JP2008304137A - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
JP2008304137A
JP2008304137A JP2007152841A JP2007152841A JP2008304137A JP 2008304137 A JP2008304137 A JP 2008304137A JP 2007152841 A JP2007152841 A JP 2007152841A JP 2007152841 A JP2007152841 A JP 2007152841A JP 2008304137 A JP2008304137 A JP 2008304137A
Authority
JP
Japan
Prior art keywords
evaporator
temperature sensor
temperature
refrigerant
frost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007152841A
Other languages
English (en)
Inventor
Shinichi Fujinaka
伸一 藤中
Hiroshi Nakada
浩 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007152841A priority Critical patent/JP2008304137A/ja
Publication of JP2008304137A publication Critical patent/JP2008304137A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Defrosting Systems (AREA)

Abstract

【課題】蒸発器の着霜状態を適切に判断して、無駄な除霜運転を防止可能にした冷凍装置を提供する。
【解決手段】冷凍装置100は、圧縮機1、凝縮器2、絞り装置3及び蒸発器4を冷媒配管20で順次接続した冷媒回路と、バイパス管21及び冷媒配管20で圧縮機1、ホットガスデフロスト用電磁弁5、ドレンパンコイル6及び蒸発器4を順次接続した除霜回路と、蒸発器吸込み空気温度センサ7と、無着霜検知用温度センサ8と、蒸発器吸込み空気温度センサ7及び無着霜検知用温度センサ8からの温度情報に基づいて蒸発器4の着霜状態を判断し、蒸発器4に付着した霜を溶解する除霜運転を実行する制御装置とを備え、無着霜検知用温度センサ8を蒸発器4の冷媒入口近傍であって、空気の流れの下流側に設置したことを特徴とする。
【選択図】図2

Description

本発明は、冷凍サイクルを構成する熱交換器(つまり、蒸発器として機能している熱交換器)の着霜検知を実行する冷凍装置に関し、特に熱交換器の着霜状態を適切に判断し、無駄な除霜運転を防止できるようにした冷凍装置に関するものである。
従来から、冷凍装置や冷蔵庫、ショーケース等に搭載されている冷凍サイクルを構成する熱交換器(つまり、蒸発器として機能している熱交換器)の熱交換能力の低減を防止するために、熱交換器に付着した霜を融解する除霜運転が行なわれている。この除霜運転は、冷凍サイクルにバイパス管を設け、圧縮機からの吐出冷媒(ホットガス)をバイパス管を介して熱交換器に供給することで行なわれることが多い。このような除霜運転は、一般的に、タイマによって周期的に行なわれたり、温度や圧力を計測し、着霜量を推定して、この推定値が所定の閾値以上になったときに行なわれたりするようになっている。
そのようなものとして、「冷気循環路に配設された冷却装置の蒸発器を除霜するための加熱手段と、前記蒸発器の温度を検出する温度検出手段と、定期的に除霜動作開始時間になると作動信号を発生するタイマと、前記タイマからの作動信号にて前記加熱手段を作動させて除霜動作を開始し、この除霜動作を前記温度検出手段にて検出される前記蒸発器の温度が除霜終了温度となるまで継続させるよう前記加熱手段を制御する除霜制御手段と、前記蒸発器の温度が除霜終了温度となって前記除霜動作を停止した後、前記蒸発器の温度が除霜終了温度以下に戻った場合でも前記除霜動作を再開しないよう前記除霜制御手段の動作を規制する除霜動作規制手段とを備えた除霜装置」が提案されている(たとえば、特許文献1参照)。
また、「能力可変型圧縮機と、蒸発器と、前記蒸発器の冷媒配管に取り付けられ熱伝導性樹脂で形成されたホルダーと、前記ホルダーに取り付けられ前記蒸発器内を通過する冷気と直接接触する冷気温度センサーと、前記ホルダーに取り付けられ前記蒸発器内を通過する冷気と直接接触せず冷媒配管の温度を計測する蒸発温度センサーとを備え、前記冷気温度センサーと前記蒸発温度センサーを比較することで着霜を検知し、除霜間隔を短縮する冷凍冷蔵ユニット」が提案されている(たとえば、特許文献2参照)。
特開平7−190596号公報(第3頁、第2図) 特開2005−226864号公報(第7−8頁、第2図)
特許文献1に記載の除霜装置では、蒸発器に着霜していない状態であってもタイマによって周期的に除霜運転を行なうようになっている。また、除霜運転後においては、蒸発器の温度が上昇するので、蒸発器を冷却するために長時間の冷却運転が必要となり、消費電力が増加してしまう。特に、一定速の圧縮機を搭載したホットガスデフロスト方式では、無着霜時に除霜運転を行うと、高温・高圧の冷媒が蒸発器で冷却されず、この冷媒が圧縮機に吸入されるため、吸入圧力が急激に高くなり、電流値の上昇により過電流遮断器等の保護器が作動してしまい、冷凍・冷蔵ユニットが異常停止するという問題点があった。
特許文献2に記載の冷凍冷蔵ユニットでは、着霜状態を検知するために冷却対象域である庫内の温度と蒸発器の蒸発温度を計測し、蒸発器に霜が付着すると蒸発温度が低下することを利用して着霜状態を検知するようになっている。しかしながら、低外気時における運転のように、蒸発器に着霜しても蒸発温度が下がらないような運転条件が考慮されていない。したがって、このような条件では着霜検知精度が低く、無着霜状態でも除霜運転を行なってしまうという問題点があった。また、着霜検知技術とタイマとを併用して除霜運転を実行することも可能であるが、結局、除霜運転を実行する回数が増えるだけということになりかねない。
本発明は、上記のような問題を解決するためになされたもので、蒸発器の着霜状態を適切に判断して、無駄な除霜運転を防止可能にした冷凍装置を提供することを目的とする。
本発明に係る冷凍装置は、圧縮機、凝縮器、絞り装置及び蒸発器を冷媒配管で順次接続した冷媒回路と、前記圧縮機と前記凝縮器との間で前記冷媒配管を分岐させたバイパス管及び前記冷媒配管で前記圧縮機、ホットガスデフロスト用電磁弁、ドレンパンコイル及び前記蒸発器を順次接続した除霜回路と、前記蒸発器に供給される空気の温度を検知する第1温度センサと、前記蒸発器の冷媒入口近傍に設置され、その周囲の温度を検知する第2温度センサと、前記第1温度センサ及び前記第2温度センサからの温度情報に基づいて前記蒸発器の着霜状態を判断し、前記ホットガスデフロスト用電磁弁の開閉を制御することで前記蒸発器に付着した霜を溶解する除霜運転を実行する制御装置とを備えたことを特徴とする。
本発明に係る冷凍装置は、圧縮機、凝縮器、絞り装置及び蒸発器を冷媒配管で順次接続した冷媒回路と、前記圧縮機と前記凝縮器との間で前記冷媒配管を分岐させたバイパス管及び前記冷媒配管で前記圧縮機、ホットガスデフロスト用電磁弁、ドレンパンコイル及び前記蒸発器を順次接続した除霜回路と、前記蒸発器の中心に対する空気の流れの下流側に設置され、前記蒸発器を通過する空気の風速を検知する風速センサと、前記風速センサからの風速情報に基づいて前記蒸発器の着霜状態を判断し、前記ホットガスデフロスト用電磁弁の開閉を制御することで前記蒸発器に付着した霜を溶解する除霜運転を実行する制御装置とを備えたことを特徴とする。
本発明に係る冷凍装置は、圧縮機、凝縮器、絞り装置及び蒸発器を冷媒配管で順次接続した冷媒回路と、前記圧縮機と前記凝縮器との間で前記冷媒配管を分岐させたバイパス管及び前記冷媒配管で前記圧縮機、ホットガスデフロスト用電磁弁、ドレンパンコイル及び前記蒸発器を順次接続した除霜回路と、前記蒸発器に供給される空気の温度を検知する第1温度センサと、前記蒸発器の冷媒入口近傍に設置され、その周囲の温度を検知する第2温度センサと、前記蒸発器の中心に対する空気の流れの下流側に設置され、前記蒸発器を通過する空気の風速を検知する風速センサと、前記第1温度センサ及び前記第2温度センサからの温度情報と前記風速センサからの風速情報とに基づいて前記蒸発器の着霜状態を判断し、前記ホットガスデフロスト用電磁弁の開閉を制御することで前記蒸発器に付着した霜を溶解する除霜運転を実行する制御装置とを備えたことを特徴とする。
本発明に係る冷凍装置は、圧縮機、凝縮器、絞り装置及び蒸発器を冷媒配管で順次接続した冷媒回路と、前記圧縮機と前記凝縮器との間で前記冷媒配管を分岐させたバイパス管及び前記冷媒配管で前記圧縮機、ホットガスデフロスト用電磁弁、ドレンパンコイル及び前記蒸発器を順次接続した除霜回路と、前記蒸発器に供給される空気の温度を検知する第1温度センサと、前記蒸発器の冷媒入口近傍、かつ、前記蒸発器の中心に対する空気の流れの下流側であって、前記蒸発器を構成するフィン及びヘアピンに接するように設置され、前記蒸発器の着霜状態の判断、及び、前記蒸発器に付着した霜を溶解する除霜運転終了の判定をするために使用する温度を検知する第2温度センサと、前記第1温度センサ及び前記第2温度センサからの温度情報に基づいて前記蒸発器の着霜状態を判断し、前記ホットガスデフロスト用電磁弁の開閉を制御することで前記蒸発器に付着した霜を溶解する除霜運転を実行し、前記第2温度センサからの温度情報に基づいて前記除霜運転の終了判定を行なう制御装置とを備えたことを特徴とする。
本発明に係る冷凍装置は、圧縮機、凝縮器、絞り装置及び蒸発器を冷媒配管で順次接続した冷媒回路と、前記圧縮機と前記凝縮器との間で前記冷媒配管を分岐させたバイパス管及び前記冷媒配管で前記圧縮機、ホットガスデフロスト用電磁弁、ドレンパンコイル及び前記蒸発器を順次接続した除霜回路と、蒸発温度、凝縮温度、蒸発器吸込み空気温度、冷却運転時間及びサーモOFF時間に基づいて、前記蒸発器への着霜量を推定する制御装置とを備えたことを特徴とする。
本発明に係る冷凍装置は、蒸発器の着霜しやすい位置に第2温度センサ(無着霜検知用温度センサとして機能する温度センサ)を設け、蒸発器の着霜状態を判断し、除霜運転を実行するので、蒸発器の着霜状態を適切に判断することができ、周期的に除霜運転を実行することなく、無駄な除霜運転を防止することができる。また、蒸発器の1箇所の着霜状態を判断するのみで、除霜運転の実行の有無を決定することができるため、蒸発器全体の定量的な着霜量の計測・推定が不要であるとともに、正確に着霜状態を判断することができる。さらに、タイマや過電流遮断器等の保護器を動作させなくて済むので、消費電力の低減及び保護器作動によるユニットの異常停止を防ぐことが可能になる。
本発明に係る冷凍装置は、風速センサからの情報に基づいて、蒸発器の着霜状態を判断し、除霜運転を実行するので、蒸発器の着霜状態を適切に判断することができ、周期的に除霜運転を実行することなく、無駄な除霜運転を防止することができる。また、蒸発器の1箇所の着霜状態を判断するのみで、除霜運転の実行の有無を決定することができるため、蒸発器全体の定量的な着霜量の計測・推定が不要であるとともに、正確に着霜状態を判断することができる。さらに、タイマや過電流遮断器等の保護器を動作させなくて済むので、消費電力の低減及び保護器作動によるユニットの異常停止を防ぐことが可能になる。
本発明に係る冷凍装置は、第2温度センサ(無着霜検知用温度センサとして機能する温度センサ)及び風速センサからの情報に基づいて、蒸発器の着霜状態を判断し、除霜運転を実行するので、蒸発器の着霜状態を更に高精度に判断することができ、周期的に除霜運転を実行することなく、無駄な除霜運転を防止することができる。また、蒸発器の1箇所の着霜状態を判断するのみで、除霜運転の実行の有無を決定することができるため、蒸発器全体の定量的な着霜量の計測・推定が不要であるとともに、正確に着霜状態を判断することができる。さらに、タイマや過電流遮断器等の保護器を動作させなくて済むので、消費電力の低減及び保護器作動によるユニットの異常停止を防ぐことが可能になる。
本発明に係る冷凍装置は、第2温度センサ(霜取り終了判定用温度センサとして機能する温度センサ)からの情報に基づいて、蒸発器の着霜状態を判断することができるので、着霜状態の判断に要するコストを低減することが可能になるとともに、蒸発器の着霜状態を適切に判断することができる。また、第2温度センサからの情報に基づいて、除霜運転の終了を判定するので、無駄な除霜運転を防止することができる。また、蒸発器の1箇所の着霜状態を判断するのみで、除霜運転の実行の有無を決定することができるため、蒸発器全体の定量的な着霜量の計測・推定が不要であるとともに、正確に着霜状態を判断することができる。さらに、タイマや過電流遮断器等の保護器を動作させなくて済むので、消費電力の低減及び保護器作動によるユニットの異常停止を防ぐことが可能になる。
本発明に係る冷凍装置は、蒸発温度、凝縮温度、蒸発器吸込み空気温度、冷却運転時間及びサーモOFF時間に基づいて、前記蒸発器への着霜量を推定するので、蒸発器の着霜状態を適切に判断することができ、周期的に除霜運転を実行することなく、無駄な除霜運転を防止することができる。また、蒸発器の1箇所の着霜状態を判断するのみで、除霜運転の実行の有無を決定することができるため、蒸発器全体の定量的な着霜量の計測・推定が不要であるとともに、正確に着霜状態を判断することができる。さらに、タイマや過電流遮断器等の保護器を動作させなくて済むので、消費電力の低減及び保護器作動によるユニットの異常停止を防ぐことが可能になる。
以下、本発明の実施の形態を図面に基づいて説明する。
実施の形態1.
図1は、本発明の実施の形態1に係る冷凍装置100の冷媒回路構成を示す冷媒回路図である。図1に基づいて、冷凍装置100の回路構成について説明する。この冷凍装置100は、冷媒を循環させる冷凍サイクル(ヒートポンプサイクル)を利用して、冷却運転を行なうものである。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
冷凍装置100は、圧縮機1、凝縮器2、絞り装置3及び蒸発器4を冷媒配管20で順次接続した冷媒回路を備えている。また、冷凍装置100には、圧縮機1と凝縮器2との間における冷媒配管20を分岐点22で分岐させ、絞り装置3と蒸発器4との間における冷媒配管20の合流点23で合流させたバイパス管21が設けられている。このバイパス管21には、ホットガスデフロスト用電磁弁5と、ドレンパンコイル6とが設置されている。そして、冷凍装置100は、圧縮機1、ホットガスデフロスト用電磁弁5、ドレンパンコイル6及び蒸発器4を冷媒配管20及びバイパス管21で順次接続した除霜回路を備えている。なお、ホットガスデフロスト用電磁弁5は、バイパス管21の分岐点22側に、ドレンパンコイル6は、バイパス管21の合流点23側にそれぞれ設置されている。
圧縮機1は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にするものであり、駆動周波数が一定の一定速圧縮機で構成されている。凝縮器2は、その近傍に設置されているファン等の送風手段(図示省略)から供給される空気と冷媒配管20を導通する冷媒との間で熱交換を行ない、冷媒を凝縮液化するものである。絞り装置3は、減圧弁や膨張弁として機能し、冷媒を減圧して膨張させるものである。この絞り装置3は、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。蒸発器4は、その近傍に設けられているファン等の送風手段12(図2参照)から供給される空気と冷媒配管20を導通する冷媒との間で熱交換を行ない、冷媒を蒸発ガス化するものである。
ホットガスデフロスト用電磁弁5は、バイパス管21に設けられており、冷媒配管20を導通している冷媒をバイパス管21内に流通させるものである。ドレンパンコイル6は、圧縮機1から吐出され、バイパス管21を導通する高温・高圧の冷媒ガスがドレンパン(図示省略)を加熱し、このドレンパンに貯まったドレン水を蒸発させる機能を有している。なお、ドレン水が凍っている場合には、ドレンパンコイル6は、凍ったドレン水を融解させることができる。
図2は、蒸発器4の構造と、各センサの取り付け位置を示した斜視図である。また、図3は、蒸発器4を上から見た状態を拡大して示した平面図である。図2及び図3に基づいて、蒸発器4の詳細な構造と、各センサ(蒸発器吸込み空気温度センサ7及び無着霜検知用温度センサ8)の取り付け位置について説明する。なお、図2及び図3には、矢印Aで空気の流れを、矢印Bで冷媒の流れをそれぞれ表している。また、図3には、着霜状態を示すために霜50を併せて図示している。
図2に示すように、蒸発器4は、複数本のヘアピン10が複数枚のフィン9に挿入されて構成されている。ヘアピン10には、冷媒配管20からの冷媒が分配されて導通するようになっている。そして、ヘアピン10を導通する冷媒(矢印B)と、各フィン9の間を通過する空気(矢印A)とで熱交換が行なわれるようになっている。蒸発器4の近傍には、上述したように送風手段12が設置されており、蒸発器4に空気を供給するようになっている。
蒸発器4の空気吸い込み側近傍には、蒸発器4に吸い込まれる空気の温度を検知するための第1温度センサである蒸発器吸込み空気温度センサ7が設置されている。この蒸発器吸込み空気温度センサ7は、蒸発器4に供給される空気の温度を検知できるものであればよく、種類を特に限定するものではない。また、最も着霜しやすい位置である蒸発器4の冷媒入口近傍のフィン9であって、空気の流れの下流側の端部(蒸発器4の中心に対して)には、その周囲の温度、つまり蒸発器4の着霜状態を判断するために使用する温度を検知するための第2温度センサである無着霜検知用温度センサ8が設置されている。
この無着霜検知用温度センサ8は、蒸発器4に霜が付着しない範囲の温度を検知できるものであればよく、種類を特に限定するものではない。ここでは、無着霜検知用温度センサ8は、フィン9の上側に設置している場合を例に示しているが、設置位置を特に限定するものではない。また、無着霜検知用温度センサ8を、蒸発器4の中心から下流側までの範囲内のどこに設置してもある程度の効果を奏するが、無着霜検知用温度センサ8を、下流側の端部に設置すると最大の効果を奏することになる。
なお、蒸発器吸込み空気温度センサ7が検知した温度情報及び無着霜検知用温度センサ8が検知した温度情報は、制御装置30に送られるようになっている。つまり、冷凍装置100は、この冷凍装置100の全体を統括制御する機能を有する制御装置30が設けられているのである。この制御装置30は、たとえばマイクロコンピュータ等で構成するとよい。具体的には、制御装置30は、蒸発器吸込み空気温度センサ7が検知した温度情報及び無着霜検知用温度センサ8が検知した温度情報に基づいて、絞り装置3の開度や、ホットガスデフロスト用電磁弁5の開閉を制御したりするようになっている。
ここで、冷凍装置100の動作について説明する。まず、冷凍装置100の冷却運転について説明する。冷凍装置100には、たとえばR404AやR410A等のHFC冷媒、CO2 等の自然冷媒、又は、R600AやR290等のHC冷媒を使用することができる。冷凍装置100が冷却運転を開始すると、まず圧縮機1が駆動される。そして、圧縮機1で冷媒が圧縮され、高温・高圧の冷媒ガス(吐出ガス)となって圧縮機1から吐出される。この冷媒ガスは凝縮器2に流入し、空気に放熱しながら凝縮液化し、低温・高圧の液冷媒となる。この液冷媒は、絞り装置3で減圧され、低温・低圧の気液二相冷媒となる。
そして、気液二相冷媒は、蒸発器4に流入し、送風手段12によって供給される空気から吸熱(つまり、空気を冷却)することによって蒸発ガス化し、高温・低圧の冷媒ガスとなって、蒸発器4から流出する。冷却された空気は、たとえば冷蔵庫等の庫内等の冷却対象域に供給され、この冷却対象域を冷却するようになっている。蒸発器4から流出した冷媒ガスは、圧縮機1に再度吸入されることになる。冷凍装置100は、以上の動作を繰り返す。
このとき、蒸発器4の冷媒入口側から霜50の付着が進行し、図3に示すように、蒸発器4を構成する各フィン9の間が目詰まりすることになってしまう場合が発生する。この霜50をそのままの状態にしておくと、送風手段12によって供給される空気が蒸発器4を通過しなくなり、熱交換効率が低下することになる。そこで、冷凍装置100は、除霜運転(ホットガスデフロスト運転)を実行し、各フィン9の間に付着した霜50を融解することができるようになっている。
次に、冷凍装置100の除霜運転について説明する。冷凍装置100が除霜運転を開始すると、まず圧縮機1が駆動される。そして、圧縮機1で冷媒が圧縮され、高温・高圧の冷媒ガス(吐出ガス)となって圧縮機1から吐出される。この冷媒ガスがバイパス管21を導通するようにホットガスデフロスト用電磁弁5を開制御する。ホットガスデフロスト用電磁弁5が開制御されると、冷媒ガスは、ドレンパンコイル6を経由して蒸発器4に流入することになる。したがって、蒸発器4には高温・高圧の冷媒ガスが流入するため、フィン9やヘアピン10に付着していた霜50を融解することができる。霜50を溶解した冷媒ガスは、冷却されて、圧縮機1に再度吸入されることになる。
次に、蒸発器4の無着霜状態の判断内容について説明する。蒸発器4に霜50が付着していない場合、無着霜検知用温度センサ8では、その周囲に空気が流れているため、蒸発器吸込み空気温度センサ7で検知される温度に近い温度を検知することになる。一方、蒸発器4に霜50が付着し始めると、霜50でフィン9の目詰まりが発生する。このような場合、無着霜検知用温度センサ8では、目詰まりをした箇所におけるフィン9の表面温度が蒸発温度付近まで低下するとともに、その周囲の空気の温度も低下するため、蒸発器吸込み空気温度センサ7で検知される温度よりも低下した温度を検知することになる。
したがって、蒸発器吸込み空気温度センサ7で検知した空気の温度と、無着霜検知用温度センサ8で検知した空気の温度との差が大きくなる。そこで、制御装置30は、これらの温度情報の差に基づいて、蒸発器4の着霜状態を判断できるようになっている。すなわち、制御装置30は、蒸発器吸込み空気温度センサ7で検知した空気の温度と、無着霜検知用温度センサ8で検知した空気の温度との差が予め設定してある所定の値以下である場合には、蒸発器4に霜50が付着していないと判断できるのである。
冷凍装置100の仕様によって、判定する温度差は異なってくる。たとえば、蒸発器吸込み空気温度センサ7で検知した空気の温度と無着霜検知用温度センサ8で検知した空気の温度との差が5[deg]、蒸発温度と蒸発器吸込み空気温度センサ7で検知した空気の温度との差が15[deg]であるときに無着霜状態であるとした場合、蒸発器吸込み空気温度センサ7で検知した空気の温度と無着霜検知用温度センサ8で検知した空気の温度との差が10[deg]以上になれば、蒸発器4に着霜していると考えられる。
以上のように、蒸発器4の着霜状態を適切に判断することにより、周期的に除霜運転を実行することなく、無駄な除霜運転を防止することができる。また、蒸発器4の1箇所の着霜状態を判断するのみで、除霜運転の実行の有無を決定することができるため、蒸発器4全体の定量的な着霜量の計測・推定が不要であるとともに、正確に着霜状態を判断することができる。さらに、タイマや過電流遮断器等の保護器を動作させなくて済むので、消費電力の低減及び保護器作動によるユニットの異常停止を防ぐことが可能になる。
実施の形態2.
図4は、実施の形態2に係る蒸発器4aを上から見た状態を拡大して示した平面図である。図4に基づいて、第2温度センサである無着霜検知用温度センサ8aの取り付け位置について説明する。なお、実施の形態2では、実施の形態1との相違点を中心に説明し、実施の形態1と同一部分には、同一符号を付して説明を省略するものとする。また、実施の形態2に係る蒸発器4a及び無着霜検知用温度センサ8aの構造及び機能は、実施の形態1に係る蒸発器4及び無着霜検知用温度センサ8と同様であるので説明を省略するものとする。
実施の形態1では、蒸発器4の冷媒入口近傍のフィン9であって、空気の流れの下流側端部に無着霜検知用温度センサ8を設置し、蒸発器4の着霜状態を検知するようにしたものであるが、実施の形態2では、図4に示すように、蒸発器4aの冷媒入口近傍のフィン9であって、空気の流れの上流側の端部(蒸発器4aの中心に対して)に無着霜検知用温度センサ8aを設置し、蒸発器4aの着霜状態を検知するようにしている。無着霜検知用温度センサ8aを、蒸発器4の中心から上流側までの範囲内のどこに設置してもある程度の効果を奏するが、無着霜検知用温度センサ8aを、上流側の端部に設置すると最大の効果を奏することになる。なお、実施の形態2における冷却運転及び除霜運転については、実施の形態1と同様に実行される。
ここで、蒸発器4aの無着霜状態の判断内容について説明する。蒸発器4aに霜50が付着していない場合、無着霜検知用温度センサ8aでは、その周囲に空気が流れているため、蒸発器吸込み空気温度センサ7で検知される温度に近い温度を検知することになる。一方、蒸発器4aに霜50が付着し始めると、図4に示すように、成長した霜50によって、フィン9の目詰まりが発生するとともに無着霜検知用温度センサ8aも覆われることになる。
この霜50が断熱材となり、熱伝達により蒸発器4aに吸い込まれる空気の熱の影響が小さくなる。しかしながら、蒸発温度に近いフィン9からは熱伝導により無着霜検知用温度センサ8aの検知温度が低下するため、蒸発器吸込み空気温度センサ7で検知される温度よりも低下した温度を検知することになる。したがって、蒸発器吸込み空気温度センサ7で検知した空気の温度と、無着霜検知用温度センサ8aで検知した空気の温度との差が大きくなる。そこで、制御装置30は、蒸発器吸込み空気温度センサ7で検知した空気の温度と、無着霜検知用温度センサ8aで検知した空気の温度との差が予め設定してある所定の値以下である場合には、蒸発器4aに霜50が付着していないと判断できる。
以上のように、蒸発器4aの着霜状態を適切に判断することにより、周期的に除霜運転を実行することなく、無駄な除霜運転を防止することができる。また、蒸発器4aの1箇所の着霜状態を判断するのみで、除霜運転の実行の有無を決定することができるため、蒸発器4a全体の定量的な着霜量の計測・推定が不要であるとともに、正確に着霜状態を判断することができる。さらに、タイマや過電流遮断器等の保護器を動作させなくて済むので、消費電力の低減及び保護器作動によるユニットの異常停止を防ぐことが可能になる。
実施の形態3.
図5は、実施の形態3に係る蒸発器4bの構造と、各センサの取り付け位置を示した斜視図である。図5に基づいて、風速センサ11の取り付け位置について説明する。なお、実施の形態3では、実施の形態1及び実施の形態2との相違点を中心に説明し、実施の形態1及び実施の形態2と同一部分には、同一符号を付して説明を省略するものとする。また、実施の形態3に係る蒸発器4bの構造及び機能は、実施の形態1に係る蒸発器4及び実施の形態2に係る蒸発器4aと同様であるので説明を省略するものとする。
実施の形態1及び実施の形態2では、蒸発器吸込み空気温度センサ7と無着霜検知用温度センサ8(又は、無着霜検知用温度センサ8a)からの温度情報に基づいて、蒸発器4(又は、蒸発器4a)の着霜状態を判断するようにしたものであるが、実施の形態3では、図5に示すように、蒸発器4bの空気出口側(空気の流れの下流側)に風速センサ11を設置し、風速センサ11からの風速情報に基づいて、蒸発器4bの着霜状態を検知するようにしている。なお、実施の形態3における冷却運転及び除霜運転については、実施の形態1及び実施の形態2と同様に実行される。
風速センサ11は、蒸発器4bから流出した空気の風速を検知するための機能を有している。この風速センサ11で検知された風速情報は、制御装置30に送られるようになっている。風速センサ11は、最も着霜しやすい位置である蒸発器4bの冷媒入口近傍であって、空気の流れの下流側(蒸発器4bの中心に対して)に設置されている。なお、図5では、風速センサ11が蒸発器4bの外部に設置されている場合を例に示しているが、これに限定するものではない。たとえば、蒸発器4bを構成する各フィン9の間に設置してもよい。
ここで、蒸発器4bの無着霜状態の判断内容について説明する。蒸発器4bに霜50が付着していない場合、各フィン9の間には空気が流れており、このときの風速が風速センサ11によって検知されることになる。一方、蒸発器4bに霜50が付着し始めると、図3に示すように、フィン9の目詰まりが発生する。このような場合、蒸発器4b内の圧力損失が大きくなり、各フィン9の間を流れる空気の風速が小さくなる。そこで、制御装置30は、風速センサ11で検知した風速が予め設定してある所定の値以上である場合には、蒸発器4に霜50が付着していないと判断できるのである。
以上のように、蒸発器4bの着霜状態を適切に判断することにより、周期的に除霜運転を実行することなく、無駄な除霜運転を防止することができる。また、蒸発器4bの1箇所の着霜状態を判断するのみで、除霜運転の実行の有無を決定することができるため、蒸発器4b全体の定量的な着霜量の計測・推定が不要であるとともに、正確に着霜状態を判断することができる。さらに、タイマや過電流遮断器等の保護器を動作させなくて済むので、消費電力の低減及び保護器作動によるユニットの異常停止を防ぐことが可能になる。
風速センサ11で検知した風速情報のみで蒸発器4bの着霜状態を判断できるので、蒸発器吸込み空気温度センサ7及び無着霜検知用温度センサ8(又は、無着霜検知用温度センサ8a)を設置しなくて済み、手間及び費用を更に低減することが可能になる。なお、風速センサ11で検知した風速情報に、蒸発器吸込み空気温度センサ7及び無着霜検知用温度センサ8(又は、無着霜検知用温度センサ8a)の温度情報を加えて蒸発器4bの着霜状態を判断すれば、更に適切に蒸発器4bの着霜状態を判断することができる。
実施の形態4.
図6は、実施の形態4に係る蒸発器4cを上から見た状態を拡大して示した平面図である。図6に基づいて、蒸発器4cの詳細な構造について説明する。なお、実施の形態4では、実施の形態1〜実施の形態3との相違点を中心に説明し、実施の形態1〜実施の形態3と同一部分には、同一符号を付して説明を省略するものとする。また、実施の形態4に係る蒸発器4cの機能は、実施の形態1に係る蒸発器4、実施の形態2に係る蒸発器4a及び実施の形態3に係る蒸発器4bと同様であるので説明を省略するものとする。
実施の形態1〜実施の形態3では、蒸発器4〜蒸発器4bの最も着霜しやすい位置に無着霜検知用温度センサ8、無着霜検知用温度センサ8a又は風速センサ11を設置し、蒸発器4〜蒸発器4bの着霜状態を検知するようにしたものであるが、実施の形態4では、図6に示すように、蒸発器4cの一部に霜50が付着しやすいように、蒸発器4cの構造を工夫して、蒸発器4cの着霜状態を高精度に検知するようにしている。なお、実施の形態2における冷却運転及び除霜運転については、実施の形態1〜実施の形態3と同様に実行される。
すなわち、蒸発器4cの冷媒入口付近のフィン9の間隔(フィンピッチ)を小さくすることで、霜50が付着しやすくし、各フィン9の間の目詰まりを発生しやすくしているのである。そして、フィンピッチを小さくした風路下流側(空気の流れの下流側)に無着霜検知用温度センサ8を設置して蒸発器4cの着霜状態を判断するようにしている。ここでは、実施の形態1に係る無着霜検知用温度センサ8を設置して蒸発器4cの着霜状態を判断する場合を例に示しているが、これに限定するものではない。たとえば、実施の形態2に係る無着霜検知用温度センサ8aや、実施の形態3に係る風速センサ11を設置して蒸発器4cの着霜状態を判断してもよい。
フィンピッチを小さくし、蒸発器4cの一部に霜50を付着しやすいようにすれば、フィンピッチが大きく、目詰まりを起こさないレベルの着霜量であっても、目詰まりを起こすことができる。その結果、風路下流の風速の低下や、フィン9の温度を低下させることができ、蒸発器4cの着霜状態を高精度で判断することが可能になる。なお、蒸発器4cの無着霜状態の判断内容については、実施の形態1の判断内容又は実施の形態3の判断内容と同様である。
以上のように、蒸発器4cの着霜状態を適切により高精度に判断することにより、周期的に除霜運転を実行することなく、無駄な除霜運転を防止することができる。また、蒸発器4cの1箇所の着霜状態を判断するのみで、除霜運転の実行の有無を決定することができるため、蒸発器4c全体の定量的な着霜量の計測・推定が不要であるとともに、正確に着霜状態を判断することができる。さらに、タイマや過電流遮断器等の保護器を動作させなくて済むので、消費電力の低減及び保護器作動によるユニットの異常停止を防ぐことが可能になる。
実施の形態5.
図7は、実施の形態5に係る蒸発器4dを上から見た状態を拡大して示した平面図である。図7に基づいて、終了判定用温度センサ13の取り付け位置について説明する。なお、実施の形態5では、実施の形態1〜実施の形態4との相違点を中心に説明し、実施の形態1〜実施の形態4と同一部分には、同一符号を付して説明を省略するものとする。また、実施の形態5に係る蒸発器4dの構造及び機能は、実施の形態1〜実施の形態4に係る蒸発器4〜蒸発器4cと同様であるので説明を省略するものとする。
実施の形態1〜実施の形態4では、無着霜検知用温度センサ8、無着霜検知用温度センサ8a又は風速センサ11を設置して、蒸発器4〜蒸発器4cの着霜状態を判断するようにしたものであるが、実施の形態5では、図7に示すように、既設の第2温度センサ(たとえば、無着霜検知用温度センサ8や無着霜検知用温度センサ8a)を霜取り終了判定用温度センサ13として機能させることで、蒸発器4dの着霜状態を検知し、除霜運転の終了判定を実行するようにしている。なお、実施の形態5における冷却運転及び除霜運転については、実施の形態1〜実施の形態4と同様に実行される。
既に説明したように、蒸発器4dにおける冷媒の入口付近が最も霜50が付着しやすい箇所である。そこで、蒸発器4dの冷媒入口付近であって、空気の流れの下流側(蒸発器4dの中心に対して)に、蒸発器4dの温度を検知するための第2温度センサである無着霜検知用温度センサ8や無着霜検知用温度センサ8aを設置するようにした場合を説明した。ここでは、この第2温度センサを霜取り終了判定用温度センサ13として機能させることを特徴としている。また、図7に示すように、霜取り終了判定用温度センサ13は、フィン9とヘアピン10に接するように取り付けられるようになっている。
ここで、蒸発器4dの無着霜状態の判断内容について説明する。蒸発器4aに霜50が付着していない場合、霜取り終了判定用温度センサ13では、その周囲に空気が流れているため、蒸発器吸込み空気温度センサ7で検知される温度に近い温度を検知することになる。しかしながら、霜取り終了判定用温度センサ13はヘアピン10と接するように取り付けられているため、蒸発器吸込み空気温度センサ7で検知される温度よりも低い温度を検知することになる。
一方、蒸発器4dに霜50が付着し始めると、霜50でフィン9の目詰まりが発生する。このような場合、霜取り終了判定用温度センサ13では、目詰まりをした箇所におけるフィン9の表面温度が蒸発温度付近まで低下するとともに、その周囲の空気の温度も低下するため、蒸発器吸込み空気温度センサ7で検知される温度よりも低下した温度を検知することになる。したがって、蒸発器吸込み空気温度センサ7で検知した空気の温度と、霜取り終了判定用温度センサ13で検知した空気の温度との差が大きくなる。そこで、制御装置30は、蒸発器吸込み空気温度センサ7で検知した空気の温度と、霜取り終了判定用温度センサ13で検知した空気の温度との差が予め設定してある所定の値以下である場合には、蒸発器4dに霜50が付着していないと判断できるのである。
次に、除霜運転の終了について説明する。冷凍装置100が除霜運転を実行しているとき、制御装置30は、蒸発器4dに空気を供給しないように送風手段12を停止させている。そのため、蒸発器4dの吸い込み空気から霜取り終了判定用温度センサ13への熱伝達は小さくなる。したがって、霜取り終了判定用温度センサ13は、この霜取り終了判定用温度センサ13と接しているヘアピン10からの熱伝導の方が大きいので、冷媒温度に近い温度を検知することになる。
また、除霜運転開始時、高温・高圧の冷媒は、霜50を融解するので冷却され、霜取り終了判定用温度センサ13は低い温度を検知することになる。さらに、除霜運転を所定時間継続し、霜50が十分融解されると、高温・高圧の冷媒は、冷却されなくなるため、霜取り終了判定用温度センサ13は高い温度を検知することになる。そこで、制御装置30は、霜取り終了判定用温度センサ13で検知される温度が予め設定されている所定の値以上である場合には、霜取り終了判定を行い、除霜運転を終了させる。
以上のように、既存の温度センサ(霜取り終了判定用温度センサ13)を利用することができるので、着霜状態の判断に要するコストを低減することが可能になるとともに、蒸発器4dの着霜状態を適切に判断することができる。蒸発器4dの着霜状態を適切に判断することにより、周期的に除霜運転を実行することなく、無駄な除霜運転を防止することができる。また、蒸発器4dの1箇所の着霜状態を判断するのみで、除霜運転の実行の有無を決定することができるため、蒸発器4d全体の定量的な着霜量の計測・推定が不要であるとともに、正確に着霜状態を判断することができる。さらに、タイマや過電流遮断器等の保護器を動作させなくて済むので、消費電力の低減及び保護器作動によるユニットの異常停止を防ぐことが可能になる。
実施の形態6.
図8は、蒸発器の吸い込み空気における絶対湿度(Xr)算出時の空気線図を示すグラフである。図8に基づいて、実施の形態6の特徴事項である計測した温度データにより蒸発器の着霜状態を判断する場合について説明する。なお、実施の形態6では、実施の形態1〜実施の形態5との相違点を中心に説明し、実施の形態1〜実施の形態5と同一部分には、同一符号を付して説明を省略するものとする。また、図8では、横軸に緩急温度[℃]を、縦軸に絶対湿度[kg/kg’]をそれぞれ示している。さらに、実施の形態6で説明する蒸発器は、実施の形態1〜実施の形態5に係る蒸発器4〜蒸発器4dと同様の構造及び機能を有している。
実施の形態1〜実施の形態5では、蒸発器4〜蒸発器4dに霜50が付着し、各フィン9での目詰まりで発生する風速やフィン温度の低下を利用することによって、蒸発器4〜蒸発器4dの着霜状態を判断するようにしたものであるが、実施の形態6では、図8に示すような温度データを利用することによって、蒸発器の着霜状態を判断するようにしている。なお、実施の形態6における冷却運転及び除霜運転については、実施の形態1〜実施の形態5と同様に実行される。
まず、蒸発温度、凝縮温度、蒸発器吸込み空気温度、冷却運転時間及びサーモOFF時間を計測し、着霜量Mを推定する(式(3)参照)。次に、冷却運転中の蒸発器の着霜量Mon[kg]と蒸発器吸込み空気温度が0[℃]以上の場合、サーモOFF時に融解する霜の量Moff[kg]を下記式(1)及び式(2)により算出する。そして、蒸発温度Te、凝縮温度CT[℃]及び圧縮機運転周波数F[Hz]によって冷却能力Q[W]を計算し、蒸発器吸込み空気温度Trと冷却能力Qにより下記蒸発器吸込み空気の絶対湿度Xrを算出する。
冷却運転中の蒸発器の着霜量は、Mon[kg]=(Xr−Xe)×V×ρ×ton(式(1))で算出する。この式(1)では、Xrが蒸発器吸込み空気の絶対湿度[kg/kg’]を、Xeが蒸発器吹出し空気の絶対湿度[kg/kg’]を、Vが蒸発器風量[m3 /sec]を、ρが空気密度[kg/m3 ]を、tonが冷却運転時間[sec]をそれぞれ示している。また、サーモOFF時に融解する霜の量は、Moff[kg]=(Tr−Te)×h×A×toff/C(式(2))で算出する。この式(2)では、Trが蒸発器吸込み空気温度[℃]を、Teが蒸発温度[℃]を、hがサーモOFF時の蒸発器熱伝達率[W/m2 ・K]を、Aが蒸発器伝熱面積[m2 ]を、toffがサーモOFF時の時間[sec]を、Cが水の融解熱量[J/kg]をそれぞれ示している。
そして、蒸発器の着霜量は、M=Mon−Moff(式(3))で推定することができる。以上により、制御装置30は、蒸発器の着霜量Mが予め設定されている所定の値以下の場合には、蒸発器に霜50が付着していないと判断できる。なお、計測箇所や蒸発器の風速分布によっては、着霜量Mの推測値の精度が低減することになってしまうが、蒸発器の着霜状態を判断するのみであるので、着霜量Mの推測値は問題ない精度で算出することができる。
以上のように、既設の温度センサの温度データを利用することができるので、着霜状態の判断に要するコストを低減することが可能になる。蒸発器の着霜状態を適切に判断することにより、周期的に除霜運転を実行することなく、無駄な除霜運転を防止することができる。また、蒸発器の1箇所の着霜状態を判断するのみで、除霜運転の実行の有無を決定することができるため、蒸発器全体の定量的な着霜量の計測・推定が不要であるとともに、正確に着霜状態を判断することができる。さらに、タイマや過電流遮断器等の保護器を動作させなくて済むので、消費電力の低減及び保護器作動によるユニットの異常停止を防ぐことが可能になる。
実施の形態1〜実施の形態6に係る冷凍装置100は、スーパーマーケットやコンビニエンスストア等に搭載されるショーケースや、冷蔵庫、冷凍庫等に適用することが可能である。この冷凍装置100を構成する蒸発器4〜蒸発器4dが、たとえば冷蔵庫に設置されている場合には、無着霜検知用温度センサ8や無着霜検知用温度センサ8a、霜取り終了判定用温度センサ13の周囲には、その庫内空気が流れることになる。
実施の形態1に係る冷凍装置の冷媒回路構成を示す冷媒回路図である。 蒸発器の構造と、各センサの取り付け位置を示した斜視図である。 蒸発器を上から見た状態を拡大して示した平面図である。 実施の形態2に係る蒸発器を上から見た状態を拡大して示した平面図である。 実施の形態3に係る蒸発器の構造と、各センサの取り付け位置を示した斜視図である。 実施の形態4に係る蒸発器を上から見た状態を拡大して示した平面図である。 実施の形態5に係る蒸発器を上から見た状態を拡大して示した平面図である。 蒸発器の吸い込み空気における絶対湿度(Xr)算出時の空気線図を示すグラフである。
符号の説明
1 圧縮機、2 凝縮器、3 絞り装置、4 蒸発器、4a 蒸発器、4b 蒸発器、4c 蒸発器、4d 蒸発器、5 ホットガスデフロスト用電磁弁、6 ドレンパンコイル、7 蒸発器吸込み空気温度センサ、8 無着霜検知用温度センサ、8a 無着霜検知用温度センサ、9 フィン、10 ヘアピン、11 風速センサ、12 送風手段、13 霜取り終了判定用温度センサ、20 冷媒配管、21 バイパス管、22 分岐点、23 合流点、30 制御装置、50 霜、100 冷凍装置。

Claims (13)

  1. 圧縮機、凝縮器、絞り装置及び蒸発器を冷媒配管で順次接続した冷媒回路と、
    前記圧縮機と前記凝縮器との間で前記冷媒配管を分岐させたバイパス管及び前記冷媒配管で前記圧縮機、ホットガスデフロスト用電磁弁、ドレンパンコイル及び前記蒸発器を順次接続した除霜回路と、
    前記蒸発器に供給される空気の温度を検知する第1温度センサと、
    前記蒸発器の冷媒入口近傍に設置され、その周囲の温度を検知する第2温度センサと、
    前記第1温度センサ及び前記第2温度センサからの温度情報に基づいて前記蒸発器の着霜状態を判断し、前記ホットガスデフロスト用電磁弁の開閉を制御することで前記蒸発器に付着した霜を溶解する除霜運転を実行する制御装置とを備えた
    ことを特徴とする冷凍装置。
  2. 前記第2温度センサを、前記蒸発器の中心に対する空気の流れの下流側又は上流側に設置した
    ことを特徴とする請求項1に記載の冷凍装置。
  3. 前記制御装置は、
    前記第1温度センサが検知した温度と、前記第2温度センサが検知した温度との差が予め設定してある所定の値以下であるとき、前記蒸発器に霜が付着していないと判断する
    ことを特徴とする請求項1又は2に記載の冷凍装置。
  4. 圧縮機、凝縮器、絞り装置及び蒸発器を冷媒配管で順次接続した冷媒回路と、
    前記圧縮機と前記凝縮器との間で前記冷媒配管を分岐させたバイパス管及び前記冷媒配管で前記圧縮機、ホットガスデフロスト用電磁弁、ドレンパンコイル及び前記蒸発器を順次接続した除霜回路と、
    前記蒸発器の中心に対する空気の流れの下流側に設置され、前記蒸発器を通過する空気の風速を検知する風速センサと、
    前記風速センサからの風速情報に基づいて前記蒸発器の着霜状態を判断し、前記ホットガスデフロスト用電磁弁の開閉を制御することで前記蒸発器に付着した霜を溶解する除霜運転を実行する制御装置とを備えた
    ことを特徴とする冷凍装置。
  5. 前記制御装置は、
    前記風速センサが検知した風速が予め設定してある所定の値以上であるとき、前記蒸発器に霜が付着していないと判断する
    ことを特徴とする請求項4に記載の冷凍装置。
  6. 圧縮機、凝縮器、絞り装置及び蒸発器を冷媒配管で順次接続した冷媒回路と、
    前記圧縮機と前記凝縮器との間で前記冷媒配管を分岐させたバイパス管及び前記冷媒配管で前記圧縮機、ホットガスデフロスト用電磁弁、ドレンパンコイル及び前記蒸発器を順次接続した除霜回路と、
    前記蒸発器に供給される空気の温度を検知する第1温度センサと、
    前記蒸発器の冷媒入口近傍に設置され、その周囲の温度を検知する第2温度センサと、
    前記蒸発器の中心に対する空気の流れの下流側に設置され、前記蒸発器を通過する空気の風速を検知する風速センサと、
    前記第1温度センサ及び前記第2温度センサからの温度情報と前記風速センサからの風速情報とに基づいて前記蒸発器の着霜状態を判断し、前記ホットガスデフロスト用電磁弁の開閉を制御することで前記蒸発器に付着した霜を溶解する除霜運転を実行する制御装置とを備えた
    ことを特徴とする冷凍装置。
  7. 前記第2温度センサを、前記蒸発器の中心に対する空気の流れの下流側又は上流側に設置した
    ことを特徴とする請求項6に記載の冷凍装置。
  8. 前記制御装置は、
    前記第1温度センサが検知した温度と、前記第2温度センサが検知した温度との差が予め設定してある所定の値以下であって、前記風速センサが検知した風速が予め設定してある所定の値以上であるとき、前記蒸発器に霜が付着していないと判断する
    ことを特徴とする請求項6又は7に記載の冷凍装置。
  9. 前記蒸発器の冷媒入口付近における前記蒸発器を構成するフィンの間隔を小さくした
    ことを特徴とする請求項1〜8のいずれかに記載の冷凍装置。
  10. 圧縮機、凝縮器、絞り装置及び蒸発器を冷媒配管で順次接続した冷媒回路と、
    前記圧縮機と前記凝縮器との間で前記冷媒配管を分岐させたバイパス管及び前記冷媒配管で前記圧縮機、ホットガスデフロスト用電磁弁、ドレンパンコイル及び前記蒸発器を順次接続した除霜回路と、
    前記蒸発器に供給される空気の温度を検知する第1温度センサと、
    前記蒸発器の冷媒入口近傍、かつ、前記蒸発器の中心に対する空気の流れの下流側であって、前記蒸発器を構成するフィン及びヘアピンに接するように設置され、前記蒸発器の着霜状態の判断、及び、前記蒸発器に付着した霜を溶解する除霜運転終了の判定をするために使用する温度を検知する第2温度センサと、
    前記第1温度センサ及び前記第2温度センサからの温度情報に基づいて前記蒸発器の着霜状態を判断し、前記ホットガスデフロスト用電磁弁の開閉を制御することで前記蒸発器に付着した霜を溶解する除霜運転を実行し、前記第2温度センサからの温度情報に基づいて前記除霜運転の終了判定を行なう制御装置とを備えた
    ことを特徴とする冷凍装置。
  11. 前記制御装置は、
    前記第1温度センサが検知した温度と、前記第2温度センサが検知した温度との差が予め設定してある所定の値以下であるとき、前記蒸発器に霜が付着していないと判断する
    ことを特徴とする請求項10に記載の冷凍装置。
  12. 前記制御装置は、
    除霜運転開始後、
    前記第2温度センサが検知した温度が予め設定されている所定の値以上であるとき、霜取り終了判定を行い、前記除霜運転を終了する
    ことを特徴とする請求項10又は11に記載の冷凍装置。
  13. 圧縮機、凝縮器、絞り装置及び蒸発器を冷媒配管で順次接続した冷媒回路と、
    前記圧縮機と前記凝縮器との間で前記冷媒配管を分岐させたバイパス管及び前記冷媒配管で前記圧縮機、ホットガスデフロスト用電磁弁、ドレンパンコイル及び前記蒸発器を順次接続した除霜回路と、
    蒸発温度、凝縮温度、蒸発器吸込み空気温度、冷却運転時間及びサーモOFF時間に基づいて、前記蒸発器への着霜量を推定する制御装置とを備えた
    ことを特徴とする冷凍装置。
JP2007152841A 2007-06-08 2007-06-08 冷凍装置 Pending JP2008304137A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007152841A JP2008304137A (ja) 2007-06-08 2007-06-08 冷凍装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007152841A JP2008304137A (ja) 2007-06-08 2007-06-08 冷凍装置

Publications (1)

Publication Number Publication Date
JP2008304137A true JP2008304137A (ja) 2008-12-18

Family

ID=40233012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007152841A Pending JP2008304137A (ja) 2007-06-08 2007-06-08 冷凍装置

Country Status (1)

Country Link
JP (1) JP2008304137A (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148413A1 (ja) * 2010-05-26 2011-12-01 三菱電機株式会社 冷凍空調装置
CN104482651A (zh) * 2014-12-31 2015-04-01 昆山台佳机电有限公司 一种空气源热泵热水机组及其除霜控制方法
JP2015227740A (ja) * 2014-05-30 2015-12-17 株式会社東芝 冷蔵庫
JP2016125766A (ja) * 2015-01-05 2016-07-11 三星電子株式会社Samsung Electronics Co.,Ltd. 冷却装置
WO2017073212A1 (ja) * 2015-10-27 2017-05-04 株式会社デンソー 冷凍サイクル装置
CN107101330A (zh) * 2017-04-26 2017-08-29 珠海格力电器股份有限公司 一种空调控制方法及装置
CN107514746A (zh) * 2017-08-04 2017-12-26 合肥美的暖通设备有限公司 除霜控制方法、装置、空调器和计算机可读存储介质
CN109210679A (zh) * 2018-08-15 2019-01-15 珠海格力电器股份有限公司 一种空调的控制方法、装置、存储介质及空调
WO2020021595A1 (ja) * 2018-07-23 2020-01-30 三菱電機株式会社 ショーケース
CN110793265A (zh) * 2019-11-18 2020-02-14 珠海格力电器股份有限公司 可以提高化霜效果的化霜检测装置、冰箱及控制方法
CN112212528A (zh) * 2020-10-16 2021-01-12 衡阳晟达信息技术有限公司 一种空气能热水器防冻装置及其防冻方法
CN113366272A (zh) * 2019-01-22 2021-09-07 北京卡林新能源技术有限公司 一种湿空气换热器轮动除霜控制系统
CN114838536A (zh) * 2022-04-28 2022-08-02 海信(山东)冰箱有限公司 一种冰箱和冰箱的化霜控制方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497864U (ja) * 1977-12-23 1979-07-10
JPS57164245A (en) * 1981-03-31 1982-10-08 Mitsubishi Heavy Ind Ltd Air conditioner
JPS58158474A (ja) * 1982-03-17 1983-09-20 株式会社日立製作所 電気冷蔵庫の除霜方法およびその装置
JPS58221366A (ja) * 1982-06-17 1983-12-23 三菱電機株式会社 着霜検知装置
JPH0278873A (ja) * 1988-09-13 1990-03-19 Daikin Ind Ltd 冷凍装置のデフロスト運転制御装置
JPH07167473A (ja) * 1993-12-14 1995-07-04 Matsushita Electric Ind Co Ltd 空気調和機の除霜運転制御装置
JPH10300316A (ja) * 1997-04-23 1998-11-13 Matsushita Refrig Co Ltd 冷凍冷蔵庫
JP2000274916A (ja) * 1999-03-26 2000-10-06 Sanyo Electric Co Ltd 冷却貯蔵庫
JP2000337753A (ja) * 1999-05-27 2000-12-08 Denso Corp 空調装置
JP2001263912A (ja) * 2000-03-17 2001-09-26 Hitachi Ltd 冷蔵庫
JP2001280666A (ja) * 2000-03-31 2001-10-10 Daikin Ind Ltd 空気調和装置
JP2003106739A (ja) * 2001-10-01 2003-04-09 Toshiba Corp 冷蔵庫
JP2003232589A (ja) * 2002-02-08 2003-08-22 Mitsubishi Heavy Ind Ltd 冷凍装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497864U (ja) * 1977-12-23 1979-07-10
JPS57164245A (en) * 1981-03-31 1982-10-08 Mitsubishi Heavy Ind Ltd Air conditioner
JPS58158474A (ja) * 1982-03-17 1983-09-20 株式会社日立製作所 電気冷蔵庫の除霜方法およびその装置
JPS58221366A (ja) * 1982-06-17 1983-12-23 三菱電機株式会社 着霜検知装置
JPH0278873A (ja) * 1988-09-13 1990-03-19 Daikin Ind Ltd 冷凍装置のデフロスト運転制御装置
JPH07167473A (ja) * 1993-12-14 1995-07-04 Matsushita Electric Ind Co Ltd 空気調和機の除霜運転制御装置
JPH10300316A (ja) * 1997-04-23 1998-11-13 Matsushita Refrig Co Ltd 冷凍冷蔵庫
JP2000274916A (ja) * 1999-03-26 2000-10-06 Sanyo Electric Co Ltd 冷却貯蔵庫
JP2000337753A (ja) * 1999-05-27 2000-12-08 Denso Corp 空調装置
JP2001263912A (ja) * 2000-03-17 2001-09-26 Hitachi Ltd 冷蔵庫
JP2001280666A (ja) * 2000-03-31 2001-10-10 Daikin Ind Ltd 空気調和装置
JP2003106739A (ja) * 2001-10-01 2003-04-09 Toshiba Corp 冷蔵庫
JP2003232589A (ja) * 2002-02-08 2003-08-22 Mitsubishi Heavy Ind Ltd 冷凍装置

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3330641A1 (en) * 2010-05-26 2018-06-06 Mitsubishi Electric Corporation Refrigerating and air-conditioning apparatus
US9574816B2 (en) 2010-05-26 2017-02-21 Mitsubishi Electric Corporation Refrigerating and air-conditioning apparatus
WO2011148413A1 (ja) * 2010-05-26 2011-12-01 三菱電機株式会社 冷凍空調装置
CN102918340B (zh) * 2010-05-26 2015-05-27 三菱电机株式会社 冷冻空调装置
EP3330643A1 (en) * 2010-05-26 2018-06-06 Mitsubishi Electric Corporation Refrigerating and air-conditioning apparatus
EP3330642A1 (en) * 2010-05-26 2018-06-06 Mitsubishi Electric Corporation Refrigerating and air-conditioning apparatus
EP3330640A1 (en) * 2010-05-26 2018-06-06 Mitsubishi Electric Corporation Refrigerating and air-conditioning apparatus
JP5490234B2 (ja) * 2010-05-26 2014-05-14 三菱電機株式会社 冷凍空調装置
CN102918340A (zh) * 2010-05-26 2013-02-06 三菱电机株式会社 冷冻空调装置
US10222115B2 (en) 2010-05-26 2019-03-05 Mitsubishi Electric Corporation Refrigerating and air-conditioning apparatus
EP2578968A4 (en) * 2010-05-26 2017-08-30 Mitsubishi Electric Corporation Refrigeration and air-conditioning device
JP2015227740A (ja) * 2014-05-30 2015-12-17 株式会社東芝 冷蔵庫
CN104482651A (zh) * 2014-12-31 2015-04-01 昆山台佳机电有限公司 一种空气源热泵热水机组及其除霜控制方法
JP2016125766A (ja) * 2015-01-05 2016-07-11 三星電子株式会社Samsung Electronics Co.,Ltd. 冷却装置
WO2017073212A1 (ja) * 2015-10-27 2017-05-04 株式会社デンソー 冷凍サイクル装置
CN108027185B (zh) * 2015-10-27 2020-06-05 株式会社电装 制冷循环装置
JPWO2017073212A1 (ja) * 2015-10-27 2018-03-01 株式会社デンソー 冷凍サイクル装置
US10845096B2 (en) 2015-10-27 2020-11-24 Denso Corporation Refrigeration cycle device
CN108027185A (zh) * 2015-10-27 2018-05-11 株式会社电装 制冷循环装置
CN107101330A (zh) * 2017-04-26 2017-08-29 珠海格力电器股份有限公司 一种空调控制方法及装置
CN107101330B (zh) * 2017-04-26 2019-07-23 珠海格力电器股份有限公司 一种空调控制方法及装置
CN107514746A (zh) * 2017-08-04 2017-12-26 合肥美的暖通设备有限公司 除霜控制方法、装置、空调器和计算机可读存储介质
WO2020021595A1 (ja) * 2018-07-23 2020-01-30 三菱電機株式会社 ショーケース
JPWO2020021595A1 (ja) * 2018-07-23 2021-05-20 三菱電機株式会社 ショーケースおよびクーリングユニット
CN109210679A (zh) * 2018-08-15 2019-01-15 珠海格力电器股份有限公司 一种空调的控制方法、装置、存储介质及空调
CN113366272A (zh) * 2019-01-22 2021-09-07 北京卡林新能源技术有限公司 一种湿空气换热器轮动除霜控制系统
CN110793265A (zh) * 2019-11-18 2020-02-14 珠海格力电器股份有限公司 可以提高化霜效果的化霜检测装置、冰箱及控制方法
CN112212528A (zh) * 2020-10-16 2021-01-12 衡阳晟达信息技术有限公司 一种空气能热水器防冻装置及其防冻方法
CN114838536A (zh) * 2022-04-28 2022-08-02 海信(山东)冰箱有限公司 一种冰箱和冰箱的化霜控制方法

Similar Documents

Publication Publication Date Title
JP2008304137A (ja) 冷凍装置
JP4365378B2 (ja) 除霜運転制御装置および除霜運転制御方法
EP1912029B1 (en) Refrigeration unit
JP4289427B2 (ja) 冷凍装置
CN105135772B (zh) 水制冷装置及其防止冷水结冰的控制方法
JP5178771B2 (ja) 冷凍冷蔵庫
JP5110192B1 (ja) 冷凍装置
US20070277539A1 (en) Continuously Operating Type Showcase
JP5558132B2 (ja) 冷凍機及びこの冷凍機が接続された冷凍装置
JP5313813B2 (ja) 冷蔵庫
JP2009216291A (ja) 輸送用冷凍装置
US20080016896A1 (en) Refrigeration system with thermal conductive defrost
JP5366764B2 (ja) 冷却装置及び冷凍サイクル装置
JP5340685B2 (ja) 冷凍装置
JP5031045B2 (ja) 冷凍冷蔵庫
JP5693932B2 (ja) 冷却システム、及び冷却方法
JP5586547B2 (ja) 冷蔵庫
JP4409316B2 (ja) 冷却装置
JP6987250B2 (ja) ショーケースおよびクーリングユニット
JP2001263912A (ja) 冷蔵庫
JP6974089B2 (ja) 冷凍・冷蔵ショーケース
JP5511735B2 (ja) 冷蔵庫
JP2005030606A (ja) 冷蔵庫
JP7412608B2 (ja) 冷凍システム
JPWO2019106755A1 (ja) 空気調和機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403