JP2008220119A - ゲート電圧制御回路及びゲート電圧制御方法 - Google Patents

ゲート電圧制御回路及びゲート電圧制御方法 Download PDF

Info

Publication number
JP2008220119A
JP2008220119A JP2007057066A JP2007057066A JP2008220119A JP 2008220119 A JP2008220119 A JP 2008220119A JP 2007057066 A JP2007057066 A JP 2007057066A JP 2007057066 A JP2007057066 A JP 2007057066A JP 2008220119 A JP2008220119 A JP 2008220119A
Authority
JP
Japan
Prior art keywords
gate
turn
voltage
carrier frequency
pulse voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007057066A
Other languages
English (en)
Other versions
JP5141049B2 (ja
Inventor
Masahiro Yamada
将宏 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007057066A priority Critical patent/JP5141049B2/ja
Publication of JP2008220119A publication Critical patent/JP2008220119A/ja
Application granted granted Critical
Publication of JP5141049B2 publication Critical patent/JP5141049B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)
  • Electronic Switches (AREA)

Abstract

【課題】モータの目標回転速度に応じてスイッチング素子のターンオフ速度を変更することができ、モータを高速低トルクで駆動するときにはターンオン時に高いサージ電圧を発生させることなく高速でスイッチング素子をターンオフさせることができるゲート電圧制御回路を提供する。
【解決手段】本発明のゲート電圧制御回路は、キャリア周波数決定手段と、デューティ比算出手段と、パルス電圧出力手段と、ゲート電圧源とゲート付きスイッチング素子のゲートをターンオン用スイッチとゲートオン抵抗を介して接続しているターンオン用回路と、ゲート付きスイッチング素子のゲートと基準電位点をターンオフ用スイッチとゲートオフ抵抗を介して接続しているターンオフ用回路と、キャリア周波数が高いときに前記ターンオフ用回路のゲート付きスイッチング素子のゲートと基準電位点の間の抵抗を低く調整する抵抗変更手段を有する。
【選択図】図2

Description

本発明は、ゲート電圧によってモータに電流を通電する状態とモータに電流を通電しない状態とを切り替えるゲート付きスイッチング素子のゲートに印加する電圧を制御する回路と方法に関する。
鉄道車両やハイブリッド自動車等のモータを駆動する際に、IGBTやMOS−FET等のゲート付きスイッチング素子をスイッチングすることによって、モータに電流を通電する状態とモータに電流を通電しない状態とを切り替えてモータを駆動する技術が知られている。このような技術では、所望するモータ出力に応じてデューティ比を算出し、算出したデューティ比を有するパルス電圧をスイッチング素子のゲートに入力する。すると、スイッチング素子がデューティ比に応じてスイッチングする。すなわち、ゲートにオン電圧が印加されている間はスイッチング素子がオンし、ゲートにオフ電圧が印加されている間はスイッチング素子がオフする。これによって、モータにデューティ比に応じた電流が通電される。このような処理を繰り返し実行することによって、モータに交流電流を通電し、モータを駆動する。
デューティ比を制御する単位時間の逆数は、キャリア周波数と呼ばれる。キャリア周波数が高いほど、モータを正確に駆動することができる。
モータの回転速度に応じて、キャリア周波数を変更する技術が知られている。
モータを低速で駆動する場合(すなわち、車両が低速で走行させる場合)、キャリア周波数を低くして、スイッチング素子をスイッチングさせる。モータを低速で駆動する場合、大きなトルクが必要とされ、モータに大電流を通電する必要がある。スイッチング素子で大電流をスイッチングすると、スイッチング損失が相対的に大きくなる。したがって、キャリア周波数を低くすることによってスイッチング損失の発生回数を少なくする方が有利である。
一方、モータを高速で駆動する場合(すなわち、車両が高速で走行させる場合)、モータの回転速度及びトルクを正確に制御して走行安定性を保つことが重要である。この場合、キャリア周波数を高くしてスイッチング素子をスイッチングさせることで、モータの制御性を高める。
ところで、スイッチング素子をスイッチングする時に、スイッチング速度に応じてスイッチング素子にサージ電圧が印加される。過度に高いサージ電圧がスイッチング素子に印加されると、スイッチング素子が破損してしまう。一般に、スイッチング時に発生するサージ電圧は、スイッチング電流が大きいほど高くなりやすい。
特許文献1には、スイッチング時(ターンオン時及びターンオフ時)に発生するサージ電圧を低減させる技術が開示されている。この技術では、スイッチングの過程においてゲート抵抗を変更する。これによって、スイッチング電流の変化率を低減させ、サージ電圧の発生を抑制することができるとされている。
特開2004−266368号公報
上述したように、サージ電圧は、スイッチング電流が大きいほど高くなる。スイッチング電流は、モータを駆動する回転速度が速いほど大きくなる。すなわち、スイッチング時に発生するサージ電圧は、モータを駆動する回転速度に応じて変化する。特許文献1の技術では、スイッチングの過程においてゲート抵抗を変更するが、モータを何れの回転速度で回転させるときにもスイッチング時に同一のルーチンでゲート抵抗を変更する。したがって、十分にサージ電圧の発生を抑制することができなかった。
また、モータのキャリア周波数に応じてゲート抵抗の抵抗を変更することによって、サージ電圧の発生を抑制することも考えられる。上述した通り、キャリア周波数は、モータを駆動する回転速度(目標回転速度)に応じて変更される。したがって、キャリア周波数の大小は、モータの目標回転速度に対応する。モータの目標回転速度がサージ電圧が問題となりやすい回転速度であるときには、ゲート抵抗の抵抗を高くする。すると、スイッチング素子のスイッチング速度が低下するので、スイッチング素子に高いサージ電圧が印加され難くなる。また、モータの目標回転速度がサージ電圧が問題となり難い回転速度であるときには、ゲート抵抗の抵抗を低くする。これによって、スイッチング素子のスイッチング速度を上昇させる。
ターンオフ時にスイッチング素子に印加されるサージ電圧は、スイッチング素子を流れる電流の変化率(スイッチングによる減少率)が大きいほど大きくなる。したがって、ターンオフ前にスイッチング素子を流れている電流が大きいと、スイッチング素子に高いサージ電圧が印加されやすい。したがって、低速高トルクでモータを駆動するとき(すなわち、モータに大電流を通電するとき)は、スイッチング素子を比較的低速でターンオフさせることが好ましい。すなわち、抵抗が高いゲート抵抗を介してゲート電圧をオフすることが好ましい。また、モータを高速低トルクで回転させるとき(すなわち、モータに比較的小さい電流を通電するとき)には、スイッチング素子にそれほど大きい電流が流れないので、スイッチング素子に高いサージ電圧が印加され難い。その反面、モータを正確に駆動する必要がある。したがって、スイッチング素子を高速でターンオフさせることが好ましい。すなわち、抵抗が低いゲート抵抗を介してゲート電圧をオフすることが好ましい。
一方、ターンオン時にスイッチング素子に印加されるサージ電圧は、スイッチング素子が接続されている電気回路のインダクタンス成分とキャパシタンス成分が作用することで発生する。例えば、スイッチング素子(第1のスイッチング素子)に他のスイッチング素子(第2のスイッチング素子)が直列に接続されており、第2のスイッチング素子に還流ダイオードが並列接続されていると、還流ダイオードの寄生キャパシタンスと電気回路のインダクタンス成分との共振により、第1のスイッチング素子のターンオン時に第1のスイッチング素子にサージ電圧が印加される。この場合、モータを高速低トルクで回転させるとき(すなわち、モータに比較的低い電流を通電するとき)ほど、スイッチング素子に印加されるサージ電圧が高くなる。ターンオン時のサージ電圧を抑制するには、高速回転時ほどゲート抵抗を大きくしてスイッチング速度を遅くするのが有利である。
上記したようにゲート抵抗の大きさには背反した性質が求められる。高速回転時には、高いキャリア周波数を実現するためにゲート抵抗が小さいことが好ましいが、ターンオン時のサージ電圧を抑制するにはゲート抵抗が大きいことが好ましい。低速回転時には、ターンオフ時のサージ電圧を抑制するためにゲート抵抗が大きいことが好ましい。
したがって、単にキャリア周波数に応じてゲート抵抗の抵抗を変更しても、上記した背反した要求に応えることができない。例えば、高いキャリア周波数でモータを高速で回転させるために、ゲート抵抗を小さくすると、ターンオン時にスイッチング素子に非常に高いサージ電圧が印加されてしまう。
本発明は、上記の実情に鑑みてなされたものであり、モータの目標回転速度に応じてスイッチング素子のターンオフ速度を変更することができるとともに、モータを高速低トルクで駆動するときには、ターンオン時に高いサージ電圧を発生させることがなく、しかも高速でスイッチング素子をターンオフさせることができるゲート電圧制御回路を提供することを目的とする。
本発明のゲート電圧制御回路は、キャリア周波数決定手段と、デューティ比算出手段と、パルス電圧出力手段と、ターンオン用回路と、ターンオフ用回路と、抵抗変更手段を有している。キャリア周波数決定手段は、モータの目標回転速度を入力し、モータの目標回転速度が高いときに高いキャリア周波数を決定する。デューティ比算出手段は、デューティ比を算出する。パルス電圧出力手段は、決定されたキャリア周波数と算出されたデューティ比を有するパルス電圧を出力する。ターンオン用回路は、パルス電圧出力手段からパルス電圧を入力してパルス電圧がオン電圧のときにオンするターンオン用スイッチと、ゲートオン抵抗を備えており、ゲート電圧源とゲート付きスイッチング素子のゲートをターンオン用スイッチとゲートオン抵抗を介して接続している。ターンオフ用回路は、パルス電圧出力手段からパルス電圧を入力してパルス電圧がオフ電圧のときにオンするターンオフ用スイッチと、ゲートオフ抵抗を備えており、ゲート付きスイッチング素子のゲートと基準電位点をターンオフ用スイッチとゲートオフ抵抗を介して接続している。抵抗変更手段は、キャリア周波数決定手段が決定したキャリア周波数を入力するか、あるいはパルス電圧出力手段が出力したパルス電圧からキャリア周波数を検出することによってキャリア周波数を特定し、特定したキャリア周波数が高いときに前記ターンオフ用回路のゲート付きスイッチング素子のゲートと基準電位点の間の抵抗を低く調整する。
なお、「基準電位点」とは、ゲート電圧源の電位より低い電位に保持されている点を意味する。基準電位点は、必ずしも一定電位に保持されている必要は無く、ゲート電圧源の電位より低い範囲内で電位が変動する点であっても良い。
このゲート電圧制御回路では、パルス電圧がオン電圧のときにターンオン用スイッチがオンする。すると、ターンオン用スイッチとゲートオン抵抗を介して、ゲート付きスイッチング素子のゲートにゲート電圧源が出力する電圧が印加される。したがって、ゲート付きスイッチング素子がオンする。パルス電圧がオフ電圧となると、ターンオン用スイッチがオフし、ターンオフ用スイッチがオンする。すると、ゲート付きスイッチング素子のゲートの電荷が、ターンオフ用スイッチとゲートオフ抵抗を介して基準電位点に放電され、ゲート付きスイッチング素子がオフする。ターンオフ用回路のゲート付きスイッチング素子のゲートと基準電位点の間の抵抗は変更可能とされている。
抵抗変更手段は、特定したキャリア周波数が高いときにゲートと基準電位点の間の抵抗を低く調整する。したがって、キャリア周波数が高いとき(すなわち、高速低トルクでモータを駆動するとき)には、ゲート付きスイッチング素子のターンオフ速度が速くなる。スイッチング素子のゲートと基準電位点の間の抵抗は、ゲートオン抵抗の値を変更することなく変更されるので、ゲート付きスイッチング素子のターンオン速度を変更することなく、ターンオフ速度だけが変更される。したがって、ターンオン時にゲート付きスイッチング素子に高いサージ電圧が印加されることが防止される。キャリア周波数が低いとき(すなわち、低速高トルクでモータを駆動するとき)には、ゲートと基準電位点の間の抵抗が高く調整される。したがって、ゲート付きスイッチング素子のターンオフ速度が低下し、ゲート付きスイッチング素子に高いサージ電圧が印加されることが防止される。
上述したゲート電圧制御回路では、ターンオフ用回路が、ゲート付きスイッチング素子のゲートと基準電位点を第1ターンオフ用スイッチと第1ゲートオフ抵抗を介して接続している第1回路と、ゲート付きスイッチング素子のゲートと基準電位点を第2ターンオフ用スイッチと第2ゲートオフ抵抗を介して接続している第2回路と、第1ターンオフ用スイッチと第2ターンオフ用スイッチとパルス電圧出力手段とに接続されており、パルス電圧出力手段から第1ターンオフ用スイッチにパルス電圧が入力される状態とパルス電圧出力手段から第2ターンオフ用スイッチにパルス電圧が入力される状態とを切り替える切換スイッチを有していることが好ましい。ここで、第2ゲートオフ抵抗は、第1ゲートオフ抵抗よりも高い抵抗を持っている。抵抗変更手段は、特定したキャリア周波数が所定周波数より高いときには切換スイッチをパルス電圧出力手段から第1ターンオフ用スイッチにパルス電圧が入力される状態とし、特定したキャリア周波数が所定周波数より低いときには切換スイッチをパルス電圧出力手段から第2ターンオフ用スイッチにパルス電圧が入力される状態とする。
このような構成によれば、キャリア周波数が高いときにはゲートオフ抵抗が低い第1回路を介してゲート付きスイッチング素子のゲートの電荷が放電される。キャリア周波数が低いときには、ゲートオフ抵抗が高い第2回路を介してゲート付きスイッチング素子のゲートの電荷が放電される。したがって、好適にゲート付きスイッチング素子のターンオフ速度を変更することができる。
上述したゲート電圧制御回路においては、ゲートオフ抵抗は可変抵抗であり、抵抗変更手段は特定したキャリア周波数が高いときにゲートオフ抵抗の抵抗を低く調整することが好ましい。
このような構成によれば、キャリア周波数が高いときにはゲートオフ抵抗の抵抗が低く調整され、キャリア周波数が低いときにはゲートオフ抵抗の抵抗が高く調整される。したがって、キャリア周波数に応じて好適にゲート付きスイッチング素子のターンオフ速度を変更することができ、サージと損失の低減を効率良く図ることができる。
ゲート付きスイッチング素子を用いてモータを駆動するときには、ゲート付きスイッチング素子で損失が発生する。すなわち、ゲート付きスイッチング素子がオンしているときには、定常損失が発生する。ゲート付きスイッチング素子がターンオフするときには、ターンオフの過程で損失が発生する(ターンオフ損失)。
本発明では、ゲート付きスイッチング素子で発生する損失を低減させることができるゲート電圧制御回路をも提供する。
このゲート電圧制御回路は、キャリア周波数決定手段と、デューティ比算出手段と、パルス電圧出力手段と、ターンオン用回路と、ターンオフ用回路と、ゲート電圧変更手段を有している。キャリア周波数決定手段は、モータの目標回転速度を入力し、モータの目標回転速度が高いときに高いキャリア周波数を決定する。デューティ比算出手段は、デューティ比を算出する。パルス電圧出力手段は、決定されたキャリア周波数と算出されたデューティ比を有するパルス電圧を出力する。ターンオン用回路は、パルス電圧出力手段からパルス電圧を入力してパルス電圧がオン電圧のときにオンするターンオン用スイッチと、ゲートオン抵抗を備えており、ゲート電圧源とゲート付きスイッチング素子のゲートをターンオン用スイッチとゲートオン抵抗を介して接続している。ターンオフ用回路は、パルス電圧出力手段からパルス電圧を入力してパルス電圧がオフ電圧のときにオンするターンオフ用スイッチと、ゲートオフ抵抗を備えており、ゲート付きスイッチング素子のゲートと基準電位点をターンオフ用スイッチとゲートオフ抵抗を介して接続している。ゲート電圧変更手段は、キャリア周波数決定手段が決定したキャリア周波数を入力されるか、あるいはパルス電圧出力手段が出力したパルス電圧からキャリア周波数を検出することによってキャリア周波数を特定し、特定したキャリア周波数が高いときにゲート電圧源が出力する電圧を低く調整する。
このゲート電圧制御回路では、キャリア周波数が高いときには、ゲート電圧源が出力する電圧が低く調整される。すなわち、オン時にゲート付きスイッチング素子のゲートに印加されるゲート電圧が低くなる。ゲート電圧が低いとゲート付きスイッチング素子のターンオフ速度が速くなるので、ターンオフ損失が小さくなる。キャリア周波数が高いときには、ゲート付きスイッチング素子のスイッチング頻度が高いので、ターンオフ損失が少なくなると損失を大きく低減させることができる。一方、ゲート電圧が低いとゲート付きスイッチング素子のオン抵抗が高くなる。しかしながら、キャリア周波数が高い場合は、ゲート付きスイッチング素子を流れる電流が比較的小さいので、定常損失はそれほど増加しない。したがって、キャリア周波数が高いときには、ゲート電圧を低くすることによってゲート付きスイッチング素子で発生する損失の総量を低減させることができる。
キャリア周波数が低いときには、ゲート電圧が高く調整される。ゲート電圧が高いと、ゲート付きスイッチング素子のオン抵抗が低くなる。キャリア周波数が低いときはゲート付きスイッチング素子を流れる電流が大きいときであるので、オン抵抗が低くなると定常損失を大きく低減させることができる。一方、ゲート電圧が高いとゲート付きスイッチング素子のターンオフ速度が遅くなる。したがって、ターンオフ損失が大きくなる。しかしながら、キャリア周波数が低い場合はゲート付きスイッチング素子のスイッチング頻度が低いので、ターンオフ損失はそれほど問題とならない。したがって、キャリア周波数が低いときには、ゲート電圧を高くすることによってゲート付きスイッチング素子で発生する損失の総量を低減させることができる。
本発明は、ゲート付きスイッチング素子のゲート電圧の制御方法も提供する。このゲート電圧制御方法は、モータの目標回転速度を参照してモータの目標回転速度が高いときに高いキャリア周波数を決定するキャリア周波数決定ステップと、デューティ比を算出するデューティ比算出ステップと、決定されたキャリア周波数と算出されたデューティ比を有するパルス電圧をターンオン用回路とターンオフ用回路に出力することによってゲート付きスイッチング素子のゲート電圧を変動させるパルス電圧出力ステップと、キャリア周波数決定ステップで決定したキャリア周波数を参照するか、あるいはパルス電圧出力ステップで出力したパルス電圧からキャリア周波数を検出することによってキャリア周波数を特定し、特定したキャリア周波数が高いときに前記ターンオフ用回路のゲート付きスイッチング素子のゲートと基準電位点の間の抵抗を低く調整する抵抗変更ステップを有している。
このゲート電圧制御方法によれば、モータの目標回転速度に応じてスイッチング素子のターンオフ速度を変更することができる。さらに、モータを高速低トルクで駆動するときには、ターンオンによって高いサージ電圧を発生させることなく高速でスイッチング素子をターンオフさせることができる。
本発明は、ゲート付きスイッチング素子のゲート電圧のさらなる制御方法も提供する。このゲート電圧制御方法は、モータの目標回転速度を参照してモータの目標回転速度が高いときに高いキャリア周波数を決定するキャリア周波数決定ステップと、デューティ比を算出するデューティ比算出ステップと、決定されたキャリア周波数と算出されたデューティ比を有するパルス電圧をターンオン用回路とターンオフ用回路に出力することによってゲート付きスイッチング素子のゲート電圧を変動させるパルス電圧出力ステップと、キャリア周波数決定ステップで決定したキャリア周波数を参照するか、あるいはパルス電圧出力ステップで出力したパルス電圧からキャリア周波数を検出することによってキャリア周波数を特定し、特定したキャリア周波数が高いときにゲート電圧源が出力する電圧を低く調整するゲート電圧変更ステップを有する。
このゲート電圧制御方法によれば、ゲート付きスイッチング素子で発生する損失を低減することができる。
下記に詳細に説明する実施例の主要な特徴を最初に列記する。
(特徴1)キャリア周波数決定手段は、モータの目標回転速度が所定回転速度よりも高いときにはキャリア周波数FHを決定し、モータの目標回転速度が所定回転速度以下である場合にはキャリア周波数FHよりも低いキャリア周波数FLを決定する。
(第1実施例)
本発明の第1実施例に係るゲート電圧制御回路について説明する。実施例では、図1に示すモータ駆動装置10のIGBT12a〜12fのゲート電圧を制御するゲート電圧制御回路30a〜30fについて説明する。
図1に示すように、モータ駆動装置10は、電力供給線16、18、IGBT12a〜12f、ダイオード14a〜14f、出力線20〜24、ゲート電圧制御回路30a〜30f及びマイコン26を備えている。電力供給線16、18の間には、コレクタが電力供給線16側となり、エミッタが電力供給線18側となるように、IGBT12a、12bが直列に接続されている。IGBT12c、12dも、IGBT12a、12bと同様に、電力供給線16、18の間に直列に接続されている。IGBT12e、12fも、IGBT12a、12bと同様に、電力供給線16、18の間に直列に接続されている。ダイオード14a〜14fは、対応するIGBTに対して並列に接続されている。ダイオード12a〜12fは、IGBT12a〜12fに逆電圧が印加されるのを防止するとともに、電流をモータ28へ還流するための還流ダイオードである。ゲート電圧制御回路30a〜30fは、対応するIGBTのゲートに接続されている。マイコン26は、ゲート電圧制御回路30a〜30fに接続されている。IGBT12aと12bとの接続部からは、出力線20が引き出されている。IGBT12cと12dとの接続部からは、出力線22が引き出されている。IGBT12eと12fとの接続部からは、出力線24が引き出されている。出力線20〜24は、モータ28に接続されている。モータ28は、三相インダクションモータである。
電力供給線16、18の間には、直流電圧VEが印加される。モータ駆動装置10は、IGBT12a〜12fをスイッチングすることにより、直流電圧VEを擬似的な三相交流電力に変換し、出力線20〜24に出力する。より詳細には、マイコン26は、モータ28の目標回転速度を算出する。そして、算出した目標回転速度に応じてキャリア周波数Fuを決定する。また、算出した目標回転速度に対応するモータのトルクに応じてディーティ比Duを算出する。後に詳述するが、キャリア周波数Fuはモータ28を制御する周波数である。マイコン26は、IGBT12a〜12fに共通のキャリア周波数Fuを出力する。デューティ比Duはモータ28を駆動するための単位時間(1/Fu)内において、IGBT12a〜12fをオンする時間の比率である。マイコン26は、IGBT毎に適切なデューティ比Duを算出する。マイコン26は、キャリア周波数Fuとデューティ比Duを持ったパルス信号を、フォトカプラ(図示省略)を介してゲート電圧制御回路30a〜30fに出力する。ゲート電圧制御回路30a〜30fは、入力されたキャリア周波数Fuとデューティ比Duに応じて、対応するIGBT12a〜12fのゲート電圧を制御する。これによって、IGBT12a〜12fがスイッチングし、出力線20〜24に三相交流電力が出力される。出力された三相交流電力は、モータ28に出力される。モータ28は、三相交流電力の入力を受けると回転する。モータ駆動装置10は、モータ28に出力する三相交流電力の振幅、周波数を変更することができる。三相交流電力の振幅、周波数を変更することで、モータ28の回転速度、駆動トルクを変更することができる。
図2は、ゲート電圧制御回路30aの概略構成を示している。なお、ゲート電圧制御回路30a〜30fは略同様の構成を有しているので、以下ではゲート電圧制御回路30aについて説明する。図2に示すように、ゲート電圧制御回路30aは、目標値算出部32、パルス電圧出力回路34、キャリア周波数検出回路36、放電回路選択回路38、ターンオン回路40及びターンオフ回路42を有している。なお、図1においては、マイコン26とゲート電圧制御回路30aを別のブロックとして記載したが、目標値算出部32はマイコン26のキャリア周波数Fuを決定する機能及びデューティ比Duを算出する機能によって実現される。すなわち、マイコン26の一部の機能はゲート電圧制御回路30aに含まれる。
目標値算出部32(マイコン26)は、モータ28の目標回転速度に応じて、キャリア周波数Fuを決定するとともにデューティ比Duを算出する。目標値算出部32は、モータ28を所定の回転速度よりも高速で駆動するときには、キャリア周波数FHを決定する。また、モータ28を所定の回転速度以下で駆動するときには、キャリア周波数FHよりも低いキャリア周波数FLを決定する。目標値算出部32は、キャリア周波数Fu(すなわち、FHまたはFL)とデューティ比Duをパルス電圧出力回路34に出力する。
パルス電圧出力回路34は、入力されたキャリア周波数Fuとデューティ比Duに応じて、パルス電圧A1を出力する。図3は、パルス電圧出力回路34が出力する1周期分(1/Fu)のパルス電圧A1を示している。図3の横軸は時間t1を示しており、縦軸は電圧V1を示している。図示するように、波形A1は、1/Fu(sec)を1周期とし、周期の開始時からデューティ比Duに対応する時間a1(sec)が経過するまでは電圧Hiを出力し、時間a1経過後から周期の終了まで(すなわち、時間b1が経過するまで)は電圧Loを出力する波形である。なお、時間a1、b1は、
a1=Du/Fu
b1=1/Fu−a1
の関係に従って決定される。パルス電圧出力回路34は、パルス電圧A1をターンオン回路40とキャリア周波数検出回路36に出力する。また、パルス電圧出力回路34は、パルス電圧A1を反転させたパルス電圧A2を出力する。パルス電圧A2は、パルス電圧A1が電圧Hiを出力している間はLoを出力し、パルス電圧A1がLoを出力している間は電圧Hiを出力するパルス電圧である。パルス電圧出力回路34は、パルス電圧A2をターンオフ回路42に出力する。
ターンオン回路40は、MOS−FET44a、ゲートオン抵抗46aを備えている。MOS−FET44aのゲートには、パルス電圧出力回路34からパルス電圧A1が入力される。MOS−FET44aのドレインには、図示しないゲート電圧源により直流電圧V2が印加されている。MOS−FET44aのソースは、ゲートオン抵抗46aを介してIGBT12aのゲート13aに接続されている。MOS−FET44aは、ゲートに入力されるパルス電圧A1に応じて、スイッチングする。MOS−FET44aがオンすると、MOS−FET44a、ゲートオン抵抗46aを介して、図示しないゲート電圧源からIGBT12aのゲート13aに電圧が印加される。すなわち、ゲート13aに電荷が供給される。これによって、IGBT12aはオンする。MOS−FET44aがオフすると、ゲート13aへの電圧の印加が停止される。
ターンオフ回路42は、MOS−FET44b、MOS−FET44c、ゲートオフ抵抗46b、ゲートオフ抵抗46c及びスイッチ48を備えている。
スイッチ48は、端子48a、48b、48cを備えている。スイッチ48は、放電回路選択回路38から入力される信号に応じて、端子48a−48b間が導通している状態と、端子48a−48c間が導通している状態とを切り替える。端子48aはパルス電圧出力回路34に接続されており、パルス電圧A2が入力される。端子48bは、MOS−FET44bに接続されている。端子48cは、MOS−FET44cに接続されている。
MOS−FET44bのドレインは、ゲートオフ抵抗46bを介してIGBT12aのゲート13aに接続されている。MOS−FET44bのゲートは、スイッチ48の端子48bに接続されている。MOS−FET44bのソースは、基準電位点45に接続されている。なお、基準電位点45の電位は、ゲート電圧制御回路が接続されているIGBTのエミッタ電極の電位である。したがって、ゲート電圧制御回路30aの基準電位点45の電位は、IGBT12aのエミッタ電極の電位となっている。
MOS−FET44cのドレインは、ゲートオフ抵抗46cを介してIGBT12aのゲート13aに接続されている。MOS−FET44cのゲートは、スイッチ48の端子48cに接続されている。MOS−FET44cのソースは、基準電位点45に接続されている。
スイッチ48が端子48a−48b間を導通していると、パルス電圧A2がMOS−FET44bのゲートに入力される。MOS−FET44bは、ゲートに入力されるパルス電圧A2に応じて、スイッチングする。MOS−FET44bがオンすると、ゲートオフ抵抗46b、MOS−FET44bを介して、IGBT12aのゲート13aから基準電位点45へ電荷が放電される。これによって、IGBT12aはオフする。すなわち、MOS−FET44bとゲートオフ抵抗46bによって第1の放電回路60bが形成されている。MOS−FET44bがオフすると、ゲート13aからの電荷の放電が停止される。また、スイッチ48が端子48a−48c間を導通している状態に切り替えられると、MOS−FET44bはスイッチングを停止する。
スイッチ48が端子48a−48c間を導通していると、パルス電圧A2がMOS−FET44cのゲートに入力される。MOS−FET44cは、ゲートに入力されるパルス電圧A2に応じてスイッチングする。MOS−FET44cがオンすると、ゲートオフ抵抗46c、MOS−FET44cを介して、IGBT12aのゲート13aから基準電位点45へ電荷が放電される。これによって、IGBT12aはオフする。すなわち、MOS−FET44cとゲートオフ抵抗46cによって第2の放電回路60cが形成されている。MOS−FET44cがオフすると、ゲート13aからの電荷の放電が停止される。また、スイッチ48が端子48a−48b間を導通している状態に切り替えられると、MOS−FET44cはスイッチングを停止する。
なお、ゲートオフ抵抗46bの抵抗R1は、ゲートオフ抵抗46cの抵抗R2よりも小さい。したがって、放電回路60bによってゲート13aの電荷を放電するときには、放電回路60cによって放電するときに比べて高速で電荷が放電される。すなわち、放電回路60bでゲート13aの電荷を放電すると、放電回路60cで電荷を放電するのに比べて高速でIGBT12aがターンオフする。
キャリア周波数検出回路36には、パルス電圧出力回路34からパルス電圧A1が入力される。キャリア周波数検出回路36は、入力されたパルス電圧A1のキャリア周波数Fuを検出する。キャリア周波数検出回路36は、検出したキャリア周波数Fuが周波数F0よりも大きいか否かを判定する。なお、周波数F0は、キャリア周波数FHより小さく、キャリア周波数FLより大きい周波数である。すなわち、キャリア周波数検出回路36は、キャリア周波数Fuがキャリア周波数FHであるかキャリア周波数FLであるかを判定する。キャリア周波数検出回路36は、キャリア周波数Fuが周波数F0より大きいか否かの判定結果(すなわち、キャリア周波数Fuがキャリア周波数FHであるか、キャリア周波数FLであるかの判定結果)を放電回路選択回路38に出力する。
放電回路選択回路38には、キャリア周波数検出回路36からキャリア周波数Fuが周波数F0より大きいか否かの判定結果が入力される。放電回路選択回路38は、キャリア周波数Fuが周波数F0より大きいときには、スイッチ48に信号を入力してスイッチ48を端子48b側に切り替える。また、キャリア周波数Fuが周波数F0以下であるときには、スイッチ48に信号を入力してスイッチ48を端子48c側に切り替える。
次に、ゲート電圧制御回路30aによって、IGBT12aのゲート電圧を制御する処理について説明する。ゲート電圧制御回路30aは、単位時間(1/Fu)毎にIGBT12aのゲート電圧を制御する。図4は、1単位時間においてIGBT12aのゲート電圧を制御するための処理を示すフローチャートである。
ステップS2では、目標値算出部32(すなわち、マイコン26)が、モータ28の目標回転速度に応じてキャリア周波数Fuを決定し、デューティ比Duを算出する。
ステップS4では、パルス電圧出力回路34が、ステップ2で決定されたキャリア周波数Fuと算出されたデューティ比Duに応じて、パルス電圧A1とパルス電圧A2を出力する。パルス電圧A1は、ターンオン回路30a及びキャリア周波数検出回路36に出力される。パルス電圧A2は、ターンオフ回路42に出力される。すると、ターンオン回路40とターンオフ回路42によってIGBT12aのゲート電圧が制御される。IGBT12aのゲート電圧の制御については後に詳述する。
ステップS6では、キャリア周波数検出回路36が、ステップS4で出力されたパルス電圧A1のキャリア周波数Fuを検出する。キャリア周波数検出回路36は、検出したキャリア周波数Fuが周波数F0より大きいか否かを判定し、その判定結果を放電回路選択回路38に出力する。
ステップS8では、放電回路選択回路38が、ステップS6の判定結果に応じてスイッチ48を切り替える。放電回路選択回路38は、キャリア周波数Fuが所定周波数F0よりも大きい場合には、スイッチ48に信号を入力することによってスイッチ48を端子48b側に切り替える(既に、スイッチ48が端子48b側にある場合には、何もしない)。放電回路選択回路38は、キャリア周波数Fuが所定周波数F0以下である場合には、スイッチ48に信号を入力することによってスイッチ48を端子48c側に切り替える(既に、スイッチ48が端子48c側にある場合には、何もしない)。
ステップS8が終了すると、1周期(1/Fu)分の処理が終了する。ゲート電圧制御回路30aは、図4のフローチャートを繰り返し実行する。
図5は、ゲート電圧制御回路12aのパルス電圧A1、パルス電圧A2、IGBT12aのゲート−エミッタ間電圧Vge、コレクタ−エミッタ間電流Ice及びコレクタ−エミッタ間電圧Vceの時間変化を示すグラフである。図5の時刻ta−tc間の時間X1、tc−te間の時間X2、te−tg間の時間X3は、キャリア周波数によって決まる単位時間(1/Fu)である。なお、図5の時刻taにおいては、モータ28を低速高トルクで駆動しているので、キャリア周波数FuはFL(低いキャリア周波数)となっている。したがって、スイッチ48は端子48c側にある。
また、ゲート電圧制御回路12aは、複数の処理を同時平行して実行する。図5の各波形は、図6に示すように処理Y1〜Y3が平行して実行されることにより出力される。処理Y1〜Y3は、それぞれ図4のフローチャートの処理を示している。例えば、時間X1においては、処理Y1のステップS4と、処理Y2のステップS2を平行して実行することを示している。なお、図4に示す各ステップの実行タイミングは一例であり、図4と異なるタイミングで各ステップを実行しても良い。
処理Y1のステップS2は、時刻taより前に実行される。このステップS2では、キャリア周波数FL(遅いキャリア周波数)が決定される。ステップS2でキャリア周波数FLを決定し、デューティ比Duを算出すると、パルス電圧出力回路34は、時間X1の間にターンオン回路40にパルス電圧A1を出力し、ターンオフ回路42にパルス電圧A2を出力する(ステップS4)。図5に示すように、時刻taにおいては、MOS−FET44aのゲート電圧(パルス電圧A1)が電圧Loから電圧Hiに上昇する。すると、MOS−FET44aがオンする。また、ターンオフ回路42では、スイッチ48が端子48c側にあるので、MOS−FET44cのゲートにパルス電圧A2が入力される。時刻taにおいては、MOS−FET44cのゲート電圧(パルス電圧A2)は電圧Hiから電圧Loに低下するので、MOS−FET44cはオフする。したがって、IGBT12aのゲート13aに、MOS−FET44aとゲートオン抵抗46aを介して電圧が印加される。したがって、電圧Vgeが上昇する。IGBT12aのゲート13aには、ゲートオン抵抗46aを介して電圧が印加されるので、電圧Vgeは所定の傾きで増加する。すなわち、IGBT12aが所定の速度でターンオンする。これによって、電流Iceが増加し、電圧Vceが減少する。このとき、IGBT12aのコレクタ−エミッタ間には、ターンオンによるサージ電圧が印加されるが、ゲートオン抵抗46aの抵抗が適切であるため、それほど高いサージ電圧は印加されない。なお、電圧Vgeの上昇時には、一端電圧Vgeが略一定値となる部分がある(図5の部分Va)。これは、IGBT12aのゲート−コレクタ間のミラー容量に電荷が供給されるためである。
時間が経過して時刻tbとなると、MOS−FET44aのゲート電圧(パルス電圧A1)が電圧HiからLoに低下するので、MOS−FET44aがオフする。また、MOS−FET44cのゲート電圧(パルス電圧A2)がLoからHiに上昇するので、MOS−FET44cがオンする。すると、ゲートオフ抵抗46cとMOS−FET44cを介して(すなわち、放電回路60cを介して)、IGBT12aのゲート13aから基準電位点45に電荷が放電される。したがって、電圧Vgeが低下する。電圧Vgeが低下すると、電流Iceが減少し、電圧Vceが上昇する。このとき、電流Iceの減少率に応じたサージ電圧VsがIGBT12aのコレクタ−エミッタ間に印加される。
図7は、ターンオフ時の電圧Vge、電流Ice及び電圧Vceの変動をより詳細に示している。時刻tbにおいてIGBT12aのゲート13aの電荷の放電が開始されると、Vgeは減少し、電圧Vge1で一旦、電圧Vgeの低下が止まる。これは、上述したミラー容量から電荷が放電されるためである。ミラー容量の電荷の放電が終了すると、ゲート13aの電荷が放電される。すると、時刻tb2に示すように、電圧Vgeは減少し、0Vとなる。
時刻tb2において電圧Vgeが0Vとなると、IGBT12aがオフする。したがって、電流Iceが略0Vに減少し、電圧Vceがオフ電圧Vce1に上昇する。このとき、IGBT12aの寄生インダクタンスの影響によって、電流Iceの減少率dIce/dtに比例したサージ電圧Vsが発生する。したがって、図6に示すように、IGBT12aのコレクタ−エミッタ間に、電圧Vce1にサージ電圧Vsを重畳した電圧が印加されることとなる。
上述したように、発生するサージ電圧Vsの大きさは、電流Iceの減少率dIce/dtに比例する。
減少率dIce/dtは、ターンオフ時の電流Iceの変化量ΔIce(図7参照)が大きいほど大きくなる。モータを低速(高トルク)で駆動するとき(すなわち、キャリア周波数Fuが低いとき)は、電流Iceが非常に大きくなるので変化量ΔIceも大きくなる。
また、減少率dIce/dtは、IGBT12aのターンオフ速度が速いほど大きくなる。時刻tb2においては、ゲート13aの電荷は比較的高い抵抗値R2を有するゲートオフ抵抗46cを介して放電される。すなわち、IGBT12aは比較的ゆっくりターンオフする。したがって、電流Iceの変化量ΔIceが大きくても、減少率dIce/dtがそれほど大きくならない。したがって、ターンオフ時にIGBT12aに高いサージ電圧Vsが印加されることが抑制されている。
時間が経過して時刻tcとなると、ゲート電圧制御回路30aは、ステップS6を実行する。ステップS6では、時間X1の間に出力されたパルス電圧A1のキャリア周波数Fuを検出する。具体的には、パルス電圧A1の立ち上がり時刻taとパルス電圧A1の立ち上がり時刻tc(時刻tcにおけるパルス電圧A1の立ち上がりについては後に詳述する)を検出し、時刻taと時刻tcからキャリア周波数Fu(=1/(tc−ta))を決定する。上述したように、時間X1の間に出力されたパルス電圧A1のキャリア周波数はFLであるので、ここではキャリア周波数FLが検出される。
キャリア周波数FLを決定したら、ステップS8を実行する。すなわち、キャリア周波数FLが周波数F0より高いか否かを判定する。キャリア周波数FLは周波数F0より低いので、ゲート電圧制御回路30aは、スイッチ48を切り替えない。
ステップS6、S8は、次の処理(ここでは、処理Y2)でIGBT12aがターンオフする時(ここでは、時刻td)までに実行される。
処理Y2のステップS2は、時刻tbから時刻tcの間に実行される。このとき、モータの目標回転速度が、モータをより高速で駆動する値に変更されている。したがって、処理Y2のステップS2では、キャリア周波数Fuとしてキャリア周波数FHが決定される。時間が経過して時刻tcとなると、ステップS4が実行されて、時間X2の間にパルス電圧A1及びパルス電圧A2が出力される。図示するように、処理Y2のパルス電圧A1とパルス電圧A2のキャリア周波数Fuは処理Y1に比べて高くなっている(すなわち、時間X2が時間X1より短くなっている)。パルス電圧A1及びパルス電圧A2が出力されると、IGBT12aがスイッチングする。
時間が経過して時刻teとなると、ゲート電圧制御回路30aは、処理Y2のステップS6、S8を実行する。上述したように、処理Y2で出力するパルス電圧A1のキャリア周波数FuはFHである。したがって、ステップS8で、キャリア周波数FHが周波数F0より高いと判定され、スイッチ48が端子48b側に切り替えられる。すなわち、IGBT12aのゲート13aの電荷を放電する回路が放電回路60bに切り替えられる。
処理Y3のステップS2は、時刻tdから時刻teの間に実行される。処理Y3のステップS2では、キャリア周波数Fuとしてキャリア周波数FHが決定される。時間が経過して時刻tcとなると、ステップS4が実行されて、時間X3の間にパルス電圧A1及びパルス電圧A2が出力される。パルス電圧A1及びパルス電圧A2が出力されると、IGBT12aがスイッチングする。処理Y3のステップS6では、IGBT12aのゲート13aへの電荷の供給(すなわち、IGBT12aのターンオン)は、上述した処理Y1、Y2と同様に、ゲートオン抵抗46aを介して行われる。一方、IGBT12aのゲート13aの電荷の放電(すなわち、IGBT12aのターンオフ)は、上述した処理Y1、Y2と異なる。すなわち、上述したように、処理Y2のステップS8では、スイッチ48が端子48b側に切り替えられている。したがって、処理Y3では、IGBT12aのゲート13aの電荷の放電は、ゲートオフ抵抗46bとMOS−FET44b(すなわち、放電回路60b)を介して行われる。ゲートオフ抵抗46bの抵抗値R1は、ゲートオフ抵抗46cの抵抗R2よりも小さい。したがって、IGBT12aのゲート13aの電荷は、処理Y1、Y2よりも高速で基準電位点45に放電される。すなわち、高速でIGBT12aがターンオフする。
IGBT12aが高速でターンオフすると、減少率dIce/dtが大きくなりやすく、IGBT12aに高いサージ電圧Vsが印加されやすい。
しかしながら、キャリア周波数Fuが高いキャリア周波数FHであるときは、モータ28を高速で駆動するときであり、モータ28にそれほど高い電流を出力しないときである。この場合、ターンオフ時の電流Iceの変化量ΔIceが小さくなる。したがって、ターンオフ速度が速くても、減少率dIce/dtはそれほど大きくならない。すなわち、IGBT12aに高いサージ電圧Vsが印加されることが抑制される。
以上に説明したように、本実施例のゲート電圧制御回路は、IGBTのターンオン時のスイッチング速度を変更することなく、IGBTのターンオフ時のスイッチング速度を変更することができる。したがって、ターンオン時にIGBTに高いサージ電圧が印加されることが抑制できる。また、キャリア周波数に応じて(すなわち、モータの目標回転速度に応じて)、IGBTを適切な速度でターンオフさせることができる。すなわち、ターンオン時及びターンオフ時に、IGBTに高いサージ電圧Vsが印加されることを抑制することができる。
なお、上述したゲート電圧制御回路では、キャリア周波数検出回路36がパルス電圧A1のキャリア周波数Fuを検出し、検出したキャリア周波数Fuが周波数F0より大きいか否かを判定した。しかしながら、目標値算出部32で決定したキャリア周波数Fuをキャリア周波数検出回路36に直接入力し、キャリア周波数検出回路36が入力されたキャリア周波数Fuが周波数F0より大きいか否かを判定してもよい。このような構成によっても、キャリア周波数Fuに応じてIGBTのターンオフ時のスイッチング速度を好適に変更することができる。
また、上述したゲート電圧制御回路では、モータの目標回転速度に応じてキャリア周波数FHとFLの2つのキャリア周波数を決定したが、より多くのキャリア周波数を決定するようにしてもよい。これによって、より適切にモータを制御することができる。
また、図8は、変形例のゲート電圧制御回路30gを示している。ゲート電圧制御回路30gでは、ターンオフ回路42がMOS−FET44dと可変抵抗モジュール60dによって構成されている。可変抵抗モジュール60dは、ゲート13aとMOS−FET44dの間に直列に接続されたゲートオフ抵抗61a、ゲートオフ抵抗61bと、ゲートオフ抵抗61bに並列に接続されたスイッチ62によって構成されている。また、ゲート電圧制御回路30gは、抵抗変更回路39を有している。抵抗変更回路39は、パルス信号A2のキャリア周波数Fuを検出し、検出したキャリア周波数Fuに応じてスイッチ62をオン−オフする。スイッチ62がオンしている場合、可変抵抗モジュール60dの抵抗は、ゲートオフ抵抗61aの抵抗となる。スイッチ62がオフしている場合、可変抵抗モジュール60dの抵抗は、ゲートオフ抵抗61aの抵抗とゲートオフ抵抗61bの抵抗の加算値となる。すなわち、スイッチ62がオン−オフすることによって、可変抵抗モジュール60dの抵抗を変更することができる。このように、キャリア周波数に応じて抵抗を変更できる可変抵抗とMOS−FETによって放電回路を形成することによっても、IGBT12aのターンオフ速度を変更することができる。なお、可変抵抗としては、可変抵抗モジュール60dの他に、種々の可変抵抗を採用することができる。
(第2実施例)
次に、第2実施例のゲート電圧制御回路70について説明する。なお、第2実施例のゲート電圧制御回路70の各部の説明においては、第1実施例のゲート電圧制御回路30と同様の構成を有するものについては、同様の記号を付して説明する。
図9は、ゲート電圧制御回路70のブロック図を示している。ゲート電圧制御回路70は、ゲート電圧制御回路30a〜30fと同様に、モータ駆動装置のIGBT12に接続されている。ゲート電圧制御回路70は、目標値算出部32、パルス電圧出力回路34、キャリア周波数検出回路36、ターンオン回路40、ターンオフ回路42、ゲート電圧源72及びゲート電圧変更回路74を有している。
目標値算出部32、パルス電圧出力回路34、キャリア周波数検出回路36及びターンオン回路40は、ゲート電圧制御回路30aと略同様に形成されている。
ターンオフ回路42は、ゲートオフ抵抗46bとMOS−FET44bを介して、IGBT12のゲート13と基準電位点45を接続している。
ゲート電圧源72は、MOS−FET44aのドレインと基準電位点45に接続されている。ゲート電圧源72は、MOS−FET44aのドレインに電圧を出力する。したがって、MOS−FET44aがオンすると、IGBT12のゲート13にゲート電圧源72が出力する電圧が印加される。これによって、IGBT12がオンする。ゲート電圧源72が出力する電圧は、変更することができる。
ゲート電圧変更回路74は、キャリア周波数検出回路36及びゲート電圧源72に接続されている。ゲート電圧変更回路74には、キャリア周波数検出回路36からキャリア周波数Fuの大小の判定結果が入力される。ゲート電圧変更回路74は、キャリア周波数Fuが周波数F0よりも大きいという判定結果を入力された場合には、ゲート電圧源72が出力する電圧を電圧VLに調整する。キャリア周波数Fuが周波数F0よりも小さいという判定結果を入力された場合には、ゲート電圧源72が出力する電圧を電圧VLよりも高い電圧VHに調整する。電圧VHは電圧VLよりも高い電圧である。
図10は、IGBT制御回路70が実行する処理を示すフローチャートである。
IGBT制御回路70は、ステップS12〜S16を、図4のステップS2〜S6と同様に実行する。
ステップS16を実行すると、IGBT制御回路70は、ステップS16で検出したキャリア周波数Fuが周波数F0よりも大きいか否かを判定し、ゲート電圧源72の電源電圧を変更する(ステップS18)。
キャリア周波数Fuが所定周波数F0よりも大きい場合(すなわち、モータを高速低トルクで回転させるとき)には、IGBT制御回路70はゲート電圧源72が出力する電圧を低い電圧VLとする。したがって、IGBT12のゲート13に印加される電圧が電圧VLとなる。
ゲート13に印加される電圧が低いと、IGBT12のオン抵抗が比較的高くなる。したがって、IGBT12の定常損失(IGBT12がオンしている間に発生する損失)が大きくなる。
一方、ゲート13に印加される電圧が低いと、IGBT12のターンオフ速度が速くなる。したがって、一度のターンオフで発生するIGBT12のターンオフ損失(IGBT12がターンオフするときに発生する損失)が小さくなる。キャリア周波数が高い場合、IGBT12のスイッチング頻度が高い。したがって、一度のターンオフ損失が小さくなると、IGBT12で発生するターンオフ損失の総量(ターンオフ損失×ターンオフ回数)を大きく低減させることができる。
このように、キャリア周波数が高い場合にゲート13に印加する電圧を低くすると、IGBT12の定常損失は若干大きくなるが、IGBT12のスイッチング損失の総量を大きく低減させることができる。したがって、IGBT12で発生する損失の総量を小さくすることができる。
キャリア周波数Fuが所定周波数F0よりも小さい場合(すなわち、モータを低速高トルクで回転させるとき)には、IGBT制御回路70はゲート電圧源72が出力する電圧を高い電圧VHとする。したがって、IGBT12のゲート13に印加される電圧が電圧VHとなる。
ゲート13に印加される電圧が高くなると、IGBT12のオン抵抗が比較的低くなる。したがって、IGBT12の定常損失が小さくなる。特に、キャリア周波数が低い場合(すなわち、モータを高速低トルクで回転させる場合)、IGBT12を流れる電流Iceが大きい。したがって、IGBT12のオン抵抗が低くすることで、IGBT12で発生する定常損失を大きく低減させることができる。
一方、ゲート13に印加される電圧が高いと、IGBT12のターンオフ速度が遅くなる。したがって、一度のターンオフで発生するターンオフ損失が大きくなる。しかしながら、キャリア周波数が低いと、IGBT12のスイッチング頻度が低い。したがって、一度のターンオフにより発生するスイッチング損失は大きくなってもそれほど問題はない。
このように、キャリア周波数が低い場合にゲート13に印加する電圧を低くすると、IGBT12のターンオフ損失は若干大きくなるが、IGBT12の定常損失を大きく低減させることができる。したがって、IGBT12で発生する損失の総量が小さくすることができる。
以上に説明したように、第2実施例のゲート電圧制御回路70では、キャリア周波数Fuに応じて、IGBT12のゲート13に印加する電圧(ON時に印加する電圧)を変更する。これによって、IGBT12で発生する損失の総量を小さくすることができる。
なお、キャリア周波数が高い場合にゲート13に印加する電圧を低くすると、ターンオン損失が増加する傾向がある。しかしながら、ターンオン損失は、従来公知の他の技術を用いることによって容易に低減させることができる。一方、ターンオフ損失を低減することは難しいが、上述した実施例の技術によって低減させることができる。したがって、キャリア周波数が高い場合には、上述した実施例の技術によってターンオフ損失を低減させ、他の公知技術によってターンオン損失を低減させることで、よりIGBT12で発生する損失の総量を小さくすることができる。
なお、本明細書では、ターンオフ用のゲート抵抗を変更する実施例と、ゲートオン電圧を調整する実施例を分けて説明したが、両技術を1つの装置に組み込むことも可能である。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例をさまざまに変形、変更したものが含まれる。
本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
モータ駆動装置10の概略構成を示す回路図。 ゲート電圧制御回路30aの概略構成を示す回路図。 パルス電圧出力回路34が出力するパルス電圧A1を示す図。 ゲート電圧制御回路30aによってIGBT12aのゲート電圧を制御するときのフローチャート。 パルス電圧A1、A2、ゲート−エミッタ間電圧Vge、コレクタ−エミッタ間電流Ice及びコレクタ−エミッタ間電圧Vceの変化を示すグラフ。 図4のフローチャートの各ステップの実行タイミングを示す説明図。 ターンオフ時のゲート−エミッタ間電圧Vge、コレクタ−エミッタ間電流Ice、コレクタ−エミッタ間電流の変化率dIce/dt及びコレクタ−エミッタ間電圧Vceの変化を詳細に示すグラフ。 ゲート電圧制御回路30aの変形例を示す回路図。 第2実施例のゲート電圧制御回路70を示す回路図。 第2実施例のゲート電圧制御回路70によってIGBT12aのゲート電圧を制御するときのフローチャート。
符号の説明
10:モータ駆動装置
12a〜12f:IGBT
14a〜14f:ダイオード
20〜24:出力線
26:マイコン
28:モータ
30a〜30f:ゲート電圧制御回路
32:目標値算出部
34:パルス電圧出力回路
36:キャリア周波数検出回路
38:放電回路選択回路
40:ターンオン回路
42:ターンオフ回路
44a〜44c:MOS−FET
46a:ゲートオン抵抗
46b、46c:ゲートオフ抵抗
48:スイッチ
60b、60c:放電回路
70:ゲート電圧制御回路
72:ゲート電圧源
74:電圧変更回路

Claims (6)

  1. ゲート電圧によってモータに電流を通電する状態とモータに電流を通電しない状態とを切り替えるゲート付きスイッチング素子のゲートに印加する電圧を制御するゲート電圧制御回路であって、
    モータの目標回転速度を入力し、モータの目標回転速度が高いときに高いキャリア周波数を決定するキャリア周波数決定手段と、
    デューティ比を算出するデューティ比算出手段と、
    決定されたキャリア周波数と算出されたデューティ比を有するパルス電圧を出力するパルス電圧出力手段と、
    パルス電圧出力手段からのパルス電圧を入力してパルス電圧がオン電圧のときにオンするターンオン用スイッチと、ゲートオン抵抗を備えており、ゲート電圧源とゲート付きスイッチング素子のゲートをターンオン用スイッチとゲートオン抵抗を介して接続しているターンオン用回路と、
    パルス電圧出力手段からのパルス電圧を入力してパルス電圧がオフ電圧のときにオンするターンオフ用スイッチと、ゲートオフ抵抗を備えており、ゲート付きスイッチング素子のゲートと基準電位点をターンオフ用スイッチとゲートオフ抵抗を介して接続しているターンオフ用回路と、
    キャリア周波数決定手段が決定したキャリア周波数を入力するか、あるいはパルス電圧出力手段が出力したパルス電圧からキャリア周波数を検出することによってキャリア周波数を特定し、特定したキャリア周波数が高いときに前記ターンオフ用回路のゲート付きスイッチング素子のゲートと基準電位点の間の抵抗を低く調整する抵抗変更手段、
    を有することを特徴とするゲート電圧制御回路。
  2. ターンオフ用回路は、
    ゲート付きスイッチング素子のゲートと基準電位点を、第1ターンオフ用スイッチと第1ゲートオフ抵抗を介して接続している第1回路と、
    ゲート付きスイッチング素子のゲートと基準電位点を、第2ターンオフ用スイッチと第1ゲートオフ抵抗よりも抵抗が高い第2ゲートオフ抵抗を介して接続している第2回路と、
    第1ターンオフ用スイッチ、第2ターンオフ用スイッチ及びパルス電圧出力手段に接続されており、パルス電圧出力手段から第1ターンオフ用スイッチにパルス電圧が入力される状態と、パルス電圧出力手段から第2ターンオフ用スイッチにパルス電圧が入力される状態とを切り替える切換スイッチを有しており、
    抵抗変更手段は、特定したキャリア周波数が所定周波数より高いときには切換スイッチをパルス電圧出力手段から第1ターンオフ用スイッチにパルス電圧が入力される状態とし、特定したキャリア周波数が所定周波数より低いときには切換スイッチをパルス電圧出力手段から第2ターンオフ用スイッチにパルス電圧が入力される状態とすることを特徴とする請求項1に記載のゲート電圧制御回路。
  3. ゲートオフ抵抗は、可変抵抗であり、
    抵抗変更手段は、特定したキャリア周波数が高いときにゲートオフ抵抗の抵抗を低く調整することを特徴とする請求項1に記載のゲート電圧制御回路。
  4. ゲート電圧によってモータに電流を通電する状態とモータに電流を通電しない状態とを切り替えるゲート付きスイッチング素子のゲートに印加する電圧を制御するゲート電圧制御回路であって、
    モータの目標回転速度を入力し、モータの目標回転速度が高いときに高いキャリア周波数を決定するキャリア周波数決定手段と、
    デューティ比を算出するデューティ比算出手段と、
    決定されたキャリア周波数と算出されたデューティ比を有するパルス電圧を出力するパルス電圧出力手段と、
    パルス電圧出力手段からのパルス電圧を入力してパルス電圧がオン電圧のときにオンするターンオン用スイッチと、ゲートオン抵抗を備えており、ゲート電圧源とゲート付きスイッチング素子のゲートをターンオン用スイッチとゲートオン抵抗を介して接続しているターンオン用回路と、
    パルス電圧出力手段からのパルス電圧を入力してパルス電圧がオフ電圧のときにオンするターンオフ用スイッチと、ゲートオフ抵抗を備えており、ゲート付きスイッチング素子のゲートと基準電位点をターンオフ用スイッチとゲートオフ抵抗を介して接続しているターンオフ用回路と、
    キャリア周波数決定手段が決定したキャリア周波数を入力するか、あるいはパルス電圧出力手段が出力したパルス電圧からキャリア周波数を検出することによってキャリア周波数を特定し、特定したキャリア周波数が高いときにゲート電圧源が出力する電圧を低く調整するゲート電圧変更手段
    を有することを特徴とするゲート電圧制御回路。
  5. 入力されたパルス電圧がオン電圧のときにオンするターンオン用スイッチと、ゲートオン抵抗を備えており、ゲート電圧源とゲート付きスイッチング素子のゲートをターンオン用スイッチとゲートオン抵抗を介して接続しているターンオン用回路と、
    入力されたパルス電圧がオフ電圧のときにオンするターンオフ用スイッチと、ゲートオフ抵抗を備えており、ゲート付きスイッチング素子のゲートと基準電位点をターンオフ用スイッチとゲートオフ抵抗を介して接続しているターンオフ用回路と、
    を有するゲート電圧制御回路を用いて、ゲート電圧によってモータに電流を通電する状態とモータに電流を通電しない状態とを切り替えるゲート付きスイッチング素子のゲート電圧を制御する方法であって、
    モータの目標回転速度を参照し、モータの目標回転速度が高いときに高いキャリア周波数を決定するキャリア周波数決定ステップと、
    デューティ比を算出するデューティ比算出ステップと、
    決定されたキャリア周波数と算出されたデューティ比を有するパルス電圧をターンオン用回路とターンオフ用回路に出力することによって、ゲート付きスイッチング素子のゲート電圧を変動させるパルス電圧出力ステップと、
    キャリア周波数決定ステップで決定したキャリア周波数を参照するか、あるいはパルス電圧出力ステップで出力したパルス電圧からキャリア周波数を検出することによってキャリア周波数を特定し、特定したキャリア周波数が高いときに前記ターンオフ用回路のゲート付きスイッチング素子のゲートと基準電位点の間の抵抗を低く調整する抵抗変更ステップ、
    を有することを特徴とするゲート電圧制御方法。
  6. 入力されたパルス電圧がオン電圧のときにオンするターンオン用スイッチと、ゲートオン抵抗を備えており、ゲート電圧源とゲート付きスイッチング素子のゲートをターンオン用スイッチとゲートオン抵抗を介して接続しているターンオン用回路と、
    入力されたパルス電圧がオフ電圧のときにオンするターンオフ用スイッチと、ゲートオフ抵抗を備えており、ゲート付きスイッチング素子のゲートと基準電位点をターンオフ用スイッチとゲートオフ抵抗を介して接続しているターンオフ用回路と、
    を有するゲート電圧制御回路を用いて、ゲート電圧によってモータに電流を通電する状態とモータに電流を通電しない状態とを切り替えるゲート付きスイッチング素子のゲート電圧を制御する方法であって、
    モータの目標回転速度を参照し、モータの目標回転速度が高いときに高いキャリア周波数を決定するキャリア周波数決定ステップと、
    デューティ比を算出するデューティ比算出ステップと、
    決定されたキャリア周波数と算出されたデューティ比を有するパルス電圧をターンオン用回路とターンオフ用回路に出力することによって、ゲート付きスイッチング素子のゲート電圧を変動させるパルス電圧出力ステップと、
    キャリア周波数決定ステップで決定したキャリア周波数を参照するか、あるいはパルス電圧出力ステップで出力したパルス電圧からキャリア周波数を検出することによってキャリア周波数を特定し、特定したキャリア周波数が高いときにゲート電圧源が出力する電圧を低く調整するゲート電圧変更ステップ、
    を有することを特徴とするゲート電圧制御方法。
JP2007057066A 2007-03-07 2007-03-07 ゲート電圧制御回路及びゲート電圧制御方法 Expired - Fee Related JP5141049B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007057066A JP5141049B2 (ja) 2007-03-07 2007-03-07 ゲート電圧制御回路及びゲート電圧制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007057066A JP5141049B2 (ja) 2007-03-07 2007-03-07 ゲート電圧制御回路及びゲート電圧制御方法

Publications (2)

Publication Number Publication Date
JP2008220119A true JP2008220119A (ja) 2008-09-18
JP5141049B2 JP5141049B2 (ja) 2013-02-13

Family

ID=39839467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007057066A Expired - Fee Related JP5141049B2 (ja) 2007-03-07 2007-03-07 ゲート電圧制御回路及びゲート電圧制御方法

Country Status (1)

Country Link
JP (1) JP5141049B2 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104150A (ja) * 2008-10-23 2010-05-06 Mitsumi Electric Co Ltd インダクタ駆動回路
JP2011119914A (ja) * 2009-12-02 2011-06-16 Fuji Electric Co Ltd スイッチング素子駆動装置
JP2011130571A (ja) * 2009-12-17 2011-06-30 Denso Corp 電力変換回路の制御装置
JP2011229247A (ja) * 2010-04-19 2011-11-10 Mitsubishi Electric Corp Dc/dc電圧変換装置
JP2012239358A (ja) * 2011-05-13 2012-12-06 Nippon Soken Inc 制御装置
JP2013126278A (ja) * 2011-12-14 2013-06-24 Fuji Electric Co Ltd 半導体装置
WO2013105136A1 (ja) * 2012-01-12 2013-07-18 トヨタ自動車株式会社 モータ制御装置
CN104742931A (zh) * 2015-03-26 2015-07-01 山东交通学院 一种高速列车用非粘着制动装置及其控制方法
KR20150087969A (ko) * 2014-01-23 2015-07-31 주식회사 만도 모터 구동 장치
JP2016034178A (ja) * 2014-07-31 2016-03-10 株式会社日立製作所 電力変換装置及びその制御方法
JP2016144388A (ja) * 2015-01-30 2016-08-08 台▲達▼▲電▼子工▲業▼股▲ふん▼有限公司 コンバータシステム、半導体スイッチ駆動回路及び半導体スイッチ駆動方法
JP2017005821A (ja) * 2015-06-08 2017-01-05 富士電機株式会社 電源装置
KR20190075723A (ko) * 2017-12-21 2019-07-01 엘지전자 주식회사 전력 스위칭 소자의 동작 차단 회로
CN110164349A (zh) * 2018-02-16 2019-08-23 株式会社东芝 驱动器电路
WO2023112139A1 (ja) * 2021-12-14 2023-06-22 日立Astemo株式会社 駆動回路、駆動回路の制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001268926A (ja) * 2000-03-21 2001-09-28 Hitachi Ltd インバータ制御装置
JP2004007894A (ja) * 2002-05-31 2004-01-08 Matsushita Electric Ind Co Ltd ブラシレスモータの駆動装置およびそれを用いたモータ
JP2004072804A (ja) * 2002-06-14 2004-03-04 Honda Motor Co Ltd 車両用インバータ装置
JP2004159467A (ja) * 2002-11-08 2004-06-03 Mitsubishi Heavy Ind Ltd インバータ及びその動作方法。

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001268926A (ja) * 2000-03-21 2001-09-28 Hitachi Ltd インバータ制御装置
JP2004007894A (ja) * 2002-05-31 2004-01-08 Matsushita Electric Ind Co Ltd ブラシレスモータの駆動装置およびそれを用いたモータ
JP2004072804A (ja) * 2002-06-14 2004-03-04 Honda Motor Co Ltd 車両用インバータ装置
JP2004159467A (ja) * 2002-11-08 2004-06-03 Mitsubishi Heavy Ind Ltd インバータ及びその動作方法。

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104150A (ja) * 2008-10-23 2010-05-06 Mitsumi Electric Co Ltd インダクタ駆動回路
JP2011119914A (ja) * 2009-12-02 2011-06-16 Fuji Electric Co Ltd スイッチング素子駆動装置
JP2011130571A (ja) * 2009-12-17 2011-06-30 Denso Corp 電力変換回路の制御装置
JP2011229247A (ja) * 2010-04-19 2011-11-10 Mitsubishi Electric Corp Dc/dc電圧変換装置
JP2012239358A (ja) * 2011-05-13 2012-12-06 Nippon Soken Inc 制御装置
JP2013126278A (ja) * 2011-12-14 2013-06-24 Fuji Electric Co Ltd 半導体装置
WO2013105136A1 (ja) * 2012-01-12 2013-07-18 トヨタ自動車株式会社 モータ制御装置
KR20150087969A (ko) * 2014-01-23 2015-07-31 주식회사 만도 모터 구동 장치
KR102248171B1 (ko) 2014-01-23 2021-05-04 주식회사 만도 모터 구동 장치
JP2016034178A (ja) * 2014-07-31 2016-03-10 株式会社日立製作所 電力変換装置及びその制御方法
JP2016144388A (ja) * 2015-01-30 2016-08-08 台▲達▼▲電▼子工▲業▼股▲ふん▼有限公司 コンバータシステム、半導体スイッチ駆動回路及び半導体スイッチ駆動方法
CN104742931A (zh) * 2015-03-26 2015-07-01 山东交通学院 一种高速列车用非粘着制动装置及其控制方法
JP2017005821A (ja) * 2015-06-08 2017-01-05 富士電機株式会社 電源装置
KR20190075723A (ko) * 2017-12-21 2019-07-01 엘지전자 주식회사 전력 스위칭 소자의 동작 차단 회로
KR102046889B1 (ko) * 2017-12-21 2019-12-02 엘지전자 주식회사 전력 스위칭 소자의 동작 차단 회로
CN110164349A (zh) * 2018-02-16 2019-08-23 株式会社东芝 驱动器电路
JP2019146300A (ja) * 2018-02-16 2019-08-29 株式会社東芝 ドライバ回路
WO2023112139A1 (ja) * 2021-12-14 2023-06-22 日立Astemo株式会社 駆動回路、駆動回路の制御方法

Also Published As

Publication number Publication date
JP5141049B2 (ja) 2013-02-13

Similar Documents

Publication Publication Date Title
JP5141049B2 (ja) ゲート電圧制御回路及びゲート電圧制御方法
US8981689B2 (en) Driver for switching element and control system for rotary machine using the same
JP2001352748A (ja) 半導体スイッチング素子のゲート駆動回路
JP4437685B2 (ja) 電力変換器におけるゲート駆動回路
JP2008022451A (ja) 電力用スイッチング素子の駆動装置
JP2010119184A (ja) 半導体駆動装置
US20150124502A1 (en) Driving apparatus for driving switching elements of power conversion circuit
JP2007208831A (ja) 絶縁ゲート型トランジスタ駆動回路装置
JPH0947015A (ja) 自己消弧形半導体素子の駆動回路
JP4161737B2 (ja) 半導体装置の駆動方法および装置
JP4991446B2 (ja) 電力変換装置
JP2016208089A (ja) 電圧駆動型半導体素子のゲート駆動回路
JP2008193717A (ja) 半導体装置の駆動方法および装置
JP6439522B2 (ja) スイッチング素子の駆動回路
JP5939095B2 (ja) スイッチング素子の駆動回路
US8258823B2 (en) Method of and driver circuit for operating a semiconductor power switch
US9673735B2 (en) Power converter
JP4506276B2 (ja) 自己消弧形半導体素子の駆動回路
JP5169416B2 (ja) 電力変換回路の駆動回路及び電力変換システム
JP7087913B2 (ja) スイッチの駆動回路
CN112039505A (zh) 用于运行电路的方法、电路以及机动车
JP3767740B2 (ja) 直列接続された電圧駆動型半導体素子の制御装置
JP6338145B2 (ja) 半導体装置及びそれを用いた電力変換装置
JP6939087B2 (ja) 集積回路装置
WO2018225548A1 (ja) インバータ装置、および、それを用いた電動装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees