JP2009115794A - 試験装置および測定装置 - Google Patents

試験装置および測定装置 Download PDF

Info

Publication number
JP2009115794A
JP2009115794A JP2008278849A JP2008278849A JP2009115794A JP 2009115794 A JP2009115794 A JP 2009115794A JP 2008278849 A JP2008278849 A JP 2008278849A JP 2008278849 A JP2008278849 A JP 2008278849A JP 2009115794 A JP2009115794 A JP 2009115794A
Authority
JP
Japan
Prior art keywords
current
unit
integration
voltage
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2008278849A
Other languages
English (en)
Inventor
Yoshihiro Hashimoto
好弘 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Publication of JP2009115794A publication Critical patent/JP2009115794A/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/10Measuring sum, difference or ratio
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31721Power aspects, e.g. power supplies for test circuits, power saving during test

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

【課題】被試験デバイスの消費電流を精度良く測定する。
【解決手段】被試験デバイスを試験する試験装置であって、電圧を配線を介して被試験デバイスに供給する電圧供給部と、配線とコモン電位との間に直列に配置される第1コンデンサと、第1コンデンサより被試験デバイスに近い位置において配線に流れる電流を検出する電流検出部と、電流検出部が検出した電流と予め定められた基準電流との差を積分した積分値を出力する積分部と、積分値に基づき被試験デバイスの良否を判定する判定部とを備える試験装置を提供する。
【選択図】図2

Description

本発明は、試験装置および測定装置に関する。特に本発明は、被試験デバイス(負荷)の消費電流を測定する試験装置および測定装置に関する。
試験装置は、被試験デバイスの動作時における平均消費電流を測定する機能を備える。試験装置は、被試験デバイスに対して駆動電圧を与える電源装置の出力電流を検出して、被試験デバイスの平均消費電流を測定する。
ここで、電源装置は、負荷の消費電流の変化に対する応答が遅い。従って、試験装置は、電源装置の出力電流の応答の遅れを補償することを目的として、電源配線とグランドとの間に比較的に大きな容量のバイパスコンデンサを備える。これにより、試験装置は、消費電流が高速に変化するように被試験デバイスを動作させた場合であっても、被試験デバイスに対して駆動電流を供給することができる。
ところで、試験装置がバイパスコンデンサを備える場合、被試験デバイスの消費電流と、電源装置の出力電流とが一致しない。従って、試験装置は、電源装置の出力電流を検出しても、被試験デバイスの平均消費電流を正確に測定することができない。
そこで、このような問題を解決するべく、被試験デバイスの直近において、当該被試験デバイスに与える駆動電流をサンプリングするADコンバータを備える試験装置が考えられる。しかし、被試験デバイスに供給される駆動電流は高速に変化するので、試験装置は、ADコンバータを高速にサンプリング動作させなければならない。従って、試験装置は、高機能なADコンバータを備えなければならなかった。さらに、取り込むべきデータ数も多くなるので、試験装置は、容量の大きいデータメモリを備えなければならなかった。
また、数百個単位の被試験デバイスを同時に試験する場合、試験装置は、被試験デバイスと同数の電流測定部を備えなければならない。従って、試験装置は、簡単な回路で被試験デバイスの平均消費電流を測定できることが好ましい。
また、被試験デバイスの電流を測定する場合に、測定回路で用いる演算増幅器にオフセットが存在すると、測定誤差の要因になる。よってオフセットを0にするよう調整することが求められる。しかし、個々の演算増幅器は異なるオフセットを持つので、多数の測定チャネルを備える場合には、個々のチャネルの全てについてオフセットを調整しなければならない。よってオフセットによる誤差を自動的かつ同じ動作で調整する技術が求められる。
また、被試験デバイスの初期評価等においては、被試験デバイスが電流試験をパスするかフェイルするかの試験結果の加えて、電流の値を知りたい場合がある。このような場合に簡便に電流値を求める技術が要請される。
そこで本明細書に含まれる技術革新(イノベーション)の1つの側面においては、上記の課題を解決することのできる試験装置および測定装置を提供することを目的とする。この目的は特許請求の範囲における独立項に記載の特徴の組み合わせにより達成される。また従属項は本発明の更なる有利な具体例を規定する。
即ち、本明細書に含まれるイノベーションに関連する側面(装置、方法、システム、デバイス、物、等から選択)の第1の例 (exemplary) によると、被試験デバイスを試験する試験装置であって、電圧を配線を介して被試験デバイスに供給する電圧供給部と、配線とコモン電位との間に直列に配置される第1コンデンサと、第1コンデンサより被試験デバイスに近い位置において配線に流れる電流を検出する電流検出部と、電流検出部が検出した電流と予め定められた基準電流との差を積分した積分値を出力する積分部と、積分値に基づき被試験デバイスの良否を判定する判定部とを備える試験装置を提供する。
本明細書に含まれるイノベーションに関連する側面の第2の例によると、負荷に流れる電流を測定する測定装置であって、負荷に電圧を供給する配線とコモン電位との間に直列に配置される第1コンデンサと、第1コンデンサより負荷に近い位置において配線に流れる電流を検出する電流検出部と、電流検出部が検出した電流と予め定められた基準電流との差を積分した積分値を出力する積分部とを備える測定装置を提供する。
本明細書に含まれるイノベーションに関連する側面の第3の例によると、前記した第1の例において、積分部は、電流検出部が検出した電流と基準電流との差電流に応じた電荷を容量成分に蓄積して、容量成分の両端に発生する積分電圧を積分値として出力する積分回路と、積分回路の入力に生じるフセットを補正するオフセット補正部と、を有する試験装置を提供する。
本明細書に含まれるイノベーションに関連する側面の第4の例によると、前記した第1の例において、積分値を計測するアナログデジタル変換部、をさらに備え、アナログデジタル変換部は、測定周期ごとに積分値を計測したデジタル値を記録する記録部と、一連の計測の前または後に基準電流のみを入力とした場合の計測値で、記録部に記録された測定周期ごとのデジタル値をスケーリングする処理部と、を有する試験装置を提供する。
なお上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションも又発明となりうる。
以下、発明の実施の形態を通じて本発明の(一)側面を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではなく、又実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
図1は、本実施形態に係る試験装置10の構成を被試験デバイス(DUT)200とともに示す。試験装置10は、信号発生部17と、電圧供給部18と、測定装置20と、基準電圧発生部21と、信号取込部22と、システム制御装置23とを備え、DUT200を試験する。
DUT200は、一例として、パフォーマンスボード等に載置された状態で、当該試験装置10により試験される。信号発生部17は、試験パターンに応じた試験信号をDUT200に供給する。
電圧供給部18は、電圧を配線12を介してDUT200に供給する。電圧供給部18は、一例として、DUT200の電源端子に、DUT200を駆動させるための電圧を供給してよい。電圧供給部18は、一例として、配線12上のDUT200の近傍点(検出端14)において電圧(駆動電圧Vdd)を検出して、検出した駆動電圧Vddを所定値とするように出力電圧を制御してよい。
測定装置20は、DUT200の平均消費電流(例えば動作時の平均消費電流)を測定する。そして、測定装置20は、DUT200の平均消費電流が予め定められた基準電流IREFより大きいか否か(または小さいか否か)を判定する。なお、測定装置20は、一例として、パフォーマンスボードおよびDUT200が挿入されるソケット等のデバイスインターフェイス部に設けられてよい。
基準電圧発生部21は、基準電流IREFを生成するための基準電圧VREFを発生して、測定装置20に与える。基準電圧発生部21は、例えば試験に先立って、システム制御装置23の制御に応じて、基準電圧VREFを測定装置20に与える。
信号取込部22は、試験信号に応じてDUT200から出力される出力信号の良否を判定する。これに加えて、信号取込部22は、測定装置20の判定結果に基づいてDUT200の良否を判定する。
システム制御装置23は、内部にプログラムを格納するメモリ、およびプログラムを実行するCPU等を有する。そして、システム制御装置23は、信号発生部17、電圧供給部18、基準電圧発生部21および信号取込部22とデータのやり取りをして、当該試験装置10の試験動作を制御する。
図2は、本実施形態に係る測定装置20の構成を電圧供給部18およびDUT200とともに示す。測定装置20は、第1コンデンサ24と、第2コンデンサ26と、電流検出部28と、積分部30と、判定部32と、設定部34と、制御部36とを備える。
第1コンデンサ24は、配線12とコモン電位との間に直列に配置される。第1コンデンサ24は、一例として、検出端14より電圧供給部18に近い位置において、配線12に接続されてよい。なお、コモン電位は、一例として、グランド電位であってよく、または、その他の基準電位であってもよい。このような第1コンデンサ24は、DUT200の消費電流が高速に変化して、電圧供給部18の出力電流Iの応答が遅れた場合に、変化分の消費電流をDUT200に供給することができる。
第2コンデンサ26は、第1コンデンサ24よりDUT200に近い位置において配線12とコモン電位との間に直列に配置される。第2コンデンサ26は、一例として、検出端14よりDUT200から遠い位置において、配線12に接続されてよい。
さらに、第2コンデンサ26は、容量が、第1コンデンサ24より小さい。第2コンデンサ26の容量は、一例として、第1コンデンサ24の容量の1/10〜1/1000程度であってよい。このような第2コンデンサ26は、配線12にリップル等の高周波数のノイズが重畳した場合に、当該ノイズをコモン電位(例えばグランド電位)に落とすことができる。従って、第2コンデンサ26は、DUT200により近い位置において配線12に接続されることが好ましい。
電流検出部28は、第1コンデンサ24よりDUT200に近い位置であり、且つ、第2コンデンサ26よりDUT200から遠い位置において、配線12に流れる電流IRMを検出する。すなわち、電流検出部28は、第1コンデンサ24と第2コンデンサ26との間の位置において、配線12に流れる電流IRMを検出する。
ここで、電流検出部28は、第1コンデンサ24よりDUT200に近い位置において配線12に流れる電流を検出するので、電圧供給部18からDUT200に供給される電流と第1コンデンサ24からDUT200に供給される電流とを加算した電流を検出することができる。すなわち、電流検出部28は、DUT200に供給される駆動電流IDDに一致する電流を検出することができる。従って、電流検出部28は、DUT200の消費電流の変化に対する電圧供給部18の出力電流Iの応答が遅れて、DUT200の消費電流と電圧供給部18の出力電流Iとが一致しなくなった場合であっても、DUT200に供給される駆動電流IDDを正確に検出することができる。
なお、第2コンデンサ26も、第1コンデンサ24と同様に、DUT200の消費電流が高速に変動した場合、DUT200に電流を供給する。しかし、第1コンデンサ24の容量は第2コンデンサ26の容量より大きいので、第2コンデンサ26からDUT200に供給される電流よりも、第1コンデンサ24からDUT200に供給される電流の方が大きい(例えば10倍から1000倍)。従って、第1コンデンサ24と第2コンデンサ26との間において配線12に流れる電流IRMは、DUT200に供給される駆動電流IDDと略等しいとみなせる。よって、電流検出部28は、DUT200に供給される駆動電流IDDを正確に検出することができる。
電流検出部28は、一例として、検出抵抗42と、電位差検出部44とを有してよい。検出抵抗42は、第1コンデンサ24と第2コンデンサ26との間の位置において、配線12に直列に挿入して配置される。検出抵抗42は、一例として、数ミリオーム程度の微小抵抗であってよい。電位差検出部44は、検出抵抗42の両端間の電位差に比例した検出電圧Vを出力する。このような電流検出部28は、第1コンデンサ24と第2コンデンサ26との間において配線12に流れる電流IRMに比例した検出電圧Vを出力することができる。
電流検出部28は、以上に代えて、第1コンデンサ24と第2コンデンサ26との間の位置において配線12に直列に挿入して配置されたコイルと、当該コイルに流れる電流を検出する検出部とを有する構成であってもよい。このような電流検出部28も、第1コンデンサ24と第2コンデンサ26との間において配線12に流れる電流IRMを検出することができる。
積分部30は、電流検出部28が検出した電流IRMと、予め定められた基準電流IREFとの差を積分した積分値を出力する。積分部30は、一例として、電流検出部28が検出した電流IRMと予め定められた基準電流IREFとの差電流に応じた電荷を容量成分に蓄積してよい。そして、積分部30は、一例として、電荷が蓄積された容量成分の両端に発生する積分電圧を、積分値として出力してよい。なお、積分部30の詳細な構成の一例は、図3において説明する。
このような積分部30は、電流検出部28が検出した電流IRMと基準電流IREFとの差を積分するので、電流IRMの平均電流が基準電流IREF以下の場合には0より大きくなり、電流IRMの平均電流が基準電流IREFより大きい場合には0以下となる積分値(積分電圧)を出力する。ここで、電流検出部28が検出した電流IRMは、DUT200に供給される駆動電流Iddと一致する。すなわち、電流IRMの平均電流は、DUT200の平均消費電流に一致する。このことから、積分部30は、DUT200の平均消費電流が基準電流IREF以下の場合には0より大きくなり、DUT200の平均消費電流が基準電流IREFより大きい場合には0以下となる積分値(積分電圧)を出力することができる。
判定部32は、積分部30が出力した積分値に基づきDUT200の良否を判定する。判定部32は、一例として、積分部30が出力した積分値が所定の閾値(例えば、0)より大きいか否か(または小さいか否か)を比較することにより、DUT200の平均消費電流が予め定められた基準電流IREFより大きいか否か(または小さいか否か)を判定してよい。判定部32は、一例として、積分値が正の場合にパス(平均消費電流が予め定められた基準電流IREF以下)、積分値が負の場合にフェイル(平均消費電流が予め定められた基準電流IREFより大きい)とする判定結果を出力してよい。
設定部34は、試験に先立って、基準電流IREFを積分部30に設定する。設定部34は、一例として、DUT200の種類およびグレード等、又は、DUT200の試験内容等に応じて、基準電流IREFを設定してよい。これにより、測定装置20は、DUT200の平均消費電流が、例えばDUT200の仕様で定められた上限値を超えたか否か(または下限値を下回ったか否か)を判定することができる。
制御部36は、積分部30の積分期間を制御する。制御部36は、一例として、試験開始タイミングにおいて積分部30の積分を開始させ、試験終了タイミングにおいて積分部30の積分を終了させる。
さらに、積分部30が、電流検出部28が検出した電流IRMと基準電流IREFとの差電流に応じた電荷を容量成分に蓄積する場合、制御部36は、試験に先立って、電流検出部28が蓄積している電荷を容量成分から放電させて、容量成分に蓄積された電荷を0としてよい。これにより、制御部36は、積分部30から正確な積分電圧を出力させることができる。
以上のような測定装置20は、積分値を蓄積するので、保持すべきサンプル値が1つしかなく、例えばデータメモリ等を備えなくてよい。また、測定装置20によれば、DUT200の消費電流が高速に変動しても、DUT200の平均消費電流と基準電流IREFとを正確に比較することができる。また、測定装置20によれば、簡単な回路でDUT200の平均消費電流を測定できるので、例えば数百個単位のDUT200を同時に試験する場合であっても、装置構成を小さくすることができる。
図3は、本実施形態に係る積分部30および判定部32の構成の一例を示す。積分部30は、一例として、積分回路50と、基準電流源52と、電流流入部54と、放電部56とを有してよい。また、判定部32は、一例として、コンパレータ58を有してよい。
積分回路50は、電流検出部28が検出した電流IRMと基準電流IREFとの差電流に応じた電荷を容量成分に蓄積して、容量成分の両端に発生する積分電圧Vを積分値として出力する。積分回路50は、一例として、演算増幅器60と、積分コンデンサ62とを含んでよい。演算増幅器60は、非反転入力端子がコモン電位に接続される。積分コンデンサ62は、演算増幅器60の出力端子と反転入力端子との間に接続される。
このような積分回路50は、演算増幅器60の反転入力端子に入力される入力電流に応じた電荷を積分コンデンサ62に蓄積する。そして、積分回路50は、電荷を蓄積した積分コンデンサ62の両端に発生する積分電圧Vを出力することができる。なお、積分回路50は、入力電流の積分結果と正負が反転した積分電圧Vを出力する。
基準電流源52は、演算増幅器60の反転入力端子から基準電流IREFを流れ出させる。電流流入部54は、演算増幅器60の反転入力端子に対して電流検出部28が検出した電流IRMを流入させる。従って、基準電流源52および電流流入部54は、電流検出部28が検出した電流IRMから基準電流IREFを減じた差電流を、入力電流として演算増幅器60の反転入力端子に与えることができる。
基準電流源52は、一例として、第1の電圧フォロア回路64と、第1の基準抵抗66とを含んでよい。第1の電圧フォロア回路64は、入力端子に設定部34から基準電圧−VREFが与えられ、出力端子から基準電圧−VREFと同電圧を出力する。第1の基準抵抗66は、第1の電圧フォロア回路64の出力端子と演算増幅器60の反転入力端子との間に接続され、予め定められた抵抗値RREF1を有する。このような基準電流源52は、基準電圧VREFを抵抗値RREF1で除算した基準電流IREF(=VREF/RREF1)を、演算増幅器60の反転入力端子から流れ出させることができる。
電流流入部54は、一例として、第2の電圧フォロア回路68と、第2の基準抵抗70とを含んでよい。第2の電圧フォロア回路68は、入力端子に電流検出部28から検出電圧Vが与えられ、出力端子から検出電圧Vと同電圧を出力する。第2の基準抵抗70は、第2の電圧フォロア回路68の出力端子と演算増幅器60の反転入力端子との間に接続され、予め定められた抵抗値RREF2を有する。このような電流流入部54は、検出電圧Vを抵抗値RREF2で除算した電流IRM(=V/RREF2)を、演算増幅器60の反転入力端子に流入させることができる。なお、抵抗値RREF2は、一例として、電流検出部28の検出電圧Vと、配線12に流れる電流IRMとの関係から予め定められてよい。
放電部56は、試験に先立って、積分回路50の積分コンデンサ62に蓄積された電荷を放電する。放電部56は、一例として、放電スイッチ72と、第1の切換スイッチ74と、第2の切換スイッチ76とを含んでよい。放電スイッチ72は、放電時において、積分コンデンサ62の両端を短絡する。また、放電スイッチ72は、試験時において、積分コンデンサ62の両端を開放する。
第1の切換スイッチ74は、放電時において、第1の電圧フォロア回路64の入力端子をコモン電位に接続する。第1の切換スイッチ74は、試験時において、第1の電圧フォロア回路64の入力端子を基準電圧−VREFに接続する。第2の切換スイッチ76は、放電時において、第2の電圧フォロア回路68の入力端子をコモン電位に接続する。第2の切換スイッチ76は、試験時において、第2の電圧フォロア回路68の入力端子を検出電圧Vに接続する。
このような放電部56は、放電時において積分回路50に蓄積された電荷を放電することができる。また、このような放電部56は、試験時において、積分回路50に、電流検出部28が検出した電流IRMと基準電流IREFとの差電流に応じた電荷を蓄積させることができる。
コンパレータ58は、積分回路50が出力した積分電圧Vと、コモン電位(例えばグランド電位)とを比較して、比較結果に応じた判定結果を出力する。すなわち、コンパレータ58は、積分回路50が出力した積分電圧Vの正負を検出して、正負に応じた判定結果を出力することができる。
コンパレータ58は、一例として、積分電圧Vが正(例えば0以上)の場合、DUT200の平均消費電流が予め定められた基準電流IREF以下であると判断してパスを出力してよい。また、コンパレータ58は、一例として、積分電圧Vが負(例えば0より小さい)の場合、DUT200の平均消費電流が予め定められた基準電流IREFより大きいと判断してフェイルを出力してよい。このようにコンパレータ58は、積分回路50が出力した積分電圧Vの正負を検出すればよいので、簡単な構成で良否判定することができる。
図4は、試験時のDUT200に供給される駆動電流Idd(=DUT200の消費電流)の一例を示す。試験装置10は、一例として、試験時において、図4に示されるような駆動電流Iddが流れるように、DUT200を動作させてよい。
すなわち、試験装置10は、試験時において、図4に示されるように、駆動電流Iddが0.50Aおよび1.00Aを、4μs周期(デューティ50%)で切り替わるように、DUT200を動作させてよい。この結果、DUT200は、時刻(0μs)以降において、平均消費電流が0.75Aとなる。なお、図4の例においては、試験装置10は、時刻(0μs)より前において、平均消費電流が0.50AとなるようにDUT200を動作させている。
図5は、DUT200を図4に示されるように動作させた場合において、電圧供給部18から出力される出力電流Iのシミュレーション結果を示す。なお、図5は、第1コンデンサ24が330μF、第2コンデンサ26が1μF、電圧供給部18から検出端14までの配線抵抗が5mΩ、検出端14からDUT200までの配線抵抗が5mΩであり、且つ、検出端14の電圧値を1.20Vとなるように制御した場合のシミュレーション結果を示す。なお、図6〜図9においても同様の条件下でのシミュレーション結果を示す。
図5に示されるように、電圧供給部18は、DUT200の平均消費電流から応答が遅れた出力電流Iを出力する。具体的には、電圧供給部18は、時刻200μsにおいて、DUT200の平均消費電流(0.75A)に達する出力電流Iを出力する。
図6は、DUT200を図4に示されるように動作させた場合において、駆動電圧Vddのシミュレーション結果を示す。電圧供給部18は、出力電流Iを増加させている期間において、出力電圧を低下させる。そして、電圧供給部18は、出力電流Iが安定化した後において、出力電圧を回復させる。従って、駆動電圧Vddは、図6に示されるように、出力電流Iが安定化する前(時刻0〜200(μs))において徐々に低下して、出力電流Iが安定化した後(時刻200μs以降)において上昇する。
図7は、DUT200を図4に示されるように動作させた場合において、第1コンデンサ24に流れる電流ICL1のシミュレーション結果を示す。第1コンデンサ24に流れる電流ICL1は、駆動電流Iddの変動に同期して、振幅が変化する。
また、第1コンデンサ24は、DUT200の平均消費電流の変化に対して出力電流Iの応答が遅れた場合、平均消費電流から出力電流Iを減じた不足分の電流を、DUT200に供給する。従って、電圧供給部18が出力電流Iを増加させている期間(時刻200μs以前)において、電流ICL1は、平均値がマイナスとなる。そして、出力電流Iが安定化した時刻以降(時刻200μs以降)においては、電流ICL1の平均値は、マイナスから0に向かう。
図8は、DUT200を図4に示されるように動作させた場合において、第2コンデンサ26に流れる電流ICL2のシミュレーション結果を示す。第1コンデンサ24に流れる電流ICL2は、駆動電流Iddの変動に同期して、振幅が変化する。ただし、第2コンデンサ26は、第1コンデンサ24よりも容量が非常に小さいことから、平均消費電流から出力電流Iを減じた不足分の電流をDUT200に供給できない。従って、電流ICL2は、DUT200の平均消費電流に変化が生じたとしても、平均値が0となる。
図9は、DUT200を図4に示されるように動作させた場合において、第1コンデンサ24と第2コンデンサ26との間において配線12に流れる電流IRMのシミュレーション結果を示す。図9に示されるように、電流IRMは、全ての時刻において、平均値が0.75Aとなっている。すなわち、電圧供給部18が出力電流Iを増加させている期間(時刻200μs以前)も、電流IRMは、平均値がDUT200の平均消費電流と一致する。
試験装置10は、第1コンデンサ24と第2コンデンサ26との間において配線12に流れる電流IRMと基準電流IREFとの差を積分した積分値に基づき、DUT200の平均消費電流が予め定められた基準電流IREFより大きいか否かを判定する。従って、試験装置10は、全ての時刻において、DUT200の平均消費電流が予め定められた基準電流IREFより大きいか否かを、精度良く判定することができる。
図10は、本実施形態の第1変形例に係る試験装置10の構成をDUT200とともに示す。図11は、第1変形例に係る試験装置10のサーチ部82が設定する基準電流IREFの一例を示す。本変形例に係る試験装置10は、図1に示した試験装置10と略同一の機能および構成を取るので、図1に示した部材と略同一の構成および機能を有する部材については図中に同一の符号を付けて、以下相違点を除き説明を省略する。
本変形例に係る試験装置10は、サーチ部82を更に備えてよい。本変形例においては、配線に流れる電流の電流値を測定する測定プログラムを、システム制御装置23の内部のCPUが実行することにより、当該システム制御装置23がサーチ部82として機能する。サーチ部82は、バイナリサーチの手法を用いて、直前の試験での判定結果に応じて試験毎に基準電流IREFを変更して、配線12に流れる電流IRMの電流値(絶対値)を決定する。
より詳しくは、まず、サーチ部82は、測定範囲内の中心の基準電流IREFを設定する。続いて、サーチ部82は、当該試験装置10に試験を実行させる。すなわち、サーチ部82は、DUT200の平均消費電流が基準電流IREFより大きいか否かを判定させる。
続いて、サーチ部82は、得られた判定結果に応じて、配線12に流れる電流IRMが測定範囲を基準電流IREFで上下に分割したいずれの範囲に属するかを決定する。続いて、サーチ部82は、決定した範囲を新たな測定範囲として、新たな測定範囲内の中心の新たな基準電流IREFを設定する。そして、サーチ部82は、以上の処理を複数回繰り返して、配線12に流れる電流IRMが属する範囲を絞り込んで、配線12に流れる電流IRMの電流値(絶対値)を決定する。
一例として、サーチ部82は、例えば図11に表されるように、まず、最初の測定範囲(例えば0A〜1A)内の中心の基準電流IREF(例えば0.5A)を設定する。続いて、サーチ部82は、当該試験装置10に1回目の試験を実行させる。サーチ部82は、1回目の試験を実行した結果得られた判定結果(パスまたはフェイル)に応じて、配線12に流れる電流IRMが、測定範囲を基準電流IREFで上下に分割した下側範囲(0A〜0.5A)または上側範囲(0.5A〜1A)のいずれの範囲に属するかを決定する。本例においては、1回目の試験において判定結果がフェイルであるので、サーチ部82は、電流IRMが上側範囲(0.5A〜1A)に属すると決定する。
続いて、サーチ部82は、決定した範囲(0.5A〜1A)を新たな測定範囲として、新たな測定範囲内の中心の新たな基準電流IREF(例えば0.75A)を設定する。そして、サーチ部82は、当該試験装置10に2回目の試験を実行させて、1回目の試験と同様の処理を繰り返す。
サーチ部82は、3回目以降の試験も同様に実行する。そして、サーチ部82は、電流IRMが属する範囲を絞り込んで、最終的に電流IRMの電流値を決定する。このように本変形例に係る試験装置10によれば、DUT200の平均消費電流の絶対値を測定することができる。
図12は、本実施形態の第2変形例に係る測定装置20の構成をDUT200とともに示す。本変形例に係る測定装置20は、図2に示した測定装置20と略同一の機能および構成を取るので、図2に示した部材と略同一の構成および機能を有する部材については図中に同一の符号を付けて、以下相違点を除き説明を省略する。
本変形例に係る測定装置20は、積分部30および判定部32に代えて、第1の積分部30−1と、第2の積分部30−2と、第1の判定部32−1と、第2の判定部32−2と、選択出力器84とを備える。第1の積分部30−1および第2の積分部30−2のそれぞれは、電流検出部28が検出した電流IRMと予め定められた基準電流IREFとの差電流に応じた電荷を容量成分に蓄積して、容量成分の両端に発生する積分電圧を出力する。第1の積分部30−1および第2の積分部30−2のそれぞれは、一例として、図3に示される構成を有してよい。
第1の判定部32−1は、第1の積分部30が出力した積分電圧に基づきDUT200の良否を判定する。第2の判定部32−2は、第2の積分部30が出力した積分電圧に基づきDUT200の良否を判定する。第1の判定部32−1および第2の判定部32−2のそれぞれは、一例として、判定部32と同一の構成および機能を有してよい。選択出力器84は、第1の判定部32−1および第2の判定部32−2のうち指定された一方から出力された判定結果を、選択して出力する。
制御部36は、第1の積分部30−1および第2の積分部30−2の積分期間および放電期間を制御する。また、制御部36は、第1の判定部32−1および第2の判定部32−2のうち判定結果を出力すべき一方を、選択出力器84に対して指定する。
ここで、制御部36は、第1の積分部30−1および第2の積分部30−2を、試験毎に交互に選択して電荷を蓄積して積分値を出力させる。そして、制御部36は、第1の積分部30−1が電荷を蓄積中において、第2の積分部30−2に蓄積された電荷を放電させる。また、制御部36は、第2の積分部30−2が電荷を蓄積中において、第1の積分部30−1に蓄積された電荷を放電させる。
このような変形例に係る測定装置20によれば、放電のために試験が実行できない期間を無くすことができる。これにより、このような測定装置20を備える試験装置10によれば、試験期間を短くすることができる。
図13は、本実施形態の第3変形例に係る試験装置300の構成をDUT200とともに示す。本変形例に係る試験装置300は、図1から図3に示した試験装置10と略同一の機能および構成を取るので、図1から図3に示した部材と略同一の構成および機能を有する部材については、図中に同一の符号を付けて説明を省略する。
試験装置300は、信号発生部17と、電圧供給部18と、測定装置310と、基準電圧発生部21と、信号取込部22と、システム制御装置23と、アナログデジタル(A/D)変換部320とを備え、DUT200を試験する。測定装置310は、測定装置20と同様の構成および機能を備える。測定装置310は、第1コンデンサ24と、第2コンデンサ26と、電流検出部330と、積分部340と、判定部350と、制御部360とを備える。制御部360は、設定部34および制御部36と同様の機能を有してよい。
図14は、本実施形態に係る電流検出部330の構成を電圧供給部18およびDUT200とともに示す。電流検出部330は、一例として、検出抵抗42と、電位差検出部44と、入力切替部332とを有してよい。検出抵抗42は、コイルに代えることができる。入力切替部332は、配線12に流れる電流IRMを検出する検出時入力、または、配線12に流れる電流を0にしたと同様な入力になる補正時入力、の何れかの入力を選択する。配線12に流れる電流を0にしたと同様な入力として、たとえば電位差検出部44の入力間をショートするような入力が例示できる。
入力切替部332が補正時入力を選択することにより、電位差検出部44の出力Vxはオフセット誤差を出力する。たとえば、電位差検出部44のオフセットが100μV、ゲインが100である場合、オフセット誤差電圧は(オフセット)×(ゲイン+1)であり、10.1mVになる。Iddが2A、検出抵抗42が5mΩであるとすれば、ゲインが100なので、信号出力電圧は1Vになる。2Aの測定に対してオフセット誤差電圧が約1%含まれることになり、誤差としては決して小さくない。
図15は、本実施形態に係る積分部340の構成の一例を示す。積分部340は、積分回路50と、放電部56と、基準電流源342と、基準切替部344と、オフセット補正部346とを有する。積分回路50は、演算増幅器60と積分コンデンサ62とを含み、電流検出部330が検出した電流IRMと基準電流IREFとの差電流に応じた電荷を容量成分の一例であってよい積分コンデンサ62に蓄積して、容量成分の両端に発生する積分電圧Vを積分値として出力する。放電部56は、放電スイッチ72を含む。放電部56は、試験に先立って、積分回路50に蓄積された電荷を放電する。
基準電流源342は、積分回路50の入力から基準電流IREFを流れ出させる。基準電流源342は、第1の電圧フォロア回路64と第1の基準抵抗66とを含む。第2の基準抵抗70は電流流入部54と同様に機能する。基準切替部344は、基準電流源342の基準入力を基準電圧VREFに結合するか接地電圧に結合するかを選択する。
オフセット補正部346は、積分回路50の入力に生じるオフセットを補正する。オフセット補正部346は、入力切替部332が補正時入力を選択し、基準切替部344が接地電圧を選択している場合すなわち補正時に、電流検出部330が出力するオフセット誤差電圧を蓄積する補正コンデンサ402を有する。そしてオフセット補正部346は、入力切替部332が検出時入力を選択し、基準切替部344が基準電圧を選択している場合すなわち測定時に、補正コンデンサ402に蓄積したオフセット誤差電圧の−1倍の電圧を出力する。スイッチ404は、補正時にショートされ、測定時にオープンにされる。
図示するように、補正コンデンサ402に蓄積したオフセット誤差電圧が演算増幅器400に正入力され、負入力には出力が帰還されるので、演算増幅器400の出力V1は蓄積したオフセット誤差電圧に等しい。一方、第1の電圧フォロア回路64の帰還部に抵抗406を介して出力V1が接続されるので、抵抗406と抵抗408とが等しい抵抗値であれば、出力V1の−1倍が第1の電圧フォロア回路64の出力V2に重畳される。これはオフセット誤差電圧に起因する電流をキャンセルするような基準電流成分を発生させ、オフセット誤差の影響を減少できる。
図16は、本実施形態に係る判定部350の構成の一例を示す。判定部350は、入力切替部332が補正時入力を選択し、基準切替部344が接地電圧を選択している場合すなわち補正時に、積分回路50の出力に生じるオフセットを保持するオフセット保持部352を有する。オフセット保持部352はオフセットコンデンサ452とスイッチ454を有し、積分回路50の出力に生じるオフセットはオフセットコンデンサ452に蓄積される。補正時にスイッチ454はショートされ、測定時にスイッチ454はオープンにされる。
判定部350は、入力切替部332が検出時入力を選択し、基準切替部344が基準電圧を選択している場合すなわち測定時に、オフセット保持部352のオフセットコンデンサ452に保持したオフセット電圧を基準にDUT200の良否を判定する。これにより、コンパレータ58より前段で発生するオフセットを補正して、高精度な電流測定が可能になる。
なお、積分値を増幅し、増幅した積分値を判定部350に提供する低電圧増幅器354を備えてよい。オフセット補正により、積分値が充分に低いレベルになるので、低電圧増幅器354により積分値を増幅する意義は大きい。
アナログデジタル変換部320は、積分値を計測する。アナログデジタル変換部320は、測定周期ごとに積分値を計測したデジタル値を記録部に記録し、一連の計測の前または後に基準電流のみを入力とした場合の計測値を計測して、当該計測値で、記録部に記録された測定周期ごとのデジタル値をスケーリングできる。なお、スケーリング処理する処理部および記録部は、システム制御装置23に備えてよい。アナログデジタル変換部320によれは、一連の計測の前または後に基準電流を一度だけ測定して、電流値のスケーリングを行うことができる。このスケーリングにより、各測定周期で測定したデジタル値の電流値がわかる。
図17は、第3変形例に係る試験装置300の動作の一例を示す。XSTSPはスイッチ404の制御信号を、XINは入力切替部332の制御信号を、XREFは基準切替部344の制御信号を示す。これら制御信号が何れも論理Lレベルであるt(n)の期間に電流測定が実行される。電流測定は、DUT200に流入する電流Iddが基準電流(図中破線で示す)との差を積分回路50の出力V(V4)として検出する。出力V(V4)が正あるいは負の値になるかで良否判定を行える。なお、taは出力V(V4)の値を保持する期間であり、その間にアナログデジタル変換部320により出力である積分値が取得される。取得された積分値は、t(ref)の期間に計測された基準電流のみの積分値でスケーリングできる。
以上、本発明の(一)側面を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることができる。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
図1は、本実施形態に係る試験装置10の構成をDUT200とともに示す。 図2は、本実施形態に係る測定装置20の構成を電圧供給部18およびDUT200とともに示す。 図3は、本実施形態に係る積分部30および判定部32の構成の一例を示す。 図4は、試験時のDUT200に供給される駆動電流Idd(=DUT200の消費電流)の一例を示す。 図5は、DUT200を図4に示されるように動作させた場合において、電圧供給部18から出力される出力電流Iのシミュレーション結果を示す。 図6は、DUT200を図4に示されるように動作させた場合において、駆動電圧Vddのシミュレーション結果を示す。 図7は、DUT200を図4に示されるように動作させた場合において、第1コンデンサ24に流れる電流ICL1のシミュレーション結果を示す。 図8は、DUT200を図4に示されるように動作させた場合において、第2コンデンサ26に流れる電流ICL2のシミュレーション結果を示す。 図9は、DUT200を図4に示されるように動作させた場合において、第1コンデンサ24と第2コンデンサ26との間において配線12に流れる電流IRMのシミュレーション結果を示す。 図10は、本実施形態の第1変形例に係る試験装置10の構成をDUT200とともに示す。 図11は、第1変形例に係る試験装置10のサーチ部82が設定する基準電流IREFの一例を示す。 図12は、本実施形態の第2変形例に係る試験装置10の構成をDUT200とともに示す。 図13は、本実施形態の第3変形例に係る試験装置300の構成をDUT200とともに示す。 図14は、本実施形態に係る電流検出部330の構成を電圧供給部18およびDUT200とともに示す。 図15は、本実施形態に係る積分部340の構成の一例を示す。 図16は、本実施形態に係る判定部350の構成の一例を示す。 図17は、第3変形例に係る試験装置300の動作の一例を示す。
符号の説明
10 試験装置,12 配線,14 検出端,17 信号発生部,18 電圧供給部,20 測定装置,21 基準電圧発生部,22 信号取込部,23 システム制御装置,24 第1コンデンサ,26 第2コンデンサ,28 電流検出部,30 積分部,32 判定部,34 設定部,36 制御部,42 検出抵抗,44 電位差検出部,50 積分回路,52 基準電流源,54 電流流入部,56 放電部,58 コンパレータ,60 演算増幅器,62 積分コンデンサ,64 電圧フォロア回路,66 基準抵抗,68 電圧フォロア回路,70 基準抵抗,72 放電スイッチ,74 切換スイッチ,76 切換スイッチ,82 サーチ部,84 選択出力器,200 DUT,300 試験装置,310 測定装置,320 変換部,330 電流検出部,332 入力切替部,340 積分部,342 基準電流源,344 基準切替部,346 オフセット補正部,350 判定部,352 オフセット保持部,354 低電圧増幅器,360 制御部,400 演算増幅器,402 補正コンデンサ,404 スイッチ,406 抵抗,408 抵抗,452 オフセットコンデンサ,454 スイッチ

Claims (16)

  1. 被試験デバイスを試験する試験装置であって、
    電圧を配線を介して被試験デバイスに供給する電圧供給部と、
    前記配線とコモン電位との間に直列に配置される第1コンデンサと、
    前記第1コンデンサより前記被試験デバイスに近い位置において前記配線に流れる電流を検出する電流検出部と、
    前記電流検出部が検出した電流と予め定められた基準電流との差を積分した積分値を出力する積分部と、
    前記積分値に基づき前記被試験デバイスの良否を判定する判定部と
    を備える試験装置。
  2. 前記第1コンデンサより前記被試験デバイスに近い位置において前記配線と前記コモン電位との間に直列に配置され、容量が前記第1コンデンサより小さい第2コンデンサを更に備え、
    前記電流検出部は、前記第2コンデンサより前記被試験デバイスから遠い位置において前記配線に流れる電流を検出する
    請求項1に記載の試験装置。
  3. 前記判定部は、前記積分値の正負に応じて、前記被試験デバイスの良否を判定する
    請求項1から2の何れかに記載の試験装置。
  4. 前記積分部は、前記電流検出部が検出した電流と前記基準電流との差電流に応じた電荷を容量成分に蓄積して、前記容量成分の両端に発生する積分電圧を積分値として出力する積分回路を有する
    請求項1から3の何れかに記載の試験装置。
  5. 前記積分回路は、
    非反転入力端子がコモン電位に接続された演算増幅器と、
    前記演算増幅器の出力端子と反転入力端子との間に接続された積分コンデンサと
    を含み、
    前記積分部は、
    前記演算増幅器の前記反転入力端子から前記基準電流を流れ出させる基準電流源と、
    前記演算増幅器の前記反転入力端子に対して前記電流検出部が検出した電流を流入させる電流流入部とを更に有する
    請求項4に記載の試験装置。
  6. 前記積分部は、試験に先立って、前記積分回路に蓄積された電荷を放電する放電部を更に有する
    請求項4から5の何れかに記載の試験装置。
  7. 当該試験装置は、第1の前記積分部と、第2の前記積分部とを備え、
    前記第1の積分部が前記電荷を蓄積中において、前記第2の積分部に蓄積された電荷を放電させる制御部を更に備える
    請求項6に記載の試験装置。
  8. 測定範囲内の基準電流を設定して得られた判定結果に応じて、前記配線に流れる電流が前記測定範囲を前記基準電流で上下に分割したいずれの範囲に属するかを決定し、決定した範囲を新たな前記測定範囲として、新たな前記測定範囲内の新たな前記基準電流を設定する処理を繰り返すことにより、前記配線に流れる電流が属する範囲を絞り込んで、前記配線に流れる電流の電流値を決定するサーチ部を
    更に備える請求項1から7の何れかに記載の試験装置。
  9. システム制御装置を更に備え、
    前記システム制御装置は、前記配線に流れる電流の電流値を測定する測定プログラムを実行することにより、
    測定範囲内の基準電流を設定して得られた判定結果に応じて、前記配線に流れる電流が前記測定範囲を前記基準電流で上下に分割したいずれの範囲に属するかを決定し、決定した範囲を新たな前記測定範囲として、新たな前記測定範囲内の新たな前記基準電流を設定する処理を繰り返すことにより、前記配線に流れる電流が属する範囲を絞り込んで、前記配線に流れる電流の電流値を決定する
    請求項1から7の何れかに記載の試験装置。
  10. 負荷に流れる電流を測定する測定装置であって、
    前記負荷に電圧を供給する配線とコモン電位との間に直列に配置される第1コンデンサと、
    前記第1コンデンサより前記負荷に近い位置において前記配線に流れる電流を検出する電流検出部と、
    前記電流検出部が検出した電流と予め定められた基準電流との差を積分した積分値を出力する積分部と
    を備える測定装置。
  11. 前記積分部は、
    前記電流検出部が検出した電流と前記基準電流との差電流に応じた電荷を容量成分に蓄積して、前記容量成分の両端に発生する積分電圧を積分値として出力する積分回路と、
    前記積分回路の入力に生じるフセットを補正するオフセット補正部と、
    を有する請求項1から9の何れかに記載の試験装置。
  12. 前記電流検出部は、
    前記配線に流れる電流を検出する検出時入力、または、前記配線に流れる電流を0にしたと同様な入力になる補正時入力、の何れかの入力を選択する入力切替部、を有し、
    前記積分部は、
    前記積分回路の入力から前記基準電流を流れ出させる基準電流源と、
    前記基準電流源の基準入力を基準電圧に結合するか接地電圧に結合するかを選択する基準切替部と、を有し、
    前記オフセット補正部は、
    前記入力切替部が前記補正時入力を選択し、前記基準切替部が前記接地電圧を選択している場合に、前記電流検出部が出力するオフセット誤差電圧を蓄積する補正コンデンサを有し、
    前記入力切替部が前記検出時入力を選択し、前記基準切替部が前記基準電圧を選択している場合に、前記補正コンデンサに蓄積した前記オフセット誤差電圧の−1倍の電圧を出力する、
    請求項11に記載の試験装置。
  13. 前記積分部は、試験に先立って、前記積分回路に蓄積された電荷を放電する放電部を更に有する
    請求項12に記載の試験装置。
  14. 前記判定部は、
    前記入力切替部が前記補正時入力を選択し、前記基準切替部が前記接地電圧を選択している場合に、前記積分回路の出力に生じるオフセットを保持するオフセット保持部を有し、
    前記入力切替部が前記検出時入力を選択し、前記基準切替部が前記基準電圧を選択している場合に、前記オフセット保持部に保持したオフセット電圧を基準に前記被試験デバイスの良否を判定する、
    請求項13に記載の試験装置。
  15. 前記積分値を増幅し、増幅した積分値を前記判定部に提供する低電圧増幅器、
    をさらに備えた請求項14に記載の試験装置。
  16. 前記積分値を計測するアナログデジタル変換部、をさらに備え、
    前記アナログデジタル変換部は、
    測定周期ごとに前記積分値を計測したデジタル値を記録する記録部と、
    一連の計測の前または後に前記基準電流のみを入力とした場合の計測値で、前記記録部に記録された前記測定周期ごとのデジタル値をスケーリングする処理部と、
    を有する請求項1に記載の試験装置。
JP2008278849A 2007-11-08 2008-10-29 試験装置および測定装置 Ceased JP2009115794A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/936,799 US20090121725A1 (en) 2007-11-08 2007-11-08 Test apparatus and measurement apparatus
US12/233,614 US7825666B2 (en) 2007-11-08 2008-09-19 Test apparatus and measurement apparatus for measuring an electric current consumed by a device under test

Publications (1)

Publication Number Publication Date
JP2009115794A true JP2009115794A (ja) 2009-05-28

Family

ID=40623106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008278849A Ceased JP2009115794A (ja) 2007-11-08 2008-10-29 試験装置および測定装置

Country Status (3)

Country Link
US (2) US20090121725A1 (ja)
JP (1) JP2009115794A (ja)
KR (1) KR101100905B1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010410A1 (ja) * 2009-07-23 2011-01-27 株式会社アドバンテスト 試験装置、付加回路および試験用ボード
US7952361B2 (en) 2009-07-14 2011-05-31 Advantest Corporation Test apparatus
US8558560B2 (en) 2009-07-23 2013-10-15 Advantest Corporation Test apparatus, additional circuit and test board for judgment based on peak current
US8558559B2 (en) 2009-07-23 2013-10-15 Advantest Corporation Test apparatus, additional circuit and test board for calculating load current of a device under test

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM338356U (en) * 2008-04-08 2008-08-11 Princeton Technology Corp Circuit testing apparatus
US20110031984A1 (en) * 2009-07-14 2011-02-10 Advantest Corporation Test apparatus
US8701638B2 (en) * 2010-05-07 2014-04-22 Borgwarner Beru Systems Gmbh Method for igniting a fuel-air mixture of a combustion chamber, particularly in an internal combustion engine by generating a corona discharge
CN103308741A (zh) * 2012-03-16 2013-09-18 鸿富锦精密工业(深圳)有限公司 服务器及其电流检测预警系统
KR20140115586A (ko) * 2013-03-21 2014-10-01 삼성전자주식회사 이동식 소모 전류 측정 장치, 전류 측정 단말 및 소모 전류 측정 방법
DE102013108705B4 (de) * 2013-08-12 2017-04-27 Borgwarner Ludwigsburg Gmbh Koronazündsystem und Verfahren zum Steuern einer Koronazündeinrichtung
TWI576596B (zh) * 2014-11-20 2017-04-01 力智電子股份有限公司 具溫度補償的電量量測裝置及其溫度補償方法
JP6706384B2 (ja) * 2017-03-29 2020-06-03 東芝三菱電機産業システム株式会社 電力変換装置およびそのテスト方法
CN109164387A (zh) * 2018-09-30 2019-01-08 国电南瑞南京控制系统有限公司 基于大小量程ct的发电机定子绕组注入电流测量方法
CN109613398B (zh) * 2018-12-12 2021-11-09 国网山东省电力公司电力科学研究院 一种用于高压交直流混联电网的故障方向判别方法、判别元件
US11478166B2 (en) 2020-06-26 2022-10-25 J. Brasch Co., Llc Calibrating a sensing device for improved analog-to-digital converter resolution utilization
KR20220020710A (ko) 2020-08-12 2022-02-21 에스케이하이닉스 주식회사 테스트 회로, 메모리 장치, 저장 장치 및 그 동작 방법
US11719761B2 (en) 2021-08-20 2023-08-08 Stmicroelectronics S.R.L. Capacitor measurement
US11789046B2 (en) * 2021-08-20 2023-10-17 Stmicroelectronics S.R.L. Measuring a change in voltage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112176A (ja) * 1987-10-26 1989-04-28 Nec Corp 半導体集積回路装置の試験装置
JPH0772180A (ja) * 1993-09-02 1995-03-17 Fujitsu Ltd 電流−電圧変換回路
JP2004170314A (ja) * 2002-11-21 2004-06-17 Advantest Corp 試験装置、試験方法、及び電流測定器
JP2004347421A (ja) * 2003-05-21 2004-12-09 Advantest Corp 電流測定装置及び試験装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170777U (ja) * 1984-10-15 1986-05-14
US5479130A (en) * 1994-02-15 1995-12-26 Analog Devices, Inc. Auto-zero switched-capacitor integrator
US6087843A (en) * 1997-07-14 2000-07-11 Credence Systems Corporation Integrated circuit tester with test head including regulating capacitor
WO2002101480A1 (fr) * 2001-06-06 2002-12-19 Advantest Corporation Circuit d'alimentation et dispositif de test

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112176A (ja) * 1987-10-26 1989-04-28 Nec Corp 半導体集積回路装置の試験装置
JPH0772180A (ja) * 1993-09-02 1995-03-17 Fujitsu Ltd 電流−電圧変換回路
JP2004170314A (ja) * 2002-11-21 2004-06-17 Advantest Corp 試験装置、試験方法、及び電流測定器
JP2004347421A (ja) * 2003-05-21 2004-12-09 Advantest Corp 電流測定装置及び試験装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7952361B2 (en) 2009-07-14 2011-05-31 Advantest Corporation Test apparatus
WO2011010410A1 (ja) * 2009-07-23 2011-01-27 株式会社アドバンテスト 試験装置、付加回路および試験用ボード
WO2011010409A1 (ja) * 2009-07-23 2011-01-27 株式会社アドバンテスト 試験装置、付加回路および試験用ボード
WO2011010349A1 (ja) * 2009-07-23 2011-01-27 株式会社アドバンテスト 試験装置
WO2011010412A1 (ja) * 2009-07-23 2011-01-27 株式会社アドバンテスト 試験装置
US8164351B2 (en) 2009-07-23 2012-04-24 Advantest Corporation Test apparatus
JPWO2011010410A1 (ja) * 2009-07-23 2012-12-27 株式会社アドバンテスト 試験装置、付加回路および試験用ボード
JPWO2011010412A1 (ja) * 2009-07-23 2012-12-27 株式会社アドバンテスト 試験装置
JPWO2011010409A1 (ja) * 2009-07-23 2012-12-27 株式会社アドバンテスト 試験装置、付加回路および試験用ボード
US8558560B2 (en) 2009-07-23 2013-10-15 Advantest Corporation Test apparatus, additional circuit and test board for judgment based on peak current
US8558559B2 (en) 2009-07-23 2013-10-15 Advantest Corporation Test apparatus, additional circuit and test board for calculating load current of a device under test

Also Published As

Publication number Publication date
KR101100905B1 (ko) 2012-01-02
KR20090048342A (ko) 2009-05-13
US20090121725A1 (en) 2009-05-14
US20090121726A1 (en) 2009-05-14
US7825666B2 (en) 2010-11-02

Similar Documents

Publication Publication Date Title
JP2009115794A (ja) 試験装置および測定装置
JP4627446B2 (ja) 電流測定装置、試験装置、電流測定方法、および試験方法
US7898268B2 (en) Circuit and method for capacitor effective series resistance measurement
KR100875339B1 (ko) 전류 검출 회로
KR0137086B1 (ko) 저항센서 입력장치
KR100947571B1 (ko) 전원 장치 및 이것을 사용한 반도체 시험 시스템
US9651596B2 (en) System and apparatus for measuring capacitance
US20130041606A1 (en) Detecting an open wire between a battery cell and an external circuit
CN103580694A (zh) 用于确定电压的系统和器件
KR20140101780A (ko) 고속 싱글 엔디드―차동 컨버터
WO2011010349A1 (ja) 試験装置
CN104641562A (zh) 模拟-数字转换电路、传感器装置、便携式电话和数字摄像机
WO2012041825A2 (en) Presence and operability test of a decoupling capacitor
US9977088B2 (en) Battery fuel gauge current sensing circuit and method thereof
KR101063123B1 (ko) 전원 장치, 시험 장치 및 전원 전압 안정화 장치
US20110031984A1 (en) Test apparatus
US8558560B2 (en) Test apparatus, additional circuit and test board for judgment based on peak current
JP2007304006A (ja) 2次電池充放電検査装置及び2次電池充放電検査方法
CN109188309B (zh) 一种高压起爆器检测电路的动态门限参数精确确定方法
JP2007198758A (ja) 検査装置および検査方法
JP2010071963A (ja) 電流測定装置
JP2014142303A (ja) 半導体装置および半導体試験システム
JP2011075475A (ja) 半導体検査装置および半導体装置の検査方法
JP6662033B2 (ja) 蓄電素子の抵抗の測定方法および測定装置
JP5038454B2 (ja) 電流測定装置、試験装置、電流測定方法、および試験方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20131224