WO2017134787A1 - 細胞トレイ、並びに細胞構造体製造装置、方法、及びシステム - Google Patents

細胞トレイ、並びに細胞構造体製造装置、方法、及びシステム Download PDF

Info

Publication number
WO2017134787A1
WO2017134787A1 PCT/JP2016/053314 JP2016053314W WO2017134787A1 WO 2017134787 A1 WO2017134787 A1 WO 2017134787A1 JP 2016053314 W JP2016053314 W JP 2016053314W WO 2017134787 A1 WO2017134787 A1 WO 2017134787A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cell mass
penetrating
puncture
unit
Prior art date
Application number
PCT/JP2016/053314
Other languages
English (en)
French (fr)
Inventor
幸治 口石
忠士 田村
保人 岸井
Original Assignee
株式会社サイフューズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サイフューズ filed Critical 株式会社サイフューズ
Priority to PCT/JP2016/053314 priority Critical patent/WO2017134787A1/ja
Publication of WO2017134787A1 publication Critical patent/WO2017134787A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus

Definitions

  • the present invention relates to a cell tray used for producing a three-dimensional structure of cells, and an apparatus, method, and system.
  • a method of creating a three-dimensional structure by three-dimensionally stacking a plurality of cell clusters is known.
  • the cell mass arranged on the culture plate is taken out, and a plurality of cell masses are stuck into and stuck to each of a plurality of needle-shaped materials extending from the support, and the cell mass is fused with each other and then removed from the needle-shaped material.
  • Various techniques are known as a technique for taking out a cell mass arranged on a culture plate and piercing it into a needle-like body.
  • Patent Document 1 discloses a technique in which a cell mass on a culture plate is sucked into a pipette and then moved to a needle-like body to apply pressure to the cell mass and pierce the needle-like body.
  • Patent Document 2 adsorbs a cell mass on a culture plate to the tip of a suction nozzle having a diameter shorter than the diameter of the cell mass, and the cell mass is needle-like until the needle-like body enters the inside from the tip of the suction nozzle.
  • a technique is disclosed in which the cell mass is pushed into the needle-like body.
  • the present invention has been made in view of these problems, and an object thereof is to obtain a cell tray that can easily pierce a large number of cell masses, and a cell structure manufacturing apparatus, method, and system.
  • the cell tray according to the first invention of the present application is characterized by comprising a recess supporting the cell mass and a penetrating portion through which a needle-like member can pass and provided at the bottom of the recess.
  • the penetrating portion is preferably made of a soft material through which the needle-like member can pass.
  • the through portion may be a hole.
  • the cell tray may further include a flat portion that is provided at the bottom of the recess and has a flat surface that is substantially perpendicular to the direction of travel of the needle-like member.
  • the cell tray preferably further includes a marker indicating the position of the recess. Further, the diameter of the hole is preferably smaller than the diameter of the cell mass.
  • the cell structure manufacturing apparatus may further include a receiving unit capable of holding a liquid.
  • the diameter of the hole in the penetrating portion may be such that capillary action can occur.
  • a cell structure manufacturing apparatus includes a cell tray including a concave portion that supports a cell mass, a penetrating portion provided at the bottom of the concave portion, and a puncturing portion that penetrates the cell mass, and a puncturing portion Is characterized by penetrating the cell mass supported by the recess until the tip of the puncture portion enters the hole.
  • the cell tray includes a plurality of recesses and a plurality of penetration parts, and the puncture part further penetrates the cell mass arranged in another recess until the puncture part enters the other penetration part after penetrating the cell mass.
  • the penetrating portion may be a hole, and the hole may have a bottomed cylindrical shape.
  • the cell structure manufacturing apparatus further includes a receiving unit capable of holding a liquid, and the liquid held in the receiving unit can enter the recess.
  • the recess has a mortar shape
  • the hole has a cylindrical shape
  • the recess is preferably coaxial with the hole.
  • the puncture unit includes a plurality of needle-like bodies arranged in a row, the plurality of recesses are regularly arranged, and the interval between the centers of adjacent recesses is equal to the interval between the centers of adjacent needle-like bodies.
  • a spheroid and a mixed mass of a scaffold material such as collagen and cells can be used, and the cell mass is preferably a spheroid.
  • the method according to the third invention of the present application is characterized in that the puncture portion is penetrated through the cell mass arranged in the recess until the puncture portion enters the penetration portion of the cell tray.
  • the cell structure manufacturing method includes a step of arranging a cell mass in the concave portion of the cell tray, and a cell placed in the concave portion until the puncture portion enters the penetrating portion provided in the bottom portion of the concave portion. And a step of penetrating the lump through the puncture portion.
  • the cell structure manufacturing method includes a step of arranging a plurality of puncture parts penetrating a plurality of cell masses so that the cell masses are in contact with each other, and a step of extracting the puncture part from the cell masses after the cell masses are fused together It is preferable to further comprise. It is preferable to further include a step of sorting the cell mass, and in the arranging step, the cell mass sorted by the sorted step is preferably arranged.
  • the cell structure manufacturing system includes a determination unit that inspects the characteristics of the cell mass, a sorting unit that sorts the cell mass according to the test result by the determination unit, and a sorting result by the sorting unit.
  • a discharge unit that arranges the cell mass in the cell tray, a puncture unit that penetrates the plurality of cell masses arranged in the cell tray, and a holding unit that arranges and holds the plurality of puncture units that penetrate the plurality of cell masses It is characterized by providing.
  • An assembling unit that stores the plurality of holding units so that the cell masses are in contact with each other, a first circulation unit that circulates liquid inside the holding unit, and a first circulating unit that circulates liquid outside the holding unit and inside the assembling unit It is preferable to further include a post-processing module including two reflux parts.
  • the cell tray includes a base, a recess provided at the base and supporting the cell mass, and a penetrating portion provided at the bottom of the recess, and the puncturing portion is recessed until the tip of the puncturing portion enters the penetrating portion. It is preferable to penetrate the cell mass supported by the cell.
  • a cell tray that can easily pierce a large number of cell clusters, and a cell structure manufacturing apparatus, method, and system are obtained.
  • Sorter module 11 Cell lump supply unit 12 Collection unit 12a Pipetter 12b Cylindrical tube 12c Tube support unit 13 Sorter 13a Hopper unit 13b Flow unit 13c Determination unit 13d Sorting unit 13e Discharge unit 14 Cell tray 14a Hole 14b Recessed part 14c Leg part 14d ID 14e Base part 14f Surface 14g Marker 14h Opening part 14i Bottom part 14j Flat part 14k Through part 15 Magazine 16 Discarding part 20 Stacking module 21 Needle feeder 21a Needle 21b Needle holder 22 Sure 22a Chuck 22b Laser oscillation part 22c Laser light receiving part 22c Laser light receiving part 22c Drive unit 24 Table 24a Protrusion 25 Assembly unit 25a Alignment frame 25b Upper groove 25c Lower groove 25d Window portion 25e Upper rod body 25f Lower rod body 25g Side rod body 26 Cell stacking portion 27 Medium 30 Post-processing module 31 Culture portion 32 First Recirculation part 32a first pump 32b first pipe 33 second recirculation part 33a second pump and heater 33b second pipe
  • the cell tray 14 mainly includes a base portion 14e, a hole 14a, a concave portion 14b, and a leg portion 14c.
  • the concave portion 14b is formed in the base portion 14e, and the hole 14a is provided on the bottom surface of the concave portion 14b.
  • the base portion 14e is a rectangular plate made of a material that is not toxic to cells, such as stainless steel.
  • the hole 14a and the recessed part 14b penetrate in the thickness direction of the base part 14e.
  • the hole 14a and the recess 14b form a cell support portion.
  • the recess 14b is, for example, a mortar-shaped well, and has a predetermined depth, for example, approximately half, in the thickness direction from the surface of the base 14e.
  • the surface of the recess 14b is processed so as to reduce the surface roughness and make it smooth.
  • An opening 14h that opens to the surface 14f of the base 14e in the recess 14b and a bottom 14i formed inside the base 14e form a circle, and the diameter of the opening 14h is longer than the diameter of the bottom 14i.
  • a cross section passing through the axis of the recess 14b has a truncated cone shape.
  • the hole 14a has a cylindrical shape, and the diameter of the hole 14a is equal to the diameter of the bottom 14i.
  • a cross section passing through the axis of the hole 14a has a rectangular shape.
  • the hole 14a and the recess 14b are formed to be coaxial.
  • the leg portion 14c is made of the same material as the base portion 14e, and extends from the end portion of the base portion 14e in the thickness direction of the base portion 14e. Thereby, when the cell tray 14 is disposed on the table 24, a space is formed between the bottom surface of the table 24 and the base portion 14e.
  • the recesses 14b are regularly arranged in a matrix on the surface 14f. The intervals between the centers of adjacent recesses 14b in one row are equal.
  • the ID 14d and the marker 14g are provided on the surface 14f of the base 14e.
  • the ID 14d is a symbol unique to the cell tray 14 and functions as an identifier of the individual cell tray 14 and is described on the surface 14f.
  • the marker 14g is, for example, four line segments described on the surface 14f and around the recess 14b. Two markers 14g are arranged on each of two straight lines orthogonal to the central axis of the recess 14b and orthogonal to each other.
  • the concave portion 14b has a mortar shape
  • the cell mass has a substantially spherical shape.
  • the cell mass may be a cell aggregate mass (spheroid) and a mixed mass of a scaffold material such as collagen and cells, but spheroid is preferable.
  • the table 24 is a tray having a shape and a size that can accommodate the entire cell tray 14. Inside the table 24, a cell tray 14 and a buffer solution such as phosphate buffered saline or a culture solution containing a physiologically active substance are arranged. The amount of the buffer solution or the culture solution is such that the entire cell tray 14 is immersed in the buffer solution or the culture solution so that the cell mass does not come into contact with air.
  • the table 24 includes a plurality of positioning protrusions 24a.
  • the positioning projections 24a are projections 24a having a substantially rectangular parallelepiped shape projecting inward from the inner side surface and the bottom surface of the table 24. Two positioning projections 24a are provided at one corner, for a total of eight projections 24a.
  • the length that the positioning protrusion 24a protrudes from the bottom surface of the table 24 is such that the cell tray 14 engages with the leg portion 14c to the extent that the cell tray 14 cannot move.
  • the length by which the positioning protrusion 24 a protrudes from the inner surface of the table 24 is such that the cell tray 14 can be restrained at a certain position inside the table 24. The buffer solution or the culture solution can easily pass through the hole 14a.
  • the cell stacking unit 26 mainly includes a cell tray 14, a skewer 22, and a table 24.
  • the skewer 22 mainly includes a chuck 22a, a laser oscillation unit 22b, a laser light receiving unit 22c, a position determination unit 22d, and a drive unit 22e.
  • the chuck 22a acquires and holds the needle 21a from a needle feeder 21 described later.
  • the needle 21a is a conical needle-shaped body made of a non-cell-adhesive material, for example, stainless steel.
  • the diameter of the cross section of the needle 21a is an arbitrary value that does not destroy the cell mass when the cell mass is pierced and does not prevent the fusion of the cell mass, and takes a value of, for example, 50 to 300 micrometers in diameter.
  • the cell non-adhesive property means a property capable of preventing cells from attaching via an extracellular adhesion factor.
  • the laser oscillation unit 22 b irradiates the cell tray 14 placed on the table 24 with laser light.
  • the laser light receiving unit 22c receives the reflected light reflected by the cell tray 14.
  • the position determination unit 22d calculates the positional relationship between the needle 21a and the cell tray 14 based on the reflected light, and calculates the drive amount of the needle 21a based on the positional relationship. The means for calculating the positional relationship will be described later.
  • the drive unit 22e drives the chuck 22a based on the drive amount obtained by the position determination unit 22d, and pierces the needle 21a into the cell mass arranged on the cell tray 14. Furthermore, the drive unit 22e moves the needle 21a that has pierced the cell mass to the assembly unit 25.
  • the material of the needle 21a and the cell tray 14 is not limited to stainless steel, but other materials having cell non-adhesive properties, that is, polypropylene, nylon, material whose surface is covered with fluorine, Teflon (registered trademark), poly- HEMA, acrylic plate, vinyl chloride plate, ABS resin plate, polyester resin plate, polycarbonate plate resin, PP (polypropylene), ABS (acrylonitrile butadiene styrene), PE (polyethylene), POM (polyacetal), PC (polycarbonate) ), PEEK (polyetheretherketone), MCN (monomer casting nylon), 6N (6 nylon), 66N (66 nylon) and the like, but are not limited thereto. In addition to these materials, materials with reduced cell adhesion can be used.
  • the positioning protrusion 24 a is provided between the tip of the leg portion 14 c and the bottom portion of the table 24.
  • the laser oscillation unit 22 b irradiates the laser beam toward the cell tray 14 placed on the table 24.
  • the laser light receiving unit 22c receives the reflected light reflected by the cell tray 14.
  • the position determination unit 22d confirms the position of the marker 14g based on the brightness of the reflected light, and thereby calculates the positional relationship between the needle 21a and the cell tray 14. Then, the position determination unit 22d obtains the driving amount of the needle 21a based on the calculated positional relationship.
  • the drive unit 22e drives the chuck 22a based on the drive amount obtained by the position determination unit 22d, and moves the needle 21a directly above the cell mass 101a arranged on the cell tray 14. Next, the drive unit 22e lowers the needle 21a toward the cell mass 101a and pierces the cell mass 101a. When the needle 21a is lowered by a predetermined length, the tip of the needle 21a enters the hole 14a. By providing the hole 14a, the needle 21a can be pierced with the cell mass 101a by a predetermined length. After lowering the needle 21a by a predetermined length, the drive unit 22e raises the needle 21a. At this time, the needle 21a is stuck in the cell mass.
  • the laser oscillation unit 22b, the laser light receiving unit 22c, the position determination unit 22d, and the drive unit 22e again perform the same processing as described above, thereby moving the needle 21a immediately above the next cell mass 101b, The cell mass 101b is pierced (see FIG. 5). By repeating these processes a desired number of times, a desired number of cell masses are penetrated through the needle 21a (see FIG. 6).
  • the amount by which the needle 21a is lowered toward the cell mass is determined according to the size of the cell mass and the number of cell masses to be punctured, in other words, the position of the cell mass on the needle 21a.
  • the amount of descending is the longest, and in the next cell mass, the amount of descent is slightly shorter than the diameter of the cell mass.
  • the cell masses are in close contact with each other and can be easily fused.
  • the amount of lowering is determined so that the first cell mass is less than the amount of descent shown in FIG. 4, that is, the first cell mass is further moved by the second cell mass that is stabbed shallowly. May be.
  • the drive unit 22e moves the needle 21a pierced with the cell mass to the assembly unit 25 described later.
  • the cell structure manufacturing system mainly includes a cell tray 14, a sorter module 10 (see FIG. 7), a stacking module 20, and a post-processing module 30 (see FIG. 8).
  • the sorter module 10 mainly includes a cell mass supply unit 11, a collection unit 12, a sorter 13, a cell tray 14, a magazine 15, and a disposal unit 16, and has a function of arranging the cell mass on the cell tray 14. Have.
  • the cell mass supply unit 11 takes in the plate 5 on which the cell mass is arranged from the outside of the sorter module 10.
  • the plate 5 will be described later.
  • the magazine 15 stores a plurality of cell trays 14.
  • the cell tray 14 stored in the magazine 15 is carried to the sorter 13 by a tray feeder (not shown).
  • the collection unit 12 mainly includes a pipetter 12a and a plate 5.
  • the pipetter 12a mainly includes a plurality of cylindrical tubes 12b having tip portions having a diameter larger than the diameter of the cell mass, and a tube support portion 12c that supports the plurality of cylindrical tubes 12b arranged in a line at equal intervals. .
  • the cells placed on the plate 5 aggregate after each other to form a cell mass 100 and remain in these depressions.
  • a negative pressure is applied to the end of the cylindrical tube 12b opposite to the tip, and the cylindrical tube 12b adsorbs the cell mass 100 disposed on the plate 5 to the tip by the negative pressure. That is, when the pipette sucks, the cell mass 100 is arranged at the tip.
  • the pipetter 12 a that has adsorbed the cell mass 100 to the tip of the cylindrical tube 12 b puts the cell mass 100 into the sorter 13.
  • the pipette sucks the cell mass 100, the medium that is in close contact with the cell mass 100 is also simultaneously sucked into the pipette. Then, the culture medium is also put into the sorter 13.
  • the sorter 13 mainly includes a hopper portion 13a, a flow portion 13b, a determination portion 13c, a sorting portion 13d, and a plurality of discharge portions 13e, and the cell mass 100 taken in from the hopper portion 13a according to the characteristics thereof. Have the function of inspecting and sorting.
  • the characteristics of the cell mass 100 are the size, shape, cell viability, etc. of the cell mass 100.
  • the hopper 13a has a funnel, and takes in and accumulates the cell mass 100 from the pipettor 12a through the funnel mouth.
  • the flow unit 13b is a tube having an inner diameter that allows the cell mass 100 to pass through, and connects the funnel foot to the determination unit 13c, the sorting unit 13d, the discharge unit 13e, and the disposal unit 16.
  • the determination unit 13c examines and determines the characteristics of the cell mass 100.
  • the sorting unit 13d sends the cell mass 100 to the discard unit 16 or the plurality of ejection units 13e according to the determination result of the determination unit 13c. That is, the cell mass 100 is sorted by the determination unit 13c and the sorting unit 13d.
  • the discharge part 13e dispenses and arrange
  • the surface of the recess 14b is processed so as to reduce the surface roughness and smooth, so that the cell mass 100 moves to the bottom of the recess 14b without being caught by the side surface of the recess 14b. To do. Thereby, the position of the cell mass 100 is always maintained at the same position with respect to the recess 14b.
  • the discarding unit 16 stores the cell mass 100 received from the sorting unit 13d.
  • the laminated module 20 mainly includes a needle feeder 21, a skewer 22, a table 24, and an assembly unit 25.
  • the needle feeder 21 mainly includes a plurality of needles 21a forming a puncture portion or a needle-like body, and a needle holder 21b.
  • the needle holder 21b holds a plurality of needles 21a.
  • the cell tray 14 stored in the magazine 15 is placed on the table 24 and carried to the lower part of the skewer 22 by a tray feeder (not shown).
  • the assembly unit 25 includes an alignment frame 25a that forms a holding unit.
  • the alignment frame 25a is a rectangular frame, and includes a first bar body 25e, a second bar body 25f, two side bar bodies 25g, a plurality of first grooves 25b, and a plurality of first bars 25b. 2 grooves 25c.
  • the first rod 25e, the second rod 25f, and the side rod 25g have a rectangular parallelepiped shape.
  • the lengths of the first rod 25e and the second rod 25f are equal, and the lengths of the two side rods 25g are equal.
  • the first rod body 25e, the second rod body 25f, and the side bar body 25g have an expansion / contraction mechanism that can expand and contract in the longitudinal direction, for example, a telescopic mechanism. Therefore, the lengths of the first rod body 25e, the second rod body 25f, and the side rod body 25g can be determined as appropriate depending on the size of the three-dimensional cell structure to be manufactured.
  • channel 25b is a groove
  • channel 25c is a groove
  • the number of the first grooves 25b and the number of the second grooves 25c are equal, and the axis of the first grooves 25b and the axis of the second grooves 25c coincide.
  • the distance between adjacent first grooves 25b is the same as or slightly shorter than the diameter of the cell mass. The same applies to the second groove 25c. This makes it easy for the cell masses to come into close contact with each other. It is also possible to change the distance between the adjacent first groove 25b and second groove 25c according to the diameter of the cell mass using the same expansion / contraction mechanism as described above.
  • the number of the first grooves 25b and the second grooves 25c is appropriately determined depending on the size of the cell three-dimensional structure to be manufactured.
  • a rectangular window 25d is formed inside the alignment frame 25a by the first rod 25e, the second rod 25f, and the two side rods 25g.
  • a needle 21a pierced with a plurality of cell clusters is loosely fitted in the first groove 25b and the second groove 25c.
  • FIG. 12 shows a state in which the needle 21a is loosely fitted in all the first grooves 25b and the second grooves 25c.
  • the alignment frames 25 a are stacked in the thickness direction inside the assembly portion 25. The number of the alignment frames 25a to be stacked is appropriately determined depending on the size of the three-dimensional cell structure to be manufactured. After the desired number of alignment frames 25a are stacked, the alignment frames 25a in which the needles 21a are not loosely mounted are stacked, and all the needles 21a are fixed to the alignment frames 25a.
  • the post-processing module 30 mainly includes a culture unit 31, a first circulation unit 32, and a second circulation unit 33.
  • the culture unit 31 stores a plurality of alignment frames 25 a stacked in the assembly unit 25.
  • the first circulating portion 32 includes a first pump 32a and a first pipe 32b.
  • the first pump 32a is connected to the inside of the alignment frame 25a via the first pipe 32b, and circulates the buffer solution or the culture solution. Since the buffer solution or the culture solution contains nutrients, oxygen, and the like, the cell mass located inside the alignment frame 25a can be fused without being killed.
  • the second circulating portion 33 includes a second pump and heater 33a and a second pipe 33b.
  • the second pump and heater 33a is connected to the outside of the alignment frame 25a and the inside of the culture unit 31 via the second pipe 33b, and circulates while keeping the temperature of the heat retaining liquid constant. By circulating the heat retaining solution, the cell mass is kept at a constant temperature. When a predetermined period elapses in this state, the cell clusters are fused together. Thereafter, when all the needles 21a are pulled out from the cell mass in a state where the cell mass is stored in the alignment frame 25a, the cell three-dimensional structure 101 completed in the alignment frame 25a is obtained (see FIG. 14).
  • the cell mass can be easily placed at a specific position.
  • the position of the cell mass can be easily identified using the marker 14g, whereby the cell mass can be quickly stabbed with a needle.
  • the hole 14a does not penetrate in the thickness direction of the base portion 14e, and may have a bottomed cylindrical shape (see FIG. 15).
  • the depth of the hole 14a is such a length that the tip of the needle 21a does not hit the bottom of the hole 14a when the needle 21a is lowered by a predetermined length.
  • the flat part 14j which has the plane provided substantially horizontally between the hole 14a and the recessed part 14b (refer FIG. 19).
  • substantially horizontal means substantially perpendicular to the traveling direction of the needle.
  • the flat portion 14j supports the cell mass in the direction opposite to the traveling direction of the needle 21a. Thereby, the possibility that the cell mass is dragged by the needle 21a and drawn into the hole 14a can be reduced.
  • the soft material examples include sponge, rubber, urethane, and silicone.
  • the penetrating portion 14k supports the cell mass in the direction opposite to the traveling direction of the needle 21a, and the needle 21a penetrates the cell mass after passing through the cell mass (FIG. 20 ( b)). Thereby, the possibility that the cell mass is dragged by the needle 21a and drawn into the cell tray 14 can be reduced.
  • the soft material may have a cylindrical shape, for example, and a hole penetrating in the central axis direction of the cylindrical shape may be formed on the central axis of the cylindrical shape (see FIG. 22A). In FIG.
  • the diameter of the hole 14a of the penetrating portion 14k is not particularly limited as long as a capillary phenomenon occurs, and is, for example, 100 ⁇ m to 500 ⁇ m.
  • the discharge part 13e dispenses the cell mass 100 and the culture medium 27 into the concave part 14b using a pipette
  • the culture medium 27 is sucked into the hole 14a by capillary action and is held at the opening on the bottom side of the cell tray 14 with surface tension. Thereby, the culture medium 27 does not fall downward from the cell tray 14.
  • the medium 27 does not fall from the cell tray 14, it is not necessary to receive the medium 27 below the cell tray 14.
  • the medium 27 prevents the cell mass 100 from drying. Since the period from when the collection unit 12 sucks the cell mass 100 from the plate 5 to the completion of the cell three-dimensional structure 101 by the post-processing module 30 is several hours, the cells are passed through a buffer solution or a culture solution. There is no need to feed the mass 100 with nutrients.
  • the diameter of the hole 14a is a value that causes capillary action, the needle 21a penetrates the through-hole 14k while further expanding the hole 14a after penetrating the cell mass after passing through the cell mass, as in FIG. 21 (b).
  • the part 14k supports the cell mass (see FIG. 22B).
  • the soft material does not have to be a cylindrical shape, and may be any shape that can be packed in the inner periphery of the hole 14a without a gap.
  • a hole penetrating in the direction of the central axis of the columnar shape may not be formed.
  • the needle 21a pierces a cylindrical shape.
  • the needle 21a may not penetrate through the entire length of the hole 14a. That is, the tip of the needle 21a may enter up to the middle of the entire length of the hole 14a.
  • the needle 21a may not penetrate through the entire length of the hole 14a. That is, the tip of the needle 21a may enter up to the middle of the entire length of the hole 14a.
  • the penetrating portion 14k may be provided integrally with the cell tray 14.
  • a cell structure having an arbitrary shape can be manufactured by controlling the position of the cell mass inserted into the needle 21a.
  • the cell structure manufacturing apparatus can also manufacture a cell three-dimensional structure having a hollow structure.
  • the shape and size of the hollow structure can be arbitrarily designed.
  • the amount by which the needle 21a is lowered toward the cell mass is determined according to the size of the hollow structure. That is, the amount of descent is reduced by a length corresponding to the size of the hollow structure.
  • a space corresponding to the size of the hollow structure is spaced between the cell mass 101a and the cell mass 101b.
  • the products obtained in this manner are arranged in the alignment frame 25a (see FIG. 17) and cultured in the post-processing module 30 for a predetermined period, a cell three-dimensional structure having a hollow structure can be manufactured.
  • the first circulating portion 32 can deliver nutrients, oxygen, and the like contained in the buffer solution or the culture solution to the cells inside the cell mass through the hollow structure. It becomes possible. Thereby, it becomes possible to manufacture a cell three-dimensional structure with a larger volume.
  • the base portion 14e is not limited to one made of stainless steel, and may be made of another metal or resin such as an aluminum alloy as long as it is a material that is not toxic to cells.
  • electrolytic polishing or fluororesin coating is used as a process for reducing the surface roughness of the recess 14b.
  • the diameter of the cross section of the needle 21a that is, the thickness, the diameter of the hole 14a, and the axial lengths of the recess 14b and the hole 14a are not limited to the above-described values.
  • the hole 14a is not provided, and the concave portion 14b penetrates the base portion 14e in the thickness direction, in other words, the concave portion 14b may also serve as the hole.
  • a plurality of needles may be used simultaneously. That is, each of the plurality of needles pierces the cell mass at the same time. Thereby, the time required for the process of piercing all the cell masses can be shortened. At this time, the distance between the centers of the adjacent concave portions 14b is equal to the distance between the centers of the adjacent needle-like bodies.
  • the number of the positioning protrusions 24 a is not limited to the above-described number, and may be any number as long as the cell tray 14 can be restrained at a certain position inside the table 24. Further, the positioning protrusion 24a may not be provided. In this case, the size of the table 24 can be reduced. Since the size of the table 24 can be reduced, less buffer solution or culture solution can be placed in the table 24.
  • the shapes of the opening 14h and the bottom 14i of the recess 14b are not limited to a circle, and may be a rectangle, an ellipse, or other shapes.
  • the diameter of the hole 14a and the diameter of the bottom part 14i do not need to be equal, and the recessed part 14b and the hole 14a should just penetrate.
  • the hole 14a may not be cylindrical.
  • the cell three-dimensional structure may be composed of only the same type of cells, or may include a plurality of types of cells.
  • the same type of cell means a functionally equivalent cell derived from the same tissue or organ of a single type.
  • a cell construct containing a plurality of types of cells is obtained by applying cell clusters formed from different types of cells (for example, cell cluster A consisting of a cells and cell cluster B consisting of b cells) to the present invention. be able to.
  • the a cell and the b cell may be arbitrary cells as long as their cell masses are fused.
  • the a cell and the b cell may be, for example, cells derived from different tissues (or organs) of the same type or cells derived from the same type of different tissues (or organs).
  • the cell mass may include one type or a plurality of types of cells.
  • the cell three-dimensional structure may be manufactured using only a cell cluster including one type of cell, or may be manufactured using a plurality of cell clusters composed of different types of cells. It may be produced using only a cell mass containing seed cells, or may be produced using a cell mass containing one type of cell and a cell mass containing a plurality of types of cells.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Virology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 細胞トレイ14は、基部14eと、孔14aと、凹部14bと、脚部14cとを主に備える。基部14eは、矩形の板であって、細胞への毒性がない材質、例えばステンレスから成る。基部14eの厚さ方向に孔14a及び凹部14bが貫通する。凹部14bはすり鉢形状を有し、基部14eの表面から厚さ方向の略半分までの深さを有する。孔14aと凹部14bとは、同軸となるように接続される。脚部14cは、基部14eと同様の材質によって形成され、基部14eの端部から基部14eの厚さ方向に伸びる。基部14eの表面14fには、ID14dとマーカ14gとが設けられる。

Description

細胞トレイ、並びに細胞構造体製造装置、方法、及びシステム
 本発明は、細胞の立体構造体を製造するために用いられる細胞トレイ、並びに装置、方法、及びシステムに関する。
 従来、複数の細胞塊を立体的に積層して立体構造体を作成する手法が知られている。この手法では、培養プレート上に並べられた細胞塊を取り出して、支持体から伸びる複数の針状体の各々に複数の細胞塊を突き刺して密着させ、細胞塊が互いに融合した後に針状体から細胞塊を引き抜くことによって、細胞の立体構造体を得る。培養プレート上に並べられた細胞塊を取り出して針状体に突き刺す手法として種々の手法が知られている。特許文献1は、培養プレート上の細胞塊をピペット内部に吸引した後に針状体まで移動して細胞塊に圧力をかけて針状体に突き刺す手法、培養プレート上の細胞塊を小型のロボットアームに把持させたまま移動して針状体に突き刺す手法、及び培養プレート上の細胞塊をピンセットに把持させて針状体を突き刺す手法を開示する。特許文献2は、細胞塊の直径よりも短い直径を有する吸引ノズルの先端に培養プレート上の細胞塊を吸着し、針状体が吸引ノズルの先端から内部に侵入するまで細胞塊を針状体に押し込み、これにより細胞塊を針状体に突き刺す手法を開示する。
国際公開第2008/123614号パンフレット 国際公開第2012/176751号パンフレット
 しかし、従来の手法では、培養プレートから細胞塊を取り出して細胞塊を針状体に突き刺すまでの処理を一連として行わなければならず、時間を要していた。また、培養プレート上における細胞塊の位置及び針状体の位置は既知でないため、細胞塊及び針状体の位置を画像認識技術で計測する必要があった。この場合、被計測物の光学特性や照明条件によって計測結果がばらつき、処理時間の増加や、歩留まりの低下を招く。
 本発明はこれらの課題に鑑みてなされたものであり、多数の細胞塊を容易に突き刺すことのできる細胞トレイ、並びに細胞構造体製造装置、方法、及びシステムを得ることを目的とする。
 本願第1の発明による細胞トレイは、細胞塊を支持する凹部と、針状部材が通過可能であって、凹部の底部に設けられた貫通部とを備えることを特徴とする。貫通部は、針状部材が通過可能である軟素材から成ることが好ましい。また、貫通部は孔であってもよい。さらに、細胞トレイは、凹部の底部に設けられ、針状部材の進行方向に対して略直角な平面を有する平坦部をさらに備えてもよい。細胞トレイは、凹部の位置を示すマーカをさらに備えることが好ましい。また、孔の直径は、細胞塊の直径よりも小さいことが好ましい。細胞塊としてスフェロイド、及びコラーゲンなどの足場材料と細胞との混合塊が用いられ得るが、細胞塊はスフェロイドが好適である。細胞構造体製造装置は、液体を保持可能な受部をさらに備えてもよい。貫通部の孔の直径は、毛細管現象を生じうる程度であってもよい。
 本願第2の発明による細胞構造体製造装置は、細胞塊を支持する凹部と、凹部の底部に設けられた貫通部とを備える細胞トレイと、細胞塊に貫通する穿刺部とを備え、穿刺部は、穿刺部の先端が孔に進入するまで、凹部に支持される細胞塊を貫通することを特徴とする。
 細胞トレイは複数の凹部及び複数の貫通部を備え、穿刺部は、細胞塊に貫通した後、他の貫通部に穿刺部が進入するまで、他の凹部に配置された細胞塊をさらに貫通することが好ましい。貫通部は孔であって、孔は有底筒状であってもよい。細胞構造体製造装置は、液体を保持可能な受部をさらに備え、受部に保持された液体が凹部に浸入可能であることが好ましい。凹部はすり鉢形状を有し、孔は円筒形状を有し、凹部は孔と同軸であることが好ましい。穿刺部は一列に並べられた複数の針状体を備え、複数の凹部は規則的に配列され、隣り合う凹部の中心どうしの間隔は、隣り合う針状体の中心どうしの間隔と等しいことが好ましい。細胞塊としてスフェロイド、及びコラーゲンなどの足場材料と細胞との混合塊が用いられ得るが、細胞塊はスフェロイドが好適である。
 本願第3の発明による方法は、前記細胞トレイの貫通部に穿刺部が進入するまで、凹部に配置された細胞塊に穿刺部を貫通させることを特徴とする。
 本願第4の発明による細胞構造体製造方法は、前記細胞トレイの凹部に細胞塊を配置する工程と、凹部の底部に設けられた貫通部に穿刺部が進入するまで、凹部に配置された細胞塊に穿刺部を貫通させる工程とを備えることを特徴とする。
 凹部及び貫通部は複数であって、配置する工程は複数の凹部の各々に細胞塊を配置し、貫通させる工程は、他の凹部に配置された細胞塊に穿刺部をさらに貫通させる工程を繰り返すことが好ましい。細胞構造体製造方法は、複数の細胞塊に貫通した複数の穿刺部を、細胞塊どうしが接触するように配置する工程と、細胞塊どうしが融合した後に、穿刺部を細胞塊から引き抜く工程とをさらに備えることが好ましい。細胞塊を選別する工程をさらに備え、配置する工程は、選別された工程によって選別された細胞塊を配置することが好ましい。
 本願第5の発明による細胞構造体製造システムは、細胞塊の特徴を検査する判定部と、判定部による検査結果に応じて細胞塊を分別する分取部と、分取部による分別結果に応じて細胞塊を細胞トレイに配置する吐出部と、細胞トレイに配置された複数の細胞塊を貫通する穿刺部と、複数の細胞塊を貫通した複数の穿刺部を配列して保持する保持部とを備えることを特徴とする。
 複数の保持部を細胞塊どうしが接触するように格納する組立部と、保持部の内部に液体を循環させる第1の環流部と、保持部の外部かつ組立部の内部に液体を循環させる第2の環流部とを備える後処理モジュールをさらに備えることが好ましい。細胞トレイは、基部と、基部に設けられて細胞塊を支持する凹部と、凹部の底部に設けられた貫通部とを備え、穿刺部は、穿刺部の先端が貫通部に進入するまで、凹部に支持される細胞塊に貫通することが好ましい。
 本発明によれば、多数の細胞塊を容易に突き刺すことのできる細胞トレイ、並びに細胞構造体製造装置、方法、及びシステムを得る。
細胞塊を載せた細胞トレイ及びテーブルを概略的に示した断面図である。 細胞トレイ及びテーブルの一部を概略的に示した一部平面図である。 積層モジュールを概略的に示したブロック図である。 細胞塊を突き刺す工程を示した図である。 細胞塊を突き刺す工程を示した図である。 細胞塊を突き刺す工程を示した図である。 ソーターモジュールを概略的に示したブロック図である。 後処理モジュールを概略的に示したブロック図である。 収集部を概略的に示した斜視図である。 ソーターを概略的に示したブロック図である。 整列枠を概略的に示した斜視図である。 細胞塊を突き刺したニードルを配置した整列枠を示した平面図である。 積み重ねられた整列枠を示した側面図である。 細胞立体構造体の斜視図である。 細胞トレイを概略的に示した端面図である。 細胞塊を突き刺す工程を示した図である。 細胞塊を突き刺したニードルを配置した整列枠を示した平面図である。 細胞立体構造体の斜視図である。 細胞トレイの一部断面図である。 細胞トレイの一部断面図である。 細胞トレイの一部断面図である。 細胞トレイの一部断面図である。
 5 プレート
 10 ソーターモジュール
 11 細胞塊供給部
 12 収集部
 12a ピペッタ
 12b 円筒管
 12c 管支持部
 13 ソーター
 13a ホッパー部
 13b フロー部
 13c 判定部
 13d 分取部
 13e 吐出部
 14 細胞トレイ
 14a 孔
 14b 凹部
 14c 脚部
 14d ID
 14e 基部
 14f 表面
 14g マーカ
 14h 開口部
 14i 底部
 14j 平坦部
 14k 貫通部
 15 マガジン
 16 廃棄部
 20 積層モジュール
 21 ニードルフィーダ
 21a ニードル
 21b ニードルホルダ
 22 スキュア
 22a チャック
 22b レーザ発振部
 22c レーザ受光部
 22d 位置判定部
 22e 駆動部
 24 テーブル
 24a 突起
 25 組立部
 25a 整列枠
 25b 上部溝
 25c 下部溝
 25d 窓部
 25e 上部棒体
 25f 下部棒体
 25g 側部棒体
 26 細胞積層部
 27 培地
 30 後処理モジュール
 31 培養部
 32 第1の環流部
 32a 第1のポンプ
 32b 第1の配管
 33 第2の環流部
 33a 第2のポンプ及びヒータ
 33b 第2の配管
 まず、本発明の一実施形態による細胞トレイ14及びテーブル(受部)24について図1及び2を用いて説明する。
 細胞トレイ14は、基部14eと、孔14aと、凹部14bと、脚部14cとを主に備え、基部14eに凹部14bが形成されており、凹部14bの底面に孔14aが設けられている。基部14eは、矩形の板であって、細胞への毒性がない材質、例えばステンレスから成る。基部14eの厚さ方向に孔14a及び凹部14bが貫通する。孔14a及び凹部14bは細胞支持部を成す。凹部14bは例えばすり鉢形状のウェルであり、基部14eの表面から厚さ方向に所定の深さ、例えば略半分を有する。凹部14bの表面には、表面粗さを下げて滑らかにするような加工が施される。凹部14bにおいて基部14eの表面14fに開口する開口部14hと、基部14eの内部に形成される底部14iとは円形を成し、開口部14hの直径は、底部14iの直径よりも長い。凹部14bの軸を通る断面は、円錐台形状をなす。孔14aは円筒形状を有し、孔14aの直径は底部14iの直径と等しい。孔14aの軸を通る断面は、長方形形状をなす。孔14aと凹部14bとは、同軸となるように形成される。脚部14cは、基部14eと同様の材質によって形成され、基部14eの端部から基部14eの厚さ方向に伸びる。これにより、細胞トレイ14がテーブル24に配置されたとき、テーブル24の底面と基部14eとの間に空間が形成される。図2を参照すると、凹部14bは、表面14fに行列を成すように規則的に並べられる。1つの列において隣り合う凹部14bの中心どうしの間隔は等しい。
 基部14eの表面14fには、ID14dとマーカ14gとが設けられる。ID14dは、細胞トレイ14に固有の記号であって、個々の細胞トレイ14の識別子として機能し、表面14fに記載される。マーカ14gは、例えば表面14f上であって、凹部14bの周囲に記載された4本の線分である。凹部14bの中心軸と直交し、かつ互いに直交する2本の直線各々の上に、2本のマーカ14gが並べられる。前述のように、凹部14bはすり鉢形状であり、細胞塊は略球形状である。そのため、凹部14bに細胞塊を置いたとき、細胞塊の一部が孔14aに嵌まり込むので、自然に細胞塊は凹部14bの中心に位置することになる。そして、マーカ14gを繋ぐ直線が交わる位置に細胞塊の中心が実質的に置かれることになる。ここで、細胞塊は細胞凝集塊(スフェロイド)、及びコラーゲンなどの足場材料と細胞との混合塊でありうるが、スフェロイドが好適である。
 テーブル24は、細胞トレイ14の全体を収納可能な程度の形状及び大きさを持つ受け皿である。テーブル24の内部には、細胞トレイ14と、リン酸緩衝生理食塩水等の緩衝液、又は生理活性物質が含まれた培養液とが配置される。緩衝液又は培養液の量は、細胞塊が空気に触れないように、細胞トレイ14の全体が緩衝液又は培養液に浸かる程度である。テーブル24は複数の位置決め突起24aを備える。位置決め突起24aは、テーブル24の内側面及び底面から内側に向けて突出する略直方体形状を有する突起24aであって、1つの隅に2つ、合計8つの突起24aが設けられる。位置決め突起24aがテーブル24の底面から突出する長さは、細胞トレイ14が移動不可能な程度に脚部14cと係合する程度である。位置決め突起24aがテーブル24の内側面から突出する長さは、テーブル24の内部で細胞トレイ14を一定の位置に拘束可能な程度である。緩衝液又は培養液は、孔14aを容易に通過できる。
 次に、本発明の一実施形態による細胞積層部(細胞構造体製造装置)26について図3を用いて説明する。
 細胞積層部26は、細胞用トレイ14と、スキュア22と、テーブル24とを主に備える。
 スキュア22は、チャック22aと、レーザ発振部22bと、レーザ受光部22cと、位置判定部22dと、駆動部22eとを主に備える。チャック22aは、後述されるニードルフィーダ21からニードル21aを取得し、保持する。ニードル21aは、細胞非接着性の材質、例えばステンレスから成る円錐針状体である。ニードル21aの断面の直径は、細胞塊を突き刺したときに細胞塊を破壊せず、そして細胞塊の融合を妨げない任意の値であり、例えば直径50マイクロメートルから300マイクロメートルの値をとる。細胞非接着性とは、細胞が細胞外接着因子を介して付着することを阻止できる性質を意味する。レーザ発振部22bは、テーブル24に載せられている細胞トレイ14に向けてレーザ光を照射する。レーザ受光部22cは、細胞トレイ14が反射した反射光を受光する。位置判定部22dは、反射光に基づいてニードル21aと細胞トレイ14の位置関係を算出し、位置関係に基づいてニードル21aの駆動量を求める。位置関係を算出する手段については後述される。駆動部22eは、位置判定部22dが求めた駆動量に基づいてチャック22aを駆動し、細胞トレイ14上に配置された細胞塊にニードル21aを突き刺す。さらに駆動部22eは、細胞塊を突き刺したニードル21aを、組立部25に移動する。
 なお、ニードル21a及び細胞トレイ14の素材は、ステンレスに限定されず、細胞非接着性を有する他の素材、すなわちポリプロピレン、ナイロン、表面がフッ素で覆われた素材、テフロン(登録商標)、poly-HEMA、アクリル板、塩化ビニール板、ABS樹脂板、ポリエステル系樹脂板、ポリカーボネート板等の樹脂、PP(ポリプロピレン)、ABS(アクリルニトリルブタジエンスチレン)、PE(ポリエチレン)、POM(ポリアセタール)、PC(ポリカーボネート)、PEEK(ポリエーテルエーテルケトン)、MCN(モノマーキャステイングナイロン)、6N(6ナイロン)、66N(66ナイロン)等のエンジニアリングプラスティックでもよいが、これらに限定されるものではない。これらの素材以外にも、細胞接着性を低下させた素材が使用され得る。
 次に、図4から6を用いて、ニードル21aが複数の細胞塊を突き刺す処理について説明する。なお、以下、位置決め突起24aが脚部14cの先端とテーブル24の底部との間に設けられるとして説明する。まず、レーザ発振部22bが、テーブル24に載せられている細胞トレイ14に向けてレーザ光を照射する。次に、レーザ受光部22cは、細胞トレイ14が反射した反射光を受光する。位置判定部22dは、反射光の輝度に基づいて、マーカ14gの位置を確認し、これによりニードル21aと細胞トレイ14の位置関係を算出する。そして、位置判定部22dは、算出した位置関係に基づいてニードル21aの駆動量を求める。駆動部22eは、位置判定部22dが求めた駆動量に基づいてチャック22aを駆動し、細胞トレイ14上に配置された細胞塊101aの直上にニードル21aを移動させる。次に、駆動部22eは、ニードル21aを細胞塊101aに向けて降下させ、細胞塊101aを突き刺す。所定の長さだけニードル21aを降下させたとき、ニードル21aの先端が孔14aに進入する。孔14aを設けることにより、ニードル21aを所定の長さだけ細胞塊101aを突き刺すことができる。所定の長さだけニードル21aを降下させた後、駆動部22eはニードル21aを上昇させる。このとき、ニードル21aが細胞塊に刺さった状態となっている。そして、再度レーザ発振部22b、レーザ受光部22c、位置判定部22d、及び駆動部22eが前述と同様の処理を行い、これにより、次の細胞塊101bの直上にニードル21aを移動させ、次の細胞塊101bを突き刺す(図5参照)。これらの処理を所望の回数だけ反復することにより、所望の数の細胞塊をニードル21aに貫通させる(図6参照)。ニードル21aを細胞塊に向けて降下させる降下量は、細胞塊の大きさ及び突き刺す細胞塊の数、言い換えると、ニードル21a上における細胞塊の位置に応じて決定される。すなわち、ニードル21aに1つめの細胞塊を突き刺すとき、降下量は最も長くなり、次の細胞塊においては、細胞塊の直径よりもわずかに短い降下量となる。降下量をわずかに短くすることにより、細胞塊どうしが密着し、融合しやすくなる。これらを反復することにより、複数の細胞塊が刺さったニードル21aを複数得る。なお、1つめの細胞塊を図4に示す降下量よりも少ない降下量、すなわち浅く刺し、その後に刺した2つめの細胞塊が1つめの細胞塊をさらに移動させるように降下量を決定してもよい。所望の数の細胞塊をニードル21aに貫通させた後、駆動部22eは、細胞塊を突き刺したニードル21aを、後述される組立部25に移動させる。
 次に、本発明の一実施形態による細胞構造体製造システムについて図7から14を用いて説明する。細胞構造体製造システムは、細胞トレイ14と、ソーターモジュール10(図7参照)と、積層モジュール20と、後処理モジュール30(図8参照)とを主に備える。
 図7を用いてソーターモジュール10について説明する。ソーターモジュール10は、細胞塊供給部11と、収集部12と、ソーター13と、細胞トレイ14と、マガジン15と、廃棄部16とを主に備え、細胞塊を細胞トレイ14に配置する機能を有する。
 細胞塊供給部11は、ソーターモジュール10の外部から、細胞塊が配置されたプレート5を取り込む。プレート5については後述される。マガジン15は、複数の細胞トレイ14を格納する。マガジン15に格納されている細胞トレイ14は、図示しないトレイフィーダによって、ソーター13まで運ばれる。
 図9を用いて収集部12について説明する。収集部12は、ピペッタ12aと、プレート5とを主に備える。ピペッタ12aは、細胞塊の直径よりも大きな直径を持つ先端部を有する複数の円筒管12bと、複数の円筒管12bを等間隔で一列に配列して支持する管支持部12cとを主に備える。プレート5の上には、等間隔で複数の窪みが形成される。窪みどうしの間隔と、円筒管12bどうしの間隔は等しい。プレート5上に置かれた細胞は、時間を経たのち互いに凝集して細胞塊100となり、これらの窪みに留まる。円筒管12bにおいて先端部とは反対側の端部に負圧が加えられ、この負圧の力によって、円筒管12bは、プレート5上に配置された細胞塊100を先端部に吸着する。すなわち、ピペットが吸引することにより、先端部に細胞塊100が配置される。円筒管12bの先端部に細胞塊100を吸着したピペッタ12aは、細胞塊100をソーター13に投入する。なお、ピペットが細胞塊100を吸引したとき、細胞塊100に密着している培地もピペットに同時に吸引される。そして、培地もソーター13に投入される。
 図10を用いてソーター13について説明する。ソーター13は、ホッパー部13aと、フロー部13bと、判定部13cと、分取部13dと、複数の吐出部13eとを主に備え、ホッパー部13aから取り込んだ細胞塊100をその特徴に応じて検査し、選別する機能を有する。細胞塊100の特徴は、細胞塊100の大きさ、形状、及び細胞生存率などである。ホッパー部13aは、漏斗を有し、漏斗の口を介してピペッタ12aから細胞塊100を取り込み、蓄積する。フロー部13bは、細胞塊100が通過することの出来る程度の内径を有する管であって、漏斗の足を、判定部13c、分取部13d、吐出部13e、及び廃棄部16に接続する。判定部13cは、細胞塊100の特徴を検査し、判定する。分取部13dは、判定部13cの判定結果に応じて、廃棄部16又は複数の吐出部13eに細胞塊100を送り出す。つまり、判定部13c及び分取部13dによって細胞塊100が選別される。吐出部13eは、ピペットを用いて、細胞塊100を培地と共に細胞トレイ14の凹部14bに分注し、配置する。前述のように、凹部14bの表面には、表面粗さを下げて滑らかにするような加工が施されるため、細胞塊100は、凹部14bの側面に引っ掛かることなく、凹部14bの底部まで移動する。これにより、細胞塊100の位置が凹部14bに対して常に同じ位置に保たれる。廃棄部16は、分取部13dから受け取った細胞塊100を格納する。
 積層モジュール20について図3を用いて説明する。積層モジュール20は、ニードルフィーダ21と、スキュア22と、テーブル24と、組立部25とを主に備える。ニードルフィーダ21は、穿刺部又は針状体を成す複数のニードル21aと、ニードルホルダ21bとを主に備える。ニードルホルダ21bは、複数のニードル21aを保持する。マガジン15に格納されている細胞トレイ14は、図示しないトレイフィーダによって、テーブル24に載せられてスキュア22の下部まで運ばれる。
 図11から13を用いて組立部25について説明する。組立部25は、保持部を成す整列枠25aを備える。整列枠25aは、矩形の枠であって、第1の棒体25eと、第2の棒体25fと、2本の側部棒体25gと、複数の第1の溝25bと、複数の第2の溝25cとを備える。第1の棒体25e、第2の棒体25f、及び側部棒体25gは、直方体形状を有する。第1の棒体25eと第2の棒体25fの長さは等しく、2本の側部棒体25gの長さは等しい。第1の棒体25e、第2の棒体25f、及び側部棒体25gは、長手方向に伸縮自在となる伸縮機構、例えばテレスコピック機構を有する。従って、第1の棒体25e、第2の棒体25f、及び側部棒体25gの長さは、製造される細胞立体構造体の大きさによって適宜決定することができる。第1の溝25bは、第1の棒体25eの側面に設けられた円弧状の断面を有する溝である。第2の溝25cは、第2の棒体25fの側面に設けられた円弧状の断面を有する溝である。第1の溝25bの数と第2の溝25cの数は等しく、第1の溝25bの軸と第2の溝25cの軸は一致する。隣り合う第1の溝25bどうしの距離は、細胞塊の直径と同じ又はやや短い。第2の溝25cもまた同様である。これにより、細胞塊どうしが密着して融合しやすくなる。前述と同様の伸縮機構を用いて、隣り合う第1の溝25b及び第2の溝25cどうしの距離を細胞塊の直径に応じて変更可能とすることも可能である。第1の溝25b及び第2の溝25cの数は、製造される細胞立体構造体の大きさによって適宜決定される。第1の棒体25e、第2の棒体25f、及び2本の側部棒体25gにより、整列枠25aの内部に矩形の窓部25dが形成される。複数の細胞塊を突き刺したニードル21aが第1の溝25b及び第2の溝25cに遊嵌する。全ての第1の溝25b及び第2の溝25cにニードル21aが遊嵌している状体を図12に示す。図13を参照すると、組立部25の内部で、整列枠25aは厚さ方向に積み重ねられる。積み重ねる整列枠25aの数は、製造される細胞立体構造体の大きさによって適宜決定される。所望の数の整列枠25aが積み重ねられた後、ニードル21aが遊嵌していない整列枠25aが積み重ねられ、全てのニードル21aが整列枠25aに固定される。
 次に、図8を用いて後処理モジュール30について説明する。後処理モジュール30は、培養部31と、第1の環流部32と、第2の環流部33とを主に備える。培養部31は、組立部25において積み重ねられた複数の整列枠25aが格納される。第1の環流部32は第1のポンプ32aと第1の配管32bとを備える。第1のポンプ32aは、第1の配管32bを介して整列枠25aの内部と接続され、緩衝液又は培養液を環流する。緩衝液又は培養液は栄養分や酸素などを含んでいるため、整列枠25aの内部に位置する細胞塊は、死滅せずに融合することができる。第2の環流部33は第2のポンプ及びヒータ33aと第2の配管33bとを備える。第2のポンプ及びヒータ33aは、第2の配管33bを介して整列枠25aの外部と培養部31の内部と接続され、保温液の温度を一定に保ちながら環流する。保温液を環流することにより、細胞塊が一定の温度に保たれる。この状態で所定期間が経過すると、細胞塊が互いに融合する。その後、細胞塊を整列枠25aに格納した状態で全てのニードル21aを細胞塊から引き抜くと、整列枠25a内に完成された細胞立体構造体101を得る(図14参照)。
 本願発明によれば、多数の細胞塊を容易かつ迅速に突き刺して、任意の形状の細胞立体構造体を迅速に得ることができる。
 また、本願発明による細胞トレイを用いることにより、細胞塊を特定の位置に容易に置くことができる。また、マーカ14gを用いて細胞塊の位置を容易に特定することができ、これにより、迅速に細胞塊をニードルで突き刺すことができる。
 なお、細胞トレイ14において、孔14aは基部14eの厚さ方向に貫通せず、有底筒状であってもよい(図15参照)。孔14aの深さは、所定の長さだけニードル21aを降下させたとき、ニードル21aの先端が孔14aの底に当たらない程度の長さである。孔14aを設けることにより、ニードル21aを所定の長さだけ細胞塊101aに突き刺すことができる。
 また、細胞トレイ14において、孔14aと凹部14bの間に、略水平に設けられた平面を有する平坦部14jを設けてもよい(図19参照)。ここで、略水平とは、ニードルの進行方向に対して略直角を意味する。ニードル21aが細胞塊を貫通する際、ニードル21aの進行方向とは反対方向に平坦部14jが細胞塊を支持する。これにより、細胞塊がニードル21aに引きずられて孔14aに引きこまれる可能性を低減できる。さらに、凹部14bの底に、ニードル21aが貫通できる程度の柔らかさをもつ軟素材からなる貫通部14kを設けてもよい(図20(a)参照)。軟素材は、例えばスポンジ・ゴム・ウレタン・シリコーン等である。ニードル21aが細胞塊を貫通する際、ニードル21aの進行方向とは反対方向に貫通部14kが細胞塊を支持し、ニードル21aは細胞塊を貫通した後に更に貫通部14kを貫通する(図20(b)参照)。これにより、細胞塊がニードル21aに引きずられて細胞トレイ14の内部に引きこまれる可能性を低減できる。また、貫通部14kに孔14aを設けてもよい(図21(a)参照)。この場合、孔14aの内側直径はニードル21aの外側直径より小さくてもよく、大きくてもよい。孔14aの内側直径がニードル21aの外側直径より小さい場合、ニードル21aは細胞塊を貫通した後に更に孔14aを押し広げながら貫通部14kを貫通する(図21(b)参照)。ニードル21aが細胞塊を貫通する際、ニードル21aの進行方向とは反対方向に貫通部14kが細胞塊を支持する。これにより、細胞塊がニードル21aに引きずられて孔14aに引きこまれる可能性を低減できる。
 軟素材は、例えば円柱形状を有してもよく、円柱形状の中心軸上には、円柱形状の中心軸方向に貫通する孔が開けられてもよい(図22(a)参照)。図22(a)において、貫通部14kの孔14aの直径は、毛細管現象を生じる限り特に限定されるものではなく、例えば100μm~500μmである。吐出部13eがピペットを用いて細胞塊100及び培地27を凹部14bに分注すると、毛細管現象により培地27が孔14aに吸い込まれ、細胞トレイ14の底面側開口に表面張力で保持される。これにより、培地27が細胞トレイ14から下方に落下しない。また、培地27が細胞トレイ14から落下しないため、細胞トレイ14の下方で培地27を受ける必要がない。つまり、テーブル24を設ける必要がなく、細胞トレイ14単体のみで作業を行うことができる。また、培地27が細胞塊100の乾燥を防止する。なお、収集部12がプレート5から細胞塊100を吸引してから後処理モジュール30で細胞立体構造体101が完成されるまでの期間は数時間であるため、緩衝液又は培養液を介して細胞塊100に栄養を供給する必要はない。
 孔14aの直径が毛細管現象を生じるような値であるとき、ニードル21aは、図21(b)と同様に、細胞塊を貫通した後に更に孔14aを押し広げながら貫通部14kを貫通し、貫通部14kが細胞塊を支持する(図22(b)参照)。なお、軟素材は円柱形状でなくてもよく、孔14aの内周に隙間無く詰められうるような形状であればよい。また、円柱形状の中心軸方向に貫通する孔が開けられなくても良い。この場合、ニードル21aが円柱形状を突き刺す。
 また、いずれの実施形態においても、ニードル21aは、孔14aの全長に渡って貫通しなくてもよい。すなわち、ニードル21aの先端が孔14aの全長半ばまで進入してもよい。
 また、いずれの実施形態においても、ニードル21aは、孔14aの全長に渡って貫通しなくてもよい。すなわち、ニードル21aの先端が孔14aの全長半ばまで進入してもよい。そして、貫通部14kは細胞トレイ14と一体として設けられてもよい。
 ここで、本発明では、ニードル21aに刺す細胞塊の位置を制御することにより、任意形状の細胞構造体を製造することができる。例えば図16を参照すると、細胞構造体製造装置は、中空構造を有する細胞立体構造体を製造することも可能である。中空構造の形状及び大きさは任意に設計することができる。例えば、壁面を細胞塊で構成し、その内部が空洞となるような筒状(トンネル状)の細胞立体構造体を製造することができる。製造する細胞立体構造体が中空構造を有する場合、ニードル21aを細胞塊に向けて降下させる降下量は、中空構造の大きさに応じて決定される。すなわち、中空構造の大きさに対応する長さだけ降下量を減らす。これにより、細胞塊101aと細胞塊101bとの間に、中空構造の大きさに対応する長さだけ間隔が空けられる。これにより得られたものを、整列枠25aに並べ(図17参照)、後処理モジュール30に所定期間だけ培養させると、中空構造を有する細胞立体構造体を製造することができる。第1の環流部32は、中空構造を有する細胞立体構造体を製造する場合、緩衝液又は培養液に含まれる栄養分や酸素などを中空構造を介して細胞塊内部の細胞にまで送達することが可能となる。これにより、より体積の大きい細胞立体構造体を製造することが可能になる。
 なお、基部14eは、ステンレスから成るものに限定されず、細胞への毒性が無い材質であれば、例えばアルミニウム合金などの他の金属や樹脂から成るものであっても良い。凹部14bの表面粗度を下げる加工として、例えば電解研磨やフッ素樹脂コーティング等が用いられる。また、ニードル21aの断面の直径、すなわち太さ、孔14aの直径、並びに凹部14b及び孔14aの軸方向長さは、前述の値に限定されない。
 また、孔14aは設けられず、凹部14bが基部14eを厚さ方向に貫通、言い換えると、凹部14bが孔を兼用してもよい。
 複数のニードルを同時に用いてもよい。すなわち、複数のニードルの各々が同時に細胞塊を突き刺す。これにより、全ての細胞塊を突き刺す工程に要する時間を短縮できる。このとき、隣り合う凹部14bの中心どうしの間隔は、隣り合う針状体の中心どうしの間隔と等しい。
 位置決め突起24aの数は、前述の数に限定されず、テーブル24の内部で細胞トレイ14を一定の位置に拘束可能な程度の数であればよい。
 また、位置決め突起24aを設けなくてもよい。この場合、テーブル24の大きさを小さくできる。テーブル24の大きさを小さくできるため、テーブル24に入れられる緩衝液又は培養液が少なくて済む。
 凹部14bの開口部14hと底部14iの形状は円形に限定されず、矩形、楕円、又はその他の形状であってもよい。孔14aの直径と底部14iの直径は等しくなくてもよく、凹部14bと孔14aとが貫通していればよい。また、孔14aは円筒形でなくてもよい。
 細胞立体構造体は、同種類の細胞のみで構成されてもよく、又は複数種類の細胞を含んでもよい。同種類の細胞とは、単一種の同じ組織または器官などに由来する機能的に同等の細胞を意味する。複数種類の細胞を含む細胞構築物は、異なる種類の細胞からそれぞれ形成された細胞塊(例えば、a細胞からなる細胞塊Aとb細胞からなる細胞塊B)を、本願発明に適用することによって得ることができる。ここで、a細胞とb細胞とは、それらの細胞塊同士が融合する限り、任意の細胞であり得る。a細胞とb細胞とは、例えば、同種の異なる組織(または器官)由来の細胞であっても、異種の同じ組織(または器官)由来の細胞であっても、異種の異なる組織(または器官)由来の細胞であってもよい。また、使用される異なる種類の細胞は、2種類に限定されず、3種類以上の細胞を用いてもよい。細胞塊は、一種類又は複数種の細胞を含んでもよい。このとき、細胞立体構造体は、一種類の細胞を含む細胞塊のみを用いて製造されてもよく、互いに異なる種類の細胞により構成された複数の細胞塊を用いて製造されてもよく、複数種の細胞を含む細胞塊のみを用いて製造されてもよく、一種類の細胞を含む細胞塊及び複数種の細胞を含む細胞塊を用いて製造されてもよい。
 ここに付随する図面を参照して本発明の複数の実施形態が説明されたが、記載された発明の範囲と精神から逸脱することなく、変形が各部の構造と関係に施されることは、当業者にとって自明である。

Claims (24)

  1.  細胞塊を支持する凹部と、
     針状部材が通過可能であって、前記凹部の底部に設けられた貫通部とを備える細胞トレイ。
  2.  前記貫通部は、針状部材が通過可能である軟素材から成る請求項1に記載の細胞トレイ。
  3.  前記貫通部は孔である請求項1又は2に記載の細胞トレイ。
  4.  前記凹部の底部に設けられ、前記針状部材の進行方向に対して略直角な平面を有する平坦部をさらに備える請求項1から3のいずれかに記載の細胞トレイ。
  5.  前記凹部の位置を示すマーカをさらに備える請求項1から4のいずれかに記載の細胞トレイ。
  6.  前記貫通部は孔であり、前記孔の直径は、細胞塊の直径よりも小さい請求項1から5のいずれかに記載の細胞トレイ。
  7.  前記細胞塊はスフェロイドである請求項1から6のいずれかに記載の細胞トレイ。
  8.  液体を保持可能な受部をさらに備える請求項1から7のいずれかに記載の細胞トレイ。
  9.  細胞塊を支持する凹部と、前記凹部の底部に設けられた貫通部とを備える細胞トレイと、
     細胞塊に貫通する穿刺部とを備え、
     前記穿刺部は、前記穿刺部の先端が前記貫通部に進入するまで、前記凹部に支持される細胞塊を貫通する細胞構造体製造装置。
  10.  前記細胞トレイは複数の前記凹部及び複数の前記貫通部を備え、
     前記穿刺部は、細胞塊に貫通した後、他の前記貫通部に前記穿刺部が進入するまで、他の前記凹部に配置された細胞塊をさらに貫通する請求項9に記載の細胞構造体製造装置。
  11.  前記貫通部は孔であって、前記孔は有底筒状である請求項9又は10に記載の細胞構造体製造装置。
  12.  液体を保持可能な受部をさらに備え、前記受部に保持された液体が前記凹部に浸入可能である請求項9から11のいずれかに記載の細胞構造体製造装置。
  13.  前記貫通部は孔であって、前記凹部はすり鉢形状を有し、前記孔は円筒形状を有し、前記凹部は前記孔と同軸である請求項9から12のいずれかに記載の細胞構造体製造装置。
  14.  前記穿刺部は一列に並べられた複数の針状体を備え、
     複数の前記凹部は規則的に配列され、
     隣り合う前記凹部の中心どうしの間隔は、隣り合う前記針状体の中心どうしの間隔と等しい請求項9から13のいずれかに記載の細胞構造体製造装置。
  15.  前記細胞塊はスフェロイドである請求項9から14のいずれかに記載の細胞構造体製造装置。
  16.  請求項1から8のいずれかに記載の細胞トレイの貫通部に前記穿刺部が進入するまで、前記凹部に配置された細胞塊に穿刺部を貫通させる方法。
  17.  請求項1から8のいずれかに記載の細胞トレイの凹部に細胞塊を配置する工程と、
     前記凹部の底部に設けられた貫通部に前記穿刺部が進入するまで、前記凹部に配置された細胞塊に穿刺部を貫通させる工程とを備える細胞構造体製造方法。
  18.  前記凹部及び前記貫通部は複数であって、前記配置する工程は複数の前記凹部の各々に細胞塊を配置し、
     前記貫通させる工程は、他の前記凹部に配置された細胞塊に前記穿刺部をさらに貫通させる工程を繰り返す請求項17に記載の細胞構造体製造方法。
  19.  複数の細胞塊に貫通した複数の穿刺部を、前記細胞塊どうしが接触するように配置する工程と、
     前記細胞塊どうしが融合した後に、前記穿刺部を前記細胞塊から引き抜く工程とをさらに備える請求項18に記載の細胞構造体製造方法。
  20.  細胞塊を選別する工程をさらに備え、前記配置する工程は、前記選別された工程によって選別された細胞塊を配置する請求項17から19のいずれかに記載の細胞構造体製造方法。
  21.  細胞塊の特徴を検査する判定部と、
     前記判定部による検査結果に応じて前記細胞塊を分別する分取部と、
     前記分取部による分別結果に応じて前記細胞塊を細胞トレイに配置する吐出部と、
     細胞トレイに配置された複数の前記細胞塊を貫通する穿刺部と、
     複数の前記細胞塊を貫通した複数の穿刺部を配列して保持する保持部とを備える細胞構造体製造システム。
  22.  複数の前記保持部を前記細胞塊どうしが接触するように格納する組立部と、前記保持部の内部に液体を循環させる第1の環流部と、前記保持部の外部かつ前記組立部の内部に液体を循環させる第2の環流部とを備える後処理モジュールをさらに備える請求項21に記載の細胞構造体製造システム。
  23.  前記細胞トレイは、基部と、前記基部に設けられて細胞塊を支持する凹部と、前記凹部の底部に設けられた貫通部とを備え、前記穿刺部は、前記穿刺部の先端が前記貫通部に進入するまで、前記凹部に支持される細胞塊に貫通する請求項21又は22に記載の細胞構造体製造システム。
  24.  前記貫通部は孔であり、前記孔の直径は、毛細管現象を生じうる程度である請求項3に記載の細胞トレイ。
     
PCT/JP2016/053314 2016-02-04 2016-02-04 細胞トレイ、並びに細胞構造体製造装置、方法、及びシステム WO2017134787A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/053314 WO2017134787A1 (ja) 2016-02-04 2016-02-04 細胞トレイ、並びに細胞構造体製造装置、方法、及びシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/053314 WO2017134787A1 (ja) 2016-02-04 2016-02-04 細胞トレイ、並びに細胞構造体製造装置、方法、及びシステム

Publications (1)

Publication Number Publication Date
WO2017134787A1 true WO2017134787A1 (ja) 2017-08-10

Family

ID=59500728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053314 WO2017134787A1 (ja) 2016-02-04 2016-02-04 細胞トレイ、並びに細胞構造体製造装置、方法、及びシステム

Country Status (1)

Country Link
WO (1) WO2017134787A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6334837B1 (ja) * 2017-10-30 2018-05-30 株式会社サイフューズ 細胞構造体製造装置
JP6454830B1 (ja) * 2017-10-10 2019-01-16 株式会社サイフューズ 細胞トレイおよび不織布組立部材

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000023657A (ja) * 1998-07-09 2000-01-25 Natl Food Res Inst マイクロキャピラリーアレイ、その製造方法、及び物質注入装置
JP2006109715A (ja) * 2004-10-12 2006-04-27 Chuo Seiki Kk ウェルプレートおよび細胞培養器具
WO2008123614A1 (ja) * 2007-03-30 2008-10-16 Kyushu University, National University Corporation 細胞の立体構造体の製造方法
JP2008295376A (ja) * 2007-05-31 2008-12-11 Fujitsu Ltd 細胞捕捉プレート、マイクロインジェクション装置、および細胞捕捉プレートの製造方法
JP2010200714A (ja) * 2009-03-05 2010-09-16 Mitsui Eng & Shipbuild Co Ltd 細胞分離装置、細胞分離システムおよび細胞分離方法
WO2012176751A1 (ja) * 2011-06-24 2012-12-27 国立大学法人佐賀大学 細胞の立体構造体製造装置
JP2013132241A (ja) * 2011-12-26 2013-07-08 Otsuka Pharmaceut Factory Inc 細胞分離装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000023657A (ja) * 1998-07-09 2000-01-25 Natl Food Res Inst マイクロキャピラリーアレイ、その製造方法、及び物質注入装置
JP2006109715A (ja) * 2004-10-12 2006-04-27 Chuo Seiki Kk ウェルプレートおよび細胞培養器具
WO2008123614A1 (ja) * 2007-03-30 2008-10-16 Kyushu University, National University Corporation 細胞の立体構造体の製造方法
JP2008295376A (ja) * 2007-05-31 2008-12-11 Fujitsu Ltd 細胞捕捉プレート、マイクロインジェクション装置、および細胞捕捉プレートの製造方法
JP2010200714A (ja) * 2009-03-05 2010-09-16 Mitsui Eng & Shipbuild Co Ltd 細胞分離装置、細胞分離システムおよび細胞分離方法
WO2012176751A1 (ja) * 2011-06-24 2012-12-27 国立大学法人佐賀大学 細胞の立体構造体製造装置
JP2013132241A (ja) * 2011-12-26 2013-07-08 Otsuka Pharmaceut Factory Inc 細胞分離装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIHO KAWAKATSU ET AL.: "Fabrication of Three- dimensional Cell Structures Using Bio-three- dimensional Printing Technology", JOURNAL OF PRINTING SCIENCE AND TECHNOLOGY, vol. 51, no. 1, 28 February 2014 (2014-02-28), pages 18 - 22, XP008181488, ISSN: 0914-3319 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6454830B1 (ja) * 2017-10-10 2019-01-16 株式会社サイフューズ 細胞トレイおよび不織布組立部材
WO2019073522A1 (ja) * 2017-10-10 2019-04-18 株式会社サイフューズ 細胞トレイおよび不織布組立部材
JP6334837B1 (ja) * 2017-10-30 2018-05-30 株式会社サイフューズ 細胞構造体製造装置
WO2019087262A1 (ja) * 2017-10-30 2019-05-09 株式会社サイフューズ 細胞構造体製造装置
CN110088267A (zh) * 2017-10-30 2019-08-02 赛福斯生物医疗股份有限公司 细胞结构体制造装置
CN110088267B (zh) * 2017-10-30 2020-08-28 赛福斯生物医疗股份有限公司 细胞结构体制造装置
US10961495B2 (en) 2017-10-30 2021-03-30 Cyfuse Biomedical K.K. Cell structure producing apparatus

Similar Documents

Publication Publication Date Title
JP5931310B1 (ja) 細胞トレイ、並びに細胞構造体製造装置、方法、及びシステム
AU2020207812B2 (en) Egg inspection device
CN1572877A (zh) 向细胞注射物质的系统和设备
WO2017134787A1 (ja) 細胞トレイ、並びに細胞構造体製造装置、方法、及びシステム
Chen et al. Microchip-based 3D-cell culture using polymer nanofibers generated by solution blow spinning
CN112041422A (zh) 具有灌注功能的生物反应器
KR20170051331A (ko) 세포의 집합구조체의 제작 방법 및 제작 장치
WO2019087262A1 (ja) 細胞構造体製造装置
CN108641931A (zh) 一种数字化微阵列器官芯片及其应用
JP6620251B2 (ja) 細胞構造体製造装置
US20090000693A1 (en) Device, Use and Method for Drawing Off a Liquid
US20170121674A1 (en) Method and apparatus for producing cell mass structure
JP6660544B2 (ja) 細胞塊シート培養装置
CN205893281U (zh) 一种实验室用细胞培养装置
CN111151314A (zh) 一种仿蚂蚁口器功能结构的微液滴制备装置及方法
JP6982231B2 (ja) 細胞の集合構造体の作製装置
CN203108582U (zh) 一种机器采血专用试管架
CN117821213A (zh) 基于3d肿瘤模型的琼脂糖凝胶制备装置
CN114958725A (zh) 基于亲疏水阵列芯片的三维细胞球悬滴培养及共培养方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP