JP2008091643A - 固体撮像装置 - Google Patents

固体撮像装置 Download PDF

Info

Publication number
JP2008091643A
JP2008091643A JP2006271237A JP2006271237A JP2008091643A JP 2008091643 A JP2008091643 A JP 2008091643A JP 2006271237 A JP2006271237 A JP 2006271237A JP 2006271237 A JP2006271237 A JP 2006271237A JP 2008091643 A JP2008091643 A JP 2008091643A
Authority
JP
Japan
Prior art keywords
layer
antireflection layer
solid
antireflection
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006271237A
Other languages
English (en)
Inventor
Ryohei Miyagawa
良平 宮川
Shuichi Mayumi
周一 真弓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006271237A priority Critical patent/JP2008091643A/ja
Priority to US11/865,271 priority patent/US20080079106A1/en
Priority to KR1020070099375A priority patent/KR20080030950A/ko
Publication of JP2008091643A publication Critical patent/JP2008091643A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】フォトダイオードへの入射光量の低下を防止することができ、プロセス難易度が低く、プロセス工程数の増加を抑制した固体撮像装置を提供する。
【解決手段】本発明に係る固体撮像装置は、半導体基板101と、半導体基板101に形成され、入射光を光電変換する受光素子102と、半導体基板101の受光素子102が形成された面上に積層される複数の配線層とを備え、複数の配線層のうち1以上は、第1絶縁層104と、第1絶縁層104上に形成される金属配線105と、第1絶縁層104及び金属配線105上に積層され、金属配線105を構成する材料の拡散を防止し、入射光の反射を防止する反射防止層122と、反射防止層122上に積層される第2絶縁層108とを備える。
【選択図】図1

Description

本発明は、固体撮像装置に関し、特に、銅等で構成される多層構造の金属配線を用いた固体撮像装置に関する。
デジタルカメラ、携帯電話のカメラ及びWebカメラ等に用いられるイメージセンサとして、CMOSイメージセンサ等の固体撮像装置が用いられている。近年、固体撮像装置の多画素化及び画素寸法の縮小化が進んでおり、これに伴って使用される金属配線がAl(アルミニウム)配線からCu(銅)配線に変更されている。
Cu配線を用いた場合には、酸化膜中でのCuの拡散係数が大きいことから、Cuの拡散を防止する層を形成することが必要となる。
図9は、従来のCu配線を用いた固体撮像装置の断面構造を示す図である。図9に示す従来の固体撮像装置500は、CMOSイメージセンサであり、半導体基板501と、フォトダイオード502と、トランジスタ503と、層間膜504、507及び510と、Cu配線505、508及び511と、拡散防止層506、509、512及び513と保護膜514と、カラーフィルタ515と、マイクロレンズ516と、素子分離領域517とを備える。
フォトダイオード502は、入射光の光電変換を行う。トランジスタ503は、ポリシリコンで形成されるゲート電極518を含む。素子分離領域517は、SiO2の埋め込み層からなる素子分離層(STI:シャロートレンチアイソレーション)である。層間膜504、507、510及び保護膜514は、例えば、SiO2で構成される。Cu配線505、508及び511は、Cuで構成される金属配線である。拡散防止層506、509、512及び513は、Cu配線505、508及び511を構成するCuの拡散を防止するための層であり、例えば、SiNで構成される。
固体撮像装置500において、半導体基板501上に、フォトダイオード502及びトランジスタ503が形成され、その上に層間膜504が形成され、その上にCu配線505が形成され、その上に拡散防止層506が形成され、その上に層間膜507が形成され、その上にCu配線508が形成され、その上に拡散防止層509が形成され、その上に層間膜510が形成され、その上にCu配線511が形成され、その上に拡散防止層512が形成され、その上に拡散防止層513が形成されその上に、保護膜514が形成され、その上にカラーフィルタ515が形成され、その上にマイクロレンズ516が形成される。
固体撮像装置500に入射した光は、マイクロレンズ516で集光され、フォトダイオード502に照射される。しかしながら、図9に示す従来の固体撮像装置において、フォトダイオード502の上部に屈折率の異なるSiO2からなる層(層間膜504、507、510及び保護膜514)と、SiNからなる層(拡散防止層506、509、512及び513)が積層されている。これにより、層間膜と拡散防止層との界面において反射(例えば、図9に示す矢印521)及び多重干渉(例えば、図9に示す矢印519及び520)が発生する。反射及び多重干渉の影響により、フォトダイオード502への入射光量の低下、及びノイズの発生が増加するという問題がある。これに対して、フォトダイオード502の上部の拡散防止層を除去する方法が知られている。
フォトダイオード502の上部の拡散防止層を除去する方法として、拡散防止層を順次除去しながら各層を形成する第1の方法(例えば、特許文献1参照。)と、全ての層を形成後に、一括してフォトダイオード502の上部の拡散防止層を除去し、絶縁層を埋め込む第2の方法(例えば、特許文献1、特許文献2及び特許文献3参照。)とが知られている。
図10は、各層の拡散防止層を順次除去しながら各層を形成する第1の方法により形成された従来の固体撮像装置の断面構造を示す図である。図10に示す従来の固体撮像装置600は、フォトダイオード502の上部を除去した拡散防止層606、609、612及び613を備える。なお、図9と同様の要素には同一の符号を付している。
固体撮像装置600の製造方法は、半導体基板501上に、層間膜504、Cu配線505及び拡散防止層606を順次積層し、その後、フォトダイオード502の上部の拡散防止層606を除去する。さらに、層間膜507、Cu配線508及び拡散防止層609を順次積層し、その後、フォトダイオード502の上部の拡散防止層609を除去する。さらに、層間膜510、Cu配線511、拡散防止層612及び613を順次積層し、その後、フォトダイオード502の上部の拡散防止層612及び613を除去する。
以上より、従来の固体撮像装置600は、フォトダイオード502の上部に拡散防止層が存在せず、同一の屈折率の層間膜のみで形成される。これにより、反射及び多重干渉の発生を低減し、フォトダイオード502への入射光量の低下を防止することができる。
図11は、全ての層を形成後に、一括してフォトダイオードの上部の拡散防止層を除去し、絶縁層を埋め込む第2の方法により形成された従来の固体撮像装置の断面構造を示す図である。図11に示す従来の固体撮像装置700は、フォトダイオード502の上部を除去した拡散防止層706、709、712及び713と、フォトダイオード502の上部の拡散防止層が除去された領域に形成される埋め込み絶縁層722とを備える点が図9に示す固体撮像装置500と異なる。なお、図9と同様の要素には同一の符号を付している。
固体撮像装置700の製造方法は、半導体基板501上に、層間膜504、Cu配線505及び拡散防止層706、層間膜507、Cu配線508及び拡散防止層709、層間膜510、Cu配線511、拡散防止層712、拡散防止層713及び保護膜514を順次積層し、その後、フォトダイオード502の上部の拡散防止層706、709、712及び713と、層間膜504、507及び510と、保護膜514とを一括して除去する。フォトダイオード502の上部の706、709、712及び713と、層間膜504、507及び510と、保護膜514とを一括して除去した領域に、埋め込み絶縁層722を埋め込む。
以上により、従来の固体撮像装置700は、フォトダイオード502の上部に拡散防止層が形成されず、同一の屈折率の層間膜504及び埋め込み絶縁層722のみで形成される。これにより、反射及び多重干渉の発生を低減し、フォトダイオード502への入射光量の低下を防止することができる。
特開2005−311015号公報 特開2004−221527号公報 特開2006−80522号公報
しかしながら、図10に示すような各層の拡散防止層を順次除去しながら各層を形成する第1の方法では、各層の拡散防止層を除去する工程が必要となり、工程数が増加するという問題がある。さらに、各層の拡散防止層を除去することにより、拡散防止層上に積層される層間膜の平坦性が低下してしまう。平坦性の低下は、平坦化を行うことで解決できるが、平坦化を行うことで工程数はさらに増加してしまう。
また、図11に示すような全ての層を形成後に、一括してフォトダイオードの上部の拡散防止層を除去し、絶縁層を埋め込む第2の方法では、埋め込みのアスペクト比が高く、欠陥の少ない埋め込み絶縁層722を形成するためには、高いプロセス技術が必要であるという問題がある。ここで、埋め込み絶縁層722は、フォトダイオード502の上部に形成されるので、この埋め込み絶縁層が不完全でボイドなどの欠陥が生じた場合には、その部分で入射光が反射されるために固体撮像装置の特性に大きく影響することとなる。よって、埋め込み絶縁層722は、欠陥のない高質な層とする必要がある。また、固体撮像装置の微細化が進んだ場合には、埋め込みのアスペクト比はさらに高くなるので、埋め込み絶縁層を形成するプロセス難易度はさらに高くなる。
そこで、本発明は、フォトダイオードへの入射光量の低下を防止することができ、プロセス難易度が低く、プロセス工程数の増加を抑制した固体撮像装置を提供することを目的とする。
上記目的を達成するために、本発明に係る固体撮像装置は、半導体基板と、前記半導体基板に形成され、入射光を光電変換する受光素子と、前記半導体基板の前記受光素子が形成された面上に積層される複数の配線層とを備え、前記複数の配線層のうち1以上は、第1絶縁層と、前記第1絶縁層上に形成される金属配線と、前記第1絶縁層及び金属配線上に積層され、前記金属配線を構成する材料の拡散を防止し、前記入射光の反射を防止する反射防止層と、前記反射防止層上に積層される第2絶縁層とを備える。
この構成によれば、反射防止層が入射光の反射を防止する機能を有するので、反射防止層と第2絶縁層との界面で発生する反射及び多重干渉の発生を低減できる。これにより、フォトダイオードへの入射光量の低下を防止することができる。また、本発明に係る固体撮像装置は、反射防止層を除去する工程等を行わずに、反射を防止する機能を有する反射防止層を形成することで実現できるので、プロセス難易度が低く、プロセス工程数の増加を抑制することができる。
また、前記反射防止層は、前記反射防止層の屈折率又は層の厚さに対する前記入射光の透過率の特性において、該透過率がピークとなる領域の屈折率又は層の厚さを有してもよい。
この構成によれば、入射光に対して反射防止層の透過率が高くなるように最適化されているので、反射防止層と第2絶縁層との界面で発生する反射及び多重干渉の発生を低減できる。
また、前記反射防止層は、前記第1絶縁層及び金属配線上に積層される第1反射防止層と、前記第1反射防止層上に積層され、前記第1反射防止層を構成する材料と屈折率の異なる材料で構成される第2反射防止層とを含んでもよい。
この構成によれば、反射防止層が2層で構成される。これにより、例えば、金属配線に隣接する第1反射防止層が金属配線の拡散を防止する機能を有し、第2反射防止層の屈折率及び厚さを変更することで、入射光に対する反射防止層の透過率を容易に最適化することができる。
また、前記第1反射防止層は、酸素を含まない材料により構成されてもよい。
この構成によれば、金属配線に隣接する第1反射防止層が金属配線の拡散を防止する機能を有する。これにより、例えば、第2反射防止層の屈折率及び厚さを変更することで、入射光に対する反射防止層の透過率を容易に最適化することができる。
また、前記酸素を含まない材料は、SiN、SiC又はSiNCであってもよい。
この構成によれば、既存の製造プロセスにおいて、容易に第1反射防止層を形成することができる。
また、前記第2反射防止層は、酸素を含む材料により構成されてもよい。
この構成によれば、第2反射防止層の酸素の含有率を変更することで、容易に第2反射防止層の屈折率を変更することができる。これにより、入射光に対する反射防止層の透過率を容易に最適化することができる。
また、前記酸素を含む材料は、SiON、SiONC又はSiO2であってもよい。
この構成によれば、既存の製造プロセスにおいて、容易に第2反射防止層を形成することができる。
また、前記反射防止層は、さらに、前記第2反射防止層上に積層され、前記第2反射防止層を構成する材料と屈折率の異なる材料で構成される第3反射防止層を含んでもよい。
この構成によれば、反射防止層は、第2反射防止層の酸素の含有率を変更することで、多重反射効果により、入射光に対する反射防止効果を得ることができる。
また、前記固体撮像装置は、さらに、前記複数の配線層より下方の前記受光素子上に形成され、前記入射光の反射を防止する反射防止膜を備えてもよい。
この構成によれば、フォトダイオードと第1絶縁層との界面で発生する反射を低減することができる。これにより、さらに効果的にフォトダイオードへの入射光量の減少を低減することができる。
また、前記金属配線は、銅で構成されてもよい。
この構成によれば、銅配線が用いられる固体撮像装置に対して、フォトダイオードへの入射光量の低下を防止することができる。また、プロセス難易度を低減し、かつプロセス工程数の増加を抑制することができる。
本発明は、フォトダイオードへの入射光量の低下を防止することができ、プロセス難易度が低く、プロセス工程数の増加を抑制した固体撮像装置を提供することができる。
以下、本発明に係る固体撮像装置の実施の形態について、図面を参照しながら詳細に説明する。
(実施の形態1)
本発明の実施の形態1に係る固体撮像装置は、Cu配線を構成するCuの拡散防止層として、入射光の反射を防止する多層構造の反射防止層を備える。これにより、入射光の反射を防止し、フォトダイオードへの入射光量の減少を低減することができる。
まず、本発明の実施の形態1に係る固体撮像装置の構成を説明する。
図1は、本発明の実施の形態1に係る固体撮像装置の断面構造を模式的に示す図である。
図1に示す固体撮像装置100は、入射光を光電変換し電気信号を出力する。固体撮像装置100は、例えば、CMOSイメージセンサである。固体撮像装置100は、半導体基板101と、フォトダイオード102と、トランジスタ103と、層間膜104、108及び112と、Cu配線105、109及び113と、反射防止層122、123及び124と、保護膜117と、カラーフィルタ118と、マイクロレンズ119と、素子分離領域120と、反射防止膜125とを備える。
半導体基板101は、例えば、Siで構成される。
フォトダイオード102は、半導体基板101に形成される。フォトダイオード102は、入射光を光電変換する受光素子である。
トランジスタ103は、半導体基板101に形成される。トランジスタ103は、ソース/ドレイン領域(図示せず)と、ポリシリコンで形成されるゲート電極121とを含む。素子分離領域120は、SiO2の埋め込み層からなる素子分離層(STI:シャロートレンチアイソレーション)である。
反射防止膜125は、反射防止層122より下方のフォトダイオード102上に形成され、入射光の反射を防止する。反射防止膜125は、例えば、SiNで構成される。なお、反射防止膜125は、SiON、SiC、SiNC又はSiCOで構成されてもよい。
層間膜104は、半導体基板101、フォトダイオード102、トランジスタ103及び反射防止膜125上に積層される。すなわち、層間膜104は、半導体基板101のフォトダイオード102及びトランジスタ103が形成された面上に積層される。層間膜108は、反射防止層122上に積層される。層間膜112は、反射防止層123上に積層される。層間膜104、108及び112は、例えば、SiO2で構成される絶縁層である。なお、層間膜104、108及び112は、SiOC又はポーラスシリコン酸化膜(多孔質シリコン酸化膜)で構成されてもよい。
Cu配線105は、層間膜104上に形成される。Cu配線109は、層間膜108上に形成される。Cu配線113は、層間膜112上に形成される。Cu配線105、109及び113は、銅(Cu)で構成された金属配線層である。
反射防止層122、123及び124は、Cu配線105、109及び113を構成するCuの製造工程における拡散を防止する層である。さらに、反射防止層122、123及び124は、入射光の反射を防止する機能を有する。
反射防止層122は、層間膜104及びCu配線105上に積層される。反射防止層122は、第1反射防止層106と、第2反射防止層107とを含む。第1反射防止層106は、層間膜104及びCu配線105上に積層される。第2反射防止層107は、第1反射防止層106上に積層される。
反射防止層123は、層間膜108及びCu配線109上に積層される。反射防止層123は、第1反射防止層110と、第2反射防止層111とを含む。第1反射防止層110は、層間膜108及びCu配線109上に積層される。第2反射防止層111は、第1反射防止層110上に積層される。
反射防止層124は、層間膜112及びCu配線113上に積層される。反射防止層124は、第1反射防止層114と、第2反射防止層115と、第3反射防止層116を含む。第1反射防止層114は、層間膜112及びCu配線113上に積層される。第2反射防止層115は、第1反射防止層114上に積層される。第3反射防止層116は、第2反射防止層115上に積層される。
ここで、反射防止層124が3層で構成される理由を説明する。図示していないが、第1反射防止層114を形成後に、上層に作られるAlからなるボンディングパッドとCu配線113とを電気的に接続するために、第1反射防止層114の一部は、フォトリソグラフィ工程及びエッチング工程により除去される。次に、第1反射防止層114を除去した領域にAlを蒸着する。次に、フォトリソグラフィ工程及びエッチング工程により、ボンディングパッドが形成される領域にのみAlを残し、それ以外の領域は画素部(フォトダイオード102の上部)も含みAlを除去する。これにより、Alからなるボンディングパッドが第1反射防止層114上に形成される。次に、第2反射防止層115が形成される。ここで、第2反射層防止115は、Alからなるボンディングパッドを覆うように形成され、Alからなるボンディングパッドの保護層としても機能する。なお、Alの保護が上層の第3反射層116及び保護膜117で十分であれば、第2反射防止層115を形成しなくともよい。 第1反射防止層106、110、114及び第2反射防止層115は、製造工程におけるCu配線105、109及び113を構成する銅の拡散を防止するための層である。第1反射防止層106、110、114及び第2反射防止層115は、例えば、SiNで構成される。なお、第1反射防止層106、110、114及び第2反射防止層115は、SiC又はSiNCで構成されてもよい。第2反射防止層107、111及び第3反射防止層116は、106、110、114及び第2反射防止層115を構成する材料と屈折率の異なる材料で構成される。第2反射防止層107、111及び第3反射防止層116は、例えば、SiONで構成される。なお、第2反射防止層107、111及び第3反射防止層116は、SiONCで構成されてもよい。
保護膜117は、反射防止層124上に積層される。保護膜117は、例えば、SiO2で構成される。
カラーフィルタ118は、保護膜117上に形成される。カラーフィルタ118は、所定の波長の光のみを透過するフィルタであり、例えば、可視光(波長400〜650nm)を透過するフィルタである。なお、カラーフィルタ118は、赤色光、緑色光又は青色光を透過するフィルタであってもよい。
マイクロレンズ119は、カラーフィルタ118上に形成される。マイクロレンズ119は、入射光をフォトダイオード102上に集光する。
以上の構成により、本発明の実施の形態1に係る固体撮像装置100において、入射光は、マイクロレンズ119で集光され、カラーフィルタ118、保護膜117、反射防止層124、層間膜112、反射防止層123、層間膜108、反射防止層122、層間膜104及び反射防止膜125を順次介して、フォトダイオード102に照射される。ここで、反射防止層122、123及び124は、入射光(可視光)の反射を防止する機能を有する。すなわち、反射防止層122、123及び124は、入射光(可視光)に対する透過率が高くなるように最適化されている。よって、本発明の実施の形態1に係る固体撮像装置100は、図9示す従来の固体撮像装置500で発生していた反射及び多重干渉の発生を低減できる。これにより、フォトダイオードへの入射光量の低下を防止することができる。
次に、反射防止層122、123及び124の具体的な構造を説明する。
図2は、反射防止層122の構造を模式的に示す図である。
反射防止層122は、入射光(可視光)に対する透過率が高くなるように最適化された屈折率及び層の厚さを有する。具体的には、反射防止層122は、反射防止層122の屈折率又は層の厚さに対する入射光(可視光)の透過率の特性において、透過率がピークとなる領域の屈折率及び層の厚さを有する。反射防止層122の透過率は、層間膜104、108、第1反射防止層106及び第2反射防止層107の屈折率と、第1反射防止層106の層の厚さd1及び第2反射防止層107の層の厚さd2により決定される。ここで、層間膜104及び108を構成するSiO2の屈折率N=1.46であり、第1反射防止層106を構成するSiNの屈折率N=2.04である。また、第2反射防止層107を構成するSiONは、Si、O及びNの組成比を変更することにより、屈折率を変更することができる。ここで、反射防止層122は、製造工程におけるCu配線105を構成する銅の拡散防止、及びCu配線105とCu配線109とを接続するビアコンタクトの形成の際のエッチングストッパとして利用される。よって、反射防止層122は、エッチングストッパとして機能するために、工程に応じた所定の膜厚を有する必要がある。
図3は、反射防止層122の膜厚d3=170nm(=d1+d2)とした場合の、第1反射防止層106の膜厚d1に対する反射防止層122の透過率を示す図である。また、図3において、SiONの屈折率N=1.75であり、縦軸の透過率は、波長400nm〜650nmの入射光に対する透過率の平均値を算出した値である。
図3に示すように、第1反射防止層の膜厚d1が110〜120nm付近で、透過率のピークが存在する。よって、反射防止層122の膜厚d3を170nmと固定した場合には、第1反射防止層の膜厚d1を110〜120nmとし、第2反射防止層の膜厚d2(=170nm−d1)を50〜60nmとすることで、反射防止層122の可視光(波長400nm〜650nm)に対する透過率を最大とすることができる。なお、図3において、膜厚d1をゼロに近づけることで透過率は増加するが、膜厚をゼロに近づけることは実施が困難であり除外している。
図4は、第1反射防止層106の膜厚d1=170nmとした場合の、第2反射防止層107の膜厚d2に対する反射防止層122の透過率を示す図である。また、図4において、SiONの屈折率N=1.75であり、縦軸の透過率は、波長400nm〜650nmの入射光に対する透過率の平均値を算出した値である。
図4に示すように、第2反射防止層の膜厚d2が70〜80nm付近で、透過率のピークが存在する。よって、第1反射防止層の膜厚d1を170nmと固定した場合には、第2反射防止層の膜厚d2を70〜80nmとすることで、反射防止層122の可視光(波長400nm〜650nm)に対する透過率を最大とすることができる。
なお、反射防止層122と同様に、反射防止層123及び124の可視光に対する透過率を最大とすることができる。
以上のように、第1反射防止層106及び第2反射防止層107の膜厚を透過率が高くなるように最適化することで、入射光の反射を防止することができる。ここで、最適化とは、第1反射防止層106又は第2反射防止層107の層の厚さに対する入射光(可視光)の透過率の特性において、実施可能な範囲内において透過率がピークとなる領域の第1反射防止層106及び第2反射防止層107の膜厚(層の厚さ)を選択することを意味する。
また、説明の簡略化のため、図3及び図4において、第2反射防止層107を構成するSiONの屈折率N=1.75としたが、第1反射防止層106及び第2反射防止層107の膜厚を一定とし、SiONのSi、O及びNの組成比を変更することでSiONの屈折率を最適化し、反射防止層122の屈折率を最適化してもよい。すなわち、第2反射防止層107の屈折率に対する入射光(可視光)の透過率の特性において、実施可能な範囲内において透過率がピークとなる領域の第2反射防止層107の屈折率を選択してもよい。また、第1反射防止層106の膜厚d1と、第2反射防止層107の膜厚d2と、第2反射防止層107の屈折率を最適化することで、さらに透過率を向上させることができる。
以上のように、層間膜104、108の屈折率に対して、第1反射防止層106及び第2反射防止層107の屈折率と、第1反射防止層106の層の厚さd1及び第2反射防止層107の層の厚さd2を最適化することで、反射防止層122、123及び124は、入射光に対する透過率が最大となる屈折率及び層の厚さを有することができる。
次に、本発明の実施の形態1に係る固体撮像装置100の製造方法を説明する。
まず、フォトダイオード102、トランジスタ103及び反射防止膜125を形成した半導体基板101上に、層間膜104を形成する。層間膜104をフォトリソグラフィ工程により除去し、Cu配線105が埋め込まれるトレンチを形成する。次に、トレンチの底面及び側面を覆うタンタル等で構成されるバリヤー膜(図1には図示せず)を形成する。次に、トレンチ内のバリヤー膜上に、銅シード(Seed)をスパターリング法により蒸着した後、電界めっき法によりCu配線105を形成する。次に、研磨等によりトレンチ以外の部分に形成された銅及びバリヤー膜を除去する。次に、第1反射防止層106を形成し、次に、第2反射防止層107を形成し、次に、層間膜108を形成する。次に、上述したCu配線105の製造工程と同様に、層間膜108にトレンチを形成し、銅を蒸着及び電界めっきすることで、Cu配線109を形成する。次に、第1反射防止層110を形成し、次に、第2反射防止層111を形成し、次に、層間膜112を形成する。次に、上述したCu配線105及び109の製造工程と同様に、層間膜112にトレンチを形成し、銅を蒸着及び電界めっきすることで、Cu配線113を形成する。次に、第1反射防止層114を形成し、次に、第2反射防止層115を形成し、次に、第3反射防止層116を形成し、次に、保護膜117を形成する。次に、カラーフィルタ118を形成し、マイクロレンズ119を形成する。以上により、図1に示す固体撮像装置100が形成される。
また、図1には図示しいていないが、上記工程には、各層のCu配線105、109、113、ソース/ドレイン領域(図示せず)及びゲート電極121を接続するコンタクトを形成する工程が含まれる。以下に、Cu配線105とCu配線109とを接続するビアコンタクトを形成する製造方法を説明する。上述した層間膜108の形成後、まず、フォトリソグラフィ工程によりCu配線105とCu配線109とを接続するためのコンタクトホールが形成される。この時、反射防止層122は、エッチングストッパとして機能する。さらに、層間膜108をフォトリソグラフィ工程により除去し、Cu配線109が埋め込まれるトレンチを形成する。次に、コンタクトホール及びトレンチの底面及び側面を覆うタンタル等で構成されるバリヤー膜を形成する。次に、コンタクトホール及びトレンチ内のバリヤー膜上に銅を蒸着し、ビアコンタクト及びCu配線109を形成する。次に、研磨等によりトレンチ以外の部分に形成された銅及びバリヤー膜を除去する。以上の工程により、Cu配線105とCu配線109とを接続するビアコンタクトが形成される。また、Cu配線109とCu配線113とを接続するビアコンタクト、及び、トランジスタ103のソース/ドレイン領域(図示せず)及びゲート電極121とCu配線105とを接続するコンタクトも同様の工程により形成できる。なお、ビアコンタクト及びコンタクトを銅で形成せずに、チタン又はタングステンを蒸着し形成してもよい。
以上より、本発明の実施の形態1に係る固体撮像装置100は、図10に示す従来の固体撮像装置600と比べ、フォトダイオードの上部の拡散防止層(反射防止層)を除去する工程を必要としないので、工程数の増加を抑制することができる。また、図11に示す従来の固体撮像装置700と比べ、フォトダイオードの上部を除去し、絶縁層を埋め込む必要がないので、工程数の増加を抑制することができる。さらに、図11に示す従来の固体撮像装置700と比べ、プロセス難易度の高い工程を用いないので、容易に形成することができる。
また、固体撮像装置100は、フォトダイオード102の上部に形成された、反射防止膜125を備える。これにより、フォトダイオード102と層間膜104との界面で発生する反射を低減することができる。ここで、フォトダイオード102と層間膜104との界面で発生する反射は、他の層の界面(従来の、SiN層(拡散防止層)とSiO2層(層間膜)の界面)で発生する反射に比べて、フォトダイオード102への入射光量を減少させる影響が大きい。よって、上述した本発明の実施の形態1に係る固体撮像装置100のように、反射防止層122、123及び124を設ける構造とした場合でも、フォトダイオード102上の反射防止膜125を設けていない場合には、フォトダイオード102への入射光量の減少を十分に低減することができない。一方、反射防止膜125を備える固体撮像装置に対して、上述した反射防止層122、123及び124を備える構造とすることで、より効果的にフォトダイオード102への入射光量の減少を低減することができる。
以上、本発明の実施の形態1に係る固体撮像装置について説明したが、本発明は、この実施の形態に限定されるものではない。
例えば、反射防止層122、123及び124は、SiNで構成される層と、SiONで構成される層とで構成されるとしたが、さらに、SiONで構成される層上に積層されるSiONと異なる屈折率の材料で形成される層を含んでもよい。さらに、隣接する層の屈折率が異なる3層以上で構成されてもよい。例えば、反射防止層122、123及び124は、SiNで構成される層と、SiO2で構成される層と、SiNで構成される層と、SiONで構成される層とを積層した構成であってもよい。また、反射防止層に含まれる層は、SiN、SiC、SiON、SiCO、SiNC、SiONC及びSiO2で構成される層の組み合わせであってもよい。なお、反射防止層122、123及び124は、Cu配線を構成するCuの拡散防止の効果を有する必要があるので、Cu配線と隣接する反射防止層122、123及び124の最下層は、酸素を含まない材料(例えば、SiN、SiC、及びSiNC等)で構成されることが好ましい。また、反射防止層122、123及び124が多層で構成される場合の、最下層以外の層の少なくとも1層に酸素を含む材料(例えば、SiON、SiCO、SiONC及びSiO2等)を用いることで、酸素の含有率を変化させ、当該層の屈折率を容易に変更することができる。これにより、入射光に対する反射防止層の透過率を容易に最適化することができる。また、反射防止層122、123及び124を3層以上の構成とした場合、酸素を含む材料で構成される層の酸素の含有率を変更することで、多重反射効果により、入射光に対する反射防止効果を得ることができる。さらに、上記説明では、反射防止層122、123及び124は、それぞれSiNで構成される層と、SiONで構成される層とで構成されるとしたが、各反射防止層は、異なる構成(異なる材料又は異なる層数)であってもよい。例えば、反射防止層122は、SiNで構成される層と、SiONで構成される層と積層した構成であり、反射防止層123は、SiNで構成される層と、SiO2で構成される層と、SiNで構成される層と、SiONで構成される層とを積層した構成であってもよい。
また、上記実施の形態の固体撮像装置の構成として、図1に示す断面構造を示したが、さらに、インナーレンズを備えてもよい。図5は、実施の形態1に係る固体撮像装置100の変形例であり、インナーレンズを備える固体撮像装置の断面構成を模式的に示す図である。図5に示す固体撮像装置200は、図1に示す固体撮像装置100の構成に加え、さらに、インナーレンズ201を備える。インナーレンズ201は、反射防止層124上に形成され、例えば、SiNから構成される。
(実施の形態2)
本発明の実施の形態2に係る固体撮像装置は、Cu配線を構成するCuの拡散防止層として、入射光の反射を防止する単層構造の反射防止層を備える。これにより、入射光の反射を防止し、フォトダイオードへの入射光量の減少を低減することができる。
まず、本発明の実施の形態2に係る固体撮像装置の構成を説明する。
図6は、本発明の実施の形態2に係る固体撮像装置の断面構造を模式的に示す図である。なお、図1と同様の要素には同一の符号を付しており詳細な説明は省略する。
図6に示す固体撮像装置300は、図1に示す実施の形態1の固体撮像装置100に対して、反射防止層122、123及び124の代わりに、単層(単一の材料で形成された層)で構成される反射防止層301、302及び303を備える点が異なる。
反射防止層301、302及び303は、製造工程におけるCu配線105、109及び113を構成する銅の拡散を防止するための層である。さらに、反射防止層301、302及び303は、入射光の反射を防止する層である。反射防止層303は、第1反射防止層304と、第1反射防止層304上に積層された第2反射防止層305とを含む。反射防止層301、302、第1反射防止層304及び第2反射防止層305は、例えば、SiNで構成される。なお、反射防止層301、302、第1反射防止層304及び第2反射防止層305は、SiC又はSiNCで構成されてもよい。
以上の構成により、本発明の実施の形態2に係る固体撮像装置300において、入射光は、マイクロレンズ119で集光され、カラーフィルタ118、保護膜117、反射防止層303、層間膜112、反射防止層302、層間膜108、反射防止層301、層間膜104及び反射防止膜125を順次介して、フォトダイオード102に照射される。ここで、反射防止層301、302及び303は、入射光(可視光)に対する透過率が大きくなるように最適化されている。よって、本発明の実施の形態2に係る固体撮像装置300は、図9示す従来の固体撮像装置500で発生していた反射及び多重干渉の発生を低減できる。これにより、フォトダイオードへの入射光量の低下を防止することができる。
次に、反射防止層301、302及び303の具体的な構造を説明する。
図7は、反射防止層301の構造を模式的に示す図である。
反射防止層301は、入射光(可視光)に対する透過率が高くなるように最適化された屈折率及び層の厚さを有する。具体的には、反射防止層301は、反射防止層301の層の厚さに対する入射光(可視光)の透過率の特性において、透過率がピークとなる領域の屈折率及び層の厚さを有する。反射防止層301の透過率は、層間膜104、108及び反射防止層301の屈折率と、反射防止層301の層の厚さdにより決定される。ここで、層間膜104及び108を構成するSiO2の屈折率N=1.46であり、反射防止層301を構成するSiNの屈折率N=2.04である。
図8は、反射防止層301の膜厚dに対する反射防止層301の透過率を示す図である。また、図8において、縦軸の透過率は、波長400nm〜650nmの入射光に対する透過率の平均値を算出した値である。
図8に示すように、反射防止層301の膜厚dが120〜130nm付近で、透過率のピークが存在する。よって、反射防止層301の膜厚dを120〜130nmとすることで、反射防止層301の可視光(波長400nm〜650nm)に対する透過率を最大とすることができる。なお、反射防止層301と同様に、反射防止層302及び303の可視光に対する透過率を最大とすることができる。以上のように、反射防止層の膜厚dを透過率が高くなるように最適化することで、入射光の反射を防止することができる。すなわち、反射防止層301の膜厚dに対する入射光(可視光)の透過率の特性において、実施可能な範囲内において透過率がピークとなる領域の反射防止層301の膜厚dを選択することで、入射光の反射を防止することができる。
また、本発明の実施の形態2に係る固体撮像装置300の製造方法は、上述した実施の形態1に係る固体撮像装置100の製造方法において、SiONで構成される第2反射防止層107,111及び第3反射防止層116を形成する工程を行わない点以外は同様であり、説明は省略する。
以上より、本発明の実施の形態2に係る固体撮像装置300は、図10に示す従来の固体撮像装置600と比べ、フォトダイオードの上部の拡散防止層(反射防止層)を除去する工程を必要としないので、工程数の増加を抑制することができる。また、図11に示す従来の固体撮像装置700と比べ、フォトダイオードの上部を除去し、絶縁層を埋め込む必要がないので、工程数の増加を抑制することができる。さらに、図11に示す従来の固体撮像装置700と比べ、プロセス難易度の高い工程を用いないので、容易に形成することができる。
また、固体撮像装置300は、フォトダイオード102の上部に形成された、反射防止膜125を備える。これにより、フォトダイオード102と層間膜104との界面で発生する反射を低減することができる。ここで、フォトダイオード102と層間膜104との界面で発生する反射は、他の層の界面(従来の、SiN層(拡散防止層)とSiO2層(層間膜)の界面)で発生する反射に比べて、フォトダイオード102への入射光量を減少させる影響が大きい。よって、上述した本発明の実施の形態1に係る固体撮像装置300のように、反射防止層122、123及び124を設ける構造とした場合でも、フォトダイオード102上の反射防止膜125を設けていない場合には、フォトダイオード102への入射光量の減少を十分に低減することができない。一方、反射防止膜125を備える固体撮像装置に対して、上述した反射防止層122、123及び124を備える構造とすることで、より効果的にフォトダイオード102への入射光量の減少を低減することができる。
また、本発明の実施の形態2に係る固体撮像装置300と、実施の形態1に係る固体撮像装置100とを比較した場合、実施の形態2に係る固体撮像装置300は、反射防止層301、302及び303が単層(同一の材料で構成された層)で構成されるので、さらに製造工程数を削減することができる。一方、上述した実施の形態1に係る固体撮像装置100は、反射防止層122、123及び124を多層構造とすることで、反射防止層の透過率を決定するパラメータの数が増加するので、透過率を決定する際の自由度が増加する。さらに、高い透過率の反射防止層を容易に実現することができる。
以上、本発明の実施の形態2に係る固体撮像装置について説明したが、本発明は、この実施の形態に限定されるものではない。
例えば、図5に示す実施の形態1に係る固体撮像装置の変形例と同様に、図6に示す構造に加え、さらに、インナーレンズを備えてもよい。
また、上記実施の形態1及び2の固体撮像装置の構成として、3層の金属(銅)配線を用いた場合について説明したが、金属配線は、1層、2層又は4層以上であってもよい。
また、上記実施の形態1及び2の固体撮像装置の構成として、3層の金属(銅)配線の全てに対して、反射防止機能を有する拡散防止層を形成した場合について説明したが、3層のうち1以上の拡散防止層を上述した反射防止層の構成とすることで、フォトダイオード102への入射光量の減少を抑制することができる。
また、上記実施の形態1及び2において、金属配線として銅(Cu)配線が用いられる場合について説明したが、製造プロセス上、拡散等による特性の劣化を防止するために層間膜と屈折率の異なる拡散防止層を形成する必要がある材料で形成された金属配線を用いる場合にも、本発明の構造を適用することができる。
本発明は、固体撮像装置に適用でき、特に、デジタルカメラ、携帯電話のカメラ及びWebカメラ等に用いられるCMOSイメージセンサに適用できる。
本発明の実施の形態1に係る固体撮像装置の断面構造を示す図である。 本発明の実施の形態1に係る固体撮像装置の反射防止層の構造を模式的に示す図である。 本発明の実施の形態1に係る固体撮像装置の第1反射防止層の膜厚に対する反射防止層の透過率を示す図である。 本発明の実施の形態1に係る固体撮像装置の第2反射防止層の膜厚に対する反射防止層の透過率を示す図である。 本発明の実施の形態1に係る固体撮像装置の変形例の断面構造を示す図である。 本発明の実施の形態2に係る固体撮像装置の断面構造を示す図である。 本発明の実施の形態2に係る固体撮像装置の反射防止層の構造を模式的に示す図である。 本発明の実施の形態2に係る固体撮像装置の反射防止層の膜厚に対する反射防止層の透過率を示す図である。 従来の固体撮像装置の断面構造を示す図である。 従来の固体撮像装置の断面構造を示す図である。 従来の固体撮像装置の断面構造を示す図である。
符号の説明
100、200、300、500、600、700 固体撮像装置
101、501 半導体基板
102、502 フォトダイオード
103、503 トランジスタ
104、108、112、504、507、510 層間膜
105、109、113、505、508、511 Cu配線
106、110、114、304 第1反射防止層
107、111、115、305 第2反射防止層
116 第3反射防止層
117、514 保護膜
118、515 カラーフィルタ
119、516 マイクロレンズ
120、517 素子分離領域
121、518 ゲート電極
122、123、124、301、302、303 反射防止層
125 反射防止膜
201 インナーレンズ
506、509、512、513、606、609、612、613、706、709、712、713 拡散防止層
519、520 多重干渉
521 反射
722 埋め込み絶縁層

Claims (10)

  1. 半導体基板と、
    前記半導体基板に形成され、入射光を光電変換する受光素子と、
    前記半導体基板の前記受光素子が形成された面上に積層される複数の配線層とを備え、
    前記複数の配線層のうち1以上は、
    第1絶縁層と、
    前記第1絶縁層上に形成される金属配線と、
    前記第1絶縁層及び金属配線上に積層され、前記金属配線を構成する材料の拡散を防止し、前記入射光の反射を防止する反射防止層と、
    前記反射防止層上に積層される第2絶縁層とを備える
    ことを特徴とする固体撮像装置。
  2. 前記反射防止層は、前記反射防止層の屈折率又は層の厚さに対する前記入射光の透過率の特性において、該透過率がピークとなる領域の屈折率又は層の厚さを有する
    ことを特徴とする請求項1記載の固体撮像装置。
  3. 前記反射防止層は、
    前記第1絶縁層及び金属配線上に積層される第1反射防止層と、
    前記第1反射防止層上に積層され、前記第1反射防止層を構成する材料と屈折率の異なる材料で構成される第2反射防止層とを含む
    ことを特徴とする請求項1又は2記載の固体撮像装置。
  4. 前記第1反射防止層は、酸素を含まない材料により構成される
    ことを特徴とする請求項3記載の固体撮像装置。
  5. 前記酸素を含まない材料は、SiN、SiC又はSiNCである
    ことを特徴とする請求項4記載の固体撮像装置。
  6. 前記第2反射防止層は、酸素を含む材料により構成される
    ことを特徴とする請求項3、4又は5記載の固体撮像装置。
  7. 前記酸素を含む材料は、SiON、SiONC又はSiO2である
    ことを特徴とする請求項6記載の固体撮像装置。
  8. 前記反射防止層は、さらに、
    前記第2反射防止層上に積層され、前記第2反射防止層を構成する材料と屈折率の異なる材料で構成される第3反射防止層を含む
    ことを特徴とする請求項3〜7のいずれか1項に記載の固体撮像装置。
  9. 前記固体撮像装置は、さらに、
    前記複数の配線層より下方の前記受光素子上に形成され、前記入射光の反射を防止する反射防止膜を備える
    ことを特徴とする請求項1〜8のいずれか1項に記載の固体撮像装置。
  10. 前記金属配線は、銅で構成される
    ことを特徴とする請求項1〜9のいずれか1項に記載の固体撮像装置。
JP2006271237A 2006-10-02 2006-10-02 固体撮像装置 Withdrawn JP2008091643A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006271237A JP2008091643A (ja) 2006-10-02 2006-10-02 固体撮像装置
US11/865,271 US20080079106A1 (en) 2006-10-02 2007-10-01 Solid-state imaging device
KR1020070099375A KR20080030950A (ko) 2006-10-02 2007-10-02 고체 촬상 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006271237A JP2008091643A (ja) 2006-10-02 2006-10-02 固体撮像装置

Publications (1)

Publication Number Publication Date
JP2008091643A true JP2008091643A (ja) 2008-04-17

Family

ID=39260307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006271237A Withdrawn JP2008091643A (ja) 2006-10-02 2006-10-02 固体撮像装置

Country Status (3)

Country Link
US (1) US20080079106A1 (ja)
JP (1) JP2008091643A (ja)
KR (1) KR20080030950A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225939A (ja) * 2009-03-24 2010-10-07 Toshiba Corp 固体撮像装置及びその製造方法
KR20110026881A (ko) * 2009-09-09 2011-03-16 삼성전자주식회사 이미지 센서, 그 제조 방법, 및 상기 이미지 센서를 포함하는 장치
JP2012134545A (ja) * 2012-03-09 2012-07-12 Canon Inc 光電変換装置およびその製造方法
WO2013111418A1 (ja) * 2012-01-27 2013-08-01 シャープ株式会社 固体撮像素子
JP2015153870A (ja) * 2014-02-13 2015-08-24 キヤノン株式会社 半導体装置の製造方法、光電変換装置
JP2015156512A (ja) * 2011-05-02 2015-08-27 台湾積體電路製造股▲ふん▼有限公司Taiwan Semiconductor Manufacturing Company,Ltd. 応力耐性が改善された裏面照射型イメージセンサ

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142686A (ja) * 2005-11-16 2007-06-07 Matsushita Electric Ind Co Ltd 固体撮像装置
JP2008244021A (ja) * 2007-03-26 2008-10-09 Matsushita Electric Ind Co Ltd 固体撮像装置およびそれを用いたカメラ
JP2008271159A (ja) * 2007-04-19 2008-11-06 Matsushita Electric Ind Co Ltd 固体撮像装置
JP2008278062A (ja) * 2007-04-26 2008-11-13 Matsushita Electric Ind Co Ltd 固体撮像装置、ad変換器、ad変換方法
US7812380B2 (en) * 2007-10-03 2010-10-12 Panasonic Corporation Solid-state imaging device and manufacturing method of the same
EP2218113B1 (en) 2007-11-01 2016-04-27 Insiava (Pty) Limited Optoelectronic device with light directing arrangement and method of forming the arrangement
JP5314914B2 (ja) * 2008-04-04 2013-10-16 キヤノン株式会社 光電変換装置、撮像システム、設計方法、及び光電変換装置の製造方法
JP4697258B2 (ja) * 2008-05-09 2011-06-08 ソニー株式会社 固体撮像装置と電子機器
US8237832B2 (en) 2008-05-30 2012-08-07 Omnivision Technologies, Inc. Image sensor with focusing interconnections
JP2011108759A (ja) * 2009-11-13 2011-06-02 Canon Inc 固体撮像装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534809B2 (en) * 1999-12-22 2003-03-18 Agilent Technologies, Inc. Hardmask designs for dry etching FeRAM capacitor stacks
US7056826B2 (en) * 2003-01-07 2006-06-06 Taiwan Semiconductor Manufacturing Co., Ltd. Method of forming copper interconnects
US6861686B2 (en) * 2003-01-16 2005-03-01 Samsung Electronics Co., Ltd. Structure of a CMOS image sensor and method for fabricating the same
JP4123060B2 (ja) * 2003-06-11 2008-07-23 ソニー株式会社 固体撮像素子及びその製造方法
US7453109B2 (en) * 2004-09-03 2008-11-18 Canon Kabushiki Kaisha Solid-state image sensor and imaging system
US7193289B2 (en) * 2004-11-30 2007-03-20 International Business Machines Corporation Damascene copper wiring image sensor
US8120077B2 (en) * 2004-12-16 2012-02-21 Panasonic Corporation Solid-state imaging device comprising doped channel stop at isolation regions to suppress noise

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225939A (ja) * 2009-03-24 2010-10-07 Toshiba Corp 固体撮像装置及びその製造方法
US8648435B2 (en) 2009-03-24 2014-02-11 Kabushiki Kaisha Toshiba Solid-state imaging device and method for manufacturing same
KR20110026881A (ko) * 2009-09-09 2011-03-16 삼성전자주식회사 이미지 센서, 그 제조 방법, 및 상기 이미지 센서를 포함하는 장치
JP2011061203A (ja) * 2009-09-09 2011-03-24 Samsung Electronics Co Ltd 反射防止イメージセンサ
KR101647779B1 (ko) 2009-09-09 2016-08-11 삼성전자 주식회사 이미지 센서, 그 제조 방법, 및 상기 이미지 센서를 포함하는 장치
JP2015156512A (ja) * 2011-05-02 2015-08-27 台湾積體電路製造股▲ふん▼有限公司Taiwan Semiconductor Manufacturing Company,Ltd. 応力耐性が改善された裏面照射型イメージセンサ
WO2013111418A1 (ja) * 2012-01-27 2013-08-01 シャープ株式会社 固体撮像素子
JP2012134545A (ja) * 2012-03-09 2012-07-12 Canon Inc 光電変換装置およびその製造方法
JP2015153870A (ja) * 2014-02-13 2015-08-24 キヤノン株式会社 半導体装置の製造方法、光電変換装置

Also Published As

Publication number Publication date
KR20080030950A (ko) 2008-04-07
US20080079106A1 (en) 2008-04-03

Similar Documents

Publication Publication Date Title
JP2008091643A (ja) 固体撮像装置
JP4944399B2 (ja) 固体撮像装置
JP2008192951A (ja) 固体撮像装置およびその製造方法
WO2013051462A1 (ja) 固体撮像装置、固体撮像装置の製造方法、および電子機器
JP5120396B2 (ja) 固体撮像装置およびその製造方法
JP2009021415A (ja) 固体撮像装置およびその製造方法
JP2006237576A (ja) Cmosイメージ・センサ
JP2008091771A (ja) 固体撮像装置およびその製造方法
JP2010103458A (ja) 固体撮像装置とその製造方法、及び電子機器
JP2007181209A (ja) イメージセンサ及びその製造方法
US9608021B2 (en) Image sensor and method for manufacturing thereof
JP6083572B2 (ja) 固体撮像装置及びその製造方法
JP2006191000A (ja) 光電変換装置
JP2013214616A (ja) 固体撮像装置、固体撮像装置の製造方法及び電子機器
JP2009283482A (ja) 固体撮像装置
US8659687B2 (en) Photoelectric conversion film stack-type solid-state imaging device and imaging apparatus
JP2012186396A (ja) 固体撮像装置およびその製造方法
US8053268B2 (en) Semiconductor device and method of manufacturing the same
JP2009146957A (ja) 固体撮像装置及び固体撮像装置の製造方法
JP2012204387A (ja) 固体撮像素子およびその製造方法
JP2006339339A (ja) 固体撮像装置及びその製造方法
JP2005340498A (ja) 固体撮像素子
JP4682568B2 (ja) 固体撮像素子の製造方法
JP5383124B2 (ja) 固体撮像装置およびその製造方法
JP6254829B2 (ja) 固体撮像素子及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090902

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110405