JP2008187063A - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
JP2008187063A
JP2008187063A JP2007020305A JP2007020305A JP2008187063A JP 2008187063 A JP2008187063 A JP 2008187063A JP 2007020305 A JP2007020305 A JP 2007020305A JP 2007020305 A JP2007020305 A JP 2007020305A JP 2008187063 A JP2008187063 A JP 2008187063A
Authority
JP
Japan
Prior art keywords
refrigerant
sample
sample stage
temperature
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007020305A
Other languages
English (en)
Other versions
JP4969259B2 (ja
Inventor
Takumi Tando
匠 丹藤
Katanobu Yokogawa
賢悦 横川
Masaru Izawa
勝 伊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2007020305A priority Critical patent/JP4969259B2/ja
Publication of JP2008187063A publication Critical patent/JP2008187063A/ja
Application granted granted Critical
Publication of JP4969259B2 publication Critical patent/JP4969259B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

【課題】
試料台またはその上に配置された試料の温度を広い範囲で短時間に変化させ処理の効率を向上させたプラズマ処理装置を提供する。
【解決手段】
真空排気手段を有する真空容器内に配置された処理室と、この処理室内に配置されその上部の載置面に処理対象の試料が載置される試料台と、この処理室内に処理用のガスを供給する供給手段と、この試料台内部に配置され内部を通流する冷媒が蒸発する複数の冷媒流路と、圧縮機と凝縮器と膨張弁と前記複数の冷媒通路とをこの順で管路により連結して構成された冷凍サイクルとを備えて前記試料台の温度を調節しつつ前記試料をプラズマを用いて処理するプラズマ処理装置であって、前記複数の冷媒流路の異なる流路に選択的に前記冷媒を通流させて前記試料台の冷却を調節する。
【選択図】図1

Description

本発明は、半導体デバイスの製造工程において半導体ウエハ等の基板状の試料の表面にプラズマを用いて加工を施すプラズマ処理装置にかかり、特に、試料を保持する試料台の温度を調節しつつ試料を処理するプラズマ処理装置に関する。
このようなプラズマ処理装置において、試料である半導体ウエハの表面に処理を施して半導体デバイスの回路を構成する微細なパターンを高精度に形成する上では、処理中の半導体ウエハ表面の温度を正確に所期の値に調節することが重要である。処理のプロセスの進行に応じてウエハ表面の温度を最適に実現できれば、加工の精度のみならず処理の選択比やスループットが向上される。
近年では、半導体ウエハの大面積化などに伴って、処理中に印加される高周波の電力は増大しており、特に半導体デバイスを構成する多層の薄膜同士の間の層間絶縁膜をエッチングする処理においては、そのエッチング速度を高めるためにキロワットオーダの電力が供給されている。このような大電力の印加は、半導体ウエハの表面へのイオンの衝撃エネルギを増加し、半導体ウエハへの入熱量を増大させる。このため、半導体ウエハを保持する試料台には、こうした半導体ウエハへの入熱の増大に対応して、このような入熱に対しても十分に高速でウエハの温度を所望の値に調節できることが求められている。
このようなプラズマ処理装置において、半導体ウエハの表面温度を制御する上では、半導体ウエハの裏面と接する試料台の試料載置面の表面の温度を可変に調節することが行われている。例えば、従来の技術による試料台は、その内部に冷媒が流れる流路が形成され、この流路内に液体の熱交換媒体(例えばフロリナート)が通流することにより、試料台の表面の温度を上記入熱に対してもこれを取り除いて冷却して調節することが行われている。
このような液体の冷媒は、試料台内の冷媒通路と冷媒管を介して連結された冷媒の供給装置(例えばチラーユニット)内の冷却装置又は加熱装置により目標温度に調節された後に電極流路内に供給されている。この冷媒の供給装置はタンク等貯留部内に溜められた液体の冷媒を流出させその温度を調節後に送り出すものであり、液体の冷媒の熱容量が大きいことから試料台あるいはその上面に載せられた半導体ウエハの温度を所定の温度に保つことが容易となる。
一方で、試料台または半導体ウエハを異なる温度に変化させる場合には、応答性が悪く短時間で所望の温度に変えることが困難であるという問題が有った。また、熱伝達の効率が低いために試料台に大きな入熱が有る場合には冷媒の通流量を大きくしたり圧力を増大させたりすることが必要となり装置本体の大型化を招いてコストが上昇してしまうという問題があった。
このような問題を解決するため、試料台を冷凍サイクルの一部として構成して、冷媒を高圧化する圧縮機とこの高圧化された冷媒を凝縮する凝縮器と冷媒を膨張させる膨張弁と試料台とを冷媒管で連結し、試料台内部で冷媒を蒸発させることにより、その際の潜熱で試料台を冷却する構成、所謂、冷媒の直接膨張式(以下、直膨式)の試料台を備えたプラズマ処理装置が提案されている。このような技術は、特開平06−346256号公報
(特許文献1)あるいは特開2005−89864号公報(特許文献2)に記載のものが知られている。これらの従来技術は、直膨式の試料台の冷却装置を備えることにより、処理時における入熱が増大した場合でも半導体ウエハの温度を高効率かつ高速に所望の値に調節しようとする技術である。
特開平06−346256号公報 特開2005−89864号公報
上記従来技術に開示の直膨式の試料台の冷却装置では、試料台内部に配置された冷媒流路内で冷媒が液体から気体に蒸発する際の潜熱を利用して試料台ひいてはこの上に載せられた処理対象の試料である半導体ウエハの冷却を行おうとするものである。この試料台内部の冷媒の流路内で全ての冷媒が気化し終えて潜熱を奪う媒体が無くなるとその冷却の能力が急激に低下する。
このため、このような冷媒の直膨式の試料台の冷却装置において試料台上面に面内の温度を均一となるように調節するためには、この面内の各箇所において冷媒の量をこの箇所での入熱量に応じたものとする必要がある。この入熱の量が冷媒の量に対する熱流束の限界値を超えた場合、この箇所の下方の流路内で冷媒の完全な蒸発、すなわち液涸れが発生してしまい、この箇所および流路下流側の試料台の温度が急激に増大して半導体ウエハの面内の温度が著しく低下してしまう。
このため、このような直膨式の試料台の冷却装置において、半導体ウエハの温度を上昇させようとする場合に、従来の技術にかかる冷媒の循環の技術のように試料台内部を通流する単位時間内の冷媒の量を減らすることで試料台内の熱交換の量を低下させることは、上記液涸れの生起を増大させる虞が有る。また、試料台の温度を上昇させようとして試料台内部に加熱器を配置した場合には、加熱器の加熱により冷媒の蒸発量が多くなるので、液涸れを抑制するためにその加熱量の分だけ冷媒の流量を増やすと加熱による熱量がさらに吸熱されてしまう等、加熱の調節が困難となってしまう。
上記従来の技術に係る直膨式の試料台の冷却装置では、試料台あるいは半導体ウエハの温度の調節可能な範囲が冷媒の蒸発温度を可変範囲に大きく影響されるため、実現される温度の範囲が不十分となっている点について十分に考慮されていなかった。
本発明の目的は、試料台またはその上に配置された試料の温度を広い範囲で短時間に変化させ処理の効率を向上させたプラズマ処理装置を提供することにある。
上記目的は、真空排気手段を有する真空容器内に配置された処理室と、この処理室内に配置されその上部の載置面に処理対象の試料が載置される試料台と、この処理室内に処理用のガスを供給する供給手段と、この試料台内部に配置され内部を通流する冷媒が蒸発する複数の冷媒流路と、圧縮機と凝縮器と膨張弁と前記複数の冷媒通路とをこの順で管路により連結して構成された冷凍サイクルとを備えて前記試料台の温度を調節しつつ前記試料をプラズマを用いて処理するプラズマ処理装置であって、前記複数の冷媒流路の異なる流路に選択的に前記冷媒を通流させて前記試料台の冷却を調節することにより達成される。
また、真空排気手段を有する真空容器内に配置された処理室と、この処理室内に配置されその上部の載置面に処理対象の試料が載置される試料台と、この処理室内に処理用のガスを供給する供給手段と、この試料台内部に配置され内部を通流する冷媒が蒸発する複数の冷媒流路と、圧縮機と凝縮器と膨張弁と前記複数の冷媒通路とをこの順で管路により連結して構成された冷凍サイクルとを備えて前記試料台の温度を調節しつつ前記試料をプラズマを用いて処理するプラズマ処理装置であって、前記試料の異なる処理で複数の冷媒流路のうちの少なくとも1つの流路に選択的に前記冷媒を通流させることにより達成される。
または、真空排気手段を有する真空容器内に配置された処理室と、この処理室内に配置されその上部の載置面に処理対象の試料が載置される試料台と、この処理室内に処理用のガスを供給する供給手段と、この試料台内部に配置され内部を通流する冷媒が蒸発する冷媒流路と、圧縮機と凝縮器と膨張弁と前記冷媒通路とをこの順で管路により連結して構成された冷凍サイクルとを備えて前記試料台の温度を調節しつつ前記試料をプラズマを用いて処理するプラズマ処理装置であって、前記冷媒流路が異なる断面積を有する複数の凹みを備えて構成され、これらの凹みに選択的に前記冷媒を通流させて前記試料台の冷却を調節することにより達成される。
さらには、プラズマから試料に供給される熱量に応じて前記異なる流路に選択的に冷媒を通流させることにより達成される。さらにまた、選択的に前記冷媒が通流する冷媒流路の冷媒による熱通過が他の冷媒流路の熱通過と異なったことにより達成される。さらにまた、選択的に前記冷媒が通流する冷媒流路は、その内壁面と前記載置面との距離が他の少なくとも1つの冷媒流路と異なったことにより達成される。さらにまた、選択的に前記冷媒が通流する冷媒流路は、その断面積が他の少なくとも1つの冷媒流路と異なったことにより達成される。
さらには、試料台内部に供給される前記冷媒の温度と前記試料台から排出される前記冷媒の温度との差を検出した結果に基づいて前記冷媒流路への冷媒の供給量を調節することにより達成される。
本発明の実施の形態を、以下図面を用いて説明する。
本発明の実施例を図1,図2及び図5を用いて詳細に説明する。図1は、本願発明に係るプラズマ処理装置の構成の概略を模式的に示す図である。図2は、図1に示す実施例の試料台の構成の概略を示す断面図である。図5は、図1に示す実施例の時間変化に伴う動作を示すチャートである。
図1は、本願発明に係るプラズマ処理装置の構成の概略を示す図である。この図において、本実施例のプラズマ処理装置は、大きくわけて、真空容器内部に配置された処理室
100およびこの内部の下部に配置された試料台2と、この試料台2を構成要素として有して試料台2の温度を調節するための冷媒を試料台2に供給する冷凍サイクル102およびこれらの動作の制御装置101により構成されている。より詳細には、試料台2の金属等の高い熱伝導性及び導電性を有する基材内には冷媒が内部を通流する冷媒の流路が形成され、その上方に配置され内部にヒータ5が配置されている。
さらに、試料台2上面には半導体ウエハ等の基板状の試料が載せられて静電吸着される絶縁体膜1が配置されている。つまり、この絶縁体膜1の上面は試料Wをその上に保持する試料載置面となっている。さらに、流路を含む試料台2,圧縮機8,凝縮器9,膨張弁10は、冷媒が内部を流れて循環する管路により連結されて試料台2を蒸発器とする冷凍サイクル102を構成する。なお、凝縮器9は、冷却水路から供給される冷却水との間で熱交換して冷媒を冷却する構成である。
また、この冷凍サイクル102と処理室100側とは、特に本実施例では試料台2とは、分離可能に構成されており冷媒が圧縮機8から試料台2に向かう冷媒経路及び試料台2から圧縮機8に向かう冷媒経路上のコネクタにより脱着可能な構成となっている。
この構成により、圧縮機8から供給される冷媒は膨張弁10を通過後に分岐して試料台2内に導入され、一部は冷媒主流路3内を通流し残りの一部は冷媒副流路4内を通流した後合流して試料台2から排出され管路を通り圧縮機8へ戻る。流量弁12a,12bは、分岐して冷媒主流路3と冷媒副流路4を流れる冷媒の各々の量を調節する調節器である。
さらに、本実施例では、試料台2から流出した冷媒経路と圧縮機8の冷媒入口との間には、冷媒経路内の冷媒の圧力を調節するための圧力調節弁15及びこの下流側に冷媒を加熱して気化するための気化器14が配置される。なお、上記流量弁12a,12bは、試料台2とこれに流入する冷媒の冷媒経路との連結位置と膨張弁10との間に配置され、圧力調節弁15は試料台2とこれから排出される冷媒の冷媒経路との連結位置と気化器14との間に配置されて、これらは何れも処理室100を含む真空容器の外部に位置している。
また、ヒータ5および絶縁体膜1内に配置されその温度を検知する試料W用の温度センサ11,流量弁12a,12b及び冷凍サイクル102を構成する圧縮機8,凝縮器9,膨張弁10は、内部に演算器を含む制御装置101と信号を通信手段を介して授受可能に接続されて、その動作が制御装置101からの動作指令に応じて調節される。制御装置
101は、フィートフォワード制御やフィードバック制御により試料Wまたは試料台2の温度を使用者の所望の値に調節するために、温度センサ11からの出力や通信可能に配置された図示しない記憶装置に収納されたデータ,演算器による演算結果等に基づいて検出した動作指令の信号を上記各箇所に発信する。
このような本実施例の構成において、本実施例のプラズマ処理装置を構成する制御装置101は、特定の処理、例えば、処理対象の試料上の一層の膜に施す処理について、その処理前に予め記憶装置から当該処理の条件を得て、その結果に応じて当該処理の開始前に圧縮機8及び膨張弁10に対して、圧縮機8の出力及び膨張弁10の開度を所定の値となるように調節する指令を発信する。この指令に基づいた圧縮機8の回転数及び膨張弁10の開度を増減する動作により、圧縮機8から試料台2内の冷媒主流路3,冷媒副流路4に向けて供給される冷媒の温度(または圧力)と流量とが調節される。この際に調節されて設定される冷媒の流量は、上記対応する処理中に冷媒主流路3,冷媒副流路4に供給される冷媒の最大の流量を決める量となる。
このようにして調節された温度及び流量の冷媒は、分岐されて一部は試料台2内の冷媒主流路3に、残る一部は冷媒副流路4に向かって通流する。2つに分岐して流れる各々の冷媒の流量は、制御装置101からの指令信号に応じた流量弁12a,12bの動作により調節される。
その後、試料Wの処理の開始に合わせて前記予め設定した温度および流量の冷媒を試料台2に供給する。この処理中、制御装置101は、温度センサ11さらには冷媒経路の分岐部と膨張弁との間及び圧力調節弁15と試料台2との間に配置された冷媒用温度センサ13a,13b等の冷凍サイクル102に配置した検知手段から受信した出力信号に応じて、試料Wへの入熱の変化に対応してヒータ5による加熱または流量弁12a,12bの流量調節の動作を調節する。
なお、流量弁12a,12bは、試料台2のできるだけ近傍に設置して冷媒の冷媒主流路3,冷媒副流路4内の冷媒量の応答性を高めることが望ましい。更に、これらの流路の出口側にも流量の調節を行う手段を追加し、これらの出口からの流量を減少させるように制御することにより、流路内での冷媒の圧力(温度)を高圧(高温)にすることも出来る。このような冷媒の流量を調節する装置の構成により、圧縮機8の立ち上がり時間を低減して、試料Wの温度の調節の精度、応答性を向上することができる。
また、本実施例では、圧縮機8の冷媒の入口と試料台2との間の冷媒経路上に気化器
14を配置している。この気化器14は、試料台2から排出されて気化が不十分であった冷媒を圧縮機8へ流入前に気化させる。これにより、液状態の冷媒による圧縮機8の破損と冷凍サイクル102の出力低下を防ぐようにした。気化器14の例としてはヒータ付のサクションタンクなどが考えられる。
上記温度センサ11は、試料Wの裏面又は試料W近傍の試料台2内部(絶縁体膜1)の温度を直接又は間接的に検知する。温度センサ11としては熱電対、蛍光温度計又は放射温度計を用いることができる。本実施例において、試料台2に内蔵されるヒータ5は、温度の制御性を考慮して熱容量の小さなヒータであることが望ましい。例えば、絶縁体膜1内に薄膜状のタングステンヒータ(出力100W以上)を配置することで、試料載置面である絶縁体膜1表面の温度を1℃/sec 以上で上昇させることも可能である。また、試料台2の基材の表面にシースヒータを内蔵し、加熱してもよい。
制御装置101が行うヒータ5の出力を調節する手順の例としては、試料Wの温度を調節する目標の処理の前に、予め当該処理に適正な試料台2の温度の値に対し若干過度に低い温度(−5℃以内)まで温度を調節しておき、当該処理の開始に合わせてヒータ5により加熱を行い試料台2の温度を目標の温度近傍(±1℃以内)まで上昇させることにより、高速にかつ精度良く試料Wの温度の調節が可能となる。
このような試料台2の絶縁体膜1の上面に試料Wが載置された後、制御装置101からの指令に基づいて、図示しない処理用ガスのガス源と連結された管路内を流れる処理用ガスが処理室100内に導入される。これとともに処理室100内の試料台2下方に位置し処理室100内と連通して配置された真空ポンプ等から構成された真空排気装置20が制御装置101からの指令に基づいて動作されて、処理室100内が排気されつつ所定の圧力に維持される。
また、試料台2の上面の絶縁体膜1上に配置された試料Wは、絶縁体膜1内に配置された静電吸着用電極に供給された電力により生起された静電気力により、絶縁体膜1上で吸着されて保持される。さらに、この試料Wの裏面とこれと接する絶縁体膜1の表面との間には熱伝達ガスが供給され、試料Wと試料台2との間の熱伝達を促進させる。
この後、処理室100の上部を覆って天井面を構成する導電体製の円板状のアンテナ
23にUHFまたはVHF帯の周波数の電力がアンテナ電源21から供給されて処理室
100内にアンテナ23から電界が供給され、この電界により処理室100内に供給された処理用ガスを用いてプラズマが生成される。
さらに、試料台2内に配置されこれを構成する導電体製の部材には、処理室100下方に配置されたバイアス電源23から高周波電力が供給される。この高周波電力により、試料台2上の試料W表面には電力に応じた所定の電位が形成され、この電位に誘引されてプラズマ中の荷電粒子が試料W表面に移動して試料Wのプラズマによる処理が促進される。つまり、導電体製の部材はプラズマに対する電極として作用している。
図2を用いて、試料台2の構成をさらに詳細に説明する。この図において、冷媒主流路3,冷媒副流路4(以下まとめて、冷媒流路という)が絶縁体膜1を有する試料台2の内部に配置され、その上方の絶縁体膜1との間にヒータ5が内蔵され配置されている。
本実施例の冷媒は、図示しない流量弁12a,12bと連結された各冷媒経路の端部と連結された供給口6から各冷媒流路に流入する。冷媒主流路3,冷媒副流路4の各々の内部に試料台2の中央側に配置された供給口6a,6bから流入した冷媒は熱交換により蒸発しつつ試料台2の外周側に向かって流れ、各々の冷媒流路の試料台2の外周側に配置された排出口7a,7bから流出する。流出した各々の冷媒は、試料台2内部で合流後に試料台2の底面に配置された排出口7から試料台2外部に排出される。
本実施例においては、試料Wの処理中は試料台2内の導電製部材に供給される高周波電力により形成されるバイアス電位に誘引されてプラズマ中のイオン等の荷電粒子が試料Wに衝突するため、試料Wはプラズマより熱を受ける形で加熱されている。このため、本実施例の冷凍サイクル102により試料台2または試料Wの温度を所望に調節するには、バイアス電力(以下、W−Bという)の印加による試料Wへの入熱に対して、冷媒の圧力を調節することで蒸発の温度を調節して温度を変化させること及び冷媒の流量を調節することで冷媒の冷却能力を変化させて試料Wの温度を調節することが考えられる。
本実施例においては、後者の場合には冷媒が試料台2の各冷媒流路内で液涸れ(例えば、完全蒸発した状態)しないように流量を調節している。冷媒流路内にて冷媒の液涸れが発生すると、試料Wの面内の温度均一性が急激に劣化するため、上記入熱量に応じて冷媒流路に流入させる冷媒量を調節することが必要となる。一方で、本実施例のように冷凍サイクルにより試料台2の温度を調節する場合では、試料Wの温度の変化可能な範囲が冷媒の蒸発温度の可変域により大きく影響される。このため従来の技術と比べ使用温度域が狭くなってしまうことを抑制するための工夫が必要となる。例えば、一般的な代替フロン冷媒であるR410(ハイドロフルオロカーボン)では、温度制御範囲(限界圧力範囲)は
−50〜70℃程度である。
試料W表面に形成された絶縁膜をエッチングする処理では、主として試料Wの温度を
−20〜150℃程度の範囲で任意に調節することが求められる。この場合には、上記冷媒R410の温度範囲の例のものよりも高温を実現することが必要となる。
これに対して、数キロワットオーダのW−Bを印加し、試料Wへの入熱を大きくした場合には、冷媒流路への冷媒の流量を調節して熱伝達を調整して試料Wと冷媒間の温度勾配が調節できることから、冷媒流量を必要最小限まで減らして熱伝達を低下させれば、試料Wの温度を150℃程度まで上昇させることも可能と考えられる。しかし、数十〜数百ワットの低W−B印加では入熱量が少なく、冷媒の熱伝達を低下させても、試料Wの温度は十分に上昇しないことが発明者らの検討から判った。
そこで、低W−B時には、ヒータ5を配置して試料Wの温度を調節することが必要となるが、上記冷凍サイクル102を用いた直膨式の試料台の冷却装置ではヒータ5の加熱量に応じて冷媒の流量を増やさなければならないため、ヒータ5による加熱の量の調節が複雑となり、試料Wを所望の温度の分布を実現することが困難となる。そこで本実施例では、熱通過が異なる冷媒主流路3と冷媒副流路4とを試料台2内に配置して、これらの冷媒流路を選択的に使用することによって試料台2を冷却する能力を変化させる構成を備え、低流量時の冷媒の液涸れを抑制しつつ入熱の量に応じた冷媒の流量を実現し、また、ヒータ5の加熱量と組み合わせることで広い範囲で試料Wの温度を均一化して実現可能にした。
上記熱通過を変化させることは、試料Wと各冷媒流路間の距離を変更する、または試料Wと冷媒流路間の材料等の構成要素を異ならせることで実現する。例えば図2に示すように、冷媒副流路4と試料Wとの距離を冷媒主流路3と試料Wとの距離よりも大きくした位置に設け、さらに各冷媒流路への冷媒の供給を選択的に変更することで、試料Wと冷媒流路を流れる冷媒との間の熱交換の量を変化させることができ試料台2の試料Wの冷却能力を可変に可能にしている。
冷媒流路と試料W間の熱通過は距離の増加に伴って低下するため、同一の冷媒の流量速度においては、冷媒主流路3よりも冷媒副流路4を流れる冷媒による熱通過が低下する。このため冷媒副流路4と試料Wとの間の温度勾配が大きくなり、試料Wに対する冷却能力は冷媒主流路3のものより低下させることができる。このような冷媒流路を選択的に使用することで、試料Wへの入熱の量やヒータ5による加熱の量に応じた冷却能力を可変に実現することができ、実現できる試料Wの温度の範囲が拡大される。
本実施例では、試料台2は上下に大きくわけて3つの略円筒形の導電性部材からなる基材で構成されて、これらが上下方向に積層されて連結されて構成されている。上部基材
24は、その上面に略円形の絶縁体膜1が配置されその外周側の上部基材24上面に試料Wの外周を囲むサセプタリング24aが配置されている。
上部基材24の下方にはその下面と接続される中部基材25が配置され、中部基材25の下方にはその下面と接続される下部基材26が配置される。これら上部基材25,中部基材26,下部基材27は略円筒形状の試料台2の中心軸と略同心に配置され、これらの中心近傍には上下方向に貫通する管路が形成されており、これらが接続されて積層され試料台2が構成された状態で、試料台2の下部から上面まで連結されて貫通する管路を構成する。この管路の上端は絶縁体膜1の中心部に配置された貫通孔と連通されており、試料台2下方の貯留部から供給されたHe等の熱伝達ガスが管路内を流れて絶縁体膜1上面で保持された試料Wの裏面と絶縁体膜1の表面との間の隙間に供給される。
上部基材25の内部には、試料台2の中心側から外周側に向かって放射状に形成された複数の断面矩形状となる溝が配置され、これらの溝が中部基材26と連結された状態で冷媒が内部を通流する冷媒主流路3を構成する。図2(b)に示す通り、冷媒主流路3の各溝は略扇形の平面形状を有して、試料台2の中心部に配置された冷媒の供給口6aと外周側端部に配置された冷媒の排出口7aとを備えて、内部を冷媒が図上矢印の方向に通流する。
中部基材26内部にも、図2(b)と同等の構成を備えた放射状の複数の溝を備えて下部基材27と接続された状態で冷媒副流路4が構成される。放射状の各溝は試料台2の中心側端部に配置された冷媒の供給口6bと外周側端部に配置された冷媒の排出口7bとを備えている。冷媒主流路3の排出口7aから流出した冷媒は、中部基材26内に配置された図示しない貫通孔を通りこれと連結された下部基材27内の流路内に流入する。冷媒副流路4の排出口7bから流出した冷媒は、下部基材27内の流路を通り、下部基材27内で上部基材25の冷媒主流路3から排出された冷媒と合流した後、試料台2底面の排出口7から試料台2外に排出される。
本実施例において、放射状に配置された冷媒主流路3と冷媒副流路4とは各溝の形状や位置がほぼ同等に配置されて、下方の冷媒副流路4の溝の上方にこれと重なって冷媒主流路3の対応する溝が位置している。これらの冷媒流路の溝同士の間に熱伝導の低い材料や伝熱面積の小さな部材を設置することで、冷媒副流路4と試料W間の温度勾配は更に大きくされる。
また、冷媒副流路4には冷媒を常に通流させ、バイアス電力や試料Wへの入熱の増減やヒータ5の加熱の量に応じて冷媒主流路3への冷媒の供給の選択またはその流量の調節を行うようにしてもよい。また、試料Wの種類や処理の仕様に応じた入熱の量の大小に対応できるように、冷媒副流路4の放射状の複数の溝を中部基材26内部に上下方向に異なる高さに多元的に配置してよい。
さらに、冷媒の圧力を可変に調節することで試料台2の冷却能力を調節することができる。冷媒の圧力を高くする場合には、冷媒主流路3と冷媒副流路4の距離を、冷媒流路の剛性の観点からも10mm以上が好ましく、熱通過の低減と試料台2の大型化抑制を考慮すると10〜200mm程度にすることが好ましい。
さらには、図2(c)に示すように、冷媒主流路3または冷媒副流路4の各々の溝の内壁面を凹凸形状にすることで、内部を通流する冷媒が攪拌されて熱伝達の向上が図れる。ただし、流路に対して凹凸が過度になると圧力損失の原因になることから、凹凸の形状,寸法は熱伝達と圧力損失の観点から最適に設定する必要がある。冷媒流路幅(径)に対して凹凸の高さが2%以上あれば熱伝達の向上が図れる。特に2〜10%程度が望ましい。
図5に、図1に示す実施例の時間変化に伴う動作を示すチャートを示す。この図では、温度制御のタイムチャートとともにそれに伴う試料Wの温度変化をグラフとして示している。
ステップ501では、まず試料Wが、図示しないロボットアーム等の被処理体搬送装置により、真空容器と接続された真空搬送容器内を搬送された後、処理室100内に搬入され、試料台2上の試料載置面上に載置され、上述の通り静電気により吸着され固定される。ついで、温度センサ11により試料Wの温度に関する情報が検知されて制御装置101に出力され、制御装置101がこの上方に基づいた指令をヒータ5に出力し、ヒータ5の加熱により試料Wの初期の温度調節が行われる。
その後、ステップ502で試料Wのエッチングに必要な処理用ガスが図示しないガスラインより処理室100内の試料台2の上方から供給されつつ、真空排気系20の動作により処理室100は所定の処理圧力に調整される。さらに、制御装置101が、処理室100内の圧力が安定したことを検知した後アンテナ電源21及びバイアス電源22へアンテナ23及び試料台2内の電極への電力の供給を指令し、処理室100内の試料台上方に供給された電界と図示されない磁場形成手段からの磁界との相互作用により処理用ガスが励起されてプラズマが生成され、エッチング処理が開始される。
この処理中の試料Wの温度は、制御装置101が温度センサ11から出力される温度に関する信号の上方を検出しつつこれをフィードバックして算出した指令を冷凍サイクル
102や各電源に発信することで、圧縮機8,膨張弁10,ヒータ5の動作を調節して、冷媒の流量,蒸発温度、及びヒータ5の加熱量を調節して行われる。本実施例では、エッチング初期のステップ502においてはW−Bが低くされており、この際には冷媒副流路4のみが選択されてこれに冷媒の供給を行うことで試料Wの温度が調節される。
冷媒流路の選択は、流量弁12a,12bにより行われ。冷媒が冷媒副流路4内を流れている時は、必要であればヒータ5で試料Wの温度制御を行うことも可能である。また、冷媒流路の入口と出口の近傍、本実施例では、試料台2の底面に配置された冷媒経路と試料台2との連結部の近傍の供給,排出のための冷媒経路上に各々冷媒用温度センサ13a,13bが配置されており、制御装置101がこれらからの出力を用いて検出した冷媒の温度差より冷媒流路内の蒸発状態を検出して、これに基づいて各冷媒流路内の冷媒の液涸れの生起を抑制するように冷媒の流量を調節している。例えば、完全に気化した冷媒は、温度が上昇することから、冷媒流路の入口と出口の温度差を所定の値との大小を比較してこれを検出することができる。
次に、ステップ503において、高いW−Bが印加された時には、必要な冷却能力に達するように制御装置101が流量調節弁12aに冷媒主流路3に冷媒を流入させるように指令を発信する。冷媒が冷媒主流路3内を通流することで、冷却能力が増大され、試料Wの温度の上昇を抑制し所望の温度となるように調節される。
また、ステップ504において、高いW−B印加時においても試料Wの温度上昇が必要となった場合には、冷媒主流路3の冷媒流量を液涸れしない程度の低流量まで減らし、冷媒の熱伝達を低下させればよい。この時、ヒータ5がW−B以上の加熱容量を備えていれば、ヒータ5による温度調節も可能となる。しかし、W−Bが数キロワットオーダに達していた場合、それ以上の加熱容量を有するヒータ5を設置することは、試料台2の構造上から、またはコスト上からも困難であり、そのような大型のヒータでは温度の制御性が相対的に低くなることから、冷媒の冷却能力で試料Wの温度を制御する方が好ましい。
上記のような処理のステップを経て試料表面の絶縁膜のエッチング処理が完了し、電力,磁場及びプロセスガスの供給が停止される。尚、上記は冷却能力によって試料Wの温度を制御する例を示したが、この他にも冷媒の圧力を調節することで蒸発温度を制御し、試料Wの温度を制御することも可能である。更に、冷媒流路内の冷媒圧力を調節する手段として、膨張弁10以外にも圧力調節弁15を圧縮機8の手前に設置することにより、圧縮機8の吸込み流量が制御可能となり、冷媒流路内の圧力上昇域が拡大できる。
(変形例1)
図3に本発明の実施例の変形例を示す。図3は、図1に示す実施例の変形例に係るプラズマ処理装置の試料台の構成の概略を示す断面図である。
この図において、本変形例の試料台2は、これを構成する上部基材25′の内部に冷媒主流路3′と冷媒副流路4′とを略同一の水平方向の高さに配置している。特に、冷媒主流路3を構成して試料台2中心部から放射状に延在する複数の溝の間に冷媒副流路4を構成する複数の溝が配置され、冷媒主流路3と冷媒副流路4とが互い違いに隣接して配置されている。
この変形例では、冷媒主流路3を構成する矩形状の各溝の伝熱面積よりも冷媒副流路4の各溝の伝熱面積が小さくなるように構成されている。例えば、略同心で放射状に配置された各々の冷媒流路の矩形状の溝の同じ半径位置での断面積は、冷媒主流路3が冷媒副流路4より大きくされている。このような伝熱面積の増減に伴い、冷却能力が増減する。
本変形例のように、試料台2内に伝熱面積の異なる複数の冷媒流路を設置し、冷媒流路を選択的に冷媒を通流させることで試料台2の冷却の能力を増減させることができ、実施例と同様に試料Wの温度を面内均一かつ広温度範囲に実現することが可能となる。また、冷媒主流路3に対する冷媒副流路4の伝熱面積の縮小程度は、エッチング処理時の試料Wへの入熱の変化を考慮して設計することができる。例えば、絶縁膜エッチングにおけるダマシン、HARC(High Aspect Ratio Contact) の一貫加工では入熱の変化が大きいため、50〜90%程度の縮小が好ましい。
また、図3(b)に示すように熱伝達を向上するため冷媒主流路3,冷媒副流路4の各溝の内壁の表面を凹凸形状に形成すること、さらには冷媒副流路4の配置を多元化することが可能であることは実施例と同様である。
図4を用いて図1に示す実施例の別の変形例を説明する。図4は、本発明の別の実施例に係るプラズマ処理装置の試料台の構成の概略を示す断面図である。
この図において、冷媒主流路3と冷媒副流路4とは、同一の冷媒流路の溝上に配置して、この溝内に供給される冷媒の流量の増減に伴って冷媒流路の伝熱面積が増減する構成となっている。すなわち、図4(b)に示すように、上部基材25内部の冷媒副流路4を構成する試料台2の中心部から外周側に延在する各溝は、同心上に配置された冷媒主流路3を構成する同様に放射状の各溝の内壁の底面に配置されている。
このように各溝は、試料台2の中心部から外周部に放射状に延在する互いに連通した異なる形状の凹みを組み合わせて形成されている。特に、上部基材25の冷媒主流路3の各溝は、その断面が上下に複数段、本例では2段となる多角形状に構成されて、2つの段を構成する凹みは、上方から見た平面形では放射状に延在する下段の凹みが同じく放射状に延在する上段の凹みと重なって下段の凹みが上段の凹みに覆われている。
本実施例において、各冷媒流路の各溝は同一の冷媒の供給口6cからこれらに供給され及び排出口7cから排出される。すなわち、試料台2の中心側の各溝の端部に配置された供給口6cから供給された冷媒の流量速度が小さい場合には、冷媒は冷媒副流路4を構成する下段の溝内を通流して上部基材25と熱交換して蒸発しつつ試料台2外周側の排出口7cから排出される。試料Wへの入熱量が増大した場合やヒータ5の加熱量が増大して冷媒による熱交換量を増大する必要が有る場合には、制御装置101からの指令に基づいて上部基材25に供給される冷媒流量速度が増加され、冷媒流路内の各溝に供給口6cから供給される冷媒は、冷媒副流路4を構成する下段の溝とともに冷媒主流路3を構成する上段の溝を通流し、上部基材25と熱交換して蒸発しつつ排出口7cから流出する。
更に、実施例の構成を変形例1に適用して、同一の上部基材25の内部において冷媒主流路3の各溝と絶縁体膜1との間の距離が冷媒副流路4と絶縁体膜1との間の距離より小さくされ、冷媒副流路4が冷媒主流路3よりも伝熱面積が小さくなる構造であってもよい。
また、上記実施例では、プラズマの生成手段が、試料Wの対面に配置された電極に試料Wに印加されるのとは別の高周波電力を印加するものや誘導結合によるもの、磁場と高周波電力の相互作用によるもの、試料台2に高周波電力を印加するものであっても、本発明が有効であることは言うまでもない。また、本発明は試料Wに3W/cm2 以上の高周波電力を印加するような大入熱が生じる加工条件に対応し、アスペクト比が15以上となる高アスペクトの深孔加工を行う際にも有効である。プラズマ処理を行う薄膜は、SiO2 ,Si34,SiOC,SiOCH,SiCのいずれか1種類を主成分とする単一の膜、または2種類以上の膜種にて構成される多層膜などが想定される。
上記実施例の通り、試料台2内に冷媒流路を複数設置し、これらの冷媒流路を通流する冷媒による熱通過を異ならせ、これら冷媒流路に選択的に冷媒を通流させて冷却能力が増減させることで、流路の選択によって試料台2の冷却能力が調節することができる。また、冷媒流路の入口と出口の各々の近傍に冷媒の温度を検出するセンサを配置して、これらの出力から検出した温度差に基づいて冷媒流路内の蒸発状態を検出して、冷媒の流量を調節することにより、各冷媒流路内での冷媒の液涸れを抑制でき、試料Wへの入熱あるいはヒータの加熱量の増減に応じて、試料の温度を広い範囲で調節することができ、さらに試料Wの温度の均一性を向上させることができる。
上記実施例のプラズマ処理装置における温度の調節の構成は、上記実施例に開示のエッチング装置の構成のみに限定されるものではなく、アッシング装置,スパッタ装置,イオン注入装置,レジスト塗布装置,プラズマCVD装置などの、ウエハ面内の温度を広温度範囲にて高速かつ面内均一に制御することが必要な装置にも適用し同様の作用,効果を奏することが可能である。
本願発明に係るプラズマ処理装置の構成の概略を模式的に示す図である。 図1に示す実施例の試料台の構成の概略を示す断面図である。 図1に示す実施例の変形例に係るプラズマ処理装置の試料台の構成の概略を示す断面図である。 本発明の別の実施例に係るプラズマ処理装置の試料台の構成の概略を示す断面図である。 図1に示す実施例の時間変化に伴う動作を示すチャートである。
符号の説明
1 絶縁体膜
2 試料台
3 冷媒主流路
4 冷媒副流路
5 ヒータ
6 供給口
7 排出口
8 圧縮機
9 凝縮器
10 膨張弁
11 温度センサ
12 流量弁
13 冷媒用温度センサ
14 気化器
15 圧力調節弁
20 真空排気系
21 アンテナ電源
22 バイアス電源
100 処理室
101 制御装置
W 試料

Claims (9)

  1. 真空排気手段を有する真空容器内に配置された処理室と、この処理室内に配置されその上部の載置面に処理対象の試料が載置される試料台と、この処理室内に処理用のガスを供給する供給手段と、この試料台内部に配置され内部を通流する冷媒が蒸発する複数の冷媒流路と、圧縮機と凝縮器と膨張弁と前記複数の冷媒通路とをこの順で管路により連結して構成された冷凍サイクルとを備えて前記試料台の温度を調節しつつ前記試料をプラズマを用いて処理するプラズマ処理装置であって、
    前記複数の冷媒流路の異なる流路に選択的に前記冷媒を通流させて前記試料台の冷却を調節するプラズマ処理装置。
  2. 真空排気手段を有する真空容器内に配置された処理室と、この処理室内に配置されその上部の載置面に処理対象の試料が載置される試料台と、この処理室内に処理用のガスを供給する供給手段と、この試料台内部に配置され内部を通流する冷媒が蒸発する複数の冷媒流路と、圧縮機と凝縮器と膨張弁と前記複数の冷媒通路とをこの順で管路により連結して構成された冷凍サイクルとを備えて前記試料台の温度を調節しつつ前記試料をプラズマを用いて処理するプラズマ処理装置であって、
    前記試料の異なる処理で複数の冷媒流路のうちの少なくとも1つの流路に選択的に前記冷媒を通流させるプラズマ処理装置。
  3. 前記プラズマから試料に供給される熱量に応じて前記異なる流路に選択的に冷媒を通流させる請求項1に記載のプラズマ処理装置。
  4. 前記異なる処理によって異なる前記プラズマから試料に供給される熱量に応じて前記選択的な前記冷媒の通流を行う請求項2にプラズマ処理装置。
  5. 前記選択的に前記冷媒が通流する冷媒流路の冷媒による熱通過が他の冷媒流路の熱通過と異なった請求項1乃至4のいずれかに記載のプラズマ処理装置。
  6. 前記選択的に前記冷媒が通流する冷媒流路は、その内壁面と前記載置面との距離が他の少なくとも1つの冷媒流路と異なった請求項5に記載のプラズマ処理装置。
  7. 前記選択的に前記冷媒が通流する冷媒流路は、その断面積が他の少なくとも1つの冷媒流路と異なった請求項5に記載のプラズマ処理装置。
  8. 真空排気手段を有する真空容器内に配置された処理室と、この処理室内に配置されその上部の載置面に処理対象の試料が載置される試料台と、この処理室内に処理用のガスを供給する供給手段と、この試料台内部に配置され内部を通流する冷媒が蒸発する冷媒流路と、圧縮機と凝縮器と膨張弁と前記冷媒通路とをこの順で管路により連結して構成された冷凍サイクルとを備えて前記試料台の温度を調節しつつ前記試料をプラズマを用いて処理するプラズマ処理装置であって、
    前記冷媒流路が異なる断面積を有する複数の凹みを備えて構成され、これらの凹みに選択的に前記冷媒を通流させて前記試料台の冷却を調節するプラズマ処理装置。
  9. 前記試料台内部に供給される前記冷媒の温度と前記試料台から排出される前記冷媒の温度との差を検出した結果に基づいて前記冷媒流路への冷媒の供給量を調節する請求項1乃至8に記載のプラズマ処理装置。
JP2007020305A 2007-01-31 2007-01-31 プラズマ処理装置 Expired - Fee Related JP4969259B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007020305A JP4969259B2 (ja) 2007-01-31 2007-01-31 プラズマ処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007020305A JP4969259B2 (ja) 2007-01-31 2007-01-31 プラズマ処理装置

Publications (2)

Publication Number Publication Date
JP2008187063A true JP2008187063A (ja) 2008-08-14
JP4969259B2 JP4969259B2 (ja) 2012-07-04

Family

ID=39729895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007020305A Expired - Fee Related JP4969259B2 (ja) 2007-01-31 2007-01-31 プラズマ処理装置

Country Status (1)

Country Link
JP (1) JP4969259B2 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129766A (ja) * 2008-11-27 2010-06-10 Hitachi High-Technologies Corp プラズマ処理装置
JP2011009353A (ja) * 2009-06-24 2011-01-13 Hitachi High-Technologies Corp プラズマ処理装置及びそのメンテナンス方法
JP2011508436A (ja) * 2007-12-21 2011-03-10 アプライド マテリアルズ インコーポレイテッド 基板の温度を制御するための方法及び装置
JP2011187758A (ja) * 2010-03-10 2011-09-22 Tokyo Electron Ltd 温度制御システム、温度制御方法、プラズマ処理装置及びコンピュータ記憶媒体
US8349127B2 (en) 2009-12-04 2013-01-08 Hitachi High-Technologies Corporation Vacuum processing apparatus and plasma processing apparatus with temperature control function for wafer stage
WO2013012025A1 (ja) * 2011-07-20 2013-01-24 東京エレクトロン株式会社 載置台温度制御装置及び基板処理装置
JP2014011214A (ja) * 2012-06-28 2014-01-20 Hitachi High-Technologies Corp プラズマ処理装置およびプラズマ処理方法
WO2014084334A1 (ja) * 2012-11-29 2014-06-05 京セラ株式会社 静電チャック
KR20140081424A (ko) * 2012-12-21 2014-07-01 주식회사 원익아이피에스 기판 처리 장치
KR101907246B1 (ko) * 2015-05-27 2018-12-07 세메스 주식회사 웨이퍼 지지용 척 구조물
JP2019201086A (ja) * 2018-05-15 2019-11-21 東京エレクトロン株式会社 処理装置、部材及び温度制御方法
WO2020017387A1 (ja) * 2018-07-19 2020-01-23 東京エレクトロン株式会社 載置台及び電極部材
JP2020145431A (ja) * 2014-10-30 2020-09-10 東京エレクトロン株式会社 基板載置台

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217178A (ja) * 2001-01-23 2002-08-02 Tokyo Electron Ltd 処理装置及び処理方法
WO2004025199A1 (ja) * 2002-09-10 2004-03-25 Tokyo Electron Limited 処理装置,および,処理装置のメンテナンス方法
JP2006522452A (ja) * 2003-03-31 2006-09-28 ラム リサーチ コーポレーション 温度制御された基板支持体表面を有する基板支持体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217178A (ja) * 2001-01-23 2002-08-02 Tokyo Electron Ltd 処理装置及び処理方法
WO2004025199A1 (ja) * 2002-09-10 2004-03-25 Tokyo Electron Limited 処理装置,および,処理装置のメンテナンス方法
JP2006522452A (ja) * 2003-03-31 2006-09-28 ラム リサーチ コーポレーション 温度制御された基板支持体表面を有する基板支持体

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508436A (ja) * 2007-12-21 2011-03-10 アプライド マテリアルズ インコーポレイテッド 基板の温度を制御するための方法及び装置
JP2010129766A (ja) * 2008-11-27 2010-06-10 Hitachi High-Technologies Corp プラズマ処理装置
JP2011009353A (ja) * 2009-06-24 2011-01-13 Hitachi High-Technologies Corp プラズマ処理装置及びそのメンテナンス方法
US9070724B2 (en) 2009-12-04 2015-06-30 Hitachi High-Technologies Corp. Vacuum processing apparatus and plasma processing apparatus with temperature control function for wafer stage
US8349127B2 (en) 2009-12-04 2013-01-08 Hitachi High-Technologies Corporation Vacuum processing apparatus and plasma processing apparatus with temperature control function for wafer stage
JP2011187758A (ja) * 2010-03-10 2011-09-22 Tokyo Electron Ltd 温度制御システム、温度制御方法、プラズマ処理装置及びコンピュータ記憶媒体
TWI560769B (ja) * 2011-07-20 2016-12-01 Tokyo Electron Ltd
US10418258B2 (en) 2011-07-20 2019-09-17 Tokyo Electron Limited Mounting table temperature control device and substrate processing apparatus
JP2013026387A (ja) * 2011-07-20 2013-02-04 Tokyo Electron Ltd 載置台温度制御装置及び基板処理装置
WO2013012025A1 (ja) * 2011-07-20 2013-01-24 東京エレクトロン株式会社 載置台温度制御装置及び基板処理装置
JP2014011214A (ja) * 2012-06-28 2014-01-20 Hitachi High-Technologies Corp プラズマ処理装置およびプラズマ処理方法
WO2014084334A1 (ja) * 2012-11-29 2014-06-05 京セラ株式会社 静電チャック
JP6034402B2 (ja) * 2012-11-29 2016-11-30 京セラ株式会社 静電チャック
KR101994229B1 (ko) 2012-12-21 2019-09-24 주식회사 원익아이피에스 기판 처리 장치
KR20140081424A (ko) * 2012-12-21 2014-07-01 주식회사 원익아이피에스 기판 처리 장치
JP2020145431A (ja) * 2014-10-30 2020-09-10 東京エレクトロン株式会社 基板載置台
US11171033B2 (en) 2014-10-30 2021-11-09 Tokyo Electron Limited Substrate placing table
KR101907246B1 (ko) * 2015-05-27 2018-12-07 세메스 주식회사 웨이퍼 지지용 척 구조물
JP2019201086A (ja) * 2018-05-15 2019-11-21 東京エレクトロン株式会社 処理装置、部材及び温度制御方法
WO2020017387A1 (ja) * 2018-07-19 2020-01-23 東京エレクトロン株式会社 載置台及び電極部材
JP2020013931A (ja) * 2018-07-19 2020-01-23 東京エレクトロン株式会社 載置台及び電極部材
CN111801779A (zh) * 2018-07-19 2020-10-20 东京毅力科创株式会社 载置台及电极部件
US11421323B2 (en) 2018-07-19 2022-08-23 Tokyo Electron Limited Stage and electrode member
JP7175114B2 (ja) 2018-07-19 2022-11-18 東京エレクトロン株式会社 載置台及び電極部材
TWI823966B (zh) * 2018-07-19 2023-12-01 日商東京威力科創股份有限公司 載置台及電極構件

Also Published As

Publication number Publication date
JP4969259B2 (ja) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4969259B2 (ja) プラズマ処理装置
US7838792B2 (en) Plasma processing apparatus capable of adjusting temperature of sample stand
JP4564973B2 (ja) プラズマ処理装置
TWI440079B (zh) Temperature control method and processing device of the temperature control device and the stage of the stage and the temperature control program of the stage
JP5210706B2 (ja) プラズマ処理装置及びプラズマ処理方法
US10062587B2 (en) Pedestal with multi-zone temperature control and multiple purge capabilities
TWI589719B (zh) 藉由液體控制之多區基板支座而改善基板溫度控制
JP4898556B2 (ja) プラズマ処理装置
US10386126B2 (en) Apparatus for controlling temperature uniformity of a substrate
JP4886876B2 (ja) プラズマ処理装置及びプラズマ処理方法
US8034181B2 (en) Plasma processing apparatus
JP2006261541A (ja) 基板載置台、基板処理装置および基板処理方法
JP2005079539A (ja) プラズマ処理装置
JP2008034408A (ja) プラズマ処理装置
JP5416748B2 (ja) プラズマ処理装置
JP2005089864A (ja) プラズマ処理装置
US20160071755A1 (en) Electrostatic chuck assemblies capable of bidirectional flow of coolant and semiconductor fabricating apparatus having the same
JP2003243492A (ja) ウエハ処理装置とウエハステージ及びウエハ処理方法
JP2011040528A (ja) プラズマ処理装置
JP2004014752A (ja) 静電チャック、被処理体載置台およびプラズマ処理装置
JP2004259829A (ja) プラズマ処理装置
JP2010199421A (ja) プラズマ処理装置およびプラズマエッチング方法
KR102572570B1 (ko) 멀티존 열전달 구조물을 이용한 기판 처리 장치 및 온도 제어 방법
KR102572569B1 (ko) 열전달 구조물을 이용한 기판 처리 장치 및 온도 제어 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees