JP2008291744A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2008291744A
JP2008291744A JP2007138201A JP2007138201A JP2008291744A JP 2008291744 A JP2008291744 A JP 2008291744A JP 2007138201 A JP2007138201 A JP 2007138201A JP 2007138201 A JP2007138201 A JP 2007138201A JP 2008291744 A JP2008291744 A JP 2008291744A
Authority
JP
Japan
Prior art keywords
maximum
actuator
temperature
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007138201A
Other languages
English (en)
Inventor
Naohide Fuwa
直秀 不破
Masayuki Tamada
誠幸 玉田
Hiroyuki Kanemoto
宏行 鐘本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007138201A priority Critical patent/JP2008291744A/ja
Priority to US12/601,634 priority patent/US20100175662A1/en
Priority to PCT/IB2008/001309 priority patent/WO2008142554A1/en
Priority to DE112008001427T priority patent/DE112008001427T5/de
Priority to CN200880017165A priority patent/CN101680369A/zh
Publication of JP2008291744A publication Critical patent/JP2008291744A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0063Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0207Variable control of intake and exhaust valves changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0226Variable control of the intake valves only changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • F01L1/185Overhead end-pivot rocking arms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/20Adjusting or compensating clearance
    • F01L1/22Adjusting or compensating clearance automatically, e.g. mechanically
    • F01L1/24Adjusting or compensating clearance automatically, e.g. mechanically by fluid means, e.g. hydraulically
    • F01L1/2405Adjusting or compensating clearance automatically, e.g. mechanically by fluid means, e.g. hydraulically by means of a hydraulic adjusting device located between the cylinder head and rocker arm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L2001/0537Double overhead camshafts [DOHC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2305/00Valve arrangements comprising rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • F01L2800/09Calibrating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/03Auxiliary actuators
    • F01L2820/032Electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/04Sensors
    • F01L2820/045Valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • F02D41/2448Prohibition of learning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

【課題】最大位置学習処理に際して駆動力不足に起因する誤学習が発生する。
【解決手段】電子制御装置60は、アクチュエータ50を駆動してコントロールシャフト340を変位させ、シリンダヘッド20にHi端側ストッパ343が当接することによって停止する位置を吸気バルブの最大リフト量が最も大きくなる可動限界位置(Hi端)として学習する最大位置学習処理を実行し、コントロールシャフト340の積算変位量を補正する。電子制御装置60は、機関回転速度NEが所定回転速度NEst以上のときに最大位置学習処理の実行を禁止する。
【選択図】図3

Description

この発明は、吸気バルブの最大リフト量を変更するリフト量変更機構を備える内燃機関の制御装置に関する。
内燃機関のバルブ特性を変更する可変動弁機構として特許文献1には、アクチュエータにより可動部を駆動し、所定の可動範囲において同可動部を変位させることにより、吸気バルブの最大リフト量を変更することのできるリフト量変更機構が記載されている。このリフト量変更機構にあっては、可動範囲における一方の可動限界位置に可動部が位置したときに最大リフト量が最大となる。こうしたリフト量変更機構を備える内燃機関の制御装置にあっては、吸気バルブの最大リフト量が最大となる可動限界位置に基づいて基準位置を設定し、この基準位置からの可動部の積算変位量に基づいて最大リフト量を検出するようにしている。
ところで、制御装置に電力を供給する電力線の接触不良等による電力供給の一時的な途絶、いわゆる瞬断が発生すると、メモリに記憶されていた可動部の積算変位量が消失し、最大リフト量が把握できなくなる場合がある。また、例えば、制御装置に電力が供給されず可動部の変位量を監視していない機関停止中に何らかの理由により同可動部の位置が変化した場合には、制御装置が把握している最大リフト量と、実際の最大リフト量との間にずれが生じることとなる。
そこで、特許文献1に記載の制御装置にあっては、可動部の積算変位量を補正する学習処理を実行するようにしている。具体的には、可動部を一定の駆動力で変位させ、可動部が停止した位置を可動限界位置として学習することにより積算変位量を補正し、制御装置が把握している最大リフト量と実際の最大リフト量とのずれを補正するようにしている。
特開2005‐188286号公報
ところで、吸気バルブの最大リフト量を大きくする方向に可動部を駆動して可動部が停止した位置を可動限界位置として学習する場合(以下、最大位置学習処理と称する)には、最大リフト量が大きくなるのに伴って吸気バルブのバルブスプリングから受ける反力が次第に大きくなる。そのため、可動部を最大リフト量が最も大きくなる可動限界位置まで駆動する最大位置学習処理の実行には大きな駆動力が必要とされる。また更に、バルブリフトに伴うリフト量変更機構各部の振動やバルブスプリングからの反力等に起因する駆動力の損失は、単位時間あたりのバルブリフト回数が多くなる機関高回転時ほど大きくなるため、機関高回転域では、最大位置学習処理を実行するために更に大きな駆動力が必要とされるようになる。その結果、場合によってはアクチュエータの駆動力が不足して途中で可動部が停止してしまい、そのときの停止位置が可動限界位置であると誤学習されてしまうおそれがある。
また、機関高回転域であっても最大位置学習処理を確実に実行することができるように、最大位置学習処理を実行する際の駆動力を予め大きな値に設定することも考えられる。しかしながら、最大位置学習処理の実行中は、可動部の積算変位量が正確に把握されておらず、可動限界位置までの距離を正確に把握することができない。そのため、大きな駆動力でリフト量変更機構を駆動すると、可動部が可動限界位置に到達して停止する際の衝撃が非常に大きくなる。その結果、リフト量変更機構やこれを駆動するアクチュエータの破損をまねくおそれがあるため、最大位置学習処理実行中のアクチュエータの駆動力を大きくするのにも自ずと限界があり、この点で改良の余地を残すものであった。
この発明は上記実状に鑑みてなされたものであり、その目的は最大位置学習処理に際して駆動力不足に起因する誤学習の発生を抑制することのできる内燃機関の制御装置を提供することにある。
以下、上記目的を達成するための手段及びその作用効果について記載する。
請求項1に記載の発明は、アクチュエータにより可動部を変位させて吸気バルブの最大リフト量を変更するリフト量変更機構と、前記最大リフト量が最大となる可動限界位置に基づいて基準位置を設定し、その基準位置からの前記可動部の積算変位量に基づいて前記最大リフト量を検出する検出手段と、前記最大リフト量が増大するように前記アクチュエータを駆動し、前記可動部が停止した位置を前記可動限界位置として学習することにより前記積算変位量を補正する最大位置学習処理を実行する学習手段とを有する内燃機関の制御装置において、機関回転速度が所定回転速度以上のときに前記学習手段による最大位置学習処理の実行を禁止する禁止手段を備えることをその要旨とする。
同構成によれば、機関回転速度が大きく、可動部を変位させる際の駆動力の損失が大きいことに起因して最大位置学習処理の実行に際して大きな駆動力が必要とされるときには、最大位置学習処理の実行が禁止される。そのため、アクチュエータの駆動力が不足して途中で可動部が停止してしまい、そのときの停止位置が可動限界位置であると誤学習されてしまうことを回避することができる。このように上記構成によれば、最大位置学習処理に際して駆動力不足に起因する誤学習の発生を抑制することができるようになる。
請求項2に記載の発明は、請求項1に記載の内燃機関の制御装置であって、前記アクチュエータの温度を推定する温度推定手段を備え、同温度推定手段によって推定される前記アクチュエータの温度が低いときほど前記所定回転速度を小さな値に設定することをその要旨とする。
アクチュエータの温度が低い場合には、機関回転速度が同じ場合であっても、アクチュエータに供給される潤滑油の粘度の増大やオイルシール部分の摩擦の増大等により可動部を変位させる際の駆動力の損失が更に大きくなる。そのため、アクチュエータの温度が低いときほど、誤学習の発生を抑制しながら最大位置学習処理を実行することのできる機関回転速度は小さくなる。この点、上記請求項2に記載の構成では、アクチュエータの温度を推定する温度推定手段を設け、その推定されたアクチュエータの温度が低いときほど最大位置学習処理を禁止する所定回転速度を小さな値に設定するようにしている。そのため、最大位置学習処理を禁止する所定回転速度を駆動力不足による誤学習が発生する可能性にあわせた態様で好適に設定することができるようになる。
請求項3に記載の発明は、請求項2に記載の内燃機関の制御装置において、前記温度推定手段は、機関冷却水温に基づいて前記アクチュエータの温度を推定することをその要旨とする。
また、請求項4に記載の発明は、請求項2又は請求項3に記載の内燃機関の制御装置において、前記温度推定手段は、直近の所定期間における前記内燃機関の吸入空気量積算値に基づいて前記アクチュエータの温度を推定することをその要旨とする。
具体的には請求項3に記載の発明によるように、温度推定手段は機関冷却水温をアクチュエータの温度の相関値として用い、機関冷却水温が高いときにアクチュエータの温度が高い旨を推定する構成を採用することができる。
また、内燃機関の温度は燃焼熱によって変動するが、この燃焼熱は吸入空気量に応じてその大きさが変化するため、請求項4に記載の発明のように、直近の所定期間における内燃機関の吸入空気量の積算値をアクチュエータの温度の相関値として用い、その積算値が大きいときにアクチュエータの温度が高い旨を推定する構成を採用することもできる。
更にここで、アクチュエータに供給される潤滑油が燃焼室内で往復動する機関ピストンの潤滑に供される等、アクチュエータに供給される潤滑油が燃焼室の温度と高い相関を有して変化する場合は、アクチュエータの温度がそのときどきの機関燃焼状態に応じて敏感に変動するようになる。従ってこのような場合には、機関冷却水温及び直近の所定期間における吸入空気量の積算値の双方をアクチュエータの温度の相関値として用い、アクチュエータの温度を推定する構成を採用することが望ましい。即ち、機関冷却水温は内燃機関全体の平均的な温度と高い相関を有して変化する一方、吸入空気量の積算値は専ら燃焼室近傍の局所的な温度変化と高い相関を有して変化する傾向がある。そのため、機関冷却水温と積算吸入空気量の双方をアクチュエータの温度の相関値として用いる構成によれば、こうした傾向を反映した態様をもってアクチュエータの温度をより正確に推定することができるようになる。尚ここで、吸入空気量積算値には、これと高い相関を有して変化する燃料噴射量積算値をも含むものとする。
請求項5に記載の発明は、請求項1〜4のいずれか一項に記載の内燃機関の制御装置であって、前記最大位置学習処理の実行中に前記アクチュエータの駆動力を制限する制限手段を更に備えることをその要旨とする。
最大位置学習処理の実行中は可動部の積算変位量が正確に把握されておらず、可動限界位置までの距離を正確に把握することができない。そのため、大きな駆動力で可動部を駆動すると、可動部が可動限界位置に到達して停止する際の衝撃が非常に大きくなり、リフト量変更機構やこれを駆動するアクチュエータの破損をまねくおそれがある。この点、上記請求項5に記載の発明によるように、最大位置学習処理中はアクチュエータの駆動力を制限することにより、可動部が可動限界位置に到達して停止する際の衝撃を極力小さくすることができ、こうしたリフト量変更機構やアクチュエータの破損を抑制することができるようになる。しかし、このように最大位置学習処理実行中のアクチュエータの駆動力を制限する構成を採用する場合には、可動限界位置に到達していないのにもかかわらず駆動力不足に起因して可動部が停止してしまい、誤った位置が可動限界位置として学習される可能性が高くなる。この点、上記請求項5に記載の発明によるように、請求項1〜4に記載の構成を併せて採用することにより、最大位置学習処理の実行中にアクチュエータの駆動力を制限する場合においても、駆動力不足に起因する誤学習の発生を好適に抑制することができるようになる。
以下、この発明にかかる内燃機関の制御装置を具体化した一実施形態について、図1〜図9を参照して説明する。
図1は、本実施形態にかかる内燃機関の動弁機構の構成を示す断面図である。図1に示されるようにこの内燃機関の機関本体1は、シリンダブロック10とシリンダヘッド20とを組み合わせることにより構成されている。シリンダブロック10に形成されたシリンダ11には、ピストン12が摺動可能に収容されている。そして、シリンダブロック10の上部にはシリンダヘッド20が組み付けられ、シリンダ11の内周面、ピストン12の上面及びシリンダヘッド20の下面によって燃焼室13が区画形成されている。
シリンダヘッド20には、燃焼室13と連通する吸気ポート21及び排気ポート22が形成されている。吸気ポート21は図示しない吸気マニホルドと接続されて吸気通路30の一部を構成している。また、排気ポート22は、図示しない排気マニホルドと接続されて排気通路40の一部を構成している。尚、吸気通路30には、燃焼室13に導入される空気の量を調量するスロットルバルブ33が設けられている。
図1に示されるようにシリンダヘッド20には、吸気通路30と燃焼室13とを連通・遮断する吸気バルブ31と、排気通路40と燃焼室13とを連通・遮断する排気バルブ41とが設けられている。各バルブ31,41にはリテーナ23が固定されるとともに、シリンダヘッド20とこれらリテーナ23との間にはバルブスプリング24が設けられている。これにより各バルブ31,41はバルブスプリング24の付勢力によって閉弁方向に付勢されている。
また、シリンダヘッド20の内部には、各バルブ31,41に対応してラッシュアジャスタ25が設けられるとともに、このラッシュアジャスタ25と各バルブ31,41との間にはロッカアーム26が架設されている。図1に示されるようにロッカアーム26は、その一端がラッシュアジャスタ25に支持されるとともに、他端が各バルブ31,41の基端部に当接されている。
更に、シリンダヘッド20には、各バルブ31,41を駆動する吸気カムシャフト32及び排気カムシャフト42がそれぞれ回動可能に支持されている。吸気カムシャフト32には吸気カム32aが形成されており、排気カムシャフト42には排気カム42aが形成されている。排気カム42aの外周面は、排気バルブ41に当接しているロッカアーム26のローラ26aに当接されている。これにより、機関運転時に排気カムシャフト42が回転すると、排気カム42aの作用によりロッカアーム26はラッシュアジャスタ25によって支持された部分を支点として揺動する。その結果、排気バルブ41はロッカアーム26によって開弁方向にリフトされるようになる。
一方、吸気カム32aと、吸気バルブ31に当接しているロッカアーム26との間にはリフト量変更機構300が設けられている。このリフト量変更機構300は入力アーム311と出力アーム321とを有しており、これら入力アーム311及び出力アーム321はシリンダヘッド20に固定された支持パイプ330を中心に揺動可能に支持されている。ロッカアーム26は、バルブスプリング24の付勢力によって出力アーム321側に付勢され、同ロッカアーム26の中間部分に設けられたローラ26aが出力アーム321の外周面に当接されている。これによりリフト量変更機構300は、図1に示されるように右回り方向W1に付勢され、入力アーム311の先端に設けられたローラ311aが吸気カム32aの外周面に押圧されている。従って機関運転時に吸気カム32aが回転すると、吸気カム32aの作用によりリフト量変更機構300は支持パイプ330を中心に揺動する。そして、出力アーム321の作用によりロッカアーム26がラッシュアジャスタ25によって支持されている部分を支点として揺動し、その結果、吸気バルブ31はロッカアーム26によって開弁方向にリフトされるようになる。
また、支持パイプ330には、その軸方向に沿って移動可能にコントロールシャフト340が挿入されている。リフト量変更機構300は、このコントロールシャフト340を軸方向に変位させることにより、支持パイプ330を中心とした入力アーム311と出力アーム321との相対位相差、即ち図1に示される角度αを変更することができるようになっている。
次に、図2を参照してリフト量変更機構300の構成について詳しく説明する。尚、図2はリフト量変更機構300の内部構造を示す破断斜視図である。シリンダヘッド20に固定された支持パイプ330内部には、図2に示されるようにコントロールシャフト340が軸方向に移動可能に挿入されている。また、支持パイプ330には円筒状のスライダ350が軸方向に移動可能に外嵌されている。
この円筒状のスライダ350の内壁には、その周方向に沿って延伸する溝353が形成されており、この溝353にはブッシュ354が嵌合されている。また、支持パイプ330の管壁にはその軸方向に延伸する長孔331が形成されており、スライダ350とコントロールシャフト340との間には、この長孔331を通じてこれらスライダ350とコントロールシャフト340とを連結する係止ピン341が設けられている。そして、この係止ピン341の一端がコントロールシャフト340に形成された凹部(図示略)に挿入されるとともに、他端がブッシュ354に形成された貫通孔に挿入されている。これにより、スライダ350は支持パイプ330及びコントロールシャフト340を中心に自由に揺動し、且つコントロールシャフト340の軸方向の変位に連動して移動するようになっている。
また、スライダ350の外周面には、その中央部分にヘリカルスプライン351が形成されるとともに、その両端部分にヘリカルスプライン351と歯すじが逆向きに傾斜するヘリカルスプライン352が形成されている。
このスライダ350には、図2に示されるように一対の出力部320が入力部310を挟むように位置して外嵌されている。入力部310の内周面には、ヘリカルスプライン312が形成されており、このヘリカルスプライン312がスライダ350のヘリカルスプライン351と噛合している。また、入力部310の外周面には、コントロールシャフト340の径方向に突出する一対の入力アーム311が形成されており、これら一対の入力アーム311の間にはローラ311aが回転可能に支持されている。
一方、一対の出力部320の内周面にはヘリカルスプライン322が形成されており、このヘリカルスプライン322がスライダ350のヘリカルスプライン352とそれぞれ噛合している。また、出力部320の外周面には、コントロールシャフト340の径方向に突出する出力アーム321がそれぞれ形成されている。
こうしたリフト量変更機構300にあっては、コントロールシャフト340がその軸方向に沿って変位すると、これに連動してスライダ350が軸方向に変位する。スライダ350の外周面に形成されたヘリカルスプライン351,352は、入力部310及び出力部320の内周面に形成されたヘリカルスプライン312、322とそれぞれ噛合されているため、スライダ350がその軸方向に変位すると、入力部310と出力部320はそれぞれ逆の方向に回動する。その結果、入力アーム311と出力アーム321との相対位相差が変更され、吸気バルブ31の最大リフト量が変更される。具体的には、図2示される矢印Hi方向にコントロールシャフト340を変位させると、コントロールシャフト340とともにスライダ350がHi方向に移動する。それに伴って入力アーム311と出力アーム321との相対位相差、即ち図1における角度αが大きくなり、吸気バルブ31の最大リフト量が大きくなる。一方、図2に示される矢印Lo方向にコントロールシャフト340を変位させると、コントロールシャフト340とともにスライダ350がLo方向に移動するのに伴って入力アーム311と出力アーム321との相対位相差が小さくなり、吸気バルブ31の最大リフト量が小さくなる。
本実施形態の内燃機関にあっては、機関運転中に吸気通路30に設けられたスロットルバルブ33を全開状態に保持するとともに、リフト量変更機構300によって吸気バルブ31の最大リフト量を変更することにより吸入空気量を調量する。
次に、コントロールシャフト340をその軸方向に変位させるための駆動機構、及びその駆動機構の制御態様ついて、図3〜6を参照して説明する。
図3は、リフト量変更機構300のアクチュエータとその制御装置の概略構成を示す模式図である。図3に示されるように、コントロールシャフト340の基端部(図3における右側端部)には、アクチュエータ50として、ブラシレスモータ52が変換機構51を介して連結されている。ブラシレスモータ52の回転運動は、この変換機構51によってコントロールシャフト340の軸方向への直線運動に変換される。そして、上記ブラシレスモータ52の所定の回転角範囲内での回転駆動、例えばブラシレスモータ52の10回転分の回転角範囲(0〜3600°)内での回転駆動を通じて、コントロールシャフト340が軸方向に変位してリフト量変更機構300を駆動する。
因みに、ブラシレスモータ52を正回転させると、コントロールシャフト340は、図3の矢印Hi方向に移動し、上述したようにリフト量変更機構300の入力アーム311と出力アーム321との相対位相差が大きくなる。また、コントロールシャフト340の矢印Hi方向への移動は、コントロールシャフト340に設けられたHi端側ストッパ343によって規制されるようになっており、このHi端側ストッパ343がシリンダヘッド20の一部に当接した位置が吸気バルブ31の最大リフト量が最も大きくなる可動限界位置(以下、Hi端と称する)となる。
一方、ブラシレスモータ52を逆回転させると、コントロールシャフト340は図3の矢印Lo方向に移動し、入力アーム311と出力アーム321との相対位相差が小さくなる。コントロールシャフト340の矢印Lo方向への移動は、コントロールシャフト340に設けられたLo端側ストッパ342によって規制されるようになっており、このLo端側ストッパ342がシリンダヘッド20の一部に当接した位置が吸気バルブ31の最大リフト量が最も小さくなる可動限界位置(以下、Lo端と称する)となっている。
このようにコントロールシャフト340をその軸方向に変位させることにより吸気バルブ31の最大リフト量は、コントロールシャフト340の軸方向の位置に対応して変化するようになっている。そして、コントロールシャフト340の軸方向の位置は、ブラシレスモータ52の上記所定回転角範囲内での回転角に対応して変化する。
ブラシレスモータ52には、2つの位置センサS1,S2が設けられている。各位置センサS1,S2は、ブラシレスモータ52の回転時にブラシレスモータ52のロータと一体回転する48極の多極マグネットの磁束変化に応じて、図4(a)及び(b)に示されるようにパルス状の信号、即ちハイ信号「H」とロー信号「L」とを交互に出力する。尚、図4はブラシレスモータ52の回転に伴う位置センサS1,S2の信号と、位置カウント値P及びストロークカウント値Sの遷移態様を示すタイミングチャートである。
また、各位置センサS1,S2からのパルス信号は、互いに位相をずらした状態で出力されるようになっており、正回転時には位置センサS1からのパルス信号の立ち上がりエッジ及び立ち下がりエッジがそれぞれ位置センサS2からのパルス信号の立ち上がりエッジ及び立ち下がりエッジよりも先に生じるようになっている。尚、各位置センサS1,S2のうち一方のセンサから出力されるパルス信号のエッジは、ブラシレスモータ52の7.5°回転毎に発生するようになっている。また、一方のセンサからのパルス信号は、他方のセンサからのパルス信号に対し、ブラシレスモータ52の3.75°回転分だけ位相をずらして発生するようになっている。したがって、位置センサS1,S2からのパルス信号のエッジ間隔は3.75°となっている。
図3に示されるように上記各位置センサS1,S2の信号は内燃機関を統括的に制御する電子制御装置60に取り込まれる。そして、電子制御装置60は同信号に基づいてブラシレスモータ52を駆動制御する。この電子制御装置60は、中央演算処理装置(CPU)61、読み出し専用メモリ(ROM)62、ランダムアクセスメモリ(RAM)63、記憶データを書き換え可能な不揮発性メモリであるEEPROM64等を備えている。
CPU61は、燃料噴射量や、点火時期の制御にかかる演算の他、リフト量変更機構300の駆動、即ちブラシレスモータ52の駆動にかかる各種演算処理を実行する。具体的には、位置センサS1,S2からの信号に基づいてコントロールシャフト340の位置を検出する。そして、後述する各種センサによって検出された機関運転状態に適したコントロールシャフト340の目標位置を算出し、コントロールシャフト340の位置がその目標位置と一致するように、ブラシレスモータ52の駆動を制御する。ROM62には、各種制御プログラム等が予め記憶されている。RAM63は、記憶データの保持にバッテリバックアップを必要とする揮発性メモリであって、CPU61の演算結果等が一時的に記憶される。EEPROM64は、電気的に記憶データを書き換えることが可能であり、その記憶データの保持にバッテリバックアップを必要としないメモリである。
電子制御装置60には、運転者のアクセルペダルの踏み込み量(アクセル操作量ACCP)を検出するアクセルセンサ71、吸気通路30に設けられたスロットルバルブ33の開度(スロットル開度TA)を検出するスロットルセンサ72、吸気通路30を通じて燃焼室13に吸入される空気の量、即ち吸入空気量GAを検出するエアフロメータ73、機関回転速度NEを検出するクランク角センサ74、機関冷却水温THWを検出する水温センサ75等が接続されており、これら各種センサ71〜75からの信号が取り込まれる。
電子制御装置60は、上述したようにこれら各種センサ71〜75からの信号に基づいて算出された目標位置と検出されたコントロールシャフト340の位置との偏差に基づいてブラシレスモータ52を駆動制御する。そのため、吸気バルブ31の最大リフト量を精密に制御するためには、コントロールシャフト340の位置を正確に検出する必要がある。
次に、コントロールシャフト340の軸方向の位置についてその検出方法を図4及び図5を併せ参照して詳しく説明する。尚、図5は各位置センサS1,S2の信号と位置カウント値Pの増減との関係を示す表である。
上述したように、図4における(a),(b)は、ブラシレスモータ52の回転時において、位置センサS1,S2から出力されるパルス信号の出力パターンをそれぞれ示している。また、図4における(c),(d)は、ブラシレスモータ52の回転に伴う位置カウント値P及びストロークカウント値Sの遷移態様を示している。尚、位置カウント値Pは、内燃機関を始動する際のイグニッションスイッチのオン操作(IGオン)後、ブラシレスモータ52の回転に伴いコントロールシャフト340の軸方向の位置がどれだけ変化したか、即ちコントロールシャフト340が基準位置からどれだけ移動したのかを表す積算変位量に対応している。また、ストロークカウント値Sは、基準位置を示す基準値Sstとこの位置カウント値Pとに基づいて算出され、コントロールシャフト340の軸方向の位置を表すものである。尚、基準値Sstは、前回の機関運転終了時のストロークカウント値Sであり、機関運転終了時にその都度EEPROM64に記憶されるものである。
コントロールシャフト340の位置検出にあっては、まず各位置センサS1,S2からのパルス信号の出力パターンに基づき、同パルス信号のエッジ毎に位置カウント値Pが増減される。詳しくは、図5に示されるように、位置センサS1,S2のうち、一方のセンサからパルス信号の立ち上がりエッジあるいは立ち下がりエッジのいずれが生じているか、及び他方のセンサからハイ信号「H」あるいはロー信号「L」のいずれが出力されているかに応じて、位置カウント値Pには、「+1」あるいは「−1」が加算される。尚、同図5において、「↑」はパルス信号の立ち上がりエッジを表し、「↓」はパルス信号の立ち下がりエッジを表している。このようにして得られる位置カウント値Pは、各位置センサS1,S2からのパルス信号のエッジを計数した値となっている。
ここで、ブラシレスモータ52の正回転中であれば、図4(c)に示されるように、位置カウント値Pは、位置センサS1,S2からのパルス信号のエッジ毎に「1」ずつ加算されて増加する。また、ブラシレスモータ52の逆回転中であれば、位置カウント値Pは、上記エッジ毎に「1」ずつ減算されて減少する。尚、この位置カウント値Pは、電子制御装置60のRAM63に記憶されるため、図4(c)に示されるようにイグニッションスイッチのオフ操作(IGオフ)がなされ、RAM63への給電が停止されたときに「0」にリセットされる。
このようして位置カウント値Pが算出されると、CPU61はEEPROM64に記憶されている基準値Sstと算出された位置カウント値Pとに基づいてストロークカウント値Sを算出する。具体的には、予めEEPROM64に記憶された基準値Sstに位置カウント値Pを加算して得られる値が新たなストロークカウント値Sとして算出される。このようにストロークカウント値Sが更新されることにより、コントロールシャフト340の位置が検出される。
これにより、図4(d)に示されるようにブラシレスモータ52の正回転中には、位置カウント値Pの増大分に合わせてストロークカウント値Sが増大する。一方、ブラシレスモータ52の逆回転中には、位置カウント値Pの減少分に合わせてストロークカウント値Sが減少する。
電子制御装置60は、ストロークカウント値Sが算出されると、コントロールシャフト340の目標位置としての目標ストロークカウント値Spとストロークカウント値Sとを比較する。そして、算出されるストロークカウント値Sが目標ストロークカウント値Spと一致するようにブラシレスモータ52の回転駆動制御を、即ちリフト量変更機構300の駆動制御を行う。
以下、図6を参照して、このような態様にてコントロールシャフト340の位置を検出する場合のストロークカウント値Sと実際のコントロールシャフト340の位置との関係を具体的に説明する。
図6は、ブラシレスモータ52の10回転分(0〜3600°)に相当する可動範囲において、リフト量変更機構300を駆動する場合におけるストロークカウント値Sの値と実際のコントロールシャフト340の位置との関係を示す説明図である。
上述したように本実施形態の内燃機関にあっては、ブラシレスモータ52の3.75°回転毎に位置カウント値P及びストロークカウント値Sの値が「1」ずつ増減される。そのため、Lo端に対応するストロークカウント値Sを「0」とするとHi端に対応するストロークカウント値Sの値は「960」となる。尚、以下では、Lo端とHi端の中間位置を基準位置とした場合(Sst=480)について説明する。
例えば、図6(a)に示されるようにコントロールシャフト340がブラシレスモータ52の2回転(720°)に相当する分だけHi端側に駆動され、基準位置から矢印で示される位置まで移動した場合には、位置カウント値Pが「192」となり、ストロークカウント値Sが「672」となる。これにより、Lo端からHi端までの距離を「1」とした場合、コントロールシャフト340がHi端まで「672/960」、即ち「7/10」の位置にあることが検出される。
ところで、電子制御装置60に電力を供給する電力線の接触不良等による電力供給の一時的な途絶、いわゆる瞬断が発生すると、RAM63に記憶されていた位置カウント値Pが消失してしまうことがある。このような瞬断により位置カウント値Pが消失した場合、例えば位置カウント値Pが初期値「0」になってしまった場合には、ストロークカウント値S、即ち電子制御装置60が把握しているコントロールシャフト340の位置が実際のコントロールシャフト340の位置からずれてしまう。
具体的には、瞬断により位置カウント値Pが「0」になってしまうと、図6(b)に矢印で示されるように実際にはコントロールシャフト340がHi端まで「7/10」の位置にあるにもかかわらず、ストロークカウント値Sが「480」になってしまう。これにより、電子制御装置60は、コントロールシャフト340が基準位置、即ちLo端とHi端の中間位置にあるものと誤認識してしまう。
このようにコントロールシャフト340の位置が誤って検出されると、その誤って検出された位置に基づいて推定される吸入空気量GAと、実際の吸入空気量GAとの間にはずれが生じる。更にこの状態でリフト量変更機構300の駆動が継続して行われると、例えば、電子制御装置60によって設定される燃料噴射量は、実際の吸入空気量GAに対応した燃料噴射量から大きくずれて、実際の空燃比は、排気性状を良好なものとする空燃比から大きくずれてしまうおそれがある。
また、こうした瞬断による位置カウント値Pの消失を抑制するために、記憶データの保持にバッテリバックアップを必要としないEEPROM64に位置カウント値Pの値を記憶する構成を採用することも考えられる。しかしながら、EEPROM64は、記憶データの書き換え回数に制限があり、コントロールシャフト340が駆動されるときに逐次変化する位置カウント値Pを記憶するようにした場合には、その耐久性が著しく低下してしまうため、こうした構成を採用することは現実的ではない。
そこで、本実施形態にかかる内燃機関にあっては、以下のような最大位置学習処理を実行することによってこうした位置カウント値Pの消失に起因する不都合の発生を抑制するようにしている。
瞬断によって位置カウント値Pが消失した場合には、図6(c)に破線矢印で示されるように一定の駆動力でコントロールシャフト340をHi端側に変位させる。そして、Hi端側ストッパ343がシリンダヘッド20に当接して、コントロールシャフト340の変位が停止した位置をHi端として学習する。具体的には、この位置におけるストロークカウント値Sが「960」となるように位置カウント値Pの値を「480」に設定する。尚、最大位置学習処理実行中には、スロットルバルブ33によって吸入空気量GAが調量される。具体的には、アクセル操作量ACCPが大きいときほどスロットル開度TAが大きくなるようにアクセル操作量ACCPに応じてスロットルバルブ33の開度を調節し、吸入空気量GAを調量する。
こうしてコントロールシャフト340をHi端側に駆動して停止した位置をHi端として学習する最大位置学習処理を実行することにより、電子制御装置60が把握しているコントロールシャフト340の位置と、実際のコントロールシャフト340の位置とのずれを解消することができる。
尚、ここで、瞬断によって位置カウント値Pが消失されている状態ではコントロールシャフト340の位置が正確に把握できず、Hi端までの距離を正確に把握することができない。そのため、大きな駆動力でコントロールシャフト340を駆動すると、Hi端側ストッパ343がシリンダヘッド20に当接して変位が停止する際の衝撃が非常に大きくなり、リフト量変更機構300やこれを駆動するブラシレスモータ52、変換機構51の破損をまねくおそれがある。そこで本実施形態にあっては、最大位置学習処理中はブラシレスモータ52の駆動力を制限し、ブラシレスモータ52の発生することのできる駆動力の半分程度の駆動力でコントロールシャフト340を駆動するようにしている。これにより、リフト量変更機構300やブラシレスモータ52、変換機構51の破損を抑制している。
ところで、Hi端側にコントロールシャフト340を変位させる場合には、最大リフト量が大きくなるのに伴ってバルブスプリング24から受ける反力が次第に大きくなる。そのため、コントロールシャフト340をHi端まで変位させる最大位置学習処理の実行には大きな駆動力が必要とされる。また更に、バルブリフトに伴うリフト量変更機構300各部の振動やバルブスプリング24からの反力等に起因する駆動力の損失は、単位時間あたりのバルブリフト回数が多くなる機関高回転時ほど大きくなるため、機関高回転域では、最大位置学習処理を実行するために更に大きな駆動力が必要とされるようになる。その結果、最大位置学習処理実行中に駆動力が不足して途中でコントロールシャフト340が停止してしまい、そのときの停止位置がHi端であると誤学習されてしまうおそれがある。
そこで本実施形態にあっては、以下のような制限処理を通じて最大位置学習処理の実行を制限し、こうした誤学習の発生を抑制するようにしている。以下、図7を参照してこの制限処理について説明する。尚、図7は、この制限処理の一連の流れを示すフローチャートである。
この処理は、バッテリの電圧が低下して瞬断の発生が判定された場合等、最大位置学習処理の実行が必要と判断されたときに電子制御装置60によって繰り返し実行される。
この処理が開始されると、電子制御装置60は、まずステップS100において、機関冷却水温THWに基づいてアクチュエータ50、即ちブラシレスモータ52及び変換機構51の温度THactを推定する。具体的には、機関冷却水温THWが高いほどシリンダヘッド20近傍に取り付けられるアクチュエータ50の温度THactが高いと推定する。
そして、ステップS200へと進み、推定した温度THactに基づいて最大位置学習処理の実行を禁止する機関回転速度NEである所定回転速度NEstを設定する。この所定回転速度NEstの設定は、駆動力不足による誤学習の発生を抑制しながら最大位置学習処理を実行することのできる機関回転速度NEの値に基づいて予めROMに記憶された演算マップを参照して実行される。この演算マップは、図8に示されるようにステップS100において推定した温度THactが低いほど、所定回転速度NEstが小さくなるように設定されている。
ステップS200において、所定回転速度NEstが設定されると、ステップS300へと進み、機関回転速度NEが所定回転速度NEstより小さいか否かを判定する。ステップS300において、機関回転速度NEが所定回転速度NEstよりも小さい旨判定された場合(ステップS300:YES)には、ステップS400へと進み、最大位置学習処理の実行を許可し、この処理を一旦終了する。
一方、ステップS300において、機関回転速度NEが所定回転速度NEst以上である旨判定された場合(ステップS300:NO)には、ステップS450へと進み、最大位置学習処理の実行を禁止し、この処理を一旦終了する。
この処理を繰り返し実行することにより、機関回転速度NEが所定回転速度NEst以上のときには最大位置学習処理の実行が禁止されるようになる。こうした処理を実行することによる作用について、図9を併せ参照して説明する。尚、図9は、機関回転速度NEと、最大位置学習処理を実行するために必要な駆動力との関係を示すグラフであり、実線はアクチュエータ50の温度THactが図8に示される温度TH2であるときに必要とされる駆動力を、一点鎖線はアクチュエータ50の温度THactがTH2よりも低い温度TH1であるときに必要とされる駆動力をそれぞれ示している。
図9に斜線で示されるように、最大位置学習処理の実行中には、ブラシレスモータ52の駆動力が最大駆動力Fmaxの半分程度の駆動力Fresに制限されており、ブラシレスモータ52は一定の駆動力Fresを発生するように駆動される。そのため、例えば図9に実線で示されるようにアクチュエータ50の温度THactがTH2である場合に、機関回転速度NEがNE3の状態において最大位置学習処理を実行すると、駆動力Fresが最大位置学習処理に必要な駆動力F3よりも小さいため、コントロールシャフト340が途中で停止し誤学習が発生するおそれがある。
しかし、本実施形態の内燃機関にあっては、上記制限処理を通じて最大学習処理の実行を禁止する所定回転速度NEstがNE2に設定されているため、機関回転速度NEがNE2よりも大きいNE3の場合には最大位置学習処理の実行が禁止されるようになる。
また、アクチュエータ50の温度THactが低い場合には、機関回転速度NEが同じ場合であっても、アクチュエータ50に供給される潤滑油の粘度の増大やオイルシール部分の摩擦の増大等により可動部を変位させる際の駆動力の損失が更に大きくなる。そのため、アクチュエータ50の温度THactがTH2よりも低いTH1になると、図9に一点鎖線で示されるように最大位置学習処理の実行に必要な駆動力は大きくなる。
そのため、アクチュエータ50の温度THactがTH2よりも低いTH1である場合には、図9に示されるように機関回転速度NEがNE2の状態において最大位置学習処理を実行した場合であっても、駆動力Fresが最大位置学習処理に必要な駆動力F2よりも小さいため、駆動力が不足してコントロールシャフト340が途中で停止してしまい誤学習が発生するおそれがある。
この点、本実施形態の内燃機関にあっては、上記の制限処理を通じて図8に示されるようにアクチュエータ50の温度THactがTH1であるときには、最大位置学習処理の実行を禁止する所定回転速度NEstがNE2よりも更に小さいNE1に設定される。これにより機関回転速度NEがNE1よりも大きいNE2であるときには、最大位置学習処理の実行が禁止されるようになる。
以上説明した本実施形態によれば、以下の効果が得られるようになる。
(1)機関回転速度NEが大きく、コントロールシャフト340を変位させる際の駆動力の損失が大きいことに起因して最大位置学習処理の実行に際し大きな駆動力が必要とされるときには、最大位置学習処理の実行が禁止される。そのため、駆動力が不足して途中でコントロールシャフト340が停止してしまい、そのときの停止位置がHi端であると誤学習されてしまうことを回避することができる。このように上記実施形態によれば、最大位置学習処理に際して駆動力不足に起因する誤学習の発生を抑制することができるようになる。
(2)アクチュエータ50の温度THactが低い場合には、機関回転速度NEが同じ場合であっても、アクチュエータに供給される潤滑油の粘度の増大やオイルシール部分の摩擦の増大等によりコントロールシャフト340を変位させる際の駆動力の損失が更に大きくなる。そのため、アクチュエータ50の温度THactが低いときほど、誤学習の発生を抑制しながら最大位置学習処理を実行することのできる機関回転速度NEは小さくなる。この点、上記実施形態では、アクチュエータ50の温度THactを推定し、その推定された温度THactが低いときほど最大位置学習処理を禁止する所定回転速度NEstを小さな値に設定するようにしている。そのため、最大位置学習処理を禁止する所定回転速度NEstを駆動力不足による誤学習が発生する可能性にあわせた態様で好適に設定することができる。
(3)最大位置学習処理の実行中はコントロールシャフト340の積算変位量、即ちストロークカウント値Sが正確に把握されておらず、Hi端までの距離を正確に把握することができない。そのため、大きな駆動力でコントロールシャフト340を駆動すると、Hi端側ストッパ343がシリンダヘッド20に当接してコントロールシャフト340が停止する際の衝撃が非常に大きくなり、リフト量変更機構300やこれを駆動するアクチュエータ50の破損をまねくおそれがある。この点、上記実施形態によるように、最大位置学習処理中はブラシレスモータ52の駆動力を制限することにより、コントロールシャフト340が停止する際の衝撃を極力小さくすることができ、こうしたリフト量変更機構300やアクチュエータ50の破損を抑制することができるようになる。しかし、このように最大位置学習処理実行中のブラシレスモータ52の駆動力を制限する構成を採用する場合には、Hi端に到達していないのにもかかわらず駆動力不足に起因してコントロールシャフト340が停止してしまい、誤った位置がHi端として学習される可能性が高くなる。この点、上記実施形態によるように、機関回転速度NEに基づいて最大位置学習処理の実行を禁止する構成を併せて採用することにより、最大位置学習処理の実行中にブラシレスモータ52の駆動力を制限する場合においても、駆動力不足に起因する誤学習の発生を好適に抑制することができる。
尚、上記実施形態は、これを適宜変更した以下の形態にて実施することもできる。
・上記実施形態では、最大位置学習処理実行中にアクセル操作量ACCPに応じてスロットルバルブ33の開度を変更し、吸入空気量GAを調量する構成を示したが、こうしたスロットルバルブ33による吸入空気量GAの調量を実行しない構成を採用することもできる。しかし、最大位置学習処理実行中には、吸気バルブ31の最大リフト量が次第に大きくなるため、機関回転速度NEが上昇してしまうおそれがある。そのため、こうしたスロットルバルブ33による吸入空気量GAの調量を行わない場合にあっては、最大位置学習処理実行中には、スロットルバルブ33を全閉状態に保持し、吸気バルブ31の最大リフト量が大きくなることによる機関回転速度NEの上昇を抑制する構成を採用することが望ましい。尚、このように最大位置学習処理実行中にスロットルバルブ33を全閉状態に保持する構成を採用した場合であっても、エンジンブレーキを使用して走行している最中に最大位置学習処理を実行する場合ように、吸入空気量GAを制限しているにも関わらず機関回転速度NEが大きくなる場合がある。そのため、こうした構成を採用する場合にあっても、本発明を適用することにより、機関回転速度NEが所定回転速度NEst以上のときに最大位置学習処理の実行を禁止し、最大位置学習処理に際して駆動力不足に起因する誤学習の発生を抑制することが望ましい。
・また、通常の機関運転時と同様に最大位置学習処理実行中にスロットルバルブ33を全開状態に保持するもの、又はスロットルバルブ33を備えていない内燃機関において最大位置学習処理を実行するものにあってもこの発明を適用することができる。しかし、これらのように最大位置学習処理実行中に吸入空気量GAの制限を行わない場合にあっては、最大位置学習処理の実行に伴って吸気バルブ31の最大リフト量が次第に大きくなるとそれに伴って吸入空気量GAが増大し、機関回転速度NEが上昇してしまうようになる。そのため、こうした構成を採用する場合にあっては、最大位置学習処理の実行に伴って吸入空気量GAが増大した場合であっても、それによって機関回転速度NEが上昇しない状態、例えばフューエルカット中等において最大位置学習処理を実行するようにその実行条件を設定する必要がある。尚、このように最大位置学習処理の実行条件を設定した場合であっても、エンジンブレーキを使用して走行している最中に最大位置学習処理を実行する場合等には、機関回転速度NEが大きくなる場合がある。そのため、こうした構成を採用する場合にあっても、本発明を適用し、機関回転速度NEが所定回転速度NEst以上のときに最大位置学習処理の実行を禁止することにより、最大位置学習処理に際して駆動力不足に起因する誤学習の発生を抑制することが望ましい。
・上記実施形態ではバッテリの電圧が低下して瞬断の発生が判定された場合等、最大位置学習処理の実行が必要と判断されたときに、制限処理を実行し、最大位置学習処理の実行を許可するか否かの判定を行う構成を示した。これに対して、機関運転中に定期的に最大位置学習処理を実行する場合等にあっても、この発明を適用し、上記制限処理を実行することができる。即ち、最大位置学習処理の実行契機に関わらず、最大位置学習処理を実行するときにこの制限処理を通じてその実行可否の判定を行うことにより、最大位置学習処理に際して、駆動力不足に起因する誤学習の発生を抑制することができる。
・最大位置学習処理の実行中にブラシレスモータ52の駆動力を最大駆動力Fmaxの半分程度の駆動力Fresに制限する構成を示したが、最大位置学習処理実行中の駆動力Fresの大きさは、適宜変更することができる。最大位置学習処理に伴ってコントロールシャフト340が停止する際の衝撃を小さくし、アクチュエータ50の破損を抑制することのできる程度にその駆動力を制限すればよい。
・また、最大位置学習処理実行中にこうした駆動力の制限を行わない場合であっても、この発明を適用することにより、駆動力不足に起因する誤学習の発生を抑制することができる。
・機関冷却水温THWに基づいてアクチュエータ50の温度THactを推定する構成を示したが、アクチュエータ50の温度THactを推定する方法は適宜変更することができる。例えば、アクチュエータ50の温度を直接検出する温度センサを設けるといった構成を採用することもできる。
・また、内燃機関の温度は燃焼熱によって変動するが、この燃焼熱は吸入空気量GAに応じてその大きさが変化する。そのため、直近の所定期間における内燃機関の吸入空気量GAの積算値をアクチュエータ50の温度THactの相関値として用い、その積算値が大きいときにアクチュエータ50の温度THactが高い旨を推定する構成を採用することもできる。
更にここで、アクチュエータ50に供給される潤滑油がシリンダ11内で往復動するピストン12の潤滑に供される等、アクチュエータ50に供給される潤滑油が燃焼室13の温度と高い相関を持って変化する場合は、アクチュエータ50の温度THactがそのときどきの機関燃焼状態に応じて敏感に変動するようになる。従ってこのような場合には、機関冷却水温THW及び直近の所定期間における吸入空気量GAの積算値の双方をアクチュエータ50の温度THactの相関値として用い、アクチュエータ50の温度THactを推定する構成を採用することが望ましい。即ち、機関冷却水温THWは内燃機関全体の平均的な温度と高い相関を有して変化する一方、吸入空気量GAの積算値は専ら燃焼室13近傍の局所的な温度変化と高い相関を有して変化する傾向がある。そのため、機関冷却水温THWと積算吸入空気量の双方をアクチュエータ50の温度THactの相関値として用いる構成によれば、こうした傾向を反映した態様をもってアクチュエータ50の温度THactをより正確に推定することができるようになる。
・尚、吸入空気量積算値と高い相関を有して変化する燃料噴射量積算値に基づいて吸入空気量積算値を推定し、アクチュエータ50の温度THactを推定する構成を採用することもできる。
・アクチュエータ50の温度THactを推定し、アクチュエータ50の温度THactに基づいて最大位置学習処理を禁止する所定回転速度NEstを変更する構成を示したが、こうした所定回転速度NEstの変更を行わず、所定回転速度NEstの値を予め固定値として設定し、最大位置学習処理の実行を禁止する構成を採用することもできる。尚、こうした構成を採用する場合には、所定回転速度NEstを、アクチュエータ50の温度THactが低く、コントロールシャフト340を駆動する際の駆動力の損失が大きい場合であっても駆動力不足に起因する誤学習の発生を抑制することのできる十分に小さな値に設定することが望ましい。
・上記実施形態で説明したリフト量変更機構300は一例であり、可動部を変位させることにより吸気バルブ31の最大リフト量を変更するリフト量変更機構を備え、可動部の基準位置からの積算変位量に基づいて最大リフト量を検出する内燃機関の制御装置であれば、他の構成であっても本発明を同様に適用することができる。
・また、位置センサS1,S2から出力されるパルス信号に基づいてコントロールシャフト340の積算変位量を算出し、最大リフト量を推定する方法は、基準位置からの相対変位量に基づいて最大リフト量を検出する検出手段の一例であり、適宜変更することができる。
この発明の実施形態にかかる動弁機構の構成を示す断面図。 同実施形態にかかるリフト量変更機構の破断斜視図。 同実施形態にかかるリフト量変更機構のアクチュエータと制御装置の概略構成を示す模式図。 (a),(b),(c),(d)はブラシレスモータの回転に伴う位置センサの出力信号と、位置カウント値及びストロークカウント値の遷移態様を示すタイミングチャート。 同実施形態にかかる位置センサの出力信号と位置カウント値の増減との関係を示す表。 (a),(b),(c)はコントロールシャフトの位置とストロークカウント値との関係を示す説明図。 同実施形態にかかる制限処理の一連の流れを示すフローチャート。 アクチュエータの温度と所定回転速度の関係を示すグラフ。 機関回転速度と最大位置学習処理に必要な駆動力の関係を示すグラフ。
符号の説明
1…機関本体、10…シリンダブロック、11…シリンダ、12…ピストン、13…燃焼室、20…シリンダヘッド、21…吸気ポート、22…排気ポート、23…リテーナ、24…バルブスプリング、25…ラッシュアジャスタ、26…ロッカアーム、30…吸気通路、31…吸気バルブ、32…吸気カムシャフト、33…スロットルバルブ、40…排気通路、41…排気バルブ、42…排気カムシャフト、50…アクチュエータ、51…変換機構、52…ブラシレスモータ、60…電子制御装置、61…CPU、62…ROM、63…RAM、64…EEPROM、71…アクセルセンサ、72…スロットルセンサ、73…エアフロメータ、74…クランク角センサ、75…水温センサ、300…リフト量変更機構、310…入力部、320…出力部、330…支持パイプ、340…コントロールシャフト、350…スライダ。

Claims (5)

  1. アクチュエータにより可動部を変位させて吸気バルブの最大リフト量を変更するリフト量変更機構と、前記最大リフト量が最大となる可動限界位置に基づいて基準位置を設定し、その基準位置からの前記可動部の積算変位量に基づいて前記最大リフト量を検出する検出手段と、前記最大リフト量が増大するように前記アクチュエータを駆動し、前記可動部が停止した位置を前記可動限界位置として学習することにより前記積算変位量を補正する最大位置学習処理を実行する学習手段とを有する内燃機関の制御装置において、
    機関回転速度が所定回転速度以上のときに前記学習手段による最大位置学習処理の実行を禁止する禁止手段を備える
    ことを特徴とする内燃機関の制御装置。
  2. 前記アクチュエータの温度を推定する温度推定手段を備え、
    同温度推定手段によって推定される前記アクチュエータの温度が低いときほど前記所定回転速度を小さな値に設定する
    請求項1に記載の内燃機関の制御装置。
  3. 請求項2に記載の内燃機関の制御装置において、
    前記温度推定手段は、機関冷却水温に基づいて前記アクチュエータの温度を推定する
    ことを特徴とする内燃機関の制御装置。
  4. 請求項2又は請求項3に記載の内燃機関の制御装置において、
    前記温度推定手段は、直近の所定期間における前記内燃機関の吸入空気量積算値に基づいて前記アクチュエータの温度を推定する
    ことを特徴とする内燃機関の制御装置。
  5. 前記最大位置学習処理の実行中に前記アクチュエータの駆動力を制限する制限手段を更に備える
    請求項1〜4のいずれか一項に記載の内燃機関の制御装置。
JP2007138201A 2007-05-24 2007-05-24 内燃機関の制御装置 Pending JP2008291744A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007138201A JP2008291744A (ja) 2007-05-24 2007-05-24 内燃機関の制御装置
US12/601,634 US20100175662A1 (en) 2007-05-24 2008-05-23 Internal combustion engine control apparatus and control method thereof
PCT/IB2008/001309 WO2008142554A1 (en) 2007-05-24 2008-05-23 Internal combustion engine control apparatus and control method thereof
DE112008001427T DE112008001427T5 (de) 2007-05-24 2008-05-23 Brennkraftmaschinensteuergerät und Steuerungsverfahren für diese
CN200880017165A CN101680369A (zh) 2007-05-24 2008-05-23 内燃发动机控制装置及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007138201A JP2008291744A (ja) 2007-05-24 2007-05-24 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2008291744A true JP2008291744A (ja) 2008-12-04

Family

ID=39735583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007138201A Pending JP2008291744A (ja) 2007-05-24 2007-05-24 内燃機関の制御装置

Country Status (5)

Country Link
US (1) US20100175662A1 (ja)
JP (1) JP2008291744A (ja)
CN (1) CN101680369A (ja)
DE (1) DE112008001427T5 (ja)
WO (1) WO2008142554A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036391A (ja) * 2011-08-08 2013-02-21 Denso Corp 電動バルブタイミング可変装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4525797B2 (ja) * 2008-05-23 2010-08-18 トヨタ自動車株式会社 バルブ特性変更機構の異常判定装置
JP5294156B2 (ja) * 2009-11-12 2013-09-18 スズキ株式会社 内燃機関の可変動弁装置
JP5115592B2 (ja) * 2010-06-10 2013-01-09 トヨタ自動車株式会社 内燃機関の可変動弁装置
JP2011256802A (ja) * 2010-06-10 2011-12-22 Toyota Motor Corp 内燃機関の可変動弁装置
JP5029730B2 (ja) * 2010-06-16 2012-09-19 トヨタ自動車株式会社 可変機構の制御装置
WO2012066666A1 (ja) * 2010-11-18 2012-05-24 トヨタ自動車株式会社 内燃機関の制御装置
DE102010053488A1 (de) * 2010-12-04 2012-06-06 Audi Ag Verfahren zum reversiblen, manipulationssicheren Codieren eines Motorsteuergeräts für ein Kraftfahrzeug und Motorsteuergerät
CN106640386B (zh) * 2015-10-30 2019-11-22 长城汽车股份有限公司 一种cvvl自学习的方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4268839B2 (ja) * 2003-06-26 2009-05-27 株式会社日立製作所 内燃機関の可変動弁制御装置
JP3982492B2 (ja) 2003-12-24 2007-09-26 日産自動車株式会社 内燃機関のバルブリフト制御装置
JP3991998B2 (ja) * 2004-02-13 2007-10-17 日産自動車株式会社 可変動弁機構の学習装置
JP4075846B2 (ja) * 2004-04-26 2008-04-16 日産自動車株式会社 多気筒内燃機関の可変動弁装置
US7210450B2 (en) * 2004-11-02 2007-05-01 Nissan Motor Co., Ltd. Intake control apparatus and method for internal combustion engine
JP2006170075A (ja) * 2004-12-15 2006-06-29 Denso Corp 内燃機関の可変バルブ制御装置
JP4207961B2 (ja) 2006-01-12 2009-01-14 トヨタ自動車株式会社 内燃機関の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036391A (ja) * 2011-08-08 2013-02-21 Denso Corp 電動バルブタイミング可変装置

Also Published As

Publication number Publication date
US20100175662A1 (en) 2010-07-15
CN101680369A (zh) 2010-03-24
WO2008142554A1 (en) 2008-11-27
DE112008001427T5 (de) 2010-04-15

Similar Documents

Publication Publication Date Title
JP2008291744A (ja) 内燃機関の制御装置
JP4508215B2 (ja) 内燃機関の制御装置
JP4082197B2 (ja) 内燃機関の弁駆動システム
JP4525797B2 (ja) バルブ特性変更機構の異常判定装置
US8656874B2 (en) Control device of actuator
JP4858340B2 (ja) 可変動弁装置の制御装置
JP5096096B2 (ja) 可変動弁機構の制御装置
JP4821808B2 (ja) 動弁系の異常検出方法
JP4548447B2 (ja) 車載内燃機関の制御装置
JP2008286053A (ja) 動弁系の制御装置
JP2007218109A (ja) 内燃機関の状態量制御装置
JP2010180865A (ja) 内燃機関の可変動弁装置
JP2008051111A (ja) 内燃機関の弁駆動システム
JP2008223486A (ja) 内燃機関の制御システム
JP2008291769A (ja) アクチュエータの制御装置
JP2008286172A (ja) 可変動弁機構の制御装置
JP2009041543A (ja) 可変動弁機構付き内燃機関の制御システム
JP4524697B2 (ja) 内燃機関の弁駆動システム
JP2009121359A (ja) 可変動弁機構の故障判定装置
JP2012112344A (ja) 可変動弁機構の異常診断装置
JP2008291713A (ja) 吸気系の制御装置
JP2009243282A (ja) 動弁系の制御装置
JP2008291743A (ja) 動弁系の制御装置
JP2009108736A (ja) 可変動弁機構の制御装置
JP2010138728A (ja) 内燃機関の可変動弁装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091222