JP2008295376A - 細胞捕捉プレート、マイクロインジェクション装置、および細胞捕捉プレートの製造方法 - Google Patents

細胞捕捉プレート、マイクロインジェクション装置、および細胞捕捉プレートの製造方法 Download PDF

Info

Publication number
JP2008295376A
JP2008295376A JP2007145409A JP2007145409A JP2008295376A JP 2008295376 A JP2008295376 A JP 2008295376A JP 2007145409 A JP2007145409 A JP 2007145409A JP 2007145409 A JP2007145409 A JP 2007145409A JP 2008295376 A JP2008295376 A JP 2008295376A
Authority
JP
Japan
Prior art keywords
cell
hole
capture
plane
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007145409A
Other languages
English (en)
Inventor
Akio Ito
昭夫 伊藤
Akihiko Yabuki
彰彦 矢吹
Daisuke Uchida
大輔 内田
Satoru Sakai
覚 酒井
Yukihiro Yooku
幸宏 陽奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2007145409A priority Critical patent/JP2008295376A/ja
Priority to US12/155,003 priority patent/US20080299647A1/en
Priority to EP08157325A priority patent/EP1997878A1/en
Publication of JP2008295376A publication Critical patent/JP2008295376A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/06Plates; Walls; Drawers; Multilayer plates

Abstract

【課題】直径が異なる細胞を捕捉するとともに、捕捉した細胞に対する薬液の注入が確実に実行されるようにすること。
【解決手段】捕捉孔内には、最大細胞を捕捉する上段円筒状凹部201aと最大細胞より小さい細胞を捕捉する下段円筒状凹部201bとが形成されている。捕捉孔内に多段の円筒状凹部を形成するため、それぞれの円筒状凹部によって対応する大きさの細胞を確実に捕捉することができる。また、上段円筒状凹部201aの開口部における中心と下段円筒状凹部201bの開口部における中心とを結ぶ直線は、キャピラリ針の長手方向の軸と略平行になっている。このため、キャピラリ針が突き出される際に、キャピラリ針の先端がそれぞれの円筒状凹部によって捕捉された細胞の中心付近に到達する。
【選択図】図5

Description

本発明は、長手方向の軸に沿って突き出されるキャピラリ針によって物質が注入されるインジェクション対象の細胞を捕捉する平面を備えた細胞捕捉プレート、マイクロインジェクション装置、および細胞捕捉プレートの製造方法に関し、特に、直径が異なる細胞を捕捉するとともに、捕捉した細胞に対する薬液の注入が確実に実行されるようにすることができる細胞捕捉プレート、マイクロインジェクション装置、および細胞捕捉プレートの製造方法に関する。
近年、細胞内に遺伝子、抗体、またはたんぱく質などを直接注入することにより、細胞の遺伝情報を改変したり、細胞に現れる変化を解析したりする研究が盛んに行われている。この研究が進めば、遺伝子の役割や抗体およびたんぱく質などの生体分子の機能が解明されるとともに、例えば個人の遺伝的特性に適合した遺伝子治療を行うテーラメード医療が可能となる。細胞内に遺伝子を注入する方式としては、電気的な方法(エレクトロポレーション)、化学的な方法(リポフェクション)、生物学的な方法(ベクター法)、機械的な方法(マイクロインジェクション)、および光学的な方法(レーザインジェクション)などが提案されている。しかし、電気的な方法は、大電流を流して細胞膜を破るため細胞へのダメージが大きく、化学的・生物学的な方法は、導入可能な物質に制限があるため効率が悪く、生物学的な方法は、感染などに対する安全性に懸念があるなどの欠点がある。
一方で、機械的な方法であるマイクロインジェクションは、最も安全で効率が高い方法として注目されている。マイクロインジェクションは、遺伝子以外にも抗体およびたんぱく質などの生体分子、ならびに化合物など(以下これらを総称して「薬液」という)を細胞に注入する際にも有用な技術である。
このようなマイクロインジェクションにおいては、図12に示すように、キャピラリ針10が細胞Cの位置へ自動的に移動し、細胞Cに薬液を直接注入する。このとき、キャピラリ針10が正確に細胞Cの位置へ移動するためには、シャーレ20内での細胞Cの位置を固定する必要がある。そこで、図12においては、複数の貫通孔が設けられた細胞捕捉プレート30がシャーレ20内に設置され、細胞捕捉プレート30のシャーレ20底面側を負圧にすることにより、細胞Cが細胞捕捉プレート30の貫通孔に吸い寄せられている。
具体的には、図12において、シャーレ20内は緩衝液で満たされており、細胞捕捉プレート30および細胞Cは、緩衝液に浸っている。そして、シャーレ20の底面から緩衝液が吸引されることにより、細胞捕捉プレート30のシャーレ20底面側が負圧となり、細胞Cは細胞捕捉プレート30に穿設された貫通孔に吸い寄せられる。これにより、細胞Cの位置は細胞捕捉プレート30の貫通孔の位置に固定され、貫通孔の座標があらかじめ記憶されていれば、キャピラリ針10を細胞Cの位置へ正確に移動させることが可能となる。
ところで、吸引によって細胞Cの位置を固定する場合には、細胞の大きさと貫通孔の大きさとの関係を適切に調整することが必要である。すなわち、例えば図13に示すように、細胞Cの大きさに対して細胞捕捉プレート30の貫通孔が大きすぎる場合には、吸引により細胞Cそのものが貫通孔を通過してしまう虞がある。また、例えば図14に示すように、細胞Cの大きさに対して細胞捕捉プレート30の貫通孔が小さすぎる場合には、確実に細胞Cの位置を固定することができず、キャピラリ針10の接触に伴って細胞Cが動いてしまうことがある。
そこで、例えば特許文献1においては、細胞捕捉プレートに直径が小さい貫通孔を穿設するとともに、貫通孔の周囲に直径が大きい凹み部を設けることが記載されている。すなわち、特許文献1に記載の細胞捕捉プレートにおいては、周囲より高さが低くなった円形平面の凹み部の中心に貫通孔が設けられている。このような細胞捕捉プレートによれば、貫通孔からの吸引により細胞が細胞捕捉プレートに吸着されると同時に、凹み部によって細胞の位置が確実に固定される。
特開2005−318851号公報
しかしながら、マイクロインジェクション対象の細胞の大きさは多様であり、細胞の直径によっては貫通孔が穿設された凹み部でも細胞を捕捉できるとは限らないという問題がある。すなわち、上述した特許文献1の凹み部の直径は、細胞の直径の80%程度であるため、凹み部によって捕捉可能な細胞の直径は凹み部の直径によって自ずと限定される。したがって、マイクロインジェクション対象の細胞の直径によって細胞捕捉プレートを使い分けるなどの処置が必要となり、マイクロインジェクションの効率が低下してしまう。
また、同一種類の細胞でも直径の個体差が大きい場合があり、この場合にも、捕捉される細胞のうち凹み部の直径に適合しない細胞には十分な捕捉力が働かないため、インジェクションが失敗しやすくなり、インジェクションの効率が低下してしまう。
これらの問題の具体例を説明するために、2種類の細胞の直径のヒストグラムを図15に示す。図15においては、第1の細胞種のヒストグラムが白抜きで示されており、第2の細胞種のヒストグラムが斜線で示されている。同図に示すように、第1の細胞種の直径は主に7〜10μmに分布しており、第2の細胞種の直径は主に13〜23μmに分布している。これらの2種類の細胞の直径の平均値には、およそ11μmの差があり、同一の細胞捕捉プレートを利用して捕捉するのは困難であると考えられる。
すなわち、例えば直径が大きい第2の細胞種に適した細胞捕捉プレートを用いると、図16に示すように、第2の細胞種の細胞C2は、細胞捕捉プレート30の貫通孔が設けられた凹み部30aによって捕捉される。一方、第1の細胞種の細胞C1は、細胞捕捉プレート30の凹み部30a内に完全に納まってしまい、凹み部30aが細胞C1を捕捉する機能を果たさず、貫通孔の断面積に対応する小さな捕捉力しか働かないことになる。また、図15に示したヒストグラムにおいて、第2の細胞種の直径は、同一種類の細胞であるにも拘らずレンジが広く、第2の細胞種の細胞のみに対してマイクロインジェクションを行う場合にも、細胞捕捉プレートによって捕捉される細胞のうち多数の細胞に十分な捕捉力が働かないことになる。
さらに、図16に示したように、通常、キャピラリ針10の長手方向は、鉛直方向に対して一定の角度で傾斜している。これは、マイクロインジェクション対象の細胞の鉛直上方向には、細胞を照らす照明などが設けられるため、キャピラリ針10およびキャピラリ針10を移動させるための機構を細胞の鉛直上方向に設けることができないためである。このとき、キャピラリ針10が突出した際に直径が小さい細胞C1の中心をキャピラリ針10の先端が通過するようにキャピラリ針10の移動が制御されていると、図16から明らかなように、キャピラリ針10の先端の移動軌跡は、直径が大きい細胞C2の中心から大きくずれることになる。
したがって、直径が大きい細胞C2に対して薬液を注入する場合には、キャピラリ針10の先端が細胞C2の中心からはずれた位置に到達することになり、確実なマイクロインジェクションの実行が保証されない。すなわち、薬液が注入される位置が細胞の外縁部分となってしまい、薬液の効果が見られないことがある。また、キャピラリ針10が突出する際に、キャピラリ針10の先端が細胞C2の端部に接触して、細胞C2自体を凹み部30aから押し退けてしまう虞がある。
本発明はかかる点に鑑みてなされたものであり、直径が異なる細胞を捕捉するとともに、捕捉した細胞に対する薬液の注入が確実に実行されるようにすることができる細胞捕捉プレート、マイクロインジェクション装置、および細胞捕捉プレートの製造方法を提供することを目的とする。
上記課題を解決するために、本発明は、長手方向の軸に沿って突き出されるキャピラリ針によって物質が注入されるインジェクション対象の細胞を捕捉する平面を備えた細胞捕捉プレートであって、前記平面の一方の面に形成され前記平面に対して垂直方向に開口して細胞を支持する開口部と、前記開口部から前記平面の他方の面へ貫通し負圧により前記開口部に細胞を吸引する貫通孔とを含む捕捉孔を有し、前記捕捉孔は、前記開口部近傍における前記平面に平行な断面の面積が前記貫通孔近傍における前記平面に平行な断面の面積より大きいとともに、これらの2つの断面の中心を結ぶ直線が前記キャピラリ針の長手方向の軸に略平行に形成される構成を採る。
この構成によれば、捕捉孔が細胞の直径に応じた断面積を有する位置で細胞を支持し、キャピラリ針が突き出される際に、キャピラリ針の先端が捕捉孔に捕捉された細胞の中心付近を通過するため、直径が異なる細胞を捕捉するとともに、捕捉した細胞に対する薬液の注入が確実に実行されるようにすることができる。
また、本発明は、上記構成において、前記捕捉孔は、前記開口部から前記貫通孔へ向かうほど底面積が小さくなる複数の円筒部を連結した形状を有し、前記貫通孔は、底面積が最小の円筒部の底面から前記平面の他方の面へ貫通する構成を採る。
この構成によれば、捕捉孔内で連結される複数の円筒部の底面積が異なるため、それぞれの円筒部が底面積に応じた大きさの細胞を捕捉することができ、直径が異なる細胞を捕捉することができる。
また、本発明は、上記構成において、前記捕捉孔は、前記開口部から前記平面が円筒状に陥没して形成されインジェクション対象の細胞を支持する上段円筒状凹部と、前記上段円筒状凹部の底面の一部に開口し円筒状に陥没して形成される下段円筒状凹部とを有し、前記貫通孔は、前記下段円筒状凹部の底面から前記平面の他方の面へ貫通する構成を採る。
この構成によれば、捕捉孔内に底面積が大きい上段円筒状凹部と底面積が小さい下段円筒状凹部とが形成されるため、それぞれの円筒状凹部が底面積に応じた大きさの範囲の細胞を捕捉することができるとともに、捕捉孔内が二段に分かれているのみであるため、細胞捕捉プレートの製造が比較的容易である。
また、本発明は、上記構成において、前記捕捉孔は、前記上段円筒状凹部の開口部の中心と前記下段円筒状凹部の開口部の中心とを結ぶ直線が前記キャピラリ針の長手方向の軸に略平行に形成される構成を採る。
この構成によれば、二段の円筒状凹部における開口部の中心を結ぶ直線がキャピラリ針の長手方向の軸に略平行であるため、いずれの円筒状凹部に細胞が捕捉された場合でも、キャピラリ針の突き出し時にキャピラリ針の先端を細胞の中心付近に到達させることができ、細胞内への物質の注入を確実に行うことができる。
また、本発明は、上記構成において、前記捕捉孔は、前記開口部から前記貫通孔へ向かって前記平面に平行な断面の面積が漸次縮小する漏斗状部を有し、前記貫通孔は、前記漏斗状部の前記平面に平行な所定の位置に形成される底面から前記平面の他方の面へ貫通する構成を採る。
この構成によれば、捕捉孔内に断面積が漸次縮小する漏斗状部が形成されるため、漏斗状部内のそれぞれの位置の断面積に応じた大きさの細胞を捕捉することができる。また、捕捉孔の断面積の変化が連続的であるため、捕捉する細胞の直径が離散的な範囲に限定されることがない。
また、本発明は、上記構成において、前記捕捉孔は、前記開口部の中心と前記漏斗状部の底面の中心とを結ぶ直線が前記キャピラリ針の長手方向の軸に略平行に形成される構成を採る。
この構成によれば、漏斗状部の開口部と底面それぞれにおける中心を結ぶ直線がキャピラリ針の長手方向の軸に略平行であるため、捕捉孔内のどの位置に細胞が捕捉された場合でも、キャピラリ針の突き出し時にキャピラリ針の先端を細胞の中心付近に到達させることができ、細胞内への物質の注入を確実に行うことができる。
また、本発明は、上記構成において、前記開口部は、直径がインジェクション対象の細胞の最大直径の70〜80%に相当する円形に形成される構成を採る。
この構成によれば、開口部付近の捕捉孔の直径が細胞の最大直径の70〜80%であるため、インジェクション対象の最大細胞に対する捕捉孔の直径が小さすぎもせず大きすぎもせず、捕捉孔によって最大細胞を確実に固定することができる。
また、本発明は、上記構成において、前記貫通孔は、底面の直径が1〜2μmまたはインジェクション対象の細胞の最小直径の10〜20%に相当する円筒状に形成される構成を採る。
この構成によれば、貫通孔の直径が1〜2μmまたは細胞の最小直径の10〜20%であるため、最小細胞に対する貫通孔の直径が大きすぎることがなく、最小細胞が貫通孔内へ吸引されてしまうことを防止することができる。
また、本発明は、長手方向の軸に沿って突き出され所定のタイミングで物質を吐出して細胞に注入するキャピラリ針と、インジェクション対象の細胞を捕捉する平面を備えた細胞捕捉プレートとを有するマイクロインジェクション装置であって、前記細胞捕捉プレートは、前記平面の一方の面に形成され前記平面に対して垂直方向に開口して細胞を支持する開口部と、前記開口部から前記平面の他方の面へ貫通し負圧により前記開口部に細胞を吸引する貫通孔とを含む捕捉孔を有し、前記捕捉孔は、前記開口部近傍における前記平面に平行な断面の面積が前記貫通孔近傍における前記平面に平行な断面の面積より大きいとともに、これらの2つの断面の中心を結ぶ直線が前記キャピラリ針の長手方向の軸に略平行に形成される構成を採る。
この構成によれば、細胞捕捉プレートに形成された捕捉孔が細胞の直径に応じた断面積を有する位置で細胞を支持し、キャピラリ針が突き出される際に、キャピラリ針の先端が捕捉孔に捕捉された細胞の中心付近を通過するため、直径が異なる細胞を捕捉するとともに、捕捉した細胞に対する薬液の注入が確実に実行されるようにすることができる。
また、本発明は、長手方向の軸に沿って突き出されるキャピラリ針によって物質が注入されるインジェクション対象の細胞を捕捉する平面を備えた細胞捕捉プレートの製造方法であって、前記平面の一方の面から前記平面の他方の面へ貫通する貫通孔をエッチングによって形成する貫通孔形成ステップと、前記貫通孔形成ステップにて形成された貫通孔を囲む円筒状の第1の円筒部を前記平面の一方の面側にエッチングによって形成する第1円筒部形成ステップと、前記第1円筒部形成ステップによって形成された第1の円筒部を囲む円筒状の第2の円筒部であって、前記平面の一方の面に開口する開口部の中心と底面に形成される第1の円筒部の開口部の中心とを結ぶ直線が前記キャピラリ針の長手方向の軸に略平行になる第2の円筒部をエッチングによって形成する第2円筒部形成ステップとを有するようにした。
この方法によれば、細胞捕捉プレートに形成された捕捉孔が細胞の直径に応じた断面積を有する円筒部で細胞を支持し、キャピラリ針が突き出される際に、キャピラリ針の先端が捕捉孔に捕捉された細胞の中心付近を通過する細胞捕捉プレートが製造されるため、直径が異なる細胞を捕捉するとともに、捕捉した細胞に対する薬液の注入が確実に実行されるようにすることができる。
本発明によれば、直径が異なる細胞を捕捉するとともに、捕捉した細胞に対する薬液の注入が確実に実行されるようにすることができる。
本発明の骨子は、捕捉プレートに形成される捕捉孔の開口方向に垂直な断面を貫通孔へ接近するにつれて縮小するとともに偏心させ、細胞を捕捉する捕捉孔の開口部の断面の中心と貫通孔近傍の断面の中心とを結ぶ直線がキャピラリ針の長手方向の軸と略平行になるように構成することである。以下、本発明の実施の形態について、図面を参照して詳細に説明する。
(実施の形態1)
図1は、本発明の実施の形態1に係る自動マイクロインジェクション装置100の構成を模式的に示す図である。同図に示す自動マイクロインジェクション装置100は、キャピラリ針101、シャーレ102、細胞捕捉プレート103、ステージ104、照明105、吸引部106、ステージ調整機構部107、キャピラリ針移動機構部108、捕捉座標記憶部109、制御部110、吐出機構部111、CCD(Charge Coupled Device)カメラ112、および倒立顕微鏡113を有している。
キャピラリ針101は、キャピラリ針移動機構部108に取り付けられ、水平面上を移動するとともに、長手方向に突き出されたり引き上げられたりする。そして、キャピラリ針101は、内部に保持している薬液を吐出機構部111から吐出圧が加えられるタイミングで吐出する。
シャーレ102は、高さに対して底面の直径が大きい略円筒状の容器であり、細胞が生存可能な緩衝液で満たされている。シャーレ102は、ステージ104上に載置されており、ステージ104とともに水平面上を移動する。
細胞捕捉プレート103は、シャーレ102の中央に収容され、シャーレ102の底面と平行な平面部に設けられた捕捉孔の位置で緩衝液中の細胞を捕捉する。細胞捕捉プレート103の脚部とシャーレ102の底面との間は密閉されており、シャーレ102内の細胞捕捉プレート103によって隔てられる2つの空間は、細胞捕捉プレート103に形成された捕捉孔のみを介して連続している。換言すれば、細胞捕捉プレート103の捕捉孔に設けられる貫通孔のみが吸引される緩衝液の通路となる。細胞捕捉プレート103の具体的な形状および機能については、後に詳述する。
ステージ104は、ステージ調整機構部107に固定され、上面にシャーレ102を載置可能となっている。そして、ステージ104は、ステージ調整機構部107の制御によって、細胞捕捉プレート103によって捕捉されたマイクロインジェクション対象の細胞が照明105の鉛直下方かつ倒立顕微鏡113のレンズの鉛直上方に位置するように水平面上を移動する。なお、ステージ104は、CCDカメラ112が細胞捕捉プレート103上の細胞を撮影可能なように、透明な材料で製造されているか、または、細胞捕捉プレート103が位置する中央部分に撮影用の穴が設けられている。
照明105は、細胞捕捉プレート103に捕捉された細胞を照らす光源であり、倒立顕微鏡113のレンズの鉛直上方に設けられている。照明105の位置は、常に固定されている。
吸引部106は、細胞捕捉プレート103のシャーレ102底面側から緩衝液を吸引し、細胞捕捉プレート103のシャーレ102底面側を細胞が存在する側に対して負圧状態にする。
ステージ調整機構部107は、制御部110からの指示に従ってステージ104を水平面上に移動させる。具体的には、ステージ調整機構部107は、細胞が捕捉される細胞捕捉プレート103の捕捉孔の座標が照明105の鉛直下方かつ倒立顕微鏡113のレンズの鉛直上方に位置するようにステージ104を移動させる。
キャピラリ針移動機構部108は、インジェクション時のキャピラリ針101の先端が照明105の鉛直下方かつ倒立顕微鏡113のレンズの鉛直上方に位置するようにキャピラリ針101を水明面上に移動させる。また、キャピラリ針移動機構部108は、キャピラリ針101の水平面上の移動が完了した後、キャピラリ針101を長手方向の先端側へ突き出し、その後、キャピラリ針101を長手方向の根元側へ引き上げる。このとき、キャピラリ針移動機構部108は、キャピラリ針101の長手方向の変位を制御部110へ通知する。
捕捉座標記憶部109は、シャーレ102内の細胞捕捉プレート103に設けられた捕捉孔の座標を記憶する。換言すれば、捕捉座標記憶部109は、細胞が捕捉される捕捉座標をあらかじめ記憶する。
制御部110は、捕捉座標記憶部109から捕捉孔の座標を読み出し、読み出した座標を照明105の鉛直下方かつ倒立顕微鏡113のレンズの鉛直上方に位置させるようにステージ調整機構部107へ指示する。また、制御部110は、ステージ104の位置が調整されると、キャピラリ針移動機構部108へキャピラリ針101の位置の微調整を指示する。
さらに、制御部110は、キャピラリ針移動機構部108からキャピラリ針101の長手方向の変位の通知を受け、キャピラリ針101が最大限に突き出されたタイミング以降に吐出機構部111へ薬液の吐出を指示する。具体的には、制御部110は、例えばキャピラリ針101が最大限に突き出されて先端が細胞捕捉プレート103に最も接近した後、キャピラリ針101の先端が所定の高さにまで引き上げられたタイミングで薬液の吐出を吐出機構部111へ指示する。
吐出機構部111は、制御部110から薬液の吐出が指示されると、キャピラリ針101の内部に吐出圧を加え、キャピラリ針101の先端から薬液を吐出させる。
CCDカメラ112は、倒立顕微鏡113によって拡大された細胞であって細胞捕捉プレート103に捕捉された細胞に薬液が注入される様子を撮影する。また、CCDカメラ112は、薬液の注入後、細胞に生じた変化などを撮影する。
倒立顕微鏡113は、照明105の鉛直下方を拡大可能な位置に設置され、キャピラリ針101の先端付近および細胞捕捉プレート103に捕捉された細胞を拡大する。
図2は、本実施の形態に係る細胞捕捉プレート103の構成を示す平面図である。同図に示すように、細胞捕捉プレート103の中央の平面部202には複数の捕捉孔201が形成されている。これらの捕捉孔201は、平面部202に規則的に配列されていても良いが、図2に示すようにランダムに配置されることにより、平面部202に亀裂を生じにくくさせ強度を確保することができる。特に、本実施の形態においては、平面部202を挟んで一方の側(すなわちシャーレ102底面側)が負圧状態となって、平面部202に圧力がかかるため、ある程度は平面部202の強度を確保しておく必要がある。
また、平面部202における捕捉孔201の座標は、捕捉座標記憶部109によってあらかじめ記憶されている。したがって、捕捉孔201の座標が照明105の鉛直下方かつ倒立顕微鏡113のレンズの鉛直上方に位置するようにステージ104を水平面上で移動させることにより、捕捉孔201に捕捉された細胞をマイクロインジェクション対象の細胞とすることができる。この捕捉孔201の開口部における直径は、マイクロインジェクション対象の最大細胞の直径のおよそ70〜80%が望ましい。具体的には、例えば最大の細胞の直径が16μm程度であれば、捕捉孔201の開口部の直径は12μm程度が望ましい。
図3は、図2のAA線断面を示す断面図である。同図に示すように、細胞捕捉プレート103の平面部202の周囲には、平面部202を支持する脚部203が形成されており、脚部203がシャーレ102の底面に密着し、捕捉孔201内に設けられた貫通孔のみが周囲の緩衝液の通路となる。すなわち、図3においては図示を省略したが、捕捉孔201の底面には貫通孔が設けられており、平面部202の脚部203側が負圧になることにより、平面部202の脚部203の反対側の緩衝液は、捕捉孔201の底面に設けられた貫通孔を通路として平面部202の脚部203側へ吸引される。このとき、緩衝液とともに緩衝液中の細胞が捕捉孔201に吸着され、捕捉孔201によって細胞が捕捉される。
平面部202の表面から捕捉孔201の底面までの深さは、細胞を確実に固定可能な深さであり、例えば7〜8μm程度である。そして、捕捉孔201の底面には、平面部202を貫通する貫通孔が形成されている。したがって、平面部202の厚さは、捕捉孔201の深さより大きいことが要求され、例えば10μm程度とされる。
なお、図3においては図示を簡略化したが、捕捉孔201は、開口部から底面近傍へ向かうにつれて開口方向に垂直な断面積が縮小しており、開口部における断面の中心と底面近傍における断面の中心とを結ぶ直線がキャピラリ針101の長手方向の軸に略平行になっている。この捕捉孔201の形状については、以下に詳述する。
図4は、本実施の形態に係る捕捉孔201の構成を示す平面図である。同図に示すように、捕捉孔201内には、最大細胞を捕捉する上段円筒状凹部201aと最大細胞より小さい細胞を捕捉する下段円筒状凹部201bとが形成されている。具体的には、上段円筒状凹部201aの底面にこの底面よりも小さい底面積を有する下段円筒状凹部201bが形成されており、上段円筒状凹部201aの底面の中心と下段円筒状凹部201bの底面の中心とは一致していない。すなわち、図4に示すように、平面視では、上段円筒状凹部201aの底面と下段円筒状凹部201bの底面とに対応する2つの円が偏心している。
なお、ここでは上段円筒状凹部201aおよび下段円筒状凹部201bの2段が捕捉孔201内に形成されるものとしたが、3段以上の円筒状凹部が捕捉孔201内に形成されても良い。3段以上の円筒状凹部が形成される場合にも、下段の円筒状凹部ほど底面積が小さく、底面は偏心している。具体的には、下段の円筒状凹部の底面の中心ほどキャピラリ針101から遠ざかる方向に位置している。
上段円筒状凹部201aの底面の直径は、上述したようにマイクロインジェクション対象の最大細胞の直径の70〜80%程度が望ましい。同様に、下段円筒状凹部201bの底面の直径は、マイクロインジェクション対象の最小細胞の直径の70〜80%程度が望ましい。すなわち、捕捉孔201内に多段の円筒状凹部が形成される場合、それぞれの円筒状凹部の底面の直径は、捕捉対象となる細胞の直径の70〜80%とすることが望ましい。換言すれば、円筒状凹部との大きさの関係が上記の関係に該当する細胞がそれぞれの円筒状凹部によって捕捉される。
また、下段円筒状凹部201bの底面には、複数の貫通孔201cが形成される。これらの貫通孔201cは、平面部202を貫通しており、平面部202のシャーレ102の底面側が負圧となった際に、緩衝液の通路となる。なお、貫通孔201cは、捕捉孔201内に1つだけ形成されても良く、捕捉孔201内に複数の貫通孔201cが形成される場合にも、その配置は、図4に示すものに限定されない。本実施の形態においては、1つの捕捉孔201内に複数の貫通孔201cを形成することにより、細胞に対する吸着力を大きくしている。貫通孔201cの直径は、捕捉対象の細胞の直径と比較して十分に小さく、例えば1〜2μm程度である。または、細胞の最小直径に対して貫通孔201cの直径を10〜20%程度としても良い。
図5は、図4のBB線断面を示す断面図である。同図に示すように、上段円筒状凹部201aの開口部における中心と下段円筒状凹部201bの開口部における中心とを結ぶ直線(図中一点鎖線で示す)は、鉛直方向に対して傾斜している。そして、この直線は、キャピラリ針101の長手方向の軸と略平行になっている。また、上段円筒状凹部201aの底面積より下段円筒状凹部201bの底面積が小さくなっており、捕捉孔201全体として、貫通孔201cへ向かう偏心した漏斗の内壁に段が形成された形状となっている。すなわち、下段円筒状凹部201bの開口部は、上段円筒状凹部201aの底面に完全に含まれており、図4に示したように開口方向から捕捉孔201を見た場合に、下段円筒状凹部201bの底面全体が見えるようになっている。
このように、本実施の形態においては、捕捉孔201内に多段の円筒状凹部を形成するため、それぞれの円筒状凹部によって対応する大きさの細胞を確実に捕捉することができ、1つの細胞捕捉プレート103によって、直径が異なる細胞を捕捉することができる。また、多段の円筒状凹部の開口部の中心を結ぶ直線がキャピラリ針101の長手方向の軸に略平行であるため、キャピラリ針101が突き出される際に、キャピラリ針101の先端がそれぞれの円筒状凹部によって捕捉された細胞の中心付近に到達することになり、捕捉した細胞に対する薬液の注入が確実に実行されるようにすることができる。
以下、本実施の形態に係る捕捉孔201によって捕捉された細胞に対して薬液が注入される様子の具体例について図6を参照しながら説明する。図6は、本実施の形態に係る捕捉孔201の構成例を示す断面図である。同図に示す捕捉孔201は、3段の円筒状凹部を備えて形成されている。すなわち、捕捉孔201は、上段円筒状凹部201aおよび下段円筒状凹部201bに加えて、中段円筒状凹部201dを備えている。
上段円筒状凹部201aは、大型細胞301を捕捉するために形成されており、同様に、中段円筒状凹部201dおよび下段円筒状凹部201bは、それぞれ中型細胞302および小型細胞303を捕捉するために形成されている。これらの円筒状凹部の底面積は、下段へ向かうほど小さくなっており、それぞれの円筒状凹部の開口部の中心を結ぶ直線(図中一点鎖線で示す)は、キャピラリ針101の長手方向の軸と略平行になっている。
それぞれの円筒状凹部に対応する大型細胞301、中型細胞302、および小型細胞303は、貫通孔201cの下方が負圧になることによる吸引力によって、いずれも対応する円筒状凹部の開口部周縁に形成される段差によって支持され、捕捉孔201に確実に固定される。
さらに、円筒状凹部の開口部の中心を結ぶ直線がキャピラリ針101の長手方向の軸に略平行であり、各円筒状凹部の底面が偏心した多段状になっているため、キャピラリ針101が突き出される際に、キャピラリ針101の先端は、各円筒状凹部に捕捉され得るすべての細胞の中心付近に到達することになる。つまり、下段円筒状凹部201bによって捕捉される小型細胞303の中心付近にキャピラリ針101の先端が到達するようにステージ調整機構部107およびキャピラリ針移動機構部108が調整されれば、この先端は、上段円筒状凹部201aによって捕捉される大型細胞301の中心301a付近を通過することになる。
このため、キャピラリ針101の先端から吐出される薬液は、確実に細胞内に注入される。また、キャピラリ針101が突き出される際に、キャピラリ針101の先端が細胞の端部に接触することがなく、捕捉された細胞を押し退けてしまうことがない。したがって、キャピラリ針101の先端が捕捉された細胞の細胞膜を貫通し、細胞内への薬液の注入が行われる。
一方、例えば図7に示すように、各円筒状凹部を底面が同心円となるように形成する場合、それぞれの円筒状凹部によって大型細胞301、中型細胞302、および小型細胞303を捕捉することは可能である。しかし、この場合は、キャピラリ針101が突き出される際に、キャピラリ針101の先端は、各円筒状凹部に捕捉され得るすべての細胞の中心付近に到達することはない。つまり、下段円筒状凹部201bに捕捉される小型細胞303の中心付近にキャピラリ針101の先端が到達するようにステージ調整機構部107およびキャピラリ針移動機構部108が調整されれば、この先端は、上段円筒状凹部201aによって捕捉される大型細胞301の中心301aから大きく離れた位置を通過することになる。
このため、各円筒状凹部の底面を偏心させた場合と比べて、細胞内に薬液が注入される確実性が低下し、キャピラリ針101の先端の移動に伴って、捕捉された細胞が押し退けられてしまう可能性がある。
次いで、上記のように構成された細胞捕捉プレート103を利用したインジェクション動作について、図8に示すフロー図を参照しながら説明する。
インジェクション開始時には、シャーレ102内に細胞捕捉プレート103が設置され、複数の細胞が生存する緩衝液が満たされている。この状態で、吸引部106によって細胞捕捉プレート103のシャーレ102底面側の吸引が開始される(ステップS101)。吸引が開始されることにより、細胞捕捉プレート103のシャーレ102底面側が負圧となり、シャーレ102内の緩衝液が細胞捕捉プレート103の貫通孔201cを通過して細胞捕捉プレート103のシャーレ102底面側へ流入する。これに伴って、緩衝液中の細胞が貫通孔201cに吸引され、捕捉孔201によって捕捉される。これにより、細胞は、細胞捕捉プレート103の捕捉孔201の座標に固定されたことになる。
このとき、捕捉孔201には、多段の円筒状凹部が形成されているため、それぞれの捕捉孔201において、細胞の大きさに応じた円筒状凹部が細胞を固定することになる。したがって、細胞の大きさのばらつきが大きい種類の細胞に対してマイクロインジェクションを行う場合でも、捕捉される細胞の大きさに偏りがなくなる。また、異なる種類の細胞に対してマイクロインジェクションを行う場合に、その都度細胞捕捉プレート103を交換する必要がない。
一方、制御部110によって、すべての捕捉孔201の座標が捕捉座標記憶部109から読み込まれる(ステップS102)。上述したように、捕捉孔201には細胞が捕捉されているため、捕捉孔201の座標は細胞が捕捉された捕捉座標に他ならない。制御部110によって捕捉座標が読み込まれると、いずれか1つの捕捉座標が制御部110からステージ調整機構部107へ通知され、この捕捉座標をマイクロインジェクション対象の位置へ移動させるように指示される。すなわち、細胞が捕捉された捕捉座標が照明105の鉛直下方かつ倒立顕微鏡113のレンズの鉛直上方に位置するようにステージ104の位置を調整することがステージ調整機構部107に要求される。
そして、ステージ調整機構部107によって、ステージ104の位置が調整される(ステップS103)。具体的には、ステージ調整機構部107によって、ステージ104が水平面上を移動し、ステージ104上のシャーレ102および細胞捕捉プレート103が制御部110からの指示通りの位置に固定される。また、キャピラリ針移動機構部108によって、キャピラリ針101の先端が薬液吐出時に照明105の鉛直下方に位置するように、キャピラリ針101の水平方向の位置が微調整される(ステップS104)。
ステージ104およびキャピラリ針101の水平方向の位置が調整されると、キャピラリ針移動機構部108によって、キャピラリ針101が長手方向の先端側へ突き出される(ステップS105)。キャピラリ針101長手方向の延長線上には、細胞捕捉プレート103の捕捉孔201によって細胞が捕捉されている。したがって、キャピラリ針101が突き出されると、やがてキャピラリ針101の先端が細胞に接触する。このとき、細胞捕捉プレート103に形成された捕捉孔201内に底面が偏心する多段の円筒状凹部が形成されているため、キャピラリ針101の先端は細胞膜の中央付近に接触し、細胞を押し退けることなく細胞膜を貫通する。
そして、キャピラリ針101の先端が細胞の細胞膜を貫通し、所定位置に到達すると、制御部110から吐出機構部111へ薬液の吐出が指示される。この指示を受け、吐出機構部111によって、キャピラリ針101の内部に吐出圧が加えられ、キャピラリ針101の先端から薬液が吐出される(ステップS106)。なお、薬液が吐出されるタイミングとしては、キャピラリ針101の先端が所定の位置まで突き出されたタイミングでも良いが、キャピラリ針101の先端が一度最大限に突き出された後に所定の位置まで引き上げられたタイミングでも良い。この場合、キャピラリ針101の先端を一度最大限に突き出すことにより、柔軟性がある細胞膜を確実に貫通することができ、引き上げられるタイミングで薬液を吐出することにより、細胞内に吐出される薬液のための空間が形成されることになる。
キャピラリ針101の先端から薬液が吐出された後、キャピラリ針101が初期位置まで引き上げられると、制御部110によって、捕捉座標記憶部109から読み込まれたすべての捕捉座標についてインジェクションが完了したか否かが判断され(ステップS107)、まだ完了していない捕捉座標がある場合には(ステップS107No)、ステージ調整機構部107によるステージ104の移動から処理が繰り返される。こうして、すべての捕捉座標に捕捉された細胞のインジェクションが完了する。
次に、本実施の形態に係る細胞捕捉プレート103の製造方法について、図9を参照しながら説明する。図9は、細胞捕捉プレート103の製造過程1〜8を示す図である。
細胞捕捉プレート103は、2層の活性層シリコン層にシリコン酸化膜(図9中斜線のハッチングで示す)が挟まれたSOI(Silicon On Insulator)基板を用いて製造される。まず、レジストパターニングにより(図9中縦線のハッチングはレジストを示す)、捕捉孔201の形状がSOI基板に転写される(製造過程1)。そして、厚さ10μm程度の活性層シリコン層にRIE(Reactive Ion Etching)によって貫通孔201cが形成される(製造過程2)。同様に、RIEによって下段円筒状凹部201bおよび上段円筒状凹部201aが形成される(製造過程3、4)。こうして、細胞捕捉プレート103の捕捉孔201の形状が整えられる。
そして、捕捉孔201が形成されたSOI基板全体が熱酸化によりシリコン酸化膜で保護された後(製造過程5)、脚部203に相当する部分がレジストによってマスクされて平面部202の下側のシリコン酸化膜が緩衝フッ酸(BHF)によってエッチングされる(製造過程6)。引き続き、平面部202の下側の活性層シリコン層が水酸化カリウム(KOH)溶液によって異方性エッチングされ(製造過程7)、最後に全体のシリコン酸化膜が緩衝フッ酸(BHF)によって除去されて細胞捕捉プレート103が完成する(製造過程8)。
このように、本実施の形態に係る細胞捕捉プレート103は、捕捉孔201がRIEによってエッチングされるため、微小な貫通孔201cや各円筒状凹部なども精度良く形成される。結果として、キャピラリ針101の長手方向の軸と略平行に底面の中心が並ぶ多段の円筒状凹部が正確な位置に形成され、この細胞捕捉プレート103によって、直径が異なる細胞を捕捉するとともに、捕捉した細胞に対する薬液の注入が確実に実行されるようにすることができる。
以上のように、本実施の形態によれば、細胞捕捉プレートに穿設される貫通孔からの吸引によって細胞を捕捉する捕捉孔内に貫通孔へ向かうにつれて底面積が小さくなる多段の円筒状凹部を形成し、これらの円筒状凹部の開口方向に対して垂直な断面の中心を結ぶ直線がキャピラリ針の長手方向の軸と略平行になるようにする。このため、それぞれの円筒状凹部によって大きさが異なる細胞を捕捉することができ、キャピラリ針が突き出される際にキャピラリ針の先端を捕捉された細胞の中心付近へ到達させることができる。結果として、直径が異なる細胞を捕捉するとともに、捕捉した細胞に対する薬液の注入が確実に実行されるようにすることができる。
(実施の形態2)
本発明の実施の形態2の特徴は、捕捉孔内に段を形成せず、貫通孔へ向かう偏心した漏斗状に捕捉孔を形成する点である。
本実施の形態に係る自動マイクロインジェクション装置の構成や細胞捕捉プレート103の概要は実施の形態1と同様であるため、その説明を省略する。本実施の形態においては、細胞捕捉プレート103の捕捉孔201の形状のみが実施の形態1とは異なっている。
図10は、本実施の形態に係る捕捉孔201の構成を示す平面図である。同図に示すように、捕捉孔201は、開口部201eから貫通孔201cへ向かう内面201f、201gに段差がなく、捕捉孔201の開口部201eと貫通孔201cが形成される底面とに対応する2つの円が偏心して形成されている。すなわち、捕捉孔201のキャピラリ針101側の内面201fは、キャピラリ針101と反対側の内面201gよりも広くなっている。
捕捉孔201の開口部201eの直径は、マイクロインジェクション対象の最大細胞の直径の70〜80%程度が望ましい。また、捕捉孔201の底面の直径は、貫通孔201cの直径以上であり、例えば2〜3μm以上である。
図11は、図10のCC線断面を示す断面図である。同図に示すように、捕捉孔201の開口部201eにおける中心と捕捉孔201の底面における中心とを結ぶ直線(図中一点鎖線で示す)は、キャピラリ針101の長手方向の軸と略平行になっている。また、開口部201eより底面が小さくなっており、捕捉孔201全体として、貫通孔201cへ向かう偏心した漏斗形状となっている。すなわち、捕捉孔201のキャピラリ針101側の内面201fの傾斜が水平方向に対して緩やかであるのに対し、キャピラリ針101と反対側の内面201gの傾斜が水平方向に対して急峻である。
このように、本実施の形態においては、捕捉孔201が偏心した漏斗状に形成されるため、細胞の大きさに応じた位置で細胞を捕捉することができ、1つの細胞捕捉プレート103によって、直径が異なる細胞を捕捉することができる。また、捕捉孔201の開口部201eの中心と底面の中心とを結ぶ直線がキャピラリ針101の長手方向の軸に略平行であるため、キャピラリ針101が突き出される際に、キャピラリ針101の先端が捕捉孔201内のすべての位置に捕捉された細胞の中心付近に到達することになり、捕捉した細胞に対する薬液の注入が確実に実行されるようにすることができる。
すなわち、図11に示すように、捕捉孔201によって大型細胞301、中型細胞302、および小型細胞303がそれぞれの大きさに応じた位置に捕捉された場合に、キャピラリ針101が突き出されると、キャピラリ針101の先端は、それぞれの細胞の中心付近に到達する。換言すれば、捕捉孔201の貫通孔201c近傍において捕捉される小型細胞303の中心付近にキャピラリ針101の先端が到達するようにステージ調整機構部107およびキャピラリ針移動機構部108が調整されれば、この先端は、捕捉孔201の開口部201e近傍において捕捉される大型細胞301の中心301a付近を通過することになる。
このため、キャピラリ針101の先端から吐出される薬液は、確実に細胞内に注入される。また、キャピラリ針101が突き出される際に、キャピラリ針101の先端が細胞の端部に接触することがなく、捕捉された細胞を押し退けてしまうことがない。したがって、キャピラリ針101の先端が捕捉された細胞の細胞膜を貫通し、細胞内への薬液の注入が行われる。
本実施の形態においても、細胞捕捉プレート103の製造は、実施の形態1と同様にRIEと呼ばれるエッチングによって行われる。ただし、本実施の形態においては、捕捉孔201の内面201f、201gが連続的に変化するため、SOI基板を傾斜させ、エッチング中のプロセス条件を連続的に変化させれば良い。
以上のように、本実施の形態によれば、細胞捕捉プレートに穿設される貫通孔からの吸引によって細胞を捕捉する捕捉孔を貫通孔へ向かうにつれて偏心する漏斗状に形成し、捕捉孔の開口方向に対して垂直な断面の中心を結ぶ直線がキャピラリ針の長手方向の軸と略平行になるようにする。このため、それぞれの細胞の直径に適した位置で細胞を捕捉することができ、キャピラリ針が突き出される際にキャピラリ針の先端を捕捉された細胞の中心付近へ到達させることができる。結果として、直径が異なる細胞を捕捉するとともに、捕捉した細胞に対する薬液の注入が確実に実行されるようにすることができる。また、捕捉孔の断面積の変化が連続的であるため、捕捉する細胞の直径が離散的な範囲に限定されることがない。
なお、上記各実施の形態においては、捕捉孔201の開口方向に対して垂直な断面が円形となるものとしたが、この断面形状は円形に限定されず、楕円形状や四角形状などでも良い。
また、細胞捕捉プレート103の材料としては、SOI基板のほかにも例えば石英基板やガラス基板などを用いることが可能である。
(付記1)長手方向の軸に沿って突き出されるキャピラリ針によって物質が注入されるインジェクション対象の細胞を捕捉する平面を備えた細胞捕捉プレートであって、
前記平面の一方の面に形成され前記平面に対して垂直方向に開口して細胞を支持する開口部と、前記開口部から前記平面の他方の面へ貫通し負圧により前記開口部に細胞を吸引する貫通孔とを含む捕捉孔を有し、
前記捕捉孔は、
前記開口部近傍における前記平面に平行な断面の面積が前記貫通孔近傍における前記平面に平行な断面の面積より大きいとともに、これらの2つの断面の中心を結ぶ直線が前記キャピラリ針の長手方向の軸に略平行に形成されることを特徴とする細胞捕捉プレート。
(付記2)前記捕捉孔は、
前記開口部から前記貫通孔へ向かうほど底面積が小さくなる複数の円筒部を連結した形状を有し、
前記貫通孔は、
底面積が最小の円筒部の底面から前記平面の他方の面へ貫通することを特徴とする付記1記載の細胞捕捉プレート。
(付記3)前記捕捉孔は、
前記開口部から前記平面が円筒状に陥没して形成されインジェクション対象の細胞を支持する上段円筒状凹部と、
前記上段円筒状凹部の底面の一部に開口し円筒状に陥没して形成される下段円筒状凹部とを有し、
前記貫通孔は、
前記下段円筒状凹部の底面から前記平面の他方の面へ貫通することを特徴とする付記1記載の細胞捕捉プレート。
(付記4)前記捕捉孔は、
前記上段円筒状凹部の開口部の中心と前記下段円筒状凹部の開口部の中心とを結ぶ直線が前記キャピラリ針の長手方向の軸に略平行に形成されることを特徴とする付記3記載の細胞捕捉プレート。
(付記5)前記捕捉孔は、
前記開口部から前記貫通孔へ向かって前記平面に平行な断面の面積が漸次縮小する漏斗状部を有し、
前記貫通孔は、
前記漏斗状部の前記平面に平行な所定の位置に形成される底面から前記平面の他方の面へ貫通することを特徴とする付記1記載の細胞捕捉プレート。
(付記6)前記捕捉孔は、
前記開口部の中心と前記漏斗状部の底面の中心とを結ぶ直線が前記キャピラリ針の長手方向の軸に略平行に形成されることを特徴とする付記5記載の細胞捕捉プレート。
(付記7)前記開口部は、
直径がインジェクション対象の細胞の最大直径の70〜80%に相当する円形に形成されることを特徴とする付記1記載の細胞捕捉プレート。
(付記8)前記貫通孔は、
底面の直径が1〜2μmまたはインジェクション対象の細胞の最小直径の10〜20%に相当する円筒状に形成されることを特徴とする付記1記載の細胞捕捉プレート。
(付記9)長手方向の軸に沿って突き出され所定のタイミングで物質を吐出して細胞に注入するキャピラリ針と、インジェクション対象の細胞を捕捉する平面を備えた細胞捕捉プレートとを有するマイクロインジェクション装置であって、
前記細胞捕捉プレートは、
前記平面の一方の面に形成され前記平面に対して垂直方向に開口して細胞を支持する開口部と、前記開口部から前記平面の他方の面へ貫通し負圧により前記開口部に細胞を吸引する貫通孔とを含む捕捉孔を有し、
前記捕捉孔は、
前記開口部近傍における前記平面に平行な断面の面積が前記貫通孔近傍における前記平面に平行な断面の面積より大きいとともに、これらの2つの断面の中心を結ぶ直線が前記キャピラリ針の長手方向の軸に略平行に形成されることを特徴とするマイクロインジェクション装置。
(付記10)長手方向の軸に沿って突き出されるキャピラリ針によって物質が注入されるインジェクション対象の細胞を捕捉する平面を備えた細胞捕捉プレートの製造方法であって、
前記平面の一方の面から前記平面の他方の面へ貫通する貫通孔をエッチングによって形成する貫通孔形成ステップと、
前記貫通孔形成ステップにて形成された貫通孔を囲む円筒状の第1の円筒部を前記平面の一方の面側にエッチングによって形成する第1円筒部形成ステップと、
前記第1円筒部形成ステップによって形成された第1の円筒部を囲む円筒状の第2の円筒部であって、前記平面の一方の面に開口する開口部の中心と底面に形成される第1の円筒部の開口部の中心とを結ぶ直線が前記キャピラリ針の長手方向の軸に略平行になる第2の円筒部をエッチングによって形成する第2円筒部形成ステップと
を有することを特徴とする製造方法。
本発明は、直径が異なる細胞を捕捉するとともに、捕捉した細胞に対する薬液の注入が確実に実行されるようにする場合に適用することができる。
実施の形態1に係る自動マイクロインジェクション装置の構成を模式的に示す図である。 実施の形態1に係る細胞捕捉プレートの構成を示す平面図である。 実施の形態1に係る細胞捕捉プレートの構成を示す断面図である。 実施の形態1に係る捕捉孔の構成を示す平面図である。 実施の形態1に係る捕捉孔の構成を示す断面図である。 実施の形態1に係る捕捉孔の構成例を示す断面図である。 多段状捕捉孔の構成例を示す断面図である。 実施の形態1に係るインジェクション動作を示すフロー図である。 実施の形態1に係る細胞捕捉プレートの製造方法を示す図である。 実施の形態2に係る捕捉孔の構成を示す平面図である。 実施の形態2に係る捕捉孔の構成を示す断面図である。 インジェクション時の細胞捕捉方法の一例を示す図である。 捕捉された細胞の様子の一例を示す図である。 捕捉された細胞の様子の他の一例を示す図である。 細胞直径の分布の例を示す図である。 直径が異なる細胞の捕捉状態を示す図である。
符号の説明
101 キャピラリ針
102 シャーレ
103 細胞捕捉プレート
104 ステージ
105 照明
106 吸引部
107 ステージ調整機構部
108 キャピラリ針移動機構部
109 捕捉座標記憶部
110 制御部
111 吐出機構部
112 CCDカメラ
113 倒立顕微鏡
201 捕捉孔
201a 上段円筒状凹部
201b 下段円筒状凹部
201c 貫通孔
201d 中段円筒状凹部
201e 開口部
201f、201g 内面
202 平面部
203 脚部

Claims (10)

  1. 長手方向の軸に沿って突き出されるキャピラリ針によって物質が注入されるインジェクション対象の細胞を捕捉する平面を備えた細胞捕捉プレートであって、
    前記平面の一方の面に形成され前記平面に対して垂直方向に開口して細胞を支持する開口部と、前記開口部から前記平面の他方の面へ貫通し負圧により前記開口部に細胞を吸引する貫通孔とを含む捕捉孔を有し、
    前記捕捉孔は、
    前記開口部近傍における前記平面に平行な断面の面積が前記貫通孔近傍における前記平面に平行な断面の面積より大きいとともに、これらの2つの断面の中心を結ぶ直線が前記キャピラリ針の長手方向の軸に略平行に形成されることを特徴とする細胞捕捉プレート。
  2. 前記捕捉孔は、
    前記開口部から前記貫通孔へ向かうほど底面積が小さくなる複数の円筒部を連結した形状を有し、
    前記貫通孔は、
    底面積が最小の円筒部の底面から前記平面の他方の面へ貫通することを特徴とする請求項1記載の細胞捕捉プレート。
  3. 前記捕捉孔は、
    前記開口部から前記平面が円筒状に陥没して形成されインジェクション対象の細胞を支持する上段円筒状凹部と、
    前記上段円筒状凹部の底面の一部に開口し円筒状に陥没して形成される下段円筒状凹部とを有し、
    前記貫通孔は、
    前記下段円筒状凹部の底面から前記平面の他方の面へ貫通することを特徴とする請求項1記載の細胞捕捉プレート。
  4. 前記捕捉孔は、
    前記上段円筒状凹部の開口部の中心と前記下段円筒状凹部の開口部の中心とを結ぶ直線が前記キャピラリ針の長手方向の軸に略平行に形成されることを特徴とする請求項3記載の細胞捕捉プレート。
  5. 前記捕捉孔は、
    前記開口部から前記貫通孔へ向かって前記平面に平行な断面の面積が漸次縮小する漏斗状部を有し、
    前記貫通孔は、
    前記漏斗状部の前記平面に平行な所定の位置に形成される底面から前記平面の他方の面へ貫通することを特徴とする請求項1記載の細胞捕捉プレート。
  6. 前記捕捉孔は、
    前記開口部の中心と前記漏斗状部の底面の中心とを結ぶ直線が前記キャピラリ針の長手方向の軸に略平行に形成されることを特徴とする請求項5記載の細胞捕捉プレート。
  7. 前記開口部は、
    直径がインジェクション対象の細胞の最大直径の70〜80%に相当する円形に形成されることを特徴とする請求項1記載の細胞捕捉プレート。
  8. 前記貫通孔は、
    底面の直径が1〜2μmまたはインジェクション対象の細胞の最小直径の10〜20%に相当する円筒状に形成されることを特徴とする請求項1記載の細胞捕捉プレート。
  9. 長手方向の軸に沿って突き出され所定のタイミングで物質を吐出して細胞に注入するキャピラリ針と、インジェクション対象の細胞を捕捉する平面を備えた細胞捕捉プレートとを有するマイクロインジェクション装置であって、
    前記細胞捕捉プレートは、
    前記平面の一方の面に形成され前記平面に対して垂直方向に開口して細胞を支持する開口部と、前記開口部から前記平面の他方の面へ貫通し負圧により前記開口部に細胞を吸引する貫通孔とを含む捕捉孔を有し、
    前記捕捉孔は、
    前記開口部近傍における前記平面に平行な断面の面積が前記貫通孔近傍における前記平面に平行な断面の面積より大きいとともに、これらの2つの断面の中心を結ぶ直線が前記キャピラリ針の長手方向の軸に略平行に形成されることを特徴とするマイクロインジェクション装置。
  10. 長手方向の軸に沿って突き出されるキャピラリ針によって物質が注入されるインジェクション対象の細胞を捕捉する平面を備えた細胞捕捉プレートの製造方法であって、
    前記平面の一方の面から前記平面の他方の面へ貫通する貫通孔をエッチングによって形成する貫通孔形成ステップと、
    前記貫通孔形成ステップにて形成された貫通孔を囲む円筒状の第1の円筒部を前記平面の一方の面側にエッチングによって形成する第1円筒部形成ステップと、
    前記第1円筒部形成ステップによって形成された第1の円筒部を囲む円筒状の第2の円筒部であって、前記平面の一方の面に開口する開口部の中心と底面に形成される第1の円筒部の開口部の中心とを結ぶ直線が前記キャピラリ針の長手方向の軸に略平行になる第2の円筒部をエッチングによって形成する第2円筒部形成ステップと
    を有することを特徴とする製造方法。
JP2007145409A 2007-05-31 2007-05-31 細胞捕捉プレート、マイクロインジェクション装置、および細胞捕捉プレートの製造方法 Withdrawn JP2008295376A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007145409A JP2008295376A (ja) 2007-05-31 2007-05-31 細胞捕捉プレート、マイクロインジェクション装置、および細胞捕捉プレートの製造方法
US12/155,003 US20080299647A1 (en) 2007-05-31 2008-05-28 Cell capturing plate, microinjection apparatus, and method of producing cell capturing plate
EP08157325A EP1997878A1 (en) 2007-05-31 2008-05-30 Cell capturing plate, microinjection apparatus, and method of producing cell capturing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007145409A JP2008295376A (ja) 2007-05-31 2007-05-31 細胞捕捉プレート、マイクロインジェクション装置、および細胞捕捉プレートの製造方法

Publications (1)

Publication Number Publication Date
JP2008295376A true JP2008295376A (ja) 2008-12-11

Family

ID=39766936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007145409A Withdrawn JP2008295376A (ja) 2007-05-31 2007-05-31 細胞捕捉プレート、マイクロインジェクション装置、および細胞捕捉プレートの製造方法

Country Status (3)

Country Link
US (1) US20080299647A1 (ja)
EP (1) EP1997878A1 (ja)
JP (1) JP2008295376A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011004674A (ja) * 2009-06-26 2011-01-13 Fujitsu Ltd 誘導多能性幹細胞(iPS細胞)の製造方法
WO2016047737A1 (ja) * 2014-09-25 2016-03-31 株式会社サイフューズ 細胞トレイ、並びに細胞構造体製造装置、方法、及びシステム
JPWO2015115448A1 (ja) * 2014-01-30 2017-03-23 並木精密宝石株式会社 細胞膜観察及び解析装置、細胞膜観察及び解析方法
WO2017134787A1 (ja) * 2016-02-04 2017-08-10 株式会社サイフューズ 細胞トレイ、並びに細胞構造体製造装置、方法、及びシステム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013059824A1 (en) * 2011-10-21 2013-04-25 Nanoinjection Technologies, L.L.C. Lance device and associated methods for delivering a biological material into a biological structure
JP2022513179A (ja) * 2018-08-06 2022-02-07 メコノス,インコーポレイテッド ナノニードルを使用したペイロードのアプタマーベースの細胞内送達のためのシステム及び方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL68507A (en) * 1982-05-10 1986-01-31 Univ Bar Ilan System and methods for cell selection
DE3718066A1 (de) * 1987-05-29 1988-12-08 Zeiss Carl Fa Verfahren zur mikroinjektion in zellen bzw. zum absaugen aus einzelnen zellen oder ganzer zellen aus zellkulturen
JP2559760B2 (ja) * 1987-08-31 1996-12-04 株式会社日立製作所 細胞搬送方法
JP2564322B2 (ja) 1987-10-07 1996-12-18 株式会社日立製作所 細胞融合装置
FR2784189B3 (fr) * 1998-10-05 2000-11-03 Commissariat Energie Atomique Biopuce et dispositif de lecture d'une biopuce comportant une pluralite de zones de reconnaissance moleculaire
JP3442357B2 (ja) * 2000-08-25 2003-09-02 株式会社日立製作所 両生類卵母細胞試料導入装置、両生類卵母細胞試料導入システム、両生類卵母細胞試料導入方法、両生類卵母細胞の製造方法、両生類卵母細胞及びそれを販売又は譲渡する方法、スクリーニング用のセンサーとして用いる方法、容器、及び解析方法
US20030152255A1 (en) * 2002-02-14 2003-08-14 Ngk Insulators, Ltd. Probe reactive chip, apparatus for analyzing sample and method thereof
JP2005278480A (ja) * 2004-03-29 2005-10-13 Fujitsu Ltd 物質導入装置及び物質導入用チップ
JP4504089B2 (ja) * 2004-05-10 2010-07-14 富士通株式会社 マイクロインジェクション装置およびマイクロインジェクション方法
JP4456429B2 (ja) * 2004-07-27 2010-04-28 富士通株式会社 インジェクション装置
WO2006098430A1 (ja) * 2005-03-17 2006-09-21 Kyoto University 細胞内物質導入装置、細胞クランプ装置及び流路の形成方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011004674A (ja) * 2009-06-26 2011-01-13 Fujitsu Ltd 誘導多能性幹細胞(iPS細胞)の製造方法
JPWO2015115448A1 (ja) * 2014-01-30 2017-03-23 並木精密宝石株式会社 細胞膜観察及び解析装置、細胞膜観察及び解析方法
WO2016047737A1 (ja) * 2014-09-25 2016-03-31 株式会社サイフューズ 細胞トレイ、並びに細胞構造体製造装置、方法、及びシステム
WO2016046938A1 (ja) * 2014-09-25 2016-03-31 株式会社サイフューズ 細胞トレイ、並びに細胞構造体製造装置、方法、及びシステム
JP5931310B1 (ja) * 2014-09-25 2016-06-08 株式会社サイフューズ 細胞トレイ、並びに細胞構造体製造装置、方法、及びシステム
US10087415B2 (en) 2014-09-25 2018-10-02 Cyfuse Biomedical K.K. Cell tray and device, method and system for producing cell structure
WO2017134787A1 (ja) * 2016-02-04 2017-08-10 株式会社サイフューズ 細胞トレイ、並びに細胞構造体製造装置、方法、及びシステム

Also Published As

Publication number Publication date
EP1997878A1 (en) 2008-12-03
US20080299647A1 (en) 2008-12-04

Similar Documents

Publication Publication Date Title
JP2008295376A (ja) 細胞捕捉プレート、マイクロインジェクション装置、および細胞捕捉プレートの製造方法
JP5205798B2 (ja) マイクロインジェクション装置、捕捉プレート、およびマイクロインジェクション方法
US8865288B2 (en) Micro-needle arrays having non-planar tips and methods of manufacture thereof
JP4659553B2 (ja) 自動マイクロインジェクション装置および細胞捕捉プレート
WO2006108053A2 (en) Diffusion delivery systems and methods of fabrication
JP3035608B2 (ja) マイクロキャピラリーアレイ、その製造方法、及び物質注入装置
JP2004344036A (ja) 物質導入装置及び物質導入システム
JP4504089B2 (ja) マイクロインジェクション装置およびマイクロインジェクション方法
JP2009188157A (ja) チップ剥離装置およびチップ剥離方法ならびにチップピックアップ装置
JP2010041960A (ja) 捕捉シャーレ、マイクロインジェクション装置、及び、マイクロインジェクション方法
JPWO2019163270A1 (ja) 生体対象物のピックアップ装置
US7534598B2 (en) Apparatus and method for injecting substance into cell
US9488751B2 (en) Droplet oscillation device and droplet oscillation method
JP4456429B2 (ja) インジェクション装置
WO2020066609A1 (ja) 細胞培養チップ
EP2116592A1 (en) Apparatus and method for gene transfer
CN1954064A (zh) 生物试样操作装置
JP2007189916A (ja) 細胞捕捉シャーレ
EP1661622A1 (en) Apparatus and method for capturing minute objects floating on a fluid, for example cells
US20220126287A1 (en) Micro-fluidic chip, liquid loading method thereof and micro-fluidic system
US20060110820A1 (en) Capturing apparatus and method of minute objects
JP2009123794A (ja) チップ剥離装置およびチップ剥離方法ならびにチップピックアップ装置
JP2008136402A (ja) 遺伝子導入装置及び方法
JPH01223348A (ja) 粒子の固定装置
JP2005160338A (ja) 物質導入装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100205

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110218