WO2013111418A1 - 固体撮像素子 - Google Patents

固体撮像素子 Download PDF

Info

Publication number
WO2013111418A1
WO2013111418A1 PCT/JP2012/078977 JP2012078977W WO2013111418A1 WO 2013111418 A1 WO2013111418 A1 WO 2013111418A1 JP 2012078977 W JP2012078977 W JP 2012078977W WO 2013111418 A1 WO2013111418 A1 WO 2013111418A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent insulating
insulating film
film
solid
state imaging
Prior art date
Application number
PCT/JP2012/078977
Other languages
English (en)
French (fr)
Inventor
大輔 舩尾
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013111418A1 publication Critical patent/WO2013111418A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures

Definitions

  • the present invention relates to a solid-state imaging device typified by a CMOS (Complementary Metal Oxide Semiconductor) image sensor or a CCD (Charge Coupled Device) image sensor.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Device
  • solid-state imaging devices such as CCD image sensors and CMOS image sensors have been mounted on various electronic devices having imaging functions such as imaging devices such as digital video cameras and digital still cameras, and mobile phones with cameras.
  • the solid-state imaging device generates a charge by photoelectrically converting irradiated light and amplifies a potential due to the charge to generate a signal constituting an image.
  • a back-illuminated solid-state imaging device is provided with a circuit member such as a gate electrode and wiring on the surface of a silicon substrate having a photoelectric conversion portion formed therein, and a color filter, a micro lens, and the like on the back surface of the substrate.
  • the optical member is provided, and imaging is performed by making light incident on the substrate from the back surface.
  • a normal solid-state imaging device has a configuration in which a circuit member is provided on the surface of a substrate and an optical member is further provided thereon.
  • the backside illumination type solid-state imaging device no circuit member is provided between the optical member and the back surface of the substrate. Therefore, compared with a normal solid-state image sensor, the distance between the optical member and the photoelectric conversion unit can be shortened, and the structure on the back side of the substrate can be freely designed.
  • Patent Document 1 in a back-illuminated solid-state imaging device, a silicon oxide film is formed on the back surface of a substrate on which a photoelectric conversion unit is formed, and further, nitriding that holds electrons injected from the outside is further formed on the silicon oxide film.
  • a solid-state imaging device in which a silicon film is formed and holes are collected on the back surface of the substrate to suppress generation of dark current and reduction in quantum efficiency.
  • the film thickness of each of the silicon oxide film and the silicon nitride film is controlled to optimize multiple reflection, thereby improving the light transmittance and obtaining good sensitivity.
  • the thickness of the substrate is used to shorten the distance between the photoelectric conversion unit formed inside the substrate but on the front surface side and the optical member formed on the back surface of the substrate.
  • the substrate is processed by polishing or the like so that the thickness becomes 10 ⁇ m or less.
  • a strong (tensile) stress is generated on the processed substrate.
  • substrate since a dark current increases because a board
  • a light shielding film made of metal is often provided on the back side of the substrate.
  • the metal film can be a source of strong stress, dark current may increase. Further, the dark current may increase due to absorption of hydrogen present on the substrate surface by the metal film.
  • contamination of the metal originating from the metal film easily enters the substrate, and contamination is likely to occur, increasing the number of white point defect pixels (pixels that can only obtain white point signals in the image). Because there is a problem.
  • the back-illuminated solid-state imaging device can shorten the distance between the substrate and the light-shielding film (optical member) as compared with a normal solid-state imaging device. However, the shorter this distance is, the more likely metal contamination occurs on the substrate.
  • the thickness of the silicon oxide film is set to 15 nm to 40 nm and the thickness of the silicon nitride film is set to 20 nm to 50 nm.
  • this film thickness it is difficult to relieve stress generated in the substrate.
  • an object of the present invention is to provide a solid-state imaging device that suppresses dark current and white point defect pixels generated due to stress generated in a substrate and achieves high sensitivity.
  • the present invention is formed of silicon, and a photoelectric conversion unit that photoelectrically converts light incident from the first surface is formed therein, and the second surface on the opposite side of the first surface is A substrate provided with a circuit member for driving the photoelectric conversion unit; A first transparent insulating film formed over the first surface of the substrate and made of silicon nitride or silicon oxynitride; A second transparent insulating film formed above the first transparent insulating film, made of silicon oxynitride having a composition ratio of oxygen larger than that of silicon oxide or nitrogen and having a composition different from that of the first transparent insulating film; A solid-state imaging device comprising: a third transparent insulating film formed above the second transparent insulating film and made of silicon nitride or silicon oxynitride and having a composition different from that of the second transparent insulating film.
  • this solid-state imaging device by providing the first transparent insulating film, it is possible to optimize the multiple reflection and increase the transmittance of light incident on the first surface of the substrate. Further, since the first transparent insulating film and the third transparent insulating film are divided by providing the second transparent insulating film, even if the thickness of the third transparent insulating film is increased, the first transparent insulating film It is possible to maintain the state of multiple reflection that has been realized. Further, by providing the third transparent insulating film, it is possible to relieve stress generated in the substrate.
  • the solid-state imaging device having the above characteristics may further include a light shielding film made of metal, and the light shielding film may be formed above the first transparent insulating film.
  • the first transparent insulating film is provided between the light-shielding film and the substrate, which are likely to generate large stress due to being made of metal. Therefore, it is possible to mitigate the influence of the stress generated in the light shielding film on the substrate. In addition, since the distance between the light shielding film and the substrate can be shortened, it is possible to effectively shield the light.
  • the light shielding film may be formed above the second transparent insulating film.
  • the first transparent insulating film and the second transparent insulating film are provided between the light-shielding film and the substrate, which are likely to generate large stress due to being made of metal. Therefore, it is possible to mitigate the influence of the stress generated in the light shielding film on the substrate. In this case, the influence can be mitigated more effectively than in the case where a light shielding film is provided on the upper surface of the first transparent insulating film. Furthermore, the distance between the substrate and the light shielding film can be increased as compared with the case where the light shielding film is provided on the upper surface of the first transparent insulating film. Therefore, metal contamination on the substrate can be more effectively suppressed as compared with the case where a light shielding film is provided on the upper surface of the first transparent insulating film. Furthermore, it is possible to suppress the metal from absorbing hydrogen present on the substrate surface.
  • the solid-state imaging device having the above characteristics, a region that is directly above or immediately below the light shielding film in at least one of the first transparent insulating film, the second transparent insulating film, and the third transparent insulating film. It is preferable that the film thickness is different between the other regions.
  • the first transparent insulating film, the first transparent insulating film, the light-shielding film while maintaining the effects of providing the first transparent insulating film, the second transparent insulating film, and the third transparent insulating film, It becomes possible to optimize the film thickness of each of the second transparent insulating film and the third transparent insulating film.
  • the solid-state imaging device having the above characteristics, a region that is directly above or immediately below the light shielding film in at least one of the first transparent insulating film, the second transparent insulating film, and the third transparent insulating film.
  • the film thickness is preferably larger than the film thickness in other regions.
  • a light-receiving pixel having a structure in which light is incident on the photoelectric conversion unit, and a light-shielding pixel having a structure in which light incident on the photoelectric conversion unit is blocked by the light-shielding film The film thickness of the third transparent insulating film is The dark current in the shading pixel is minimized, The probability that the shading pixel is a white point defect pixel is minimized, The difference between the dark current in the light-shielding pixel and the dark current in the light-receiving pixel is minimized, and The difference between the probability that the light-shielding pixel becomes a white point defect pixel and the probability that the light receiving pixel becomes a white point defect is minimized, It is preferable that it is determined to satisfy at least one of the above.
  • this solid-state imaging device it is possible to effectively suppress the error output due to the occurrence of dark current or white point defect pixels in the signal output from the solid-state imaging device.
  • the solid-state imaging device is formed between the first surface of the substrate and the first transparent insulating film, and is made of silicon oxynitride having a composition ratio of oxygen larger than that of silicon oxide or nitrogen. It is preferable to further include a base film having a composition different from that of the first transparent insulating film.
  • this solid-state imaging device by providing the base film, it is possible to reduce the density of interface states existing at the interface of the first surface of the substrate and suppress dark current.
  • the thickness of the base film is 20 nm or less.
  • this solid-state imaging device it is possible to effectively suppress reflection of light incident on the first surface of the substrate and increase the transmittance of the light.
  • the film thickness of the first transparent insulating film is 25 nm or more and 100 nm or less.
  • this solid-state imaging device it is possible to effectively suppress reflection of light incident on the first surface of the substrate and increase the transmittance of the light.
  • the thickness of the second transparent insulating film is 20 nm or more and 500 nm or less.
  • the multiple reflection state realized by the first transparent insulating film can be effectively maintained. Moreover, it becomes possible to suppress the fall of a sensitivity and generation
  • the film thickness of the third transparent insulating film is 30 nm or more and 500 nm or less.
  • this solid-state imaging device it is possible to effectively relieve the stress generated on the substrate. Moreover, it becomes possible to suppress the fall of a sensitivity and generation
  • the thickness of the first transparent insulating film is determined so that the reflectance of green light is minimized.
  • the film thickness of the first transparent insulating film may be determined so that the reflectance of blue light is minimized, or the film thickness of the first transparent insulating film is The reflectance of red or infrared light may be determined to be minimum.
  • this solid-state imaging device it is possible to arbitrarily select the color (wavelength) of light that minimizes the reflectance (increases sensitivity) according to the use of the solid-state imaging device. For example, with this solid-state imaging device, it is possible to easily increase blue sensitivity, which is generally difficult to increase sensitivity.
  • the first transparent insulating film may be formed of hafnium oxide, zirconium oxide, tantalum oxide, titanium oxide, tungsten oxide, zinc oxide, yttrium oxide, oxide instead of silicon nitride or silicon oxynitride. You may consist of an oxide of aluminum or a lanthanoid.
  • the first transparent insulating film is formed of a material having a negative fixed charge. Therefore, when the substrate is p-type, it is possible to collect holes on the surface of the substrate and suppress dark current (electrons). In addition, since the refractive index of the first transparent insulating film can be made higher than that of silicon nitride or silicon oxynitride, reflection of light incident on the first surface of the substrate can be suppressed.
  • the solid-state imaging device having the above characteristics, by providing each of the first transparent insulating film, the second transparent insulating film, and the third transparent insulating film, the stress generated in the substrate is relieved and incident on the first surface of the substrate. It is possible to increase the transmittance of light. That is, it is possible to suppress dark current and white point defect pixels generated due to stress generated in the substrate, and to achieve high sensitivity.
  • FIG. 1 is a cross-sectional view showing an example of the structure of a solid-state imaging device according to a first embodiment of the present invention.
  • Sectional drawing which shows the structural example of the solid-state image sensor which concerns on 3rd Embodiment of this invention.
  • FIG. 1 is a cross-sectional view illustrating an exemplary structure of a solid-state imaging device according to the first embodiment of the present invention.
  • the solid-state imaging device 1 includes a substrate 10 made of silicon, and a photoelectric element that is formed in the substrate 10 and photoelectrically converts light incident from the first surface 101 of the substrate 10 to generate charges.
  • an accumulation unit 111 for accumulating the generated charges is provided inside the photoelectric conversion unit 11. Further, in the wiring layer 12, a circuit member made of a gate electrode, wiring, or the like that drives the photoelectric conversion unit 11 (for example, accumulates charges in the accumulation unit 111 or moves charges accumulated in the accumulation unit 111). 121 is provided.
  • the microlens 20, the color filter 18, and the storage unit 111 are perpendicular to the first surface 101 and the second surface 102 of the substrate 10 (up and down direction in the drawing). Are arranged in a row, and each row constitutes a pixel. For example, these pixels are arranged in a matrix in a plane parallel to the first surface 101 and the second surface 102 of the substrate 10. Specifically, for example, these pixels are arranged in a Bayer array when focusing on the color transmitted by the color filter 18.
  • the region for each pixel in the substrate 10 is a photoelectric conversion unit 11 in each pixel, and in FIG. 1, the boundary of the photoelectric conversion unit 11 in the substrate 10 is indicated by a broken line.
  • the substrate 10 is made of p-type or n-type silicon.
  • the storage unit 111 is made of silicon having a conductivity type opposite to that of the substrate 10. That is, the photoelectric conversion unit 11 including the partial region of the substrate 10 and the storage unit 111 constitutes a photodiode. Further, the storage unit 111 is arranged in the substrate 10 with a predetermined periodicity in a direction parallel to the first surface 101 and the second surface 102. Specifically, for example, the storage unit 111 is located at the center of each pixel with a predetermined interval in a direction parallel to the first surface 101 and the second surface 102.
  • FIG. 1 illustrates the state in which the storage unit 111 is arranged with a predetermined periodicity in the left-right direction of the paper surface.
  • the storage unit 111 also has a predetermined cycle in the depth direction of the paper surface. It is arranged with sex. It should be noted that a region having the same conductivity type as that of the substrate 10 and having a higher impurity concentration than the surroundings is formed at the boundary portion of the photoelectric conversion unit 11 (broken line portion in the drawing and its vicinity), and photoelectric conversion of adjacent pixels is performed. It is preferable to suppress the flow of charge between the portions 11.
  • the light incident on the solid-state imaging device 1 is collected by the microlens 20, passes through the second coat film 19, and is transmitted to the color filter 18.
  • the color filter 18 selectively transmits light of a predetermined color (wavelength).
  • the light transmitted through the color filter 18 is transmitted through the first coat film 17, the third transparent insulating film 16, the second transparent insulating film 15, the first transparent insulating film 14, and the base film 13, and from the first surface 101.
  • electrons and holes are generated by photoelectric conversion of incident light, and one of them is stored in the storage unit 111.
  • the storage unit 111 For example, if the substrate 10 is p-type and the storage unit 111 is n-type, electrons generated by photoelectric conversion are stored in the storage unit 111. Conversely, if the substrate 10 is n-type and the storage unit 111 is p-type, holes generated by photoelectric conversion are stored in the storage unit 111.
  • the solid-state imaging device 1 can be manufactured by sequentially performing the following steps (1) to (4), for example.
  • Ion implantation is performed on one surface (second surface 102) of the silicon substrate to form the storage unit 111.
  • the wiring layer 12 is formed on one surface (second surface 102) of the silicon substrate.
  • the other surface side (first surface 101 side) of the silicon substrate is thinned by polishing (for example, 10 ⁇ m or less) to form the substrate 10.
  • a base film 13 is formed on the first surface 101 of the substrate 10, a first transparent insulating film 14 is further formed thereon, a second transparent insulating film 15 is further formed thereon, and A third transparent insulating film 16 is formed thereon, a first coat film 17 is further formed thereon, a color filter 18 is further formed thereon, a second coat film 19 is further formed thereon, and A microlens 20 is formed thereon.
  • the base film 13 is made of silicon oxynitride having a larger oxygen composition ratio than silicon oxide or nitrogen. By providing such a base film 13, it is possible to reduce the density of interface states existing at the interface of the first surface 101 of the substrate 10 and suppress dark current.
  • the film thickness of the base film 13 is 20 nm or less.
  • the base film 13 is preferably as small as possible. Therefore, if the generation of dark current and white point defective pixels is suppressed without any problem, the base film 13 may not be provided.
  • the base film 13 is made of silicon oxide
  • an SOI (Silicon On On Insulator) substrate may be used instead of the silicon substrate.
  • polishing may be performed until the buried oxide layer in the SOI substrate is exposed, and the exposed buried oxide layer may be used as the base film 13.
  • the base film 13 can also be formed using a general film forming method (for example, plasma CVD (Chemical Vapor Deposition), sputtering, etc., the same applies hereinafter).
  • the first transparent insulating film 14 is made of silicon nitride or silicon oxynitride. However, the compositions of the first transparent insulating film 14 and the base film 13 are different (particularly when the first transparent insulating film 14 and the base film 13 are both made of silicon oxynitride. For example, the first transparent insulating film 14 (The composition ratio of nitrogen becomes larger than the composition ratio of nitrogen in the base film 13).
  • the second transparent insulating film 15 is made of silicon oxynitride having a composition ratio of oxygen larger than that of silicon oxide or nitrogen.
  • the second transparent insulating film 15 and the first transparent insulating film 14 have different compositions (particularly when the second transparent insulating film 15 and the first transparent insulating film 14 are both made of silicon oxynitride.
  • the composition ratio of oxygen in the second transparent insulating film 15 is larger than the composition ratio of oxygen in the first transparent insulating film 14).
  • the third transparent insulating film 16 is made of silicon nitride or silicon oxynitride.
  • the third transparent insulating film 16 and the second transparent insulating film 15 have different compositions (particularly when the third transparent insulating film 16 and the second transparent insulating film 15 are both made of silicon oxynitride.
  • the composition ratio of nitrogen in the third transparent insulating film 16 becomes larger than the composition ratio of nitrogen in the second transparent insulating film 15).
  • the solid-state imaging device 1 by providing the first transparent insulating film 14, it is possible to optimize the multiple reflection and increase the transmittance of light incident on the first surface 101 of the substrate 10. Further, since the first transparent insulating film 14 and the third transparent insulating film 16 are divided by providing the second transparent insulating film 15, even if the film thickness of the third transparent insulating film 16 is increased, the first transparent insulating film 15 and the third transparent insulating film 16 are separated. The multiple reflection state realized by the transparent insulating film 14 can be maintained. Further, by providing the third transparent insulating film 16, it is possible to relieve stress generated in the substrate 10.
  • the first to third transparent insulating films 14 to 16 can be formed by using a general film forming method. Note that suitable film thicknesses of the first to third transparent insulating films 14 to 16 will be described later.
  • the first coat film 17 and the second coat film 19 are made of, for example, a resin, and are provided in order to improve the surface flatness and the adhesion between the third transparent insulating film 16, the color filter 18, and the microlens 20.
  • the color filter 18 is made of, for example, a resin containing a pigment, and the pigment has a property of selectively transmitting light of a predetermined color (wavelength).
  • the microlens 20 is made of, for example, resin, and has a convex shape to collect incident light on the color filter 18.
  • the solid-state imaging device 1 by providing each of the first transparent insulating film 14, the second transparent insulating film 15, and the third transparent insulating film 16, stress generated in the substrate 10 is relieved and the substrate 10 It is possible to increase the transmittance of light incident on the first surface 101. That is, it is possible to suppress dark current and white point defect pixels generated due to the stress generated in the substrate 10 and to increase the sensitivity.
  • FIG. 2 is a graph showing the relationship between the film thickness of the first transparent insulating film and the reflectance of light of each wavelength.
  • FIG. 3 is a graph showing the relationship between the film thickness of the third transparent insulating film and the reflectance of light of each wavelength.
  • the horizontal axis represents the film thickness of the first transparent insulating film 14
  • the vertical axis represents the light reflectance.
  • the horizontal axis indicates the film thickness of the third transparent insulating film 16
  • the vertical axis indicates the light reflectance.
  • each light reflectance is shown about the light of three wavelengths of 610 nm (red), 540 nm (green), and 450 nm (blue).
  • the graph shown in FIG. 2 shows that the base film 13 (made of silicon oxide, film thickness 10 nm) and the first transparent insulating film 14 (made of silicon oxynitride having a refractive index of 1.8) are formed on the substrate 10. This shows the reflectance of the sample on which the value of) was formed. Also, the graph shown in FIG.
  • the substrate 10 has a base film 13 (made of silicon oxide, film thickness 10 nm), a first transparent insulating film 14 (made of silicon oxynitride having a refractive index of 2.0, film thickness 60 nm), Reflection of the sample on which the second transparent insulating film 15 (made of silicon oxide, film thickness 70 nm) and the third transparent insulating film 16 (made of silicon oxynitride having a refractive index of 1.8, the film thickness is a value on the horizontal axis) is formed. Indicates the rate.
  • the thickness of the first transparent insulating film 14 is 25 nm or more and 100 nm or less. In particular, it is preferable to set the film thickness of the first transparent insulating film 14 to 40 nm or more and 80 nm or less because the reflectance of each of the three wavelengths can be reduced to the average value or less.
  • the film thickness of the first transparent insulating film 14 is around 65 nm, the reflectance of light of 540 nm (green), which has a large contribution to luminance, becomes a minimum value, and the other 610 nm (red) and 450 nm (blue). The light reflectance is also low, which is preferable.
  • the film thickness of the first transparent insulating film 14 when the film thickness of the first transparent insulating film 14 is outside the range of 25 nm to 100 nm (particularly, in order to relieve the stress generated in the substrate 10). If the thickness of the light source is larger than 100 nm), it becomes difficult to reduce the reflectance of light of all wavelengths. Specifically, for example, when the thickness of the first transparent insulating film 14 is 250 nm, the reflectance of light of 610 nm (red) becomes a minimum value, but the reflectance of light of 450 nm (blue) exceeds 30%. As a result, the sensitivity is significantly reduced.
  • the second transparent insulating film 15 is preferably divided into the first transparent insulating film 14 and the third transparent insulating film 16 to effectively maintain the multiple reflection state realized by the first transparent insulating film 14. Is required. For this reason, the thickness of the second transparent insulating film 15 is preferably 20 nm or more.
  • the film thickness of the second transparent insulating film 15 is large, the distance between the substrate 10 and the optical member (for example, the color filter 18 or the microlens 20) becomes unnecessarily long, and the sensitivity decreases or color mixing (for a certain pixel). There is a concern that incident light leaks to other pixels and is detected by the other pixels. Therefore, the film thickness of the second transparent insulating film 15 is preferably set to 500 nm or less.
  • the film thickness of the third transparent insulating film 16 can be set to any size.
  • the reflectance can be lowered (for example, 20% or less). Even if the film thickness of the third transparent insulating film 16 is increased by providing the second transparent insulating film 15 between the first transparent insulating film 14 and the third transparent insulating film 16 as described above. This is because the preferable multiple reflection state realized by the first transparent insulating film 14 is effectively maintained.
  • the third transparent insulating film 16 is required to effectively relieve stress generated in the substrate 10. For this reason, the thickness of the third transparent insulating film 16 is preferably 30 nm or more.
  • the thickness of the third transparent insulating film 16 is preferably set to 500 nm or less.
  • the reflectance graphs shown in FIGS. 2 and 3 are merely examples, and the reflectance graphs vary depending on the refractive index (composition, material) and film thickness of each film of the solid-state imaging device 1. obtain. However, as long as the structure including the first to third transparent insulating films 14 to 16 is adopted, the dark current and white point defect pixels generated due to the stress generated in the substrate 10 are suppressed based on the same concept as described above. In addition, it is possible to specify a suitable film thickness of the first to third transparent insulating films 14 to 16 that can achieve both high sensitivity and high sensitivity at the same time.
  • FIG. 4 is a cross-sectional view showing a structural example of a solid-state imaging device according to the second embodiment of the present invention.
  • FIG. 4 corresponds to FIG. 1 shown for the solid-state imaging device 1 according to the first embodiment of the present invention.
  • the solid-state imaging device 1A according to the second embodiment of the present invention shown in FIG. The parts that are the same as those of the solid-state imaging device 1 according to the first embodiment of the present invention shown in FIG.
  • the solid-state imaging device 1A includes a substrate 10, a photoelectric conversion unit 11 and a storage unit 111, a wiring layer 12 and a circuit member 121, a base film 13, and first to third transparent insulating films 14.
  • a first coat film 17 a color filter 18, a second coat film 19, and a microlens 20.
  • the solid-state imaging device 1 ⁇ / b> A includes a light receiving pixel in which light enters the photoelectric conversion unit 11 and a light shielding pixel in which the light incident on the photoelectric conversion unit 11 is blocked.
  • a light shielding film 30 that shields light incident on the photoelectric conversion unit 11 is provided between the second transparent insulating film 15 and the third transparent insulating film 16.
  • the light shielding film 30 is made of metal, and is formed, for example, so as to entirely cover the photoelectric conversion unit 11.
  • the solid-state imaging device 1A is different from the solid-state imaging device 1 shown in FIG. 1 in that it includes a light-shielding pixel having a light-shielding film 30, but the structure, operation, and effects obtained are the same. Therefore, in the following, differences between the solid-state imaging device 1A and the solid-state imaging device 1 will be described in detail, and the description of the points that are the same will be omitted because the description regarding the solid-state imaging device 1 is taken into consideration.
  • the light shielding pixel is a pixel for detecting dark current. For example, by subtracting a signal corresponding to the electric charge accumulated in the light-shielding pixel accumulation unit 111 from a signal corresponding to the electric charge accumulated in the light-receiving pixel accumulation unit 111, the dark current of the signal obtained from the light-receiving pixel is subtracted. Ingredients can be removed.
  • the first transparent insulating film and the second transparent insulating film are provided between the light-shielding film 30 and the substrate 10 that are likely to generate large stress due to being made of metal. Therefore, it is possible to mitigate the influence of the stress generated in the light shielding film 30 on the substrate 10.
  • FIG. 4 illustrates the case where the light shielding film 30 is formed on the upper surface of the second transparent insulating film 15, it may be formed on the upper surface of the first transparent insulating film 14. Also in this case, the influence of the stress generated in the light shielding film 30 on the substrate 10 can be reduced. In addition, since the distance between the light shielding film 30 and the substrate 10 can be shortened, the light can be effectively shielded.
  • the film thickness of the third transparent insulating film 30 may be optimized based on the light-shielding pixel. Specifically, for example, the film thickness of the third transparent insulating film 30 may be determined so as to satisfy at least one of the following conditions (1) to (4). (1) The dark current in the light-shielded pixel is minimized. (2) The probability that the light-shielded pixel is a white point defective pixel is minimized. (3) The difference between the dark current in the light shielding pixel and the dark current in the light receiving pixel is minimized. (4) The difference between the probability that the light-shielding pixel becomes a white point defect pixel and the probability that the light receiving pixel becomes a white point defect is minimized.
  • the film thickness of the third transparent insulating film 30 is determined as described above, it is effective that the signal output from the solid-state imaging device 1A includes errors due to the occurrence of dark current and white point defective pixels. It becomes possible to suppress.
  • FIG. 5 is a cross-sectional view showing a structural example of a solid-state imaging device according to the third embodiment of the present invention.
  • FIG. 5 corresponds to FIG. 1 shown for the solid-state imaging device 1 according to the first embodiment of the present invention.
  • the solid-state imaging device 1B according to the third embodiment of the present invention shown in FIG. The parts that are the same as those of the solid-state imaging device 1 according to the first embodiment of the present invention shown in FIG.
  • the solid-state imaging device 1B includes a substrate 10, a photoelectric conversion unit 11 and a storage unit 111, a wiring layer 12, a circuit member 121, a base film 13, and first to third transparent insulating films 14.
  • a first coat film 17 a color filter 18, a second coat film 19, and a microlens 20.
  • the solid-state imaging device 1B has light that enters the adjacent pixel beyond the pixel boundary between the second transparent insulating film 15 and the third transparent insulating film 16 at the boundary between adjacent pixels (that is, , A light shielding film 40 that shields light that causes color mixing).
  • the light shielding film 40 is made of metal, and is formed with a predetermined width at the boundary between adjacent pixels, for example.
  • the solid-state image pickup device 1B is different from the solid-state image pickup device 1 shown in FIG. 1 in that the light-shielding film 40 is provided at the boundary of the pixels, but the other structures, operations, and effects obtained are the same. Therefore, in the following, differences between the solid-state imaging device 1B and the solid-state imaging device 1 will be described in detail, and the description of the points that are the same will be omitted because the description regarding the solid-state imaging device 1 is taken into consideration.
  • the first transparent insulating film and the second transparent insulating film are provided between the light-shielding film 40 and the substrate 10 that are likely to generate large stress due to being made of metal. Therefore, it is possible to mitigate the influence of the stress generated in the light shielding film 40 on the substrate 10.
  • FIG. 5 illustrates the case where the light shielding film 40 is formed on the upper surface of the second transparent insulating film 15, it may be formed on the upper surface of the first transparent insulating film 14. Also in this case, the influence of the stress generated in the light shielding film 40 on the substrate 10 can be reduced. Further, since the distance between the light shielding film 40 and the substrate 10 is shortened, it is possible to effectively shield the light.
  • the light shielding film 40 is formed on the upper surface of the second transparent insulating film 15, it is more effective than the case where the light shielding film 40 is provided on the upper surface of the first transparent insulating film. This effect can be mitigated. Furthermore, the distance between the substrate 10 and the light shielding film 40 can be increased as compared with the case where the light shielding film 40 is provided on the upper surface of the first transparent insulating film 14. Therefore, metal contamination in the substrate 10 can be more effectively suppressed as compared with the case where the light shielding film 40 is provided on the upper surface of the first transparent insulating film 14.
  • FIG. 6 is a cross-sectional view showing a structural example of a solid-state imaging device according to the fourth embodiment of the present invention. 6 corresponds to FIG. 5 shown for the solid-state imaging device 1B according to the third embodiment of the present invention.
  • the solid-state imaging device 1C according to the fourth embodiment of the present invention shown in FIG. The parts that are the same as those of the solid-state imaging device 1B according to the third embodiment of the present invention shown in FIG.
  • the solid-state imaging device 1 ⁇ / b> C includes a substrate 10, a photoelectric conversion unit 11 and a storage unit 111, a wiring layer 12 and a circuit member 121, a base film 13, and first to third transparent insulating films 14. , 15a, 16, a first coating film 17, a color filter 18, a second coating film 19, a microlens 20, and a light shielding film 40.
  • the film thickness of the second transparent insulating film 15a included in the solid-state imaging device 1C is different between the region immediately below the light shielding film 40 and the other regions. Specifically, in the second transparent insulating film 15a, the thickness of the region immediately below the light shielding film 40 is larger than the thickness of the other regions.
  • the solid-state imaging device 1C is different from the solid-state imaging device 1B shown in FIG. 5 in that the film thickness of the second transparent insulating film 15a differs from region to region. It is the same. Therefore, in the following, differences between the solid-state imaging device 1C and the solid-state imaging device 1B will be described in detail, and the description of the points that are the same will be omitted because the description regarding the solid-state imaging devices 1 and 1B is referred to.
  • the first transparent insulating film 14, the second transparent insulating film 15a, and the second transparent insulating film 15a are formed by making the film thickness of the second transparent insulating film 15a different between the region immediately below the light shielding film 40 and the other region.
  • the film thickness of the region immediately below the light shielding film 40 is made larger than the film thickness of the other regions, thereby generating the light shielding film 40. It is possible to effectively relieve stress.
  • the thickness of the second transparent insulating film 15 a is different for each region is illustrated, but not limited to the second transparent insulating film 15 a, the first transparent insulating film 14 and the third transparent insulating film 15 a.
  • the film thickness of the transparent insulating film 16 may be varied for each region. That is, the film thickness of at least one of the first to third transparent insulating films 14 to 16 may be different between the region immediately above or directly below the light shielding film 40 and the other regions. Good. Further, for at least one of the first to third transparent insulating films 14 to 16, the thickness of the region immediately above or directly below the light shielding film 40 is larger than the thickness of the other regions. It may be.
  • the film thickness of the first transparent insulating film 14 may be determined so that the reflectance of green light (for example, light having a wavelength of 540 nm) is minimized. In this case, since it is possible to optimize the transmittance of green light having a large contribution to luminance, it is possible to effectively improve the luminance SNR.
  • green light for example, light having a wavelength of 540 nm
  • the film thickness of the first transparent insulating film 14 may be determined so that the reflectance of blue light (for example, light having a wavelength of 450 nm) is minimized.
  • the film thickness of the first transparent insulating film 14 may be determined so that the reflectance of red or infrared light (for example, light having a wavelength of 610 nm) is minimized.
  • the film thickness of the third transparent insulating film 16 is generated not only on the stress generated in the substrate 10 but also on other films such as the first transparent insulating film 14, the second transparent insulating film 15, and the light shielding films 30 and 40. It is preferable to determine in consideration of stress and stress generated in the color filter 18 and the microlens 20. For example, it is preferable that the film thickness of the third transparent insulating film 16 is selected so that stress generated in these films does not become excessive.
  • the first to fourth embodiments of the present invention described above can be implemented in combination as long as there is no contradiction.
  • the light shielding film 30 (see FIG. 4)
  • a light shielding film 40 (see FIG. 5) may be provided at the boundary between adjacent pixels.
  • the light shielding film 30 (see FIG. 4) is provided, and the first The film thickness of at least one of the first to third transparent insulating films 14 to 16 may be different between a region immediately above or directly below the light shielding film 30 and other regions.
  • the first transparent insulating film 14 is described as being made of silicon nitride or silicon oxynitride. It is good also as what consists of these materials.
  • hafnium oxide, zirconium oxide, tantalum oxide, titanium oxide, tungsten oxide, zinc oxide, yttrium oxide, aluminum oxide, or a lanthanoid oxide may be used as the material forming the first transparent insulating film 14.
  • hafnium oxide, zirconium oxide, tantalum oxide, titanium oxide, tungsten oxide, zinc oxide, yttrium oxide, aluminum oxide, or a lanthanoid oxide may be used as the material forming the first transparent insulating film 14. Good. These materials have a negative fixed charge. Therefore, when the substrate 10 is p-type and the storage unit 111 is n-type, the first transparent insulating film 14 is made of these materials, so that holes are collected on the surface of the substrate 10 and dark current (electrons) is generated. It becomes possible to suppress.
  • the refractive index of silicon forming the substrate 10 is about 4 to 5. Therefore, when a material having a refractive index higher than that of silicon nitride having a refractive index of about 2 and silicon oxynitride having a refractive index lower than that is applied to the first transparent insulating film 14, it is incident on the first surface 101 of the substrate 10. This is preferable because reflection of light can be suppressed.
  • zirconium oxide, titanium oxide, tantalum oxide and tungsten oxide have a higher refractive index than silicon nitride.
  • hafnium oxide and zinc oxide have a refractive index comparable to that of silicon nitride.
  • Yttrium oxide and aluminum oxide have a refractive index of about 1.7 to 1.8 and are lower than silicon nitride, but may be higher than silicon oxynitride (composition of nitrogen and oxygen in silicon oxynitride) Depending on the ratio).
  • the first reflection of the first surface 101 of the substrate 10 is optimized by adjusting the film thicknesses of the first to third transparent insulation films 14 to 16 and 15a. It is preferable to increase the transmittance of light incident on. Even if the first transparent insulating film 14 is made of the above-described material, the stress generated on the substrate 10 by the third transparent insulating film 16 can be relieved.
  • the solid-state imaging device according to the present invention can be suitably used for, for example, a CMOS image sensor or a CCD image sensor mounted on various electronic devices having an imaging function.
  • Solid-state image sensor 10 Board

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

 基板に生じる応力に起因して発生する暗電流や白点欠陥画素を抑制するとともに、高感度化を図った固体撮像素子を提供する。固体撮像素子1は、シリコンから成り第1面101から入射する光を光電変換する光電変換部11が内部に形成され第2面102に光電変換部11を駆動する回路部材121が設けられる基板10と、基板10の第1面101の上方に形成され窒化シリコンまたは酸窒化シリコンから成る第1透明絶縁膜14と、第1透明絶縁膜14の上方に形成され酸化シリコンまたは窒素よりも酸素の組成比が大きい酸窒化シリコンから成るとともに第1透明絶縁膜14とは組成が異なる第2透明絶縁膜15と、第2透明絶縁膜15の上方に形成され窒化シリコンまたは酸窒化シリコンから成るとともに第2透明絶縁膜15とは組成が異なる第3透明絶縁膜16と、を備える。

Description

固体撮像素子
 本発明は、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサやCCD(Charge Coupled Device)イメージセンサなどに代表される固体撮像素子に関する。
 近年、CCDイメージセンサやCMOSイメージセンサなどの固体撮像素子が、デジタルビデオカメラやデジタルスチルカメラなどの撮像装置や、カメラ付き携帯電話機などの撮像機能を備えた様々な電子機器に搭載されている。固体撮像素子は、照射される光を光電変換することで電荷を生成し、当該電荷による電位を増幅することで、画像を構成する信号を生成する。
 このような固体撮像素子において、裏面照射型の固体撮像素子の開発が進められている。裏面照射型の固体撮像素子は、内部に光電変換部が形成されたシリコンから成る基板の表面上にゲート電極や配線等の回路部材を設けるとともに、当該基板の裏面上にカラーフィルタやマイクロレンズ等の光学部材を設け、裏面から基板に光を入射させて撮像を行うように構成したものである。なお、通常の固体撮像素子は、基板の表面上に回路部材を設け、さらにその上方に光学部材を設けた構成となる。
 裏面照射型の固体撮像素子では、光学部材と基板の裏面との間に回路部材が設けられない。そのため、通常の固体撮像素子と比較して、光学部材と光電変換部との距離を短くすることができるとともに、基板の裏面側の構造を自由に設計することができる。
 例えば、特許文献1では、裏面照射型の固体撮像素子において、光電変換部が形成された基板の裏面上に酸化シリコン膜を形成し、さらにその上に、外部から注入された電子を保持する窒化シリコン膜を形成して、基板の裏面に正孔を集めて暗電流の発生と量子効率の低下とを抑制した固体撮像素子が提案されている。さらに、この固体撮像素子では、酸化シリコン膜及び窒化シリコン膜のそれぞれの膜厚を制御して多重反射を最適化することにより、光の透過率を向上させて良好な感度を得ている。
特開2010-87530号公報
 裏面照射型の固体撮像素子では、基板内部であるが表面側に形成されている光電変換部と、基板の裏面上に形成されている光学部材との距離を短くするために、基板の厚さが10μm以下となるように基板を研磨等によって加工することが多い。しかしながら、このような加工を行うと、加工後の基板に強い(引張)応力が生じる。そして、基板に応力が生じると、基板が歪むことで暗電流が増大するため、問題となる。
 さらに、裏面照射型の固体撮像素子では、基板の裏面側に金属から成る遮光膜が設けられることが多いが、金属膜は強い応力の発生源となり得るため、暗電流が増大することがある。また、基板表面に存在する水素を金属膜が吸収することによって、暗電流が増大することもある。さらに、金属膜に由来する汚染源の金属が基板に侵入しやすくなることでコンタミネーションが生じやすくなり、白点欠陥画素(画像中で白点となる信号しか得られない画素)が増大することもあるため、問題となる。なお、上述のように、裏面照射型の固体撮像素子では、通常の固体撮像素子と比較して、基板と遮光膜(光学部材)との距離を短くすることができる。しかしながら、この距離を短くするほど、基板における金属のコンタミネーションが生じやすくなる。
 これらの問題は、特許文献1で提案されている固体撮像素子の構造を採用したとしても、解消することができない。特許文献1で提案されている固体撮像素子では、透過率を向上させて良好な感度を得るために、酸化シリコン膜の膜厚を15nm以上40nm以下、窒化シリコン膜の膜厚を20nm以上50nmとしているが、この膜厚では基板に生じる応力を緩和することが困難である。
 なお、特許文献1で提案されている固体撮像素子において、窒化シリコン膜の膜厚を大きくすることで、基板に生じる応力を緩和することも考えられる。しかし、この場合、多重反射が最適化されている波長帯域が変動するため、得るべき波長の光の透過率が悪くなり、当該光の感度が低下する。例えば、窒化シリコン膜の膜厚を100nmよりも大きくすると、多重反射が最適化されて透過率が高くなる波長帯域が狭くなり、得るべき赤、緑及び青の全ての光の透過率が低下して、全体的に感度が低下する。
 以上のように、特許文献1で提案されている固体撮像素子のように、基板の裏面に対して酸化シリコン膜及び窒化シリコン膜を設けるだけでは、基板に生じる応力に起因して発生する暗電流及び白点欠陥画素の抑制と、高感度化と、の両方を同時に達成することが不可能である。
 そこで、本発明は、基板に生じる応力に起因して発生する暗電流や白点欠陥画素を抑制するとともに、高感度化を図った固体撮像素子を提供することを目的とする。
 上記目的を達成するため、本発明は、シリコンから成り、第1面から入射する光を光電変換する光電変換部が内部に形成されるとともに、前記第1面の反対側の第2面に前記光電変換部を駆動する回路部材が設けられる基板と、
 前記基板の前記第1面の上方に形成され、窒化シリコンまたは酸窒化シリコンから成る第1透明絶縁膜と、
 前記第1透明絶縁膜の上方に形成され、酸化シリコンまたは窒素よりも酸素の組成比が大きい酸窒化シリコンから成るとともに前記第1透明絶縁膜とは組成が異なる第2透明絶縁膜と、
 前記第2透明絶縁膜の上方に形成され、窒化シリコンまたは酸窒化シリコンから成るとともに前記第2透明絶縁膜とは組成が異なる第3透明絶縁膜と、を備えることを特徴とする固体撮像素子を提供する。
 この固体撮像素子によれば、第1透明絶縁膜を設けることで、多重反射を最適化して基板の第1面に入射する光の透過率を高めることが可能になる。また、第2透明絶縁膜を設けることで、第1透明絶縁膜及び第3透明絶縁膜が分断されるため、仮に第3透明絶縁膜の膜厚を大きくしたとしても、第1透明絶縁膜により実現されている多重反射の状態を維持することが可能になる。また、第3透明絶縁膜を設けることで、基板に生じる応力を緩和することが可能になる。
 さらに、上記特徴の固体撮像素子において、金属から成る遮光膜を、さらに備え、前記遮光膜が、前記第1透明絶縁膜の上方に形成されるようにしてもよい。
 この固体撮像素子によれば、金属から成るために大きな応力が生じやすい遮光膜と基板との間に、第1透明絶縁膜が設けられる。そのため、遮光膜に生じる応力が基板に与える影響を、緩和することが可能になる。また、遮光膜と基板との距離を短くすることができるため、効果的に遮光を行うことが可能になる。
 さらに、上記特徴の固体撮像素子において、前記遮光膜が、前記第2透明絶縁膜の上方に形成されるようにしてもよい。
 この固体撮像素子によれば、金属から成るために大きな応力が生じやすい遮光膜と基板との間に、第1透明絶縁膜及び第2透明絶縁膜が設けられる。そのため、遮光膜に生じる応力が基板に与える影響を、緩和することが可能になる。この場合、第1透明絶縁膜の上面に対して遮光膜を設ける場合と比較して、より効果的に当該影響を緩和することができる。さらに、第1透明絶縁膜の上面に対して遮光膜を設ける場合と比較して、基板と遮光膜との距離を長くすることができる。したがって、第1透明絶縁膜の上面に対して遮光膜を設ける場合と比較して、基板における金属のコンタミネーションを、より効果的に抑制することが可能になる。さらに、基板表面に存在する水素を金属が吸収することも、抑制することができる。
 さらに、上記特徴の固体撮像素子において、前記第1透明絶縁膜、前記第2透明絶縁膜及び前記第3透明絶縁膜の内の少なくともいずれか1つについて、前記遮光膜の直上または直下となる領域と、それ以外の領域と、で膜厚が異なると、好ましい。
 この固体撮像素子によれば、第1透明絶縁膜、第2透明絶縁膜及び第3透明絶縁膜のそれぞれを設けたことによる効果を維持しながら、遮光膜に対して、第1透明絶縁膜、第2透明絶縁膜及び第3透明絶縁膜のそれぞれの膜厚を最適化することが可能になる。
 さらに、上記特徴の固体撮像素子において、前記第1透明絶縁膜、前記第2透明絶縁膜及び前記第3透明絶縁膜の内の少なくともいずれか1つについて、前記遮光膜の直上または直下となる領域の膜厚が、それ以外の領域の膜厚よりも大きいと、好ましい。
 この固体撮像素子によれば、遮光膜に生じる応力を、効果的に緩和することが可能になる。
 さらに、上記特徴の固体撮像素子において、前記光電変換部に光が入射する構造の受光画素と、前記遮光膜によって前記光電変換部に入射する光が遮られる構造の遮光画素と、を備え、
 前記第3透明絶縁膜の膜厚が、
 前記遮光画素における暗電流が最小となる、
 前記遮光画素が白点欠陥画素になる確率が最小となる、
 前記遮光画素における暗電流と前記受光画素における暗電流との差が最小となる、及び、
 前記遮光画素が白点欠陥画素になる確率と前記受光画素が白点欠陥になる確率との差が最小となる、
 の内の少なくともいずれか1つを満たすように決定されていると、好ましい。
 この固体撮像素子によれば、固体撮像素子が出力する信号中に、暗電流や白点欠陥画素の発生に起因する誤差が含まれることを、効果的に抑制することが可能になる。
 さらに、上記特徴の固体撮像素子において、前記基板の前記第1面と前記第1透明絶縁膜との間に形成され、酸化シリコンまたは窒素よりも酸素の組成比が大きい酸窒化シリコンから成るとともに前記第1透明絶縁膜とは組成が異なる下地膜を、さらに備えると、好ましい。
 この固体撮像素子によれば、下地膜を設けることで、基板の第1面の界面に存在する界面準位の密度を低減して、暗電流を抑制することが可能になる。
 さらに、上記特徴の固体撮像素子において、前記下地膜の膜厚が、20nm以下であると、好ましい。
 この固体撮像素子によれば、基板の第1面に入射する光の反射を効果的に抑制して、当該光の透過率を高めることが可能になる。
 さらに、上記特徴の固体撮像素子において、前記第1透明絶縁膜の膜厚が、25nm以上100nm以下であると、好ましい。
 この固体撮像素子によれば、基板の第1面に入射する光の反射を効果的に抑制して、当該光の透過率を高めることが可能になる。
 さらに、上記特徴の固体撮像素子において、前記第2透明絶縁膜の膜厚が、20nm以上500nm以下であると、好ましい。
 この固体撮像素子によれば、第1透明絶縁膜により実現されている多重反射の状態を、効果的に維持することができる。また、基板と光学部材との距離が無用に長くなることを抑制することで、感度の低下や混色の発生を抑制することが可能になる。
 さらに、上記特徴の固体撮像素子において、前記第3透明絶縁膜の膜厚が、30nm以上500nm以下であると、好ましい。
 この固体撮像素子によれば、基板に生じる応力を、効果的に緩和することが可能になる。また、基板と光学部材との距離が無用に長くなることを抑制することで、感度の低下や混色の発生を抑制することが可能になる。
 さらに、上記特徴の固体撮像素子において、前記第1透明絶縁膜の膜厚が、緑の光の反射率が最小となるように決定されていると、好ましい。
 この固体撮像素子によれば、輝度に対する寄与度が大きい緑の光(例えば、波長が540nmの光)の透過率を最適化することができるため、輝度のSNR(Signal Noise Ratio)を効果的に改善することが可能になる。
 なお、上記特徴の固体撮像素子において、前記第1透明絶縁膜の膜厚が、青の光の反射率が最小となるように決定されてもよいし、前記第1透明絶縁膜の膜厚が、赤または赤外の光の反射率が最小となるように決定されてもよい。
 この固体撮像素子によれば、固体撮像素子の用途などに応じて、反射率を最小とする(感度を高くする)光の色(波長)を、任意に選択することが可能である。例えば、この固体撮像素子であれば、一般的に感度を高くすることが困難な青の感度を、容易に高くすることができる。
 さらに、上記特徴の固体撮像素子において、前記第1透明絶縁膜が、窒化シリコンまたは酸窒化シリコンに代えて、酸化ハフニウム、酸化ジルコニウム、酸化タンタル、酸化チタン、酸化タングステン、酸化亜鉛、酸化イットリウム、酸化アルミニウム、または、ランタノイドの酸化物から成ってもよい。
 この固体撮像素子によれば、第1透明絶縁膜が、負の固定電荷を有する材料で形成される。そのため、基板がp型である場合、基板の表面に正孔を集めて暗電流(電子)を抑制することが可能になる。また、第1透明絶縁膜の屈折率を窒化シリコンや酸窒化シリコンよりも高くすることができるため、基板の第1面に入射する光の反射を抑制することが可能になる。
 上記特徴の固体撮像素子によれば、第1透明絶縁膜、第2透明絶縁膜及び第3透明絶縁膜のそれぞれを設けることによって、基板に生じる応力を緩和するとともに、基板の第1面に入射する光の透過率を高めることが可能になる。即ち、基板に生じる応力に起因して発生する暗電流や白点欠陥画素を抑制するとともに、高感度化を図ることが可能になる。
本発明の第1実施形態に係る固体撮像素子の構造例を示す断面図。 第1透明絶縁膜の膜厚と、各波長の光の反射率との関係について示したグラフ。 第3透明絶縁膜の膜厚と、各波長の光の反射率との関係について示したグラフ。 本発明の第2実施形態に係る固体撮像素子の構造例を示す断面図。 本発明の第3実施形態に係る固体撮像素子の構造例を示す断面図。 本発明の第4実施形態に係る固体撮像素子の構造例を示す断面図。
<<第1実施形態>>
<全体構造>
 最初に、本発明の第1実施形態に係る固体撮像素子の構造例について、図1を参照して説明する。図1は、本発明の第1実施形態に係る固体撮像素子の構造例を示す断面図である。
 図1に示すように、固体撮像素子1は、シリコンから成る基板10と、基板10中に形成されるとともに基板10の第1面101から入射される光を光電変換して電荷を生成する光電変換部11と、基板10の第2面102(第1面101の反対側の面)上に設けられ酸化シリコンなどの絶縁体から成る配線層12と、基板10の第1面101上に設けられる下地膜13と、下地膜13上に設けられる第1透明絶縁膜14と、第1透明絶縁膜14上に設けられる第2透明絶縁膜15と、第2透明絶縁膜15上に設けられる第3透明絶縁膜16と、第3透明絶縁膜16上に設けられる第1コート膜17と、第1コート膜17上に設けられ所定の色(波長)の光を選択的に透過させるカラーフィルタ18と、カラーフィルタ18上に設けられる第2コート膜19と、第2コート膜19上に設けられ入射する光を集光してカラーフィルタ18に通じるマイクロレンズ20と、を備える。
 さらに、光電変換部11の内部には、生成された電荷を蓄積する蓄積部111が設けられている。また、配線層12の内部には、光電変換部11を駆動する(例えば、蓄積部111に電荷を蓄積させる、蓄積部111に蓄積させた電荷を移動させる)ゲート電極や配線などから成る回路部材121が設けられている。
 図1に示す固体撮像素子1において、マイクロレンズ20、カラーフィルタ18及び蓄積部111は、基板10の第1面101及び第2面102に対して垂直な方向(図中の上下方向)に対して一列に並んでおり、それぞれの列がそれぞれの画素を構成している。これらの画素は、例えば基板10の第1面101及び第2面102と平行な面内においてマトリクス状に配置される。具体的に例えば、これらの画素は、カラーフィルタ18が透過させる色に着目すると、ベイヤ配列で配置される。また、図1では、基板10における画素毎の領域を、それぞれの画素における光電変換部11としており、図1では基板10内における光電変換部11の境界を、破線で示している。
 基板10は、p型またはn型のシリコンから成る。蓄積部111は、基板10とは逆の導電型のシリコンから成る。即ち、基板10の一部の領域と蓄積部111とから成る光電変換部11は、フォトダイオードを構成する。また、蓄積部111は、基板10内で、第1面101及び第2面102に平行な方向に対して所定の周期性を有して配列される。具体的に例えば、蓄積部111は、第1面101及び第2面102に平行な方向に対して、それぞれの画素の中央に位置するとともに所定の間隔を有して配置される。
 図1では、蓄積部111が紙面の左右方向に対して所定の周期性を有して配列される状態について例示しているが、蓄積部111は、紙面の奥行方向に対しても所定の周期性を有して配列される。なお、光電変換部11の境界部分(図中の破線部分及びその近傍部分)に、基板10の導電型と同じであり周囲よりも不純物濃度が高い領域を形成して、隣接する画素の光電変換部11間における電荷の流出入を抑制すると、好ましい。
 固体撮像素子1に入射する光は、マイクロレンズ20で集光され、第2コート膜19を透過してカラーフィルタ18に通じられる。カラーフィルタ18は、所定の色(波長)の光を選択的に透過させる。カラーフィルタ18を透過した光は、第1コート膜17、第3透明絶縁膜16、第2透明絶縁膜15、第1透明絶縁膜14及び下地膜13をそれぞれ透過して、第1面101から基板10内に入射する。そして、基板10内で、入射した光の光電変換により電子及び正孔が生じ、その一方が蓄積部111に蓄積される。例えば、基板10がp型であり、蓄積部111がn型であれば、光電変換によって生じた電子が蓄積部111に蓄積される。反対に、基板10がn型であり、蓄積部111がp型であれば、光電変換によって生じた正孔が蓄積部111に蓄積される。
 また、固体撮像素子1は、例えば以下の(1)~(4)の工程を順に行うことで、製造することができる。
 (1)シリコン基板の一方の面(第2面102)に対してイオン注入を行い、蓄積部111を形成する。
 (2)シリコン基板の一方の面(第2面102)に配線層12を形成する。
 (3)シリコン基板の他方の面側(第1面101側)を研磨することで薄くして(例えば、10μm以下)、基板10を形成する。
 (4)基板10の第1面101に対して下地膜13を形成し、さらにその上に第1透明絶縁膜14を形成し、さらにその上に第2透明絶縁膜15を形成し、さらにその上に第3透明絶縁膜16を形成し、さらにその上に第1コート膜17を形成し、さらにその上にカラーフィルタ18を形成し、さらにその上に第2コート膜19を形成し、さらにその上にマイクロレンズ20を形成する。
 下地膜13は、酸化シリコンまたは窒素よりも酸素の組成比が大きい酸窒化シリコンから成る。このような下地膜13を設けることで、基板10の第1面101の界面に存在する界面準位の密度を低減して、暗電流を抑制することが可能になる。
 また、下地膜13の膜厚は、20nm以下にすると、好ましい。下地膜13を薄くすることで、基板10の第1面101に入射する光の反射を効果的に抑制して、当該光の透過率を高めることが可能になる。なお、基板10の第1面101に入射する光の透過率を高める観点では、下地膜13の膜厚は小さいほど好ましい。そのため、暗電流や白点欠陥画素の発生が問題なく抑制されるのであれば、下地膜13を備えなくてもよい。
 下地膜13が酸化シリコンから成る場合、上述の(3)の工程において、シリコン基板の熱酸化によって下地膜13を形成すると、効果的に界面準位の密度を低減することができるため、好ましい。また、上述の(1)及び(2)の工程において、シリコン基板の代わりにSOI(Silicon On Insulator)基板を利用してもよい。この場合、(3)の工程において、SOI基板内の埋込酸化層が表出するまで研磨を行い、表出させた埋込酸化層を下地膜13として利用してもよい。また、下地膜13は、一般的な成膜方法(例えば、プラズマCVD(Chemical Vapor Deposition)やスパッタリングなど、以下同じ)を利用して形成することも可能である。
 第1透明絶縁膜14は、窒化シリコンまたは酸窒化シリコンから成る。ただし、第1透明絶縁膜14及び下地膜13は、組成が異なっている(特に、第1透明絶縁膜14及び下地膜13が、共に酸窒化シリコンから成る場合。例えば、第1透明絶縁膜14における窒素の組成比が、下地膜13における窒素の組成比よりも大きくなる。)。
 第2透明絶縁膜15は、酸化シリコンまたは窒素よりも酸素の組成比が大きい酸窒化シリコンから成る。ただし、第2透明絶縁膜15及び第1透明絶縁膜14は、組成が異なっている(特に、第2透明絶縁膜15及び第1透明絶縁膜14が、共に酸窒化シリコンから成る場合。例えば、第2透明絶縁膜15における酸素の組成比が、第1透明絶縁膜14における酸素の組成比よりも大きくなる。)。
 第3透明絶縁膜16は、窒化シリコンまたは酸窒化シリコンから成る。ただし、第3透明絶縁膜16及び第2透明絶縁膜15は、組成が異なっている(特に、第3透明絶縁膜16及び第2透明絶縁膜15が、共に酸窒化シリコンから成る場合。例えば、第3透明絶縁膜16における窒素の組成比が、第2透明絶縁膜15における窒素の組成比よりも大きくなる。)。
 固体撮像素子1では、第1透明絶縁膜14を設けることで、多重反射を最適化して基板10の第1面101に入射する光の透過率を高めることが可能になる。また、第2透明絶縁膜15を設けることで、第1透明絶縁膜14及び第3透明絶縁膜16が分断されるため、仮に第3透明絶縁膜16の膜厚を大きくしたとしても、第1透明絶縁膜14により実現されている多重反射の状態を維持することが可能になる。また、第3透明絶縁膜16を設けることで、基板10に生じる応力を緩和することが可能になる。
 第1~第3透明絶縁膜14~16は、それぞれ一般的な成膜方法を利用することで、形成可能である。なお、第1~第3透明絶縁膜14~16のそれぞれの好適な膜厚については、後述する。
 第1コート膜17及び第2コート膜19は、例えば樹脂から成り、表面の平坦化や、第3透明絶縁膜16とカラーフィルタ18及びマイクロレンズ20との密着性を向上させるために設けられる。カラーフィルタ18は、例えば顔料を含んだ樹脂から成り、当該顔料が所定の色(波長)の光を選択的に透過させる性質を有する。マイクロレンズ20は、例えば樹脂から成り、入射した光をカラーフィルタ18に対して集光するために、凸形状になっている。
 以上の通り、固体撮像素子1では、第1透明絶縁膜14、第2透明絶縁膜15及び第3透明絶縁膜16のそれぞれを設けることによって、基板10に生じる応力を緩和するとともに、基板10の第1面101に入射する光の透過率を高めることが可能になる。即ち、基板10に生じる応力に起因して発生する暗電流や白点欠陥画素を抑制するとともに、高感度化を図ることが可能になる。
<第1~第3透明絶縁膜の好適な膜厚>
 上述した第1~第3透明絶縁膜14~16の好適な膜厚について、図2及び図3を参照して説明する。図2は、第1透明絶縁膜の膜厚と、各波長の光の反射率との関係について示したグラフである。図3は、第3透明絶縁膜の膜厚と、各波長の光の反射率との関係について示したグラフである。なお、図2に示すグラフにおいて、横軸は第1透明絶縁膜14の膜厚を示し、縦軸は光の反射率を示している。また、図3に示すグラフにおいて、横軸は第3透明絶縁膜16の膜厚を示し、縦軸は光の反射率を示している。また、図2及び図3に示すそれぞれのグラフでは、610nm(赤)、540nm(緑)、450nm(青)の3つの波長の光について、それぞれの反射率を示している。
 また、図2に示すグラフは、基板10に下地膜13(酸化シリコンから成り、膜厚10nm)及び第1透明絶縁膜14(屈折率1.8の酸窒化シリコンから成り、膜厚は横軸の値)を形成した試料の反射率を示すものである。また、図3に示すグラフは、基板10に下地膜13(酸化シリコンから成り、膜厚10nm)、第1透明絶縁膜14(屈折率2.0の酸窒化シリコンから成り、膜厚60nm)、第2透明絶縁膜15(酸化シリコンから成り、膜厚70nm)及び第3透明絶縁膜16(屈折率1.8の酸窒化シリコンから成り、膜厚は横軸の値)を形成した試料の反射率を示すものである。
(第1透明絶縁膜)
 図2のグラフに示すように、基板10に対して下地膜13及び第1透明絶縁膜14のみを形成する場合、第1透明絶縁膜14の膜厚を変動させると、それぞれの波長の光の反射率が大幅に変動する。このグラフにおいて、3つの波長の光の反射率を効果的に低減するためには、第1透明絶縁膜14の膜厚を、25nm以上100nm以下にすると、好ましい。特に、第1透明絶縁膜14の膜厚を、40nm以上80nm以下にすると、3つの波長の光のそれぞれの反射率を、それぞれの平均値以下まで低減することができるため、好ましい。
 さらに、第1透明絶縁膜14の膜厚を65nm付近にすると、輝度に対する寄与度が大きい540nm(緑)の光の反射率が極小値になるとともに、他の610nm(赤)及び450nm(青)の光の反射率も低くなるため、好ましい。
 ところで、図2に示すように、第1透明絶縁膜14の膜厚を、上記の25nm以上100nm以下の範囲外にすると(特に、基板10に生じる応力を緩和するべく、第1透明絶縁膜14の膜厚を100nmよりも大きくすると)、全ての波長の光の反射率を揃って低くすることが困難になる。具体的に例えば、第1透明絶縁膜14の膜厚を250nmにすると、610nm(赤)の光の反射率は極小値となるが、450nm(青)の光の反射率は30%を超えてしまい、感度が著しく低下する。即ち、従来技術における課題として指摘したように、基板10に対して酸化シリコン膜(下地膜13に相当)及び窒化シリコン膜(第1透明絶縁膜14に相当)を設けるだけでは、基板10に生じる応力に起因して発生する暗電流及び白点欠陥画素の抑制と、高感度化と、の両方を同時に達成することが不可能である。
(第2透明絶縁膜)
 第2透明絶縁膜15には、第1透明絶縁膜14及び第3透明絶縁膜16を好適に分断して、第1透明絶縁膜14により実現されている多重反射の状態を効果的に維持することが求められる。そのため、第2透明絶縁膜15の膜厚は、20nm以上にすると、好ましい。
 また、第2透明絶縁膜15の膜厚が大きいと、基板10と光学部材(例えば、カラーフィルタ18やマイクロレンズ20など)との距離が無用に長くなり、感度の低下や混色(ある画素に入射した光が他の画素に漏れ出し、当該他の画素に検出されてしまうこと)の発生が懸念される。そのため、第2透明絶縁膜15の膜厚は、500nm以下にすると、好ましい。
(第3透明絶縁膜)
 図3のグラフに示すように、第1透明絶縁膜14の膜厚を適正に選択すれば、第3透明絶縁膜16の膜厚をどのような大きさにしても、それぞれの波長の光の反射率を低くする(例えば、20%以下にする)ことができる。これは、上述のように、第1透明絶縁膜14及び第3透明絶縁膜16の間に第2透明絶縁膜15を設けることで、仮に第3透明絶縁膜16の膜厚を大きくしたとしても、第1透明絶縁膜14により実現されている好適な多重反射の状態が効果的に維持されるからである。
 第3透明絶縁膜16には、基板10に生じる応力を効果的に緩和することが求められる。そのため、第3透明絶縁膜16の膜厚は、30nm以上にすると、好ましい。
 また、第3透明絶縁膜16の膜厚が大きいと、基板10と光学部材との距離が無用に長くなり、感度の低下や混色の発生が懸念される。そのため、第3透明絶縁膜16の膜厚は、500nm以下にすると、好ましい。
 なお、図2及び図3に示す反射率のグラフは一例に過ぎず、固体撮像素子1が有する各膜の屈折率(組成、材料)や膜厚に応じて、この反射率のグラフは変動し得る。しかしながら、第1~第3透明絶縁膜14~16を備える構造を採用する限り、上記と同様の考え方に基づいて、基板10に生じる応力に起因して発生する暗電流及び白点欠陥画素の抑制と、高感度化と、の両方を同時に達成することが可能となる第1~第3透明絶縁膜14~16の好適な膜厚を、特定することが可能である。
<<第2実施形態>>
 次に、本発明の第2実施形態に係る固体撮像素子の構造例について、図面を参照して説明する。図4は、本発明の第2実施形態に係る固体撮像素子の構造例を示す断面図である。なお、図4は、本発明の第1実施形態に係る固体撮像素子1について示した図1と対応するものであり、図4に示す本発明の第2実施形態に係る固体撮像素子1Aおいて、図1に示した本発明の第1実施形態に係る固体撮像素子1と同様である部分については、同じ符号を付している。
 図4に示すように、固体撮像素子1Aは、基板10と、光電変換部11及び蓄積部111と、配線層12及び回路部材121と、下地膜13と、第1~第3透明絶縁膜14~16と、第1コート膜17と、カラーフィルタ18と、第2コート膜19と、マイクロレンズ20と、を備える。
 ただし、固体撮像素子1Aは、光電変換部11に光が入射する受光画素と、光電変換部11に入射する光が遮られる遮光画素と、を備える。そして、遮光画素において、第2透明絶縁膜15と第3透明絶縁膜16との間に、光電変換部11に入射する光を遮る遮光膜30が設けられている。遮光膜30は金属から成り、例えば光電変換部11の直上を全体的に覆うように形成される。
 固体撮像素子1Aは、遮光膜30を有する遮光画素を備える点において、図1に示した固体撮像素子1と相違するが、これ以外の構造や動作、得られる効果などについては同様である。そのため、以下では、固体撮像素子1A及び固体撮像素子1において異なる点について詳細に説明し、同様となる点については固体撮像素子1に関する説明を参酌するものとしてその説明を省略する。
 遮光画素は、暗電流を検出するための画素である。例えば、受光画素の蓄積部111に蓄積される電荷に応じた信号から、遮光画素の蓄積部111に蓄積される電荷に応じた信号を減算することで、受光画素から得られる信号から暗電流の成分を除くことができる。
 また、固体撮像素子1Aでは、金属から成るために大きな応力が生じやすい遮光膜30と基板10との間に、第1透明絶縁膜及び第2透明絶縁膜を設けている。そのため、遮光膜30に生じる応力が基板10に与える影響を、緩和することが可能になる。
 なお、図4では、遮光膜30を、第2透明絶縁膜15の上面に対して形成する場合について例示しているが、第1透明絶縁膜14の上面に対して形成してもよい。この場合も、遮光膜30に生じる応力が基板10に与える影響を、緩和することが可能になる。また、遮光膜30と基板10との距離を短くすることができるため、効果的に遮光を行うことが可能になる。
 ただし、図4に示すように、遮光膜30を第2透明絶縁膜15の上面に対して形成すると、第1透明絶縁膜14の上面に対して遮光膜30を設ける場合と比較して、より効果的に当該影響を緩和することができる。さらに、第1透明絶縁膜14の上面に対して遮光膜30を設ける場合と比較して、基板10と遮光膜30との距離を長くすることができる。したがって、第1透明絶縁膜14の上面に対して遮光膜30を設ける場合と比較して、基板10における金属のコンタミネーションを、より効果的に抑制することが可能になる。さらに、基板10の表面に存在する水素を金属が吸収することも、抑制することができる。
 また、第3透明絶縁膜30の膜厚を、遮光画素を基準として最適化してもよい。具体的に例えば、以下の(1)~(4)の条件のうち、少なくともいずれか1つを満たすように、第3透明絶縁膜30の膜厚を決定してもよい。
 (1)遮光画素における暗電流が最小となる。
 (2)遮光画素が白点欠陥画素になる確率が最小となる。
 (3)遮光画素における暗電流と受光画素における暗電流との差が最小となる。
 (4)遮光画素が白点欠陥画素になる確率と受光画素が白点欠陥になる確率との差が最小となる。
 上記のように第3透明絶縁膜30の膜厚を決定すると、固体撮像素子1Aが出力する信号中に、暗電流や白点欠陥画素の発生に起因する誤差が含まれることを、効果的に抑制することが可能になる。
<<第3実施形態>>
 次に、本発明の第3実施形態に係る固体撮像素子の構造例について、図面を参照して説明する。図5は、本発明の第3実施形態に係る固体撮像素子の構造例を示す断面図である。なお、図5は、本発明の第1実施形態に係る固体撮像素子1について示した図1と対応するものであり、図5に示す本発明の第3実施形態に係る固体撮像素子1Bおいて、図1に示した本発明の第1実施形態に係る固体撮像素子1と同様である部分については、同じ符号を付している。
 図5に示すように、固体撮像素子1Bは、基板10と、光電変換部11及び蓄積部111と、配線層12及び回路部材121と、下地膜13と、第1~第3透明絶縁膜14~16と、第1コート膜17と、カラーフィルタ18と、第2コート膜19と、マイクロレンズ20と、を備える。
 ただし、固体撮像素子1Bは、隣接する画素の境界において、第2透明絶縁膜15と第3透明絶縁膜16との間に、画素の境界を超えて隣接する画素に進入しようとする光(即ち、混色の原因になる光)を遮る遮光膜40を備える。遮光膜40は金属から成り、例えば隣接する画素の境界において所定の幅を有して形成される。
 固体撮像素子1Bは、画素の境界に遮光膜40を備える点において、図1に示した固体撮像素子1と相違するが、これ以外の構造や動作、得られる効果などについては同様である。そのため、以下では、固体撮像素子1B及び固体撮像素子1において異なる点について詳細に説明し、同様となる点については固体撮像素子1に関する説明を参酌するものとしてその説明を省略する。
 固体撮像素子1Bでは、金属から成るために大きな応力が生じやすい遮光膜40と基板10との間に、第1透明絶縁膜及び第2透明絶縁膜を設けている。そのため、遮光膜40に生じる応力が基板10に与える影響を、緩和することが可能になる。
 なお、図5では、遮光膜40を、第2透明絶縁膜15の上面に対して形成する場合について例示しているが、第1透明絶縁膜14の上面に対して形成してもよい。この場合も、遮光膜40に生じる応力が基板10に与える影響を、緩和することが可能になる。また、遮光膜40と基板10との距離が短くなるため、効果的に遮光を行うことが可能になる。
 ただし、図5に示すように、遮光膜40を第2透明絶縁膜15の上面に対して形成すると、第1透明絶縁膜の上面に対して遮光膜40を設ける場合と比較して、より効果的に当該影響を緩和することができる。さらに、第1透明絶縁膜14の上面に対して遮光膜40を設ける場合と比較して、基板10と遮光膜40との距離を長くすることができる。したがって、第1透明絶縁膜14の上面に対して遮光膜40を設ける場合と比較して、基板10における金属のコンタミネーションを、より効果的に抑制することが可能になる。
<<第4実施形態>>
 次に、本発明の第4実施形態に係る固体撮像素子の構造例について、図面を参照して説明する。図6は、本発明の第4実施形態に係る固体撮像素子の構造例を示す断面図である。なお、図6は、本発明の第3実施形態に係る固体撮像素子1Bについて示した図5と対応するものであり、図6に示す本発明の第4実施形態に係る固体撮像素子1Cおいて、図5に示した本発明の第3実施形態に係る固体撮像素子1Bと同様である部分については、同じ符号を付している。
 図6に示すように、固体撮像素子1Cは、基板10と、光電変換部11及び蓄積部111と、配線層12及び回路部材121と、下地膜13と、第1~第3透明絶縁膜14,15a,16と、第1コート膜17と、カラーフィルタ18と、第2コート膜19と、マイクロレンズ20と、遮光膜40と、を備える。
 ただし、固体撮像素子1Cが備える第2透明絶縁膜15aの膜厚が、遮光膜40の直下となる領域と、それ以外の領域とで異なっている。具体的に、第2透明絶縁膜15aは、遮光膜40の直下となる領域の膜厚が、それ以外の領域の膜厚よりも大きくなっている。
 固体撮像素子1Cは、第2透明絶縁膜15aの膜厚が領域毎に異なる点において、図5に示した固体撮像素子1Bと相違するが、これ以外の構造や動作、得られる効果などについては同様である。そのため、以下では、固体撮像素子1C及び固体撮像素子1Bにおいて異なる点について詳細に説明し、同様となる点については固体撮像素子1,1Bに関する説明を参酌するものとしてその説明を省略する。
 固体撮像素子1Cでは、遮光膜40の直下となる領域とそれ以外の領域とで第2透明絶縁膜15aの膜厚を異ならせることによって、第1透明絶縁膜14、第2透明絶縁膜15a及び第3透明絶縁膜16のそれぞれを設けたことによる効果を維持しながら、遮光膜40に対して、第1透明絶縁膜14、第2透明絶縁膜15a及び第3透明絶縁膜16のそれぞれの膜厚を最適化することが可能になる。具体的に、固体撮像素子1Cでは、第2透明絶縁膜15aにおいて、遮光膜40の直下となる領域の膜厚を、それ以外の領域の膜厚よりも大きくすることによって、遮光膜40に生じる応力を効果的に緩和することを可能にしている。
 なお、図6に示す例では、第2透明絶縁膜15aの膜厚が領域毎に異なる場合について例示しているが、第2透明絶縁膜15aに限らず、第1透明絶縁膜14や第3透明絶縁膜16の膜厚を領域毎に異ならせてもよい。即ち、第1~第3透明絶縁膜14~16の内の少なくともいずれか1つについて、遮光膜40の直上または直下となる領域と、それ以外の領域と、で膜厚が異なるようにしてもよい。さらに、第1~第3透明絶縁膜14~16の内の少なくともいずれか1つについて、遮光膜40の直上または直下となる領域の膜厚が、それ以外の領域の膜厚よりも大きくなるようにしてもよい。
<<変形等>>
 [1] 第1透明絶縁膜14の膜厚を、緑の光(例えば、波長が540nmの光)の反射率が最小となるように決定してもよい。この場合、輝度に対する寄与度が大きい緑の光の透過率を最適化することができるため、輝度のSNRを効果的に改善することが可能になる。
 [2] 第1透明絶縁膜14の膜厚を、青の光(例えば、波長が450nmの光)の反射率が最小となるように決定してもよい。また、第1透明絶縁膜14の膜厚を、赤または赤外の光(例えば、波長が610nmの光)の反射率が最小となるように決定してもよい。このように、固体撮像素子の用途などに応じて、反射率を最小とする(感度を高くする)光の色(波長)を、任意に選択することが可能である。例えば、この固体撮像素子であれば、一般的に感度を高くすることが困難な青の感度を、容易に高くすることができる。
 [3] 第3透明絶縁膜16の膜厚を、基板10に生じる応力だけでなく、例えば第1透明絶縁膜14や第2透明絶縁膜15、遮光膜30,40などの他の膜に生じる応力や、カラーフィルタ18やマイクロレンズ20などに生じる応力をも考慮して決定すると、好ましい。例えば、第3透明絶縁膜16の膜厚として、これらに生じる応力が過度にならないような膜厚を選択すると、好ましい。
 [4] 上述した本発明の第1~第4実施形態は、矛盾がない限り組み合わせて実施することが可能である。具体的に例えば、第2実施形態と第3実施形態とを組み合わせて、第1~第3透明絶縁膜14~16が設けられた固体撮像素子において、遮光画素に遮光膜30(図4参照)を設け、隣接する画素の境界部分に遮光膜40(図5参照)を設けてもよい。また例えば、第2実施形態と第4実施形態とを組み合わせて、第1~第3透明絶縁膜14~16が設けられた固体撮像素子において、遮光膜30(図4参照)を設けるとともに、第1~第3透明絶縁膜14~16の内の少なくともいずれか1つについて、遮光膜30の直上または直下となる領域と、それ以外の領域と、で膜厚が異なるようにしてもよい。
 [5] 上述した本発明の第1~第4実施形態に係る固体撮像素子1,1A~1Cは、第1透明絶縁膜14が窒化シリコンまたは酸窒化シリコンから成るものとして説明したが、これ以外の材料から成るものとしてもよい。
 具体的に例えば、第1透明絶縁膜14を成す材料として、酸化ハフニウム、酸化ジルコニウム、酸化タンタル、酸化チタン、酸化タングステン、酸化亜鉛、酸化イットリウム、酸化アルミニウム、または、ランタノイドの酸化物を用いてもよい。これらの材料は負の固定電荷を有する。そのため、基板10がp型であり蓄積部111がn型である場合、第1透明絶縁膜14をこれらの材料で成すことで、基板10の表面に正孔を集めて暗電流(電子)を抑制することが可能になる。
 また、可視光領域において、基板10を成すシリコンの屈折率は、4から5程度である。そのため、屈折率が2程度である窒化シリコン及びそれ以下の屈折率である酸窒化シリコンよりも屈折率が高い材料を、第1透明絶縁膜14に適用すると、基板10の第1面101に入射する光の反射を抑制することができるため、好ましい。
 上記の材料の中で、酸化ジルコニウム、酸化チタン、酸化タンタル及び酸化タングステンは、窒化シリコンよりも屈折率が高い。また、酸化ハフニウム及び酸化亜鉛は、窒化シリコンと同程度の屈折率である。酸化イットリウム及び酸化アルミニウムは、屈折率が1.7から1.8程度であり、窒化シリコンよりは低くなるが、酸窒化シリコンよりは高くなることがあり得る(酸窒化シリコンの窒素と酸素の組成比に依る)。
 第1透明絶縁14を上記の材料で成す場合も、第1~第3透明絶縁膜14~16,15aの膜厚をそれぞれ調整することにより、多重反射を最適化して基板10の第1面101に入射する光の透過率を高めると、好ましい。また、第1透明絶縁膜14を上記の材料で成したとしても、第3透明絶縁膜16によって基板10に生じる応力を緩和することが可能である。
 本発明に係る固体撮像素子は、例えば撮像機能を有する各種電子機器に搭載されるCMOSイメージセンサやCCDイメージセンサ等に、好適に利用され得る。
 1,1A~1C : 固体撮像素子
 10  : 基板
 101 : 第1面
 102 ; 第2面
 11  : 光電変換部
 111 : 蓄積部
 12  : 配線層
 121 : 回路部材
 13  : 下地膜
 14  : 第1透明絶縁膜
 15,15a : 第2透明絶縁膜
 16  : 第3透明絶縁膜
 17  : 第1コート膜
 18  : カラーフィルタ
 19  : 第2コート膜
 20  : マイクロレンズ
 30  : 遮光膜(遮光画素の遮光用)
 40  : 遮光膜(混色防止用)

Claims (15)

  1.  シリコンから成り、第1面から入射する光を光電変換する光電変換部が内部に形成されるとともに、前記第1面の反対側の第2面に前記光電変換部を駆動する回路部材が設けられる基板と、
     前記基板の前記第1面の上方に形成され、窒化シリコンまたは酸窒化シリコンから成る第1透明絶縁膜と、
     前記第1透明絶縁膜の上方に形成され、酸化シリコンまたは窒素よりも酸素の組成比が大きい酸窒化シリコンから成るとともに前記第1透明絶縁膜とは組成が異なる第2透明絶縁膜と、
     前記第2透明絶縁膜の上方に形成され、窒化シリコンまたは酸窒化シリコンから成るとともに前記第2透明絶縁膜とは組成が異なる第3透明絶縁膜と、を備えることを特徴とする固体撮像素子。
  2.  金属から成る遮光膜を、さらに備え、
     前記遮光膜が、前記第1透明絶縁膜の上方に形成されることを特徴とする請求項1に記載の固体撮像素子。
  3.  前記遮光膜が、前記第2透明絶縁膜の上方に形成されることを特徴とする請求項2に記載の固体撮像素子。
  4.  前記第1透明絶縁膜、前記第2透明絶縁膜及び前記第3透明絶縁膜の内の少なくともいずれか1つについて、
     前記遮光膜の直上または直下となる領域と、それ以外の領域と、で膜厚が異なることを特徴とする請求項2または3に記載の固体撮像素子。
  5.  前記第1透明絶縁膜、前記第2透明絶縁膜及び前記第3透明絶縁膜の内の少なくともいずれか1つについて、
     前記遮光膜の直上または直下となる領域の膜厚が、それ以外の領域の膜厚よりも大きいことを特徴とする請求項4に記載の固体撮像素子。
  6.  前記光電変換部に光が入射する構造の受光画素と、
     前記遮光膜によって前記光電変換部に入射する光が遮られる構造の遮光画素と、を備え、
     前記第3透明絶縁膜の膜厚が、
     前記遮光画素における暗電流が最小となる、
     前記遮光画素が白点欠陥画素になる確率が最小となる、
     前記遮光画素における暗電流と前記受光画素における暗電流との差が最小となる、及び、
     前記遮光画素が白点欠陥画素になる確率と前記受光画素が白点欠陥画素になる確率との差が最小となる、
     の内の少なくともいずれか1つを満たすように決定されていることを特徴とする請求項2~5のいずれか1項に記載の固体撮像素子。
  7.  前記基板の前記第1面と前記第1透明絶縁膜との間に形成され、酸化シリコンまたは窒素よりも酸素の組成比が大きい酸窒化シリコンから成るとともに前記第1透明絶縁膜とは組成が異なる下地膜を、
     さらに備えることを特徴とする請求項1~6のいずれか1項に記載の固体撮像素子。
  8.  前記下地膜の膜厚が、20nm以下であることを特徴とする請求項7に記載の固体撮像素子。
  9.  前記第1透明絶縁膜の膜厚が、25nm以上100nm以下であることを特徴とする請求項1~8のいずれか1項に記載の固体撮像素子。
  10.  前記第2透明絶縁膜の膜厚が、20nm以上500nm以下であることを特徴とする請求項1~9のいずれか1項に記載の固体撮像素子。
  11.  前記第3透明絶縁膜の膜厚が、30nm以上500nm以下であることを特徴とする請求項1~10のいずれか1項に記載の固体撮像素子。
  12.  前記第1透明絶縁膜の膜厚が、緑の光の反射率が最小となるように決定されていることを特徴とする請求項1~11のいずれか1項に記載の固体撮像素子。
  13.  前記第1透明絶縁膜の膜厚が、青の光の反射率が最小となるように決定されていることを特徴とする請求項1~11のいずれか1項に記載の固体撮像素子。
  14.  前記第1透明絶縁膜の膜厚が、赤または赤外の光の反射率が最小となるように決定されていることを特徴とする請求項1~11のいずれか1項に記載の固体撮像素子。
  15.  前記第1透明絶縁膜が、窒化シリコンまたは酸窒化シリコンに代えて、
     酸化ハフニウム、酸化ジルコニウム、酸化タンタル、酸化チタン、酸化タングステン、酸化亜鉛、酸化イットリウム、酸化アルミニウム、または、ランタノイドの酸化物から成ることを特徴とする請求項1~14のいずれか1項に記載の固体撮像素子。
PCT/JP2012/078977 2012-01-27 2012-11-08 固体撮像素子 WO2013111418A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012014891 2012-01-27
JP2012-014891 2012-01-27

Publications (1)

Publication Number Publication Date
WO2013111418A1 true WO2013111418A1 (ja) 2013-08-01

Family

ID=48873160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078977 WO2013111418A1 (ja) 2012-01-27 2012-11-08 固体撮像素子

Country Status (1)

Country Link
WO (1) WO2013111418A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009835A1 (ja) * 2014-07-15 2016-01-21 ソニー株式会社 半導体装置および電子機器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258684A (ja) * 2006-02-24 2007-10-04 Sony Corp 固体撮像装置及びその製造方法、並びにカメラ
JP2008091643A (ja) * 2006-10-02 2008-04-17 Matsushita Electric Ind Co Ltd 固体撮像装置
JP2012018951A (ja) * 2010-07-06 2012-01-26 Sony Corp 固体撮像素子及びその製造方法、並びに固体撮像装置及び撮像装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258684A (ja) * 2006-02-24 2007-10-04 Sony Corp 固体撮像装置及びその製造方法、並びにカメラ
JP2008091643A (ja) * 2006-10-02 2008-04-17 Matsushita Electric Ind Co Ltd 固体撮像装置
JP2012018951A (ja) * 2010-07-06 2012-01-26 Sony Corp 固体撮像素子及びその製造方法、並びに固体撮像装置及び撮像装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009835A1 (ja) * 2014-07-15 2016-01-21 ソニー株式会社 半導体装置および電子機器
US10340298B2 (en) 2014-07-15 2019-07-02 Sony Semiconductor Solutions Corporation Semiconductor device having negative fixed charge, positive fixed charge and electronic apparatus capable of reducing a leaking current of a PN junction region

Similar Documents

Publication Publication Date Title
KR102076422B1 (ko) 고체 촬상 소자와 그 제조 방법, 고체 촬상 장치 및 촬상 장치
KR101861964B1 (ko) 고체 촬상 장치, 고체 촬상 장치의 신호 처리 방법, 및, 전자 기기
JP4839008B2 (ja) 単板式カラー固体撮像素子
US8471314B2 (en) Solid-state imaging device, method for producing same, and camera
US8325254B2 (en) Solid-state imaging device, method for manufacturing the same, and electronic apparatus
JP4599417B2 (ja) 裏面照射型固体撮像素子
JP5438374B2 (ja) 固体撮像装置
JP2012169530A (ja) 固体撮像装置、および、その製造方法、電子機器
JP2015106621A (ja) 固体撮像素子および製造方法、並びに電子機器
JP2010186818A (ja) 固体撮像装置とその製造方法、及び電子機器
WO2019130820A1 (ja) 撮像素子および撮像装置
JP5725123B2 (ja) 固体撮像装置及び電子機器
US9515110B2 (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
KR20060104936A (ko) 고체 촬상 장치
JP5429208B2 (ja) 固体撮像素子、カメラモジュール及び電子機器モジュール
JPWO2017131009A1 (ja) 固体撮像装置
JP5418527B2 (ja) 固体撮像装置及び電子機器
US20170069678A1 (en) Cmos image sensor structure with crosstalk improvement
JP2012234968A (ja) 固体撮像装置およびその製造方法、並びに電子情報機器
JP2006140413A (ja) 固体撮像素子
WO2013111418A1 (ja) 固体撮像素子
JP2013084786A (ja) 固体撮像素子、及び、電子機器
JP2011135100A (ja) 固体撮像装置及び電子機器
TW201338147A (zh) 固體攝像元件
JP2012124275A (ja) 固体撮像素子およびその製造方法、並びにそれを備えた電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12866503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP