JP2008244021A - 固体撮像装置およびそれを用いたカメラ - Google Patents

固体撮像装置およびそれを用いたカメラ Download PDF

Info

Publication number
JP2008244021A
JP2008244021A JP2007080358A JP2007080358A JP2008244021A JP 2008244021 A JP2008244021 A JP 2008244021A JP 2007080358 A JP2007080358 A JP 2007080358A JP 2007080358 A JP2007080358 A JP 2007080358A JP 2008244021 A JP2008244021 A JP 2008244021A
Authority
JP
Japan
Prior art keywords
region
state imaging
imaging device
solid
semiconductor region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007080358A
Other languages
English (en)
Inventor
Motonari Katsuno
元成 勝野
Ryohei Miyagawa
良平 宮川
Hirohisa Otsuki
浩久 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007080358A priority Critical patent/JP2008244021A/ja
Priority to US12/054,038 priority patent/US7863661B2/en
Priority to CNA2008100863157A priority patent/CN101276829A/zh
Priority to KR1020080027713A priority patent/KR20080087725A/ko
Publication of JP2008244021A publication Critical patent/JP2008244021A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】基板コンタクトを有し、フォトダイオード間の感度差および撮像エリアの感度ムラを抑制しする固体撮像装置を提供する。
【解決手段】本発明の固体撮像装置は、複数の単位画素を備える固体撮像装置であって、前記複数の単位画素は、前記半導体基板上の共通ウェルに形成され、第1単位画素および第2単位画素の2種類の単位画素を含む。前記第1単位画素は、少なくとも1つの光電変換領域と、前記共通ウェルに形成され前記共通ウェルと同じ導電型の第1半導体領域と、前記第1半導体領域に電気的に接続された第1コンタクトとを備える。前記第2単位画素は、少なくとも1つの光電変換領域と、前記共通ウェルに形成され前記共通ウェルと逆の導電型の第2半導体領域と、前記第2半導体領域に電気的に接続された第2コンタクトとを備える。
【選択図】図1

Description

本発明は、固体撮像装置に関し、特に基板コンタクトを有する固体撮像装置およびカメラに関する。
CCD(Charge Coupled Device)型固体撮像装置やMOS(Metal Oxide Silicon)型固体撮像装置などは、デジタルスティルカメラやデジタルムービーカメラなどの撮像デバイスとして広く用いられている。この内、MOS型固体撮像装置は、一枚の半導体基板に対し、複数の撮像画素からなる撮像領域と、この撮像領域の各撮像画素から信号を取り出す周辺回路領域とが作り込まれた構成となっている。
ここで、従来技術の固体撮像装置について、図11を参照しながら説明する。
図11は、特許文献1に示された従来の基板コンタクトを有する固体撮像装置の全体構成を示す図である。この固体撮像装置は、n型半導体基板に形成されたp型の共通ウェルを有し、この共通ウェル上に二次元状に配列された複数の画素PXLを含む画素配列エリアPXAと、駆動用の回路等が配置される周辺部PPとが形成されている。
各画素PXLは、半導体基板上にフォトダイオード1、p+型半導体領域2、トランジスタ等が形成され、さらに基板コンタクト3を有している。周辺部PPは、p+型半導体領域2´および基板コンタクト3´を含む。基板コンタクト3、3´は、p+型半導体領域2、2´に電気的に接続されている。
ここで基板コンタクト3が形成されている理由を説明する。画素PXL内の複数のトランジスタの下部では、トランジスタの閾値制御のために上記のp型の共通ウェルが形成されて、そして、共通ウェルは基準電圧(通常、0V)に接続され、一定に保たれるようにしている。しかし、各画素PXLから出力信号を個々に読み出すために、増幅トランジスタを順番にON/OFFする動作に際して、共通ウェルと選択トランジスタのゲート電極との容量結合により、共通ウェルの電位が変動する。そして、変動した共通ウェルの電位が基準電位に戻るには、有限の時間がかかる。画素配列エリア内部に基板コンタクト3を形成しない場合には、共通ウェルの電位が基準電位(0V)に戻るのを待って次の選択トランジスタを動作させる必要があるため、高速動作が困難になる。その対策として、画素アレイ内部に、基板コンタクト3を形成し、基板コンタクト3を基準電圧に繋がれた配線に接続することが従来行われている。そうすることにより、変動したp型の共通ウェルの電位が基準電位に戻るまでの時間を大幅に縮小できる。
特開2001−230400号公報
しかしながら、上記の基板コンタクト3を画素配列エリア内に有する固体撮像装置の画素構成により、位置が異なるフォトダイオードの間で感度差が生じるという課題を有している。
その課題について図面(図12、図13A〜図13C)を用いて説明する。
図12は、隣接するフォトダイオード間で感度差が生じ得る固体撮像装置の一例を示す図である。
同図の固体撮像装置は、4画素1セル構造の場合、つまり、4つのフォトダイオード1に対して、一組の増幅トランジスタとリセットトランジスタが配置される場合の例を示す。また、同図では固体撮像装置の構成のうち、複数のフォトダイオード1、増幅トランジスタのゲート11、増幅トランジスタのソース領域5、リセットトランジスタのゲート10、リセットトランジスタのソース領域7、増幅トランジスタとリセットトランジスタとに共通のドレイン領域6、電源電圧配線12と共通ドレイン領域6とに接続され1組の増幅トランジスタとリセットトランジスタに電源電圧を供給する電源電圧コンタクト17、転送トランジスタのゲート8、検出容量部(浮遊拡散層)9、p+型領域2、基板コンタクト3を示している。
図中上から2つ目(または3つ目)のフォトダイオード1と、上から4つ目(または5つめ)のフォトダイオード1とでは感度差が生じ得るという問題がある。
この問題について図13A〜図13Cを用いて説明する。図13A、図13Bは、増幅トランジスタまたはリセットトランジスタがフォトダイオードの両側に隣接する場合のフォトダイオード1の断面模式図である。なお、電源電圧コンタクト17、基板コンタクト3は図12のフォトダイオード1の断面には出てこないが、図13A〜図13Cでは説明の便宜上図示してある。
図13Aのように通常、フォトダイオード1上に集光レンズが配置される。そして、入射光は集光レンズにより、フォトダイオードに集光される。
しかし、図13Bのように、入射光がフォトダイオードに入射せず、素子分離部18やn+型のソース領域7(または5)に入射する場合がある。入射光が素子分離部18やn+型領域に入射すると、光電変換効果により電子が発生する。n+型のソース領域7(または5)にはトランジスタを駆動するための電源電圧(プラス電圧、通常2〜5V程度)が印加されており、発生電子は電源側に移動するため、フォトダイオードには電子は移動しないという現象が発生する。この場合、隣接するフォトダイオード1の感度を劣化させるわけではない。
これに対して、図13Cに示すように、フォトダイオード1にp+型領域2が隣接する場合には、入射光が素子分離部18やp+型領域2に入射すると同様に電子が発生する。p+型領域2は、基板コンタクト3が形成されており、通常0Vに保たれる。そのため、発生した電子は、基板コンタクト3ではなく、主にフォトダイオード1に移動するという現象が発生する。この場合、隣接するフォトダイオード1の感度を劣化させることになる。
そのため、従来技術の固体撮像装置ではn型領域に隣接するフォトダイオードとp型領域に隣接するフォトダイオードとでは、感度差(1〜5%程度)が生じてしまう。すなわち、フォトダイオードに隣接する半導体領域の導電型によって、フォトダイオードの感度特性が異なり、撮像エリアの感度ムラが生じるという問題を有している。
本発明は上記課題に鑑み、基板コンタクトを有し、フォトダイオード間の感度差および撮像エリアの感度ムラを抑制する固体撮像装置を提供することを目的とする。
上記課題を解決するために本発明の固体撮像装置は、半導体基板上に行列状に配置された複数の単位画素を備える固体撮像装置であって、前記複数の単位画素は、前記半導体基板上の共通ウェル上部に形成される第1単位画素および第2単位画素の2種類の単位画素を含み、前記第1単位画素は、光を信号電荷に変換する少なくとも1つの光電変換領域と、前記共通ウェルに形成され前記共通ウェルと同じ導電型の第1半導体領域と、前記第1半導体領域に電気的に接続された第1コンタクトとを備え、前記第2単位画素は、光を信号電荷に変換する少なくとも1つの光電変換領域と、前記共通ウェルに形成され前記共通ウェルと逆の導電型の第2半導体領域と、前記第2半導体領域に電気的に接続された第2コンタクトとを備える。
この構成によれば、第1単位画素と第2単位画素とが隣り合うことにより、光電変換領域の両側の一方に第1半導体領域、他方に第2半導体領域が配置され、つまり、光電変換領域の両側に逆の導電型の半導体領域が配置されることになる。この場合、光電変換領域の両方ともn型の半導体領域が配置される場合と比べて、隣接する半導体領域から光電変換領域に流入する電子数は1/2となる。これにより光電変換領域の配置に依存する感度差を抑制することができる。
ここで、前記第1コンタクトは前記共通ウェルの基準となる基準電圧を有する配線に接続され、前記第2コンタクトは前記基準電圧と異なる正の電圧を有する配線に接続されるようにしてもよい。この構成によれば、第1コンタクトの電圧と第2コンタクトの電圧とが相俟って共通ウェルの変動から回復するまでの時間をさらに短縮することができる。
また、第1単位画素および第2単位画素は、周期的またはランダムに配置するようにしてもよい。ここで、前記第1単位画素および前記第2単位画素は行方向または列方向に周期的に配置されていてもよい。ここで、前記第1単位画素と第2単位画素が行方向かつ列方向に周期的に配置しとしてもよい。この構成によれば、光電変換領域の感度差を抑制し、かつ、第1単位画素および第2単位画素の配置に依存する感度ムラを抑制することができる。
ここで、前記第1半導体領域はp型の不純物が注入された領域であり、前記第2半導体領域はn型の不純物が注入された領域としてもよい。この構成によれば、光電変換領域の両側で共にp+型領域に接することを回避することができ、光電変換領域の配置による感度差を抑制することができる。
ここで、前記第1単位画素および前記第2単位画素の少なくとも一方は、さらに光電変換領域からの信号電荷を出力するための増幅トランジスタおよびリセットトランジスタを備えてもよい。また、前記第1単位画素は、さらに少なくとも1つのダミー配線を有し、前記少なくとも1つのダミー配線は、前記第1単位画素内の前記増幅トランジスタのゲート電極または前記リセットトランジスタのゲート電極と同じ形状を有し、前記ダミー配線と前記第1半導体領域内の前記光電変換領域との相対位置は、前記ゲート電極と前記第1半導体領域内の前記光電変換領域との相対位置と同じであるようにしてもよい。この構成によれば、ゲート電極の配置の違いあるいはゲート電極の有無によって生じる、第1単位画素内の光電変換領域への入射光の反射/散乱のばらつきを、ダミー配線を設けることによって低減することができる。
ここで、前記第2単位画素は、さらに少なくとも1つのダミー配線を有し、前記少なくとも1つのダミー配線は、前記第2単位画素内の前記増幅トランジスタのゲート電極または前記リセットトランジスタのゲート電極と同じ形状を有し、前記ダミー配線と前記第1半導体領域内の前記光電変換領域との相対位置は、前記ゲート電極と前記第1半導体領域内の前記光電変換領域との相対位置と同じであるようにしてもよい。この構成によれば、第2単位画素内の光電変換領域への入射光の反射/散乱のばらつきを、ダミー配線を設けることによって低減することができる。
ここで、前記第1単位画素は、さらに2つのダミー配線を有し、前記2つのダミー配線は、前記第1単位画素内の前記増幅トランジスタのゲート電極および前記リセットトランジスタのゲート電極と同じ形状を有し、前記2つのダミー配線と前記第1半導体領域内の前記光電変換領域との相対位置は、前記ゲート電極と前記第1半導体領域内の前記光電変換領域との相対位置と同じであり、前記第1半導体領域は前記2つのダミー電極の間に位置し、前記第1単位画素はさらに、前記2つのダミー電極のうち一方に隣接し前記共通ウェルに形成された第1領域と、前記2つのダミー電極のうち他方に隣接し前記共通ウェルに形成された第2領域と、前記第1領域に電気的に接続された第3コンタクトと、前記第2領域に電気的に接続された第4コンタクトとを備えるようにしてもよい。また、前記第1領域および第2領域は、前記第1半導体領域と逆の導電型であり、前記第3コンタクトおよび第4コンタクトは、第2コンタクトと電気的に接続されるようにしてもよい。この構成によれば、第1コンタクトに接続されたp型領域(第1半導体領域)で発生した電子を、第3コンタクトに接続された第3領域と、第4コンタクトに接続された第4領域とで吸収することが可能となる。これにより、光電変換領域間での感度差をさらに低減することができる。
ここで、前記第1領域および第2領域は前記第1半導体領域と同じ導電型であり、前記第3コンタクトおよび第4コンタクトは、第1コンタクトと電気的に接続されるようにしてもよい。この構成によれば、第1、第3、第4コンタクトに接続される第1半導体領域、第1領域、第2領域が第1単位画素中に占める面積占有率を最小限とすることができるので、画素間の感度差を抑制することができる。また、第3コンタクトおよび第4コンタクトは、第1コンタクトと実質的に同じ機能を果たすので、共通ウェルの変動からの回復時間をさらに短縮することができる。
ここで、前記第2単位画素はさらに2つのダミー配線を有し、前記2つのダミー配線は前記第2単位画素内の前記増幅トランジスタのゲート電極および前記リセットトランジスタのゲート電極と同じ形状を有し、前記2つのダミー配線と前記第2半導体領域内の前記光電変換領域との相対位置は、前記ゲート電極と前記第2半導体領域内の前記光電変換領域との相対位置と同じであり、前記第2半導体領域は前記2つのダミー電極の間に位置し、前記第2単位画素はさらに、前記2つのダミー電極のうち一方に隣接し前記共通ウェルに形成された第1領域と、前記2つのダミー電極のうち他方に隣接し前記共通ウェルに形成された第2領域と、前記第1領域に電気的に接続された第3コンタクトと、前記第2領域に電気的に接続された第4コンタクトとを備え、前記第1領域および第2領域は前記第1半導体領域と同じ導電型であり、前記第3コンタクトおよび第4コンタクトは第1コンタクトと電気的に接続されるようにしてもよい。この構成によれば、第1コンタクトに接続されたp型領域(第1半導体領域)で発生した電子を、第3コンタクトに接続された第3領域と、第4コンタクトに接続された第4領域とで吸収することが可能となる。これにより、光電変換領域間での感度差をさらに低減することができる。
また、本発明の固体撮像装置は、さらに、複数の金属配線層を有し、前記複数の金属配線層のうち少なくとも1層は、隣接する各光電変換領域に対して、同一の構造で配置される金属配線を含むようにしでもよい。この構成によれば、上記効果に加えて、金属配線層のうち少なくとも1層は、どの光電変換領域に対しても同じ構造で配置されるので、金属配線により生じる光電変換領域への入射光の反射および散乱を、どの光電変換領域に対しても、ばらつかせることなく一様にすることができる。その結果、光電変換領域毎の感度のばらつきを低減することができる。
ここで、前記少なくとも1層の金属配線は、電源電圧供給用の金属配線と、信号電荷読み出し用の金属配線を含むようにしてもよい。
ここで、前記少なくとも1層の金属配線は、前記半導体基板側から2層目以上の層であってもよい。この構成によれば、2層目の金属配線または上記1層の金属配線は、他の層よりも光電変換領域への入射光の反射および散乱を生じやすいので、上記の反射および散乱を一様にする効果が大きい。
また、本発明の固体撮像装置は、半導体基板上に行列状に配置された複数の単位画素を備える固体撮像装置であって、前記複数の単位画素は、前記半導体基板上の共通ウェル上部に形成され、前記単位画素は、光を信号電荷に変換する2つ以上の光電変換領域と、光電変換領域からの信号電荷を出力するための増幅トランジスタおよびリセットトランジスタと、前記増幅トランジスタおよび前記リセットトランジスタのドレイン領域に電気的に接続され、前記増幅トランジスタおよび前記リセットトランジスタに電源電圧を供給するための電源電圧コンタクトと、前記共通ウェルと同じ導電型の第1半導体領域と、前記第1半導体領域に電気的に接続された第1コンタクトとを備え、前記ドレイン領域と第1半導体領域上部近傍に形成される複数の金属配線層のうち、少なくとも1層は、隣接する光電変換領域に対して、同一の構造で配置されるでもよい。この構成によれば、上記効果に加えて、金属配線層のうち少なくとも1層は、どの光電変換領域に対しても同じ構造で配置されるので、金属配線により生じる光電変換領域への入射光の反射および散乱を、どの光電変換領域に対しても、ばらつかせることなく一様にすることができる。その結果、光電変換領域毎の感度のばらつきを低減することができる。
ここで、前記金属配線層数は、3層もしくは4層であり、上記1層の配線は、基板表面から上方に向かって、2層目の金属配線であってもよい。
ここで、同一の構造で配置される金属配線の光電変換領域上部の開口幅が、異なる層数の金属配線層に比べて、最も小さい寸法を含んでいてもよい。この構成によれば、2層目の金属配線または上記1層の金属配線は、他の層よりも光電変換領域への入射光の反射および散乱を生じやすいので、上記の反射および散乱を一様にする効果が大きい。
また、本発明のカメラは、上記の固体撮像装置を備えるので、上記と同様の効果がある。
本発明の固体撮像装置によれば、光電変換領域の配置に依存する感度低下を抑制することができる。光電変換領域間の感度差を抑制することができる。
(第1の実施形態)
本実施形態における固体撮像装置は、半導体基板上の共通ウェルに形成され、二次元状に配列された複数の単位画素を有している。複数の単位画素は、第1単位画素および第2単位画素の2種類の単位画素を含む。
第1単位画素は、光を信号電荷に変換する少なくとも1つの光電変換領域と、共通ウェルに形成され共通ウェルと同じ導電型(ここではp+型)の第1半導体領域と、第1半導体領域に電気的に接続された第1コンタクトとを備える。第1コンタクトは、従来技術における基板コンタクトと同様であり、基準電圧(通常0V)に接続される。
また、第2単位画素は、光を信号電荷に変換する少なくとも1つの光電変換領域と、共通ウェルに形成され前記共通ウェルと逆の導電型(n+型)の第2半導体領域と、第2半導体領域に電気的に接続された第2コンタクトとを備える。第2コンタクトは、従来技術における基板コンタクトと異なり、電源電圧など正の電圧に接続される。
このように、第1単位画素と第2単位画素を混在させることにより、光電変換領域の両側の一方に第1半導体領域、他方に第2半導体領域が配置されることを可能にしている。つまり、光電変換領域の両側に逆の導電型の半導体領域が配置されるケースを多くしている。光電変換領域の両側に逆の導電型の半導体領域が配置される場合、光電変換領域の両方ともn型の半導体領域が配置される場合と比べて、隣接する半導体領域から光電変換領域に流入する電子数は1/2となる。これにより光電変換領域の配置に依存する感度差を抑制することができる。
以下、図面を参照しながら本発明の第1の実施形態に係る固体撮像装置について説明する。
図1は、本発明の第1の実施形態における固体撮像装置の要部の構成を示す図である。この固体撮像装置は、多画素1セル構造(ここでは、一例として、4画素1セル構造を採用する)。つまり、4つのフォトダイオード1に対して、一組の増幅トランジスタとリセットトランジスタが配置される場合の例を示す。
同図では固体撮像装置の画素アレイ部の構成のうち、複数のフォトダイオード(光電変換領域)1、増幅トランジスタのゲート(以下、増幅ゲートと呼ぶ)11、増幅トランジスタのソース領域5、リセットトランジスタのゲート(以下、リセットゲートと呼ぶ)10、リセットトランジスタのソース領域7、増幅トランジスタとリセットトランジスタとに共通のドレイン領域6、電源電圧コンタクト17、転送トランジスタのゲート(以下、転送ゲートと呼ぶ)8、検出容量部(浮遊拡散層)9、p+型領域(第1半導体領域)2、基板コンタクト(第1コンタクト)3、n+型領域(第2半導体領域)20、電源電圧コンタクト(第2コンタクト)30を示している。
4画素1セル構造の1セルは、例えば、左上から1行2列、2行1列、3行2列、4行1列に位置する4つのフォトダイオード1に対応する。
各画素において半導体基板上に形成された複数のフォトダイオード1と、それぞれのフォトダイオード1の一部領域を斜めに横切る状態に配置された転送ゲート8と、転送ゲート8により転送された信号電荷を蓄積する検出容量部(フローティング拡散層)9を有している。
電源電圧コンタクト17は、電源電圧配線12に接続され、ドレイン領域6から1組の増幅トランジスタおよびリセットトランジスタに電源電圧を供給する。
転送ゲート8は、隣接する画素間における電気的接続が、そのまま転送ゲート8を延長して配線としてつなぐ場合と、転送ゲートの接続をその上部に配置される金属配線とコンタクトを用いて接続する場合もある。なお、金属配線でつなぐ場合は、配線の低抵抗化をすることが出来、固体撮像装置は、さらに高速動作(高速駆動)を行うことが出来る。
また、p型共通ウェルと同種の不純物が注入されたたp+型領域(第1半導体領域)2には、基板コンタクト(第1コンタクト)3が形成されている。
一方、n+型領域(第2半導体領域)20には、p型共通ウェルと逆導電型の不純物が注入されている。n+型半導体領域には、さらに、電源電圧コンタクト30が形成されている。そして、図1の4画素1セル構造の場合、基板コンタクト3および電源電圧コンタクト30はそれぞれ8つのフォトダイオード1につき1個ずつ配置されている。
p+型領域(第1半導体領域)2およびn+型領域(第2半導体領域)20についての詳細は後ほど述べる。
ここでフォトダイオード1に蓄積された信号電荷は、転送ゲート8をONにすることにより検出容量部9に転送される。検出容量部9は、リセットトランジスタのソース領域7と増幅トランジスタのゲート11に接続される。そして、検出容量部9は、リセットトランジスタとONすることにより、信号電荷がリセットされる。さらに、転送トランジスタから検出容量部9に信号電荷が転送されてから、増幅トランジスタをONにすることにより、増幅トランジスタのソースから信号電荷に対応する電圧が出力される。
このように、複数のフォトダイオード1に対して、1組の増幅トランジスタとリセットトランジスタを共有する場合、1つのフォトダイオード1に対して、1組の増幅トランジスタとリセットトランジスタを備える場合に比べて、画素内でのフォトダイオードの面積占有率を向上させることが可能である。通常、面積占有率は10%〜50%程度増加する。フォトダイオード1の面積を増加させることにより、フォトダイオード1に蓄積できる電子数を増加させることが可能となり、飽和量および感度が向上するので、より高画質な画像を得ることが可能となる。
なお、隣り合う画素間、および画素内の各機能領域の間には、素子分離領域が形成されている。素子分離領域は、STI(Shallow Trench Isolation)あるいはLOCOS(Local Oxidation of Silicon)による構成を有している。
なお、本実施形態に係る固体撮像装置において、転送ゲート8はフォトダイオード1に対して斜めに配置されているが、その理由は転送ゲート8がOFFのときのフォトダイオード1と検出容量部9の間の電子の移動(リーク)が低減し、かつ、転送ゲート8のゲート長を一定以上の長さに確保するためである。本実施形態に係る固体撮像装置では、転送ゲート8のOFFの際におけるリークの抑制と、装置の微細化を両立させるためである。
次に、電源電圧コンタクト30と基板コンタクト3の配置構成について、図1を用いて説明する。
基板コンタクト3が接続される第1半導体領域2は、通常p型共通ウェルと同じp型に形成されている。また、電源電圧コンタクト30が接続される第2半導体領域20は、第1半導体領域2とは逆の導電型であるn型に形成されている。さらに、本実施形態に係る固体撮像装置では、第1半導体領域2をもつ単位画素(第1単位画素)に対して、第1半導体領域とは逆の導電型であるn型の第2半導体領域20をもつ単位画素(第2単位画素)が、周期的あるいはランダムに配置される。
周期的に第1単位画素と第2単位画素を配置する場合、行方向のみ、または列方向のみ、あるいは行方向と列方向の両方に周期的に配置することが望ましい。
まず、行方向のみに周期的に配置される場合で、2行周期の場合について述べる。2行周期の場合には、フォトダイオード1には、図2に示すように、両側にn型の第2半導体領域20とp型の第1半導体領域が隣接する。そのため、n型領域で発生した電子はフォトダイオード1に移動せず、p型領域で発生した電子はフォトダイオードに移動することになる。フォトダイオードの両側がn型領域に隣接する場合に比べて、隣接する半導体領域からフォトダイオード1に流入する電子数は1/2となる。また、第1単位画素を10行おきとした場合には、隣接する半導体領域からフォトダイオードに流入する電子数は1/10となる。
通常、このようにすることで、フォトダイオードに蓄積する電子数が1000〜50000個であるのに対し、隣接する半導体領域からフォトダイオードに流入する電子数は100個程度から、10個以下に低減することが可能である。そのため、隣接する半導体領域からフォトダイオードに流入する電子数の影響は1%以下となり、感度出力に与える影響は極めて小さくなる。そして、良好な画像が得られるようになる。
なお、第1単位画素および第2単位画素は、上記の多画素1セルのセルと一致していても良いし、一致していなくてもよい。例えば、第1単位画素または第2単位画素は、(a)4画素1セルの4画素、(b)図1において上下左右に矩形状に隣接する4画素、(c)図1において上下左右に矩形状に隣接する8画素(4行×2列または2行×4列)等、矩形状の並ぶ画素であってもよい。
また、固体撮像装置が、図1とは異なる1画素1セル構造である場合に、第1単位画素および第2単位画素は、セル(つまり画素)と一致していても良いし、複数画素を含んでも良い。
いずれにせよ、第1単位画素は、1つ以上のフォトダイオード1と第1半導体領域(p+型半導体領域)2と第1コンタクト(基板コンタクト3)とを含んでいればよい。また、第2単位画素は、1つ以上のフォトダイオード1と第2半導体領域(n+型半導体領域20)と第2コンタクト(電源電圧コンタクト30)とを含んでいればよい。
次に、行方向だけでなく、行方向、または列方向と行方向の両方にて、周期的に配置する場合について、図3A、図3B、図4を用いて説明する。
図3A、図3Bは、第1単位画素、第2単位画素の一例を示す図である。
図3A中の太線枠で示した配置単位u1は、第1単位画素の一例であり、8つの画素(フォトダイオード1)と、p+型の第1半導体領域2と、1つの基板コンタクト3を含み、さらに、1つの電源電圧コンタクト30を含んでいる。
図3B中の太線枠で示した配置単位u2は、第2単位画素の一例であり、8つの画素(フォトダイオード1)と、n+型の第2半導体領域20と、2つの電源電圧コンタクト30を含み、基板コンタクト3を含んでいない。
このように、画素配置単位u1は、上記で説明したように、8つのフォトダイオードにつき一つの基板コンタクトを形成した構造になっている。一方、画素配置単位u2は、半導体領域20にp型共通ウェルと逆の導電型のイオン種を注入したn型の第2半導体領域20として、さらに、そこに電源電圧コンタクト30が形成されている。
図4は、配置単位u1および配置単位u2の配置例を示す図であり、列方向と行方向の両方に周期的に配置している。同図のように、列方向にと行方向に周期的に配置することにより、斜め光により生じた電子がフォトダイオードに移動するという現象により、感度が劣化するフォトダイオードが、画素アレイに含まれる全フォトダイオードに占める割合を減少させることが可能できる。
なお、本発明の第1の実施形態に係る固体撮像装置では、基板コンタクト3を含む画素は、約50行×約50列に配置されたフォトダイオードのうち、一つ含まれていれば、p型共通ウェルの変動から回復するまで時間の高速性を犠牲にすることなく、また、フォトダイオード画素感度のばらつきを十分に抑制することが出来る。
なお、通常、10行×10列〜100行×100列の内、一つの基板コンタクト3が含まれていればよい。
なお、本発明の第1の実施形態に係る固体撮像装置では、列方向と行方向の両方にて、周期に配置すれば、感度のばらつきを低減する効果はさらに大きくすることが出来る。
(第2の実施形態)
本実施形態では、第1の実施形態の固体撮像装置に対して、さらにゲート電極と同形状で同材料のダミー配線を設けることにより、ゲート電極の配置の違いあるいはゲート電極の有無によって生じる、フォトダイオードへの入射光の反射/散乱のばらつきを低減し、斜め光により生じる電子の数を低減する固体撮像装置について説明する。ここで、ダミー配線は、増幅ゲート11およびリセットゲート10と同じ形状を有し、ダミー配線とフォトダイオードとの相対位置が、増幅ゲート11およびリセットゲート10とフォトダイオード1との相対位置と同じになるように形成される。
以下、図面を参照しながら本発明の第2の実施形態に係る固体撮像装置について説明する。
図5は、本発明の第2の実施形態に係る固体撮像装置の要部の構成を示す図である。同図の固体撮像装置は、図1と比べて、第1半導体領域2および第2半導体領域20の上にダミー配線14、15が追加された点と、第1半導体領域2の代わりにp+型領域2a、第1半導体領域2b、p+型領域2cを有する点と、第2半導体領域20の代わりにn+型領域20a、第2半導体領域20b、n+型領域20cを有する点とが異なっている。図1と同じ点は説明を省略して、以下異なる点を中心に説明する。
ダミー配線14、15は、リセットゲート10、増幅ゲート11と同じ材料で同じ形状に形成され、フォトダイオードとの相対的は位置関係も同じなる位置に配置されている。
p+型領域2a、第1半導体領域2b、p+型領域2cは、ダミー配線14、15の直下にはイオン種が注入されないことから、第1半導体領域2の代わりに3つの小領域として形成されている。同様に、n+型領域20a、第2半導体領域20b、n+型領域20cも、第2半導体領域20が3つに小領域として形成されている。
次に、図6A〜図6Eを用いて、本発明の第2の実施形態に係る固体撮像装置の詳細について説明する。
図6A〜図6Cは、ダミー配線を形成した場合の断面図である。図6Aは図5中のA−A´断面を示す模式図である。図6Bは図5中のB−B´断面を示す模式図である。図6Cは図5中のC−C´断面を示す模式図である。
図6D、図6Eは、ダミー配線を形成しない場合(図1)の断面図である。図6Dは、ダミー配線が形成されない場合(図1)の図6Aに対応する断面を示す模式図である。図6Eは、ダミー配線が形成されない場合(図1)の図6Bに対応する断面を示す模式図である。
固体撮像装置は集光レンズを通して、フォトダイオードに最大限に光を集光させるように設計される。しかし、フォトダイオードに集光されずに、図5の半導体領域7、2、20に光が漏れこむ場合も生じる。なお、洩れ込む光の量は、一般的に全入射光量の5〜10%程度である。
その場合、図6Cに示すように半導体領域5〜7では、ゲート電極で光は反射され、光の一部はフォトダイオードに向かう場合が生じる。ダミー配線が配置されない場合、図6D、図6Eに示すように、第2半導体領域20及び第1半導体領域2では、光の反射のされ方が異なり、光は基板内部に吸収されるため、第2半導体領域20に隣接するフォトダイオードでは、その以外の画素に比べて、感度が変動することになる。
しかし、本発明の第2の実施形態に係る固体撮像装置では、図6A〜図6Cに示すように、ダミー配線を配置することにより、洩れ込む光の反射の仕方(つまり光路)を、ゲート電極を有する半導体領域5〜7と同等にすることができ、ダミー配線14、15とゲート電極10、11の構造の違いによる入射光の反射/散乱によって、各フォトダイオードに入射する光量を同等にすることができる。
具体的には、図6A、図6Bに示すように、ダミー配線を形成するにより、各フォトダイオードに隣接するのが、増幅トランジスタのリセットトランジスタの領域か、コンタクトを形成する領域かに関わらず、フォトダイオード領域外での光の散乱/反射のされ方を同等とすることができる。
以上をまとめると、ダミー配線を形成することにより、各画素で光の散乱/反射を同等とすることができる。また、ゲート電極10、11と形成するのと同じ製造工程によりダミー配線を形成できる。つまり、工程数を増やすことなく、極めて効果的に画素間の感度の均一性向上を実現できる。
また、電源電圧用コンタクトを形成する第2の半導体領域(図6A)では、ダミー配線を形成する場合には、ソース/ドレイン領域にはn+イオン化不純物が導入し、さらにダミー配線14の下部に、n型不純物を導入することにより、第2の半導体領域の全体が同一電位となるようにする。このすることにより、ダミー配線で分離された領域にて、電位が浮遊状態になり、ノイズ発生源となることを防止することが出来る。
(第3の実施形態)
本実施形態では、第2の実施形態の固体撮像装置に対して、p+型領域2a、2cの代わりにn+型領域20a、20cを形成し、さらにn+型領域20a、20cに電源電圧コンタクト30が追加された固体撮像装置について説明する。これにより基板コンタクト3の下部のp+型領域で発生した電子を、電源電圧コンタクト30で吸収することが可能となる。
図7は、第3の実施形態に係る固体撮像装置の撮像画素の要部の構成を示す図である。同図は、第2の実施形態の固体撮像装置(図5)と比較して、p+型領域2a、2cの代わりにn+型領域20a、20cが形成されている点と、n+型領域20a、20cに接続される電源電圧コンタクトが追加されている点とが異なっている。図5と同じ点は説明を省略して、以下異なる点を中心に説明する。
p+型領域2a、2cの代わりにn+型領域20a、20cが形成されているのは、製造工程において、ダミー配線14と15で挟まれた基板コンタクト3を形成すべき領域にのみp+型注入領域を形成し、そして、ダミー配線14を挟む他の領域と、ダミー配線15を挟む他の領域にはn+型イオン種の注入を行いn+領域を形成する。ダミー配線14と15で挟まれた領域にのみ基板コンタクト3を形成し、それ以外のダミー配線14を挟む領域と、ダミー配線15を挟む領域には電源電圧コンタクト30をそれぞれ形成する。
次に、図8A〜図8Cは本発明の第3の実施形態に係る固体撮像装置の断面構造図である。
なお、図8Aは図7中のA−A´断面を示す図である。図8Bは図7中のB−B´断面を示す図である。図8Cは、図8B中の半導体領域20a、20cがn+型でなく、p+型である場合の断面を示す図である。
図8Cでは、光が入射した場合に基板内部で発生する電子は、p+型領域2a〜2cには移動せずに、隣接するフォトダイオードに向かう。これは、他のフォトダイオードと感度差を引き起こす原因となる。
そこで、本発明の第3の実施形態に係る固体撮像装置は、図8A、図8Bのように、領域20a、20cをあえてn+型にすることにより、光が入射した場合、基板内部で発生する電子は領域20a、20cに移動し、フォトダイオードには向かわないようにすることができる。これは、領域20a、20cが、電源電圧に接続されているためである。
このように、本発明の第3の実施形態に係る固体撮像装置では、p+型領域2bから2つダミー配線を挟んで隣接する2つの領域の導電型をn+型領域にすることにより、他のゲート電極に隣接する画素に比べて、感度の差が発生することを防止することが出来る。
すなわち、図8Bのように、本発明の第3の実施形態に係る固体撮像装置は、基板コンタクト3を形成する第1半導体領域2bから2つダミー配線を挟んで隣接する2つの領域の導電型をn+型領域にして電源電圧コンタクト30を設けている。それにより基板コンタクト2の下部のp型領域で発生した電子を、電源電圧コンタクト30で吸収することが可能となる。
なお、本発明の第3の実施形態に係る固体撮像装置は、基板コンタクト3を形成する第1半導体領域2と、電源電圧コンタクト30を形成する第2半導体領域20のコンタクト/配線の構造は一致させることが好ましく、さらに、第1半導体領域2においてもダミー配線14と15で挟まれた領域2bと、他の20a、20cの領域のそれぞれに、電源電圧コンタクト17を形成することが好ましい。
これにより、基板コンタクト形成する第1の半導体領域2と、電源電圧供給用コンタクトを形成する第2の半導体領域20との間で、コンタクトの配置の違いにより、入射光の反射および散乱の生じ方が異なるために発生する感度のばらつきを抑制することができる。
また、上記各実施形態における固体撮像装置はデジタルカメラ等に搭載される。このデジタルカメラは、被写体からの入射光を固体撮像素子の撮像面に結像するためのレンズなどを含む光学系と、固体撮像素子の駆動を制御する制御部と、固体撮像素子の出力信号に対して様々な信号処理を施す画像処理部とを備えている。
(第4の実施形態)
本実施形態では、単位画素は、光を信号電荷に変換する少なくとも1つの光電変換領域と、共通ウェルに形成され共通ウェルと同じ導電型(ここではp+型)の第1半導体領域と、第1半導体領域に電気的に接続された第1コンタクト(基板コンタクト3)とを備えている、さらに、単位画素は、増幅トランジスタのソース領域5、共通ドレイン領域6、リセットトランジスタのソース領域7を含む第3半導体領域と、第3半導体領域に電気的に接続されたコンタクト(少なくとも電源電圧コンタクト17を含む)を備える。複数の単位画素は、アレイ状に配列している。また、検出容量部の信号読み出し線14−1と電源電圧配線12は、隣接する複数のフォトダイオード1毎に、同じ形状にて配置されている。
図9、図10は、第4の実施形態に係る固体撮像装置の撮像画素の要部の構成を示す図である。
図9において図1と同じ構成要素には同じ符号を付しているので説明を省略する。図9のように、フォトダイオード1を間に挟んで、検出容量部の信号読み出し線14−1と電源電圧配線12が配置される。検出容量部の信号読み出し線14−1は、フォトダイオード1から、転送ゲート8をONにしたときに、検出容量部9に蓄積された電荷による電位を読み出すために配置される。すなわち、検出容量部9と増幅ゲート11をコンタクト(図示せず)と金属配線(図示せず)を電気的に接続することにより、増幅ゲート11で検出容量部9に蓄積された電荷信号を増幅してから、検出容量部の信号読み出し線14−1と信号読み出し用コンタクト17Aを介して読み出す。また、電源電圧配線12は、トランジスタへの電源電圧コンタクト17と他のコンタクトと金属配線を介して、電気的に接続させることにより、電源電圧を供給するために配置させる。
ここで、検出容量部の信号読み出し線14−1と電源電圧配線12を複数のフォトダイオード1に対して、同じ構造で配置することにより、感度のばらつきを抑制することができる。仮に、配線構造が違っていれば、配線の構造の違いにより入射光の反射および散乱がフォトダイオード1毎で異なるために生じることになる。
また、転送ゲート8に電圧を印加するための転送ゲートへの電圧供給用配線15−1,15−2が配置される。また、2層目に形成するよりも、転送ゲートへのコンタクトを容易に接続させるために、転送ゲートへの電圧供給用配線15−1,15−2は、配線の最下層に形成される。
また、リセットゲート10、増幅ゲート11へコンタクト(図示せず)を介して接続する配線18−1、増幅ゲート11へコンタクト(図示せず)を介して接続する配線18−2を形成している。また、配線18−1、18−2は、電圧供給用配線15−1、15−2と同様に、最下層の金属配線として形成される。
以上より、本実施形態では、検出容量部の信号読み出し線14−1と電源電圧配線12は、配線の2層目より上の金属配線として形成することを特徴としている。
また、図10より、集光レンズからの入射光はフォトダイオード1表面近傍に焦点を合わせると、上部の金属配線は光が当たりやすいため、金属配線の1層目よりも2層目の配線の方が、フォトダイオード1に入射する光を反射/散乱しやすい。また、2層目の配線は、3層目以上の配線と1層目の配線を接続する役割を有するため、フォトダイオード1上部での開口幅(最小幅)、もしくは面積が最も小さくなる。また、フォトダイオード1上部での開口幅(最小幅)(図9の開口幅A)は検出容量部の信号読み出し線14−1と電源電圧配線12の間の最小幅である。もし2層目の金属配線の形状がフォトダイオード1毎に異なると、フォトダイオード1間の感度差を引き起こす原因となる。しかし、本実施形態では隣接するフォトダイオードに対して、2層目の金属配線形状を同じ構造としているので、感度のばらつきを低減することができる。
以上より、本実施形態は、第3半導体領域に隣接するフォトダイオードと第4半導体領域に隣接するフォトダイオードでは、2層目の金属配線形状を同じ構造とすることを特徴としている。
なお、本実施形態は、1層目の金属配線をフォトダイオード1毎に同じ形状の配線とすることにより、電気的に他の配線/コンタクトとは接続せずにダミー配線18−3を形成し、さらにフォトダイオード間の感度差を抑制することが出来る。
また、本実施形態4と、本実施形態1〜3のいずれかと組み合わせることにより、さらにフォトダイオード間の感度差を抑制することができる。
具体的には、実施形態1,2,3の第1単位画素を、共通ウェルに形成され前記共通ウェルと同様の導電型(p+型)の第2半導体領域と、増幅トランジスタのソース領域5、共通ドレイン領域6、リセットトランジスタのソース領域7を含む第4半導体領域にて、2層目の金属配線形状を同じ構造とする。
または、第2単位画素を、共通ウェルに形成され前記共通ウェルと逆の導電型(n+型)の第2半導体領域と、増幅トランジスタのソース領域5、共通ドレイン領域6、リセットトランジスタのソース領域7を含む第4半導体領域にて、2層目の金属配線形状を同じ構造とする。
あるいは、第1単位画素と第2単位画素との2層目の金属配線形状を同じ構造すれば、さらにフォトダイオード間の感度差を抑制することが出来る。
(その他すべての実施形態の共通事項)
上記各実施形態(第1〜第4の実施形態)に係る固体撮像装置は、デジタルカメラ等の撮像装置に搭載される。このデジタルカメラは、被写体からの入射光を固体撮像素子の撮像面に結像するためのレンズなどを含む光学系と、固体撮像素子の駆動を制御する制御部と、固体撮像素子の出力信号に対して様々な信号処理を施す画像処理部とを備えている。
本発明は、デバイス駆動速度の高速化を図りながらも、各画素の感度の均一性が向上させることが可能であり、高画質と高速化を両立できる特徴を有する固体撮像装置を実現するのに有効な技術であり、デジタルスティルカメラやデジタルムービーカメラにおける撮像画素の微細化と駆動速度の高速化とを実現するのに有効である。
第1の実施形態における固体撮像装置の要部の構成を示す図である。 n+型領域とp+型領域がフォトダイオードの両側に隣接する場合のフォトダイオードの断面模式図である。 第1単位画素の一例としての配置単位u1を示す図である。 第2単位画素の一例としての配置単位u2を示す図である。 配置単位u1および配置単位u2の配置例を示す図である。 第2の実施形態に係る固体撮像装置の要部の構成を示す図である。 図5中のA−A´断面を示す模式図である。 図5中のB−B´断面を示す模式図である。 図5中のC−C´断面を示す模式図である。 ダミー配線が形成されない場合の図6Aに対応する断面を示す模式図である。 ダミー配線が形成されない場合の図6Bに対応する断面を示す模式図である。 第3の実施形態に係る固体撮像装置の撮像画素の要部の構成を示す図である。 図7中のA−A´断面を示す図である。 図7中のB−B´断面を示す図である。 図8B中の一部の半導体領域がp+型である場合の断面を示す図である。 第4の実施形態に係る固体撮像装置の要部の構成を示す図である。 第4の実施形態に係る固体撮像装置の要部の構成を示す図である。 従来技術における基板コンタクトの必要性を示す固体撮像装置の模式図である。 従来技術における隣接するフォトダイオード間で感度差が生じ得る固体撮像装置の一例を示す図である。 n+型領域がフォトダイオードの両側に隣接する場合のフォトダイオードの断面模式図である。 n+型領域がフォトダイオードの両側に隣接する場合のフォトダイオードの断面模式図である。 p+型領域がフォトダイオードの両側に隣接する場合のフォトダイオードの断面模式図である。
符号の説明
1 フォトダイオード
2 p+型領域
2´ p+型領域
3 基板コンタクト
3´ 基板コンタクト
5 増幅トランジスタのソース領域
6 共通ドレイン領域
7 リセットトランジスタのソース領域
8 転送ゲート
9 検出容量部
10 リセットゲート
11 増幅ゲート
12 電源電圧配線
13 基準電圧配線
14、15 ダミー配線
14−1 検出容量部の信号読み出し線
15−1、15−2 転送ゲートへの電圧供給用配線
17 トランジスタへの電源電圧コンタクト
18 素子分離部
18−1 リセットゲート10へ接続する配線
18−2 増幅ゲート11に接続する配線
18−3 ダミー配線
19 増幅ゲート11に接続する配線
20 第2半導体領域
30 第2半導体領域への電源電圧コンタクト

Claims (20)

  1. 半導体基板上に行列状に配置された複数の単位画素を備える固体撮像装置であって、
    前記複数の単位画素は、前記半導体基板上の共通ウェル上部に形成される第1単位画素および第2単位画素の2種類の単位画素を含み、
    前記第1単位画素は、
    光を信号電荷に変換する少なくとも1つの光電変換領域と、
    前記共通ウェルに形成され前記共通ウェルと同じ導電型の第1半導体領域と、
    前記第1半導体領域に電気的に接続された第1コンタクトとを備え、
    前記第2単位画素は、
    光を信号電荷に変換する少なくとも1つの光電変換領域と、
    前記共通ウェルに形成され前記共通ウェルと逆の導電型の第2半導体領域と、
    前記第2半導体領域に電気的に接続された第2コンタクトとを備える
    ことを特徴とする固体撮像装置。
  2. 前記第1コンタクトは前記共通ウェルの基準となる基準電圧を有する配線に接続され、
    前記第2コンタクトは前記基準電圧と異なる正の電圧を有する配線に接続される
    ことを特徴とする請求項1記載の固体撮像装置。
  3. 前記第1単位画素および前記第2単位画素は行方向または列方向に周期的に配置されていることを特徴とする請求項1記載の固体撮像装置。
  4. 前記第1単位画素と第2単位画素が行方向かつ列方向に周期的に配置したことを特徴とする請求項1記載の固体撮像装置。
  5. 前記第1半導体領域はp型の不純物が注入された領域であり、前記第2半導体領域はn型の不純物が注入された領域であることを特徴とする請求項1記載の固体撮像装置。
  6. 前記第1単位画素および前記第2単位画素の少なくとも一方は、さらに
    光電変換領域からの信号電荷を出力するための増幅トランジスタおよびリセットトランジスタを備えることを特徴とする請求項1記載の固体撮像装置。
  7. 前記第1単位画素は、さらに少なくとも1つのダミー配線を有し、
    前記少なくとも1つのダミー配線は、前記第1単位画素内の前記増幅トランジスタのゲート電極または前記リセットトランジスタのゲート電極と同じ形状を有し、
    前記ダミー配線と前記第1半導体領域内の前記光電変換領域との相対位置は、前記ゲート電極と前記第1半導体領域内の前記光電変換領域との相対位置と同じである
    ことを特徴とする請求項6記載の固体撮像装置。
  8. 前記第2単位画素は、さらに少なくとも1つのダミー配線を有し、
    前記少なくとも1つのダミー配線は、前記第2単位画素内の前記増幅トランジスタのゲート電極または前記リセットトランジスタのゲート電極と同じ形状を有し、
    前記ダミー配線と前記第1半導体領域内の前記光電変換領域との相対位置は、前記ゲート電極と前記第1半導体領域内の前記光電変換領域との相対位置と同じである
    ことを特徴とする請求項6記載の固体撮像装置。
  9. 前記第1単位画素は、さらに2つのダミー配線を有し、
    前記2つのダミー配線は、前記第1単位画素内の前記増幅トランジスタのゲート電極および前記リセットトランジスタのゲート電極と同じ形状を有し、
    前記2つのダミー配線と前記第1半導体領域内の前記光電変換領域との相対位置は、前記ゲート電極と前記第1半導体領域内の前記光電変換領域との相対位置と同じであり、
    前記第1半導体領域は前記2つのダミー電極の間に位置し、
    前記第1単位画素はさらに、
    前記2つのダミー電極のうち一方に隣接し前記共通ウェルに形成された第1領域と、
    前記2つのダミー電極のうち他方に隣接し前記共通ウェルに形成された第2領域と、
    前記第1領域に電気的に接続された第3コンタクトと、
    前記第2領域に電気的に接続された第4コンタクトと
    を備えることを特徴とする請求項6記載の固体撮像装置。
  10. 前記第1領域および第2領域は、前記第1半導体領域と逆の導電型であり、
    前記第3コンタクトおよび第4コンタクトは、第2コンタクトと電気的に接続される
    ことを特徴とする請求項9記載の固体撮像装置。
  11. 前記第1領域および第2領域は前記第1半導体領域と同じ導電型であり、
    前記第3コンタクトおよび第4コンタクトは、第1コンタクトと電気的に接続される
    ことを特徴とする請求項9記載の固体撮像装置。
  12. 前記第2単位画素はさらに2つのダミー配線を有し、
    前記2つのダミー配線は前記第2単位画素内の前記増幅トランジスタのゲート電極および前記リセットトランジスタのゲート電極と同じ形状を有し、
    前記2つのダミー配線と前記第2半導体領域内の前記光電変換領域との相対位置は、前記ゲート電極と前記第2半導体領域内の前記光電変換領域との相対位置と同じであり、
    前記第2半導体領域は前記2つのダミー電極の間に位置し、
    前記第2単位画素はさらに、
    前記2つのダミー電極のうち一方に隣接し前記共通ウェルに形成された第1領域と、
    前記2つのダミー電極のうち他方に隣接し前記共通ウェルに形成された第2領域と、
    前記第1領域に電気的に接続された第3コンタクトと、
    前記第2領域に電気的に接続された第4コンタクトと
    を備え、
    前記第1領域および第2領域は前記第1半導体領域と同じ導電型であり、
    前記第3コンタクトおよび第4コンタクトは第1コンタクトと電気的に接続される
    ことを特徴とする請求項6記載の固体撮像装置。
  13. 前記固体撮像装置は、さらに、
    複数の金属配線層を有し、
    前記複数の金属配線層のうち少なくとも1層は、隣接する各光電変換領域に対して、同一の構造で配置される金属配線を含む
    ことを特徴とする請求項1記載の固体撮像装置。
  14. 前記少なくとも1層の金属配線は、電源電圧供給用の金属配線と、信号電荷読み出し用の金属配線を含む
    ことを特徴とする請求項13記載の固体撮像装置。
  15. 前記少なくとも1層の金属配線は、前記半導体基板側から2層目以上の層である
    ことを特徴とする請求項14記載の固体撮像装置。
  16. 半導体基板上に行列状に配置された複数の単位画素を備える固体撮像装置であって、
    前記複数の単位画素は、前記半導体基板上の共通ウェル上部に形成され、
    前記単位画素は、
    光を信号電荷に変換する2つ以上の光電変換領域と、
    光電変換領域からの信号電荷を出力するための増幅トランジスタおよびリセットトランジスタと、
    前記増幅トランジスタおよび前記リセットトランジスタのドレイン領域に電気的に接続され、前記増幅トランジスタおよび前記リセットトランジスタに電源電圧を供給するための電源電圧コンタクトと、
    前記共通ウェルと同じ導電型の第1半導体領域と、
    前記第1半導体領域に電気的に接続された第1コンタクトとを備え、
    前記ドレイン領域と第1半導体領域上部近傍に形成される複数の金属配線層のうち、少なくとも1層は、隣接する光電変換領域に対して、同一の構造で配置されることを特徴とする固体撮像装置。
  17. 前記金属配線層数は、3層もしくは4層であり、
    上記1層の配線は、基板表面から上方に向かって、2層目の金属配線であることを
    特徴とする請求項16記載の固体撮像装置。
  18. 同一の構造で配置される金属配線の光電変換領域上部の開口幅が、異なる層数の金属配線層に比べて、最も小さい寸法を含むことを特徴とする請求項16記載の固体撮像装置。
  19. 前記単位画素が行方向または列方向に周期的に配置されていることを特徴とする請求項13〜15の何れかに記載の固体撮像装置。
  20. 請求項1〜19の何れかに記載の固体撮像装置を備えることを特徴とするカメラ。
JP2007080358A 2007-03-26 2007-03-26 固体撮像装置およびそれを用いたカメラ Pending JP2008244021A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007080358A JP2008244021A (ja) 2007-03-26 2007-03-26 固体撮像装置およびそれを用いたカメラ
US12/054,038 US7863661B2 (en) 2007-03-26 2008-03-24 Solid-state imaging device and camera having the same
CNA2008100863157A CN101276829A (zh) 2007-03-26 2008-03-25 固体摄像装置以及利用该固体摄像装置的摄像机
KR1020080027713A KR20080087725A (ko) 2007-03-26 2008-03-26 고체 촬상 장치 및 그것을 이용한 카메라

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007080358A JP2008244021A (ja) 2007-03-26 2007-03-26 固体撮像装置およびそれを用いたカメラ

Publications (1)

Publication Number Publication Date
JP2008244021A true JP2008244021A (ja) 2008-10-09

Family

ID=39915021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007080358A Pending JP2008244021A (ja) 2007-03-26 2007-03-26 固体撮像装置およびそれを用いたカメラ

Country Status (4)

Country Link
US (1) US7863661B2 (ja)
JP (1) JP2008244021A (ja)
KR (1) KR20080087725A (ja)
CN (1) CN101276829A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010147965A (ja) * 2008-12-22 2010-07-01 Sony Corp 固体撮像装置および電子機器
JP2010258728A (ja) * 2009-04-24 2010-11-11 Sony Corp 固体撮像装置、撮像装置および固体撮像装置の駆動方法
JP2011142188A (ja) * 2010-01-06 2011-07-21 Nikon Corp 固体撮像素子
JP2013089880A (ja) * 2011-10-20 2013-05-13 Canon Inc 固体撮像装置およびカメラ
JP2015153912A (ja) * 2014-02-14 2015-08-24 キヤノン株式会社 固体撮像装置及びカメラ
JP2019144251A (ja) * 2014-03-24 2019-08-29 フィンガープリント カーズ アクティエボラーグ 改良された感知素子を備えた容量指紋センサ
JP2020010328A (ja) * 2018-07-09 2020-01-16 三星電子株式会社Samsung Electronics Co.,Ltd. イメージセンサ

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267836A (ja) * 2008-04-25 2009-11-12 Panasonic Corp 固体撮像装置、その駆動方法およびカメラ
JP5313550B2 (ja) * 2008-05-28 2013-10-09 パナソニック株式会社 固体撮像装置
JP2009303088A (ja) * 2008-06-17 2009-12-24 Panasonic Corp 固体撮像装置、その駆動方法及びカメラ
JP5017193B2 (ja) * 2008-06-30 2012-09-05 パナソニック株式会社 固体撮像装置及びカメラ
JP5132640B2 (ja) * 2009-08-25 2013-01-30 株式会社東芝 固体撮像装置及びその製造方法
US8492865B2 (en) * 2009-09-24 2013-07-23 Omnivision Technologies, Inc. Image sensor with contact dummy pixels
JP5539105B2 (ja) * 2009-09-24 2014-07-02 キヤノン株式会社 光電変換装置およびそれを用いた撮像システム
JP5564874B2 (ja) * 2009-09-25 2014-08-06 ソニー株式会社 固体撮像装置、及び電子機器
JP6299058B2 (ja) * 2011-03-02 2018-03-28 ソニー株式会社 固体撮像装置、固体撮像装置の製造方法及び電子機器
JP5377549B2 (ja) * 2011-03-03 2013-12-25 株式会社東芝 固体撮像装置
WO2014002362A1 (ja) * 2012-06-26 2014-01-03 パナソニック株式会社 固体撮像装置及びその製造方法
US9142580B2 (en) * 2012-08-10 2015-09-22 Canon Kabushiki Kaisha Image pickup apparatus and image pickup system
KR102617430B1 (ko) * 2016-11-08 2023-12-26 에스케이하이닉스 주식회사 이미지 센서

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073732A (ja) * 2004-09-01 2006-03-16 Canon Inc 固体撮像装置及び固体撮像システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3467013B2 (ja) 1999-12-06 2003-11-17 キヤノン株式会社 固体撮像装置
JP4279880B2 (ja) 2004-07-06 2009-06-17 パナソニック株式会社 固体撮像装置
JP4646577B2 (ja) * 2004-09-01 2011-03-09 キヤノン株式会社 光電変換装置、その製造方法及び撮像システム
JP4786446B2 (ja) 2006-07-19 2011-10-05 パナソニック株式会社 固体撮像装置、その駆動方法およびカメラ
JP2008034949A (ja) 2006-07-26 2008-02-14 Matsushita Electric Ind Co Ltd 固体撮像装置の駆動方法、及び固体撮像装置
JP4688766B2 (ja) 2006-09-21 2011-05-25 パナソニック株式会社 固体撮像装置、その駆動方法およびカメラ
JP2008091643A (ja) 2006-10-02 2008-04-17 Matsushita Electric Ind Co Ltd 固体撮像装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073732A (ja) * 2004-09-01 2006-03-16 Canon Inc 固体撮像装置及び固体撮像システム

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010147965A (ja) * 2008-12-22 2010-07-01 Sony Corp 固体撮像装置および電子機器
US8638379B2 (en) 2008-12-22 2014-01-28 Sony Corporation Solid-state image pickup device with shared amplifier nearest pixel corresponding to shortest light wavelength and electronic apparatus using the same
JP2010258728A (ja) * 2009-04-24 2010-11-11 Sony Corp 固体撮像装置、撮像装置および固体撮像装置の駆動方法
US8760548B2 (en) 2009-04-24 2014-06-24 Sony Corporation Solid-state imaging device, imaging apparatus, and method of driving the solid-state imaging device
US9210348B2 (en) 2009-04-24 2015-12-08 Sony Corporation Solid-state imaging device, imaging apparatus, and method of driving the solid-state imaging device
JP2011142188A (ja) * 2010-01-06 2011-07-21 Nikon Corp 固体撮像素子
JP2013089880A (ja) * 2011-10-20 2013-05-13 Canon Inc 固体撮像装置およびカメラ
JP2015153912A (ja) * 2014-02-14 2015-08-24 キヤノン株式会社 固体撮像装置及びカメラ
JP2019144251A (ja) * 2014-03-24 2019-08-29 フィンガープリント カーズ アクティエボラーグ 改良された感知素子を備えた容量指紋センサ
JP2020010328A (ja) * 2018-07-09 2020-01-16 三星電子株式会社Samsung Electronics Co.,Ltd. イメージセンサ
JP7442982B2 (ja) 2018-07-09 2024-03-05 三星電子株式会社 イメージセンサ

Also Published As

Publication number Publication date
US20080277702A1 (en) 2008-11-13
KR20080087725A (ko) 2008-10-01
CN101276829A (zh) 2008-10-01
US7863661B2 (en) 2011-01-04

Similar Documents

Publication Publication Date Title
JP2008244021A (ja) 固体撮像装置およびそれを用いたカメラ
US10586818B2 (en) Solid-state imaging device, camera module and electronic apparatus
KR101529094B1 (ko) 고체 촬상 소자 및 카메라
US8350305B2 (en) Solid-state imaging device and camera
JP4788742B2 (ja) 固体撮像装置及び電子機器
US20070091190A1 (en) Solid-state imaging apparatus and camera
KR100820520B1 (ko) 고체촬상장치
JP2006073736A (ja) 光電変換装置、固体撮像装置及び固体撮像システム
KR20070093335A (ko) 고체 촬상장치 및 그 구동방법
JP2010114275A (ja) 固体撮像装置、固体撮像装置の駆動方法、及び電子機器
JP2015130533A (ja) 固体撮像装置及びカメラ
JP5581698B2 (ja) 固体撮像素子
US8462239B2 (en) Solid-state imaging device and electronic imaging device having multi-stage element isolation layer
JP2013131516A (ja) 固体撮像装置、固体撮像装置の製造方法、及び、電子機器
JP5531081B2 (ja) 固体撮像装置及びカメラ
JP5083380B2 (ja) 固体撮像装置及び電子機器
JP6536627B2 (ja) 固体撮像装置及び電子機器
JP5725232B2 (ja) 固体撮像装置及びカメラ
JP7511187B2 (ja) 撮像装置
JP2012099841A (ja) 光電変換装置の製造方法
JP6876240B2 (ja) 固体撮像装置及び電子機器
CN117957659A (zh) 一种固态成像设备以及一种电子装置
JP5245267B2 (ja) 固体撮像装置
JP2008198976A (ja) 固体撮像装置とその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120605