示す可変容量素子を用いたΓ型整合回路素子を示す平面図である。 図23に示すΓ型整合回路素子にDC電源を接続したときの等価回路図である。 図14に示す可変容量素子を用いたΠ型整合回路素子を示す平面図である。 図25に示すΠ型整合回路素子にDC電源を接続したときの等価回路図である。 本発明に係る可変容量素子および整合回路素子が電子部品として用いられている携帯端末装置のフロントエンド部を示すブロック図である。 従来の一般的な可変容量素子の断面図であり、静電容量が最小の状態である。 従来の一般的な可変容量素子の断面図であり、静電容量が最大の状態である。 固定電極および可動電極の間に加えられる駆動電圧と、可変容量素子の静電容量との関係を示す図である。 従来の可変容量素子を信号線路に並列接続したときの等価回路図である。
符号の説明
1 基板
1a 凹部
2,2’ 信号線路
3,3’ グランド電極
4,4’ 可動電極
5 誘電体層
6,6’ 支持部
11,11’,12,12’ 可変コンデンサ
13 DC電源
14 インダクタ

Claims (14)

  1. 基板と、
    前記基板の表面に設けられた、信号が流れる信号線路と、
    前記基板の表面に設けられたグランド電極と、
    前記信号線路および前記グランド電極に対向し、当該信号線路および前記グランド電極に対して接離する方向に変位可能に設けられた可動電極と、
    を備える可変容量素子。
  2. 前記可動電極は、当該可動電極に駆動電圧が印加されることによって前記信号線路および前記グランド電極との間に生じる静電引力で変位し、その変位量は駆動電圧の大きさに応じて変化する、請求項1に記載の可変容量素子。
  3. 前記可動電極は、両端部およびその間の所定の部分が前記基板の表面に支持部によって固定されている、請求項1または2に記載の可変容量素子。
  4. 前記信号線路および/または前記グランド電極は、前記基板の表面に対して垂直方向に可動自在に設けられている、請求項1ないし3のいずれかに記載の可変容量素子。
  5. 前記信号線路および前記グランド電極はCPW構造で形成されている、請求項1ないし4のいずれかに記載の可変容量素子。
  6. 前記信号線路および/または前記グランド電極と前記可動電極との間には、誘電体層が設けられている、請求項1ないし5のいずれかに記載の可変容量素子。
  7. 基板と、
    前記基板の表面に設けられた、信号が入力される入力電極と、
    前記基板の表面に設けられ、前記入力電極と電気的に接続されていない、前記信号を出力する出力電極と、
    前記入力電極および前記出力電極に対向し、当該信号線路および前記グランド電極に対して接離する方向に変位可能に設けられた可動電極と、
    を備る可変容量素子。
  8. 前記可動電極は、当該可動電極に駆動電圧が印加されることによって前記入力電極および前記出力電極との間に生じる静電引力で変位し、その変位量は駆動電圧の大きさに応じて変化する、請求項7に記載の可変容量素子。
  9. 前記可動電極は、両端部およびその間の所定の部分が前記基板の表面に支持部によって固定されている、請求項7または8に記載の可変容量素子。
  10. 前記入力電極および/または前記出力電極は、前記基板の表面に対して垂直方向に可動自在に設けられている、請求項7ないし9のいずれかに記載の可変容量素子。
  11. 前記入力電極および前記出力電極との間でCPW構造を形成するグランド電極を更に備えている、請求項7ないし10のいずれかに記載の可変容量素子。
  12. 前記入力電極および/または前記出力電極と前記可動電極との間には、誘電体層が設けられている、請求項7ないし11のいずれかに記載の可変容量素子。
  13. 請求項1ないし12のいずれかに記載の可変容量素子を用いている整合回路素子。
  14. 請求項1ないし12のいずれかに記載の可変容量素子または請求項13に記載の整合回路素子を用いている携帯端末装置。
JP2008038808A 2008-02-20 2008-02-20 可変容量素子、整合回路素子、および携帯端末装置 Expired - Fee Related JP5363005B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008038808A JP5363005B2 (ja) 2008-02-20 2008-02-20 可変容量素子、整合回路素子、および携帯端末装置
EP09152019.7A EP2093778B1 (en) 2008-02-20 2009-02-04 Variable capacitor, matching circuit element, and mobile terminal apparatus
US12/366,417 US8665579B2 (en) 2008-02-20 2009-02-05 Variable capacitor, matching circuit element, and mobile terminal apparatus
KR1020090013902A KR101041326B1 (ko) 2008-02-20 2009-02-19 가변 용량 소자, 정합 회로 소자, 및 휴대 단말 장치
CN2009100076669A CN101515503B (zh) 2008-02-20 2009-02-20 可变电容器、匹配电路元件和移动终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008038808A JP5363005B2 (ja) 2008-02-20 2008-02-20 可変容量素子、整合回路素子、および携帯端末装置

Publications (2)

Publication Number Publication Date
JP2009200157A true JP2009200157A (ja) 2009-09-03
JP5363005B2 JP5363005B2 (ja) 2013-12-11

Family

ID=40561903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008038808A Expired - Fee Related JP5363005B2 (ja) 2008-02-20 2008-02-20 可変容量素子、整合回路素子、および携帯端末装置

Country Status (5)

Country Link
US (1) US8665579B2 (ja)
EP (1) EP2093778B1 (ja)
JP (1) JP5363005B2 (ja)
KR (1) KR101041326B1 (ja)
CN (1) CN101515503B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038086A1 (ja) * 2012-09-10 2014-03-13 富士通株式会社 可変容量回路及びインピーダンス整合回路
CN104756212A (zh) * 2012-10-25 2015-07-01 德尔福芒斯公司 包括含气体的间隙的mems固定电容和用于制造所述电容器的方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212168A (ja) * 2008-02-29 2009-09-17 Sony Corp 可変容量素子、可変容量素子の調整方法、可変容量デバイス、及び電子機器
JP5204066B2 (ja) * 2009-09-16 2013-06-05 株式会社東芝 Memsデバイス
JP5338615B2 (ja) * 2009-10-27 2013-11-13 富士通株式会社 可変容量デバイスおよび可変容量素子の駆動方法
JP5418607B2 (ja) * 2010-01-28 2014-02-19 株式会社村田製作所 可変容量装置
KR101104537B1 (ko) * 2010-05-28 2012-01-11 한국과학기술원 가변 캐패시터 및 그의 구동 방법
KR101744979B1 (ko) 2010-11-25 2017-06-20 엘지이노텍 주식회사 멤스를 이용한 튜너 모듈
JP5805786B2 (ja) * 2011-11-28 2015-11-10 京セラ株式会社 無線通信システム、無線通信システムの制御方法、及び基地局
JP2013232536A (ja) * 2012-04-27 2013-11-14 Toshiba Corp 可変容量デバイス及びその駆動方法
WO2015079940A1 (ja) * 2013-11-28 2015-06-04 株式会社村田製作所 フロントエンド回路および無線通信装置
GB2558307B (en) * 2016-12-30 2021-05-05 Lumentum Tech Uk Limited Waveguide array
US20220390808A1 (en) * 2021-05-25 2022-12-08 Keysight Technologies, Inc. Radio frequency (rf) phase velocity tuner for setting an electrooptic (eo) modulator bandwidth at different optical wavelengths

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002250665A (ja) * 2001-02-23 2002-09-06 Omron Corp 静電容量式センサ及びその製造方法
JP2003527746A (ja) * 1999-12-15 2003-09-16 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン 同調可能な高周波コンデンサ
JP2004074341A (ja) * 2002-08-15 2004-03-11 Murata Mfg Co Ltd 半導体装置
JP2006210843A (ja) * 2005-01-31 2006-08-10 Fujitsu Ltd 可変キャパシタ及びその製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242989B1 (en) * 1998-09-12 2001-06-05 Agere Systems Guardian Corp. Article comprising a multi-port variable capacitor
US6215644B1 (en) * 1999-09-09 2001-04-10 Jds Uniphase Inc. High frequency tunable capacitors
EP1343190A3 (en) 2002-03-08 2005-04-20 Murata Manufacturing Co., Ltd. Variable capacitance element
KR100492004B1 (ko) * 2002-11-01 2005-05-30 한국전자통신연구원 미세전자기계적 시스템 기술을 이용한 고주파 소자
JP4066928B2 (ja) 2002-12-12 2008-03-26 株式会社村田製作所 Rfmemsスイッチ
US7388247B1 (en) * 2003-05-28 2008-06-17 The United States Of America As Represented By The Secretary Of The Navy High precision microelectromechanical capacitor with programmable voltage source
KR100493532B1 (ko) 2003-08-27 2005-06-07 한국전자통신연구원 정전식 양방향 미세기전 액추에이터
JP2005197997A (ja) 2004-01-07 2005-07-21 Sharp Corp 電圧制御発振器並びにそれを用いた高周波受信器及び高周波送信器
WO2005117042A1 (ja) * 2004-05-31 2005-12-08 Fujitsu Limited 可変キャパシタ及びその製造方法
KR100619110B1 (ko) * 2004-10-21 2006-09-04 한국전자통신연구원 미세전자기계적 스위치 및 그 제조 방법
JP2006165380A (ja) * 2004-12-09 2006-06-22 Kyocera Corp 可変容量コンデンサ
US7683746B2 (en) 2005-01-21 2010-03-23 Panasonic Corporation Electro-mechanical switch
JP2006294866A (ja) * 2005-04-11 2006-10-26 Toshiba Corp 半導体装置
US7489004B2 (en) * 2006-01-24 2009-02-10 Stmicroelectronics S.R.L. Micro-electro-mechanical variable capacitor for radio frequency applications with reduced influence of a surface roughness
JP2007273932A (ja) 2006-03-06 2007-10-18 Fujitsu Ltd 可変キャパシタおよび可変キャパシタ製造方法
JP2007274932A (ja) 2006-04-04 2007-10-25 Kobe Univ 糖・脂質代謝能の改善剤、およびそのスクリーニング方法
FR2901781B1 (fr) 2006-05-31 2008-07-04 Thales Sa Structure de micro-commutateurs radiofrequence ou hyperfrequence et procede de fabrication d'une telle structure
JP2008038808A (ja) 2006-08-08 2008-02-21 Fuji Heavy Ind Ltd 蒸発燃料処理装置
JP4919819B2 (ja) 2007-01-24 2012-04-18 富士通株式会社 マイクロマシンデバイスの駆動制御方法および装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003527746A (ja) * 1999-12-15 2003-09-16 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン 同調可能な高周波コンデンサ
JP2002250665A (ja) * 2001-02-23 2002-09-06 Omron Corp 静電容量式センサ及びその製造方法
JP2004074341A (ja) * 2002-08-15 2004-03-11 Murata Mfg Co Ltd 半導体装置
JP2006210843A (ja) * 2005-01-31 2006-08-10 Fujitsu Ltd 可変キャパシタ及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038086A1 (ja) * 2012-09-10 2014-03-13 富士通株式会社 可変容量回路及びインピーダンス整合回路
JPWO2014038086A1 (ja) * 2012-09-10 2016-08-08 富士通株式会社 可変容量回路及びインピーダンス整合回路
US9621125B2 (en) 2012-09-10 2017-04-11 Fujitsu Limited Variable capacitance circuit and impedance matching circuit
CN104756212A (zh) * 2012-10-25 2015-07-01 德尔福芒斯公司 包括含气体的间隙的mems固定电容和用于制造所述电容器的方法

Also Published As

Publication number Publication date
CN101515503A (zh) 2009-08-26
JP5363005B2 (ja) 2013-12-11
EP2093778B1 (en) 2016-12-21
EP2093778A1 (en) 2009-08-26
CN101515503B (zh) 2013-07-31
US8665579B2 (en) 2014-03-04
KR20090090283A (ko) 2009-08-25
KR101041326B1 (ko) 2011-06-14
US20090207549A1 (en) 2009-08-20

Similar Documents

Publication Publication Date Title
JP5363005B2 (ja) 可変容量素子、整合回路素子、および携帯端末装置
US7489004B2 (en) Micro-electro-mechanical variable capacitor for radio frequency applications with reduced influence of a surface roughness
US8503157B2 (en) MEMS device
KR101424297B1 (ko) 전자 소자, 가변 커패시터, 마이크로스위치, 마이크로스위치의 구동 방법, mems형 전자 소자, 마이크로 액추에이터 및 mems 광학 소자
JP4373994B2 (ja) 可変容量装置および携帯電話
US8363381B2 (en) Variable capacitive element, variable capacitive device, and method for driving the variable capacitive element
JP2003258502A (ja) Rfmems素子
JP2010245276A (ja) 可変容量素子
JP5232378B2 (ja) 可変容量素子、共振器および変調器
US7750419B2 (en) Tuneable electronic devices and electronic arrangements comprising such tuneable devices
US20090026880A1 (en) Micromechanical device with piezoelectric and electrostatic actuation and method therefor
JP2006252956A (ja) マイクロマシンスイッチ及び電子機器
US20100315757A1 (en) Electrical component
JP2014506412A (ja) Rf装置およびrf装置のチューニング方法
US10090110B2 (en) Crystal unit and method of adjusting crystal unit
JP2010199214A (ja) Memsチューナブルキャパシタ
JP2008034154A (ja) スイッチ
US20100201460A1 (en) Resonator and filter using the same
KR100357164B1 (ko) 마이크로 가변 커패시터
JP2009141875A (ja) 共振装置
JP2006114715A (ja) 容量可変型コンデンサ
WO2011158619A1 (ja) 可変容量装置
KR20050031648A (ko) 마이크로 기계 구조를 이용한 스위치 및 이를 이용한 가변인덕터
JP2006108502A (ja) 微小コンデンサおよびその製造方法、ならびに電子機器
JP2008283473A (ja) 電力増幅器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100416

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130905

R150 Certificate of patent or registration of utility model

Ref document number: 5363005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees