JP2008032191A - 自動変速機の変速制御装置 - Google Patents

自動変速機の変速制御装置 Download PDF

Info

Publication number
JP2008032191A
JP2008032191A JP2006209087A JP2006209087A JP2008032191A JP 2008032191 A JP2008032191 A JP 2008032191A JP 2006209087 A JP2006209087 A JP 2006209087A JP 2006209087 A JP2006209087 A JP 2006209087A JP 2008032191 A JP2008032191 A JP 2008032191A
Authority
JP
Japan
Prior art keywords
shift
control
shift control
jump
allowable range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006209087A
Other languages
English (en)
Other versions
JP4961882B2 (ja
Inventor
Hironori Doi
宏徳 土井
Nobuaki Inagaki
伸晃 稲垣
Yasuo Tsukamoto
泰雄 塚本
Hiroshi Tsutsui
洋 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2006209087A priority Critical patent/JP4961882B2/ja
Priority to CN200780011544.6A priority patent/CN101410657B/zh
Priority to PCT/JP2007/063482 priority patent/WO2008015869A1/ja
Priority to DE112007000914.4T priority patent/DE112007000914B4/de
Priority to US11/882,185 priority patent/US7841963B2/en
Publication of JP2008032191A publication Critical patent/JP2008032191A/ja
Application granted granted Critical
Publication of JP4961882B2 publication Critical patent/JP4961882B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/16Inhibiting or initiating shift during unfavourable conditions, e.g. preventing forward reverse shift at high vehicle speed, preventing engine over speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/0444Smoothing ratio shift during fast shifting over two gearsteps, e.g. jumping from fourth to second gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0047Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising five forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/201Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with three sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/202Transmissions using gears with orbital motion characterised by the type of Ravigneaux set
    • F16H2200/2025Transmissions using gears with orbital motion characterised by the type of Ravigneaux set using a Ravigneaux set with 5 connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2051Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with eight engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2306/00Shifting
    • F16H2306/14Skipping gear shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/62Gearings having three or more central gears
    • F16H3/66Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another
    • F16H3/663Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another with conveying rotary motion between axially spaced orbital gears, e.g. RAVIGNEAUX
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H35/00Gearings or mechanisms with other special functional features
    • F16H35/10Arrangements or devices for absorbing overload or preventing damage by overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/686Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with orbital gears

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

【課題】飛び変速の制御中に前の変速段に戻る変速判断がなされた際に反転飛び変速を行うものにあって、ドライバビリティの確保と摩擦係合要素の耐久性確保との両立を可能にする自動変速機の変速制御装置を提供する。
【解決手段】飛び変速制御中に前の変速段に戻る反転飛び変速の判断がなされた場合、負荷量判定手段35が摩擦係合要素にかかる負荷量が許容範囲内であることを判定し、その判定結果に基づき多重制御許可手段37が、反転飛び変速の多重変速制御32の実行を許可し、変速制御手段30が、多重制御許可手段37により許可された際に、反転飛び変速の多重変速制御32を実行するように構成する。また、多重制御許可手段37により許可されなかった際は、変速制御手段30が反転飛び迂回変速制御34を実行し、中間の変速段に一旦変速した後、変速すべき変速段に変速する。
【選択図】図3

Description

本発明は、例えば車両等に搭載される有段式の自動変速機の変速制御装置に係り、詳しくは多重変速制御及び飛び変速制御を行うことが可能な自動変速機の変速制御装置に関する。
従来、例えば車両に搭載される有段式の自動変速機は、複数の摩擦係合要素(クラッチ、ブレーキ)の係合状態を油圧制御装置によって制御し、変速歯車機構における動力伝達経路を各変速段で形成することで変速を可能としている。また近年、車両の燃費向上を図るために自動変速機の多段化が求められるようになり、このような自動変速機にあっては、ドライバの要求(即ちアクセルの踏込み量など)に応じて最適な変速段を選択するため、1回の変速で2段以上離れた変速段に変速する(例えば4−2変速、5−2変速、2−4変速、2−5変速など)飛び変速が行われるようになっている。
一方、ドライバのアクセルワークを予測することは難しく、例えばドライバがアクセルを踏込んで直ちに踏込み緩めたり、或いはアクセルの踏込みを緩めて直ちに踏込んだりするような場合には、変速判断がなされて摩擦係合要素の掴み換え変速の制御を行っている制御中に、次の変速判断がなされる状態が生じることがある。このような場合に、前者の変速制御を完全に終了するまで待ってから後者の変速制御を開始すると、ドライバのアクセルワークに対してタイムラグが生じるため、例えばダウンシフトした後にアップシフトする場合にはエンジンブレーキに起因する引き摺り感が生じる虞があり、また例えばアップシフトした後にダウンシフトする場合には要求通りの出力が得られないモタつき感が生じる虞があり、つまりドライバビリティの悪化を招く虞がある。
そこで、上述したようなタイムラグの発生防止を図り、ドライバビリティの向上(特にエンジンブレーキによる違和感の回避)を図るため、先の変速制御中に変速判断がなされた場合(特にダウンシフト中のアップシフト判断である場合)、先の変速制御を中断して次の(後の)変速制御を重ねる形で開始する、いわゆる多重変速を行うものが提案されている(特許文献1参照)。
特開平11−108178号公報
ところで、一般に自動変速機における変速マップは、車速とアクセル開度とに基づき最適な変速段を判断(選択)するように構成されており、上述したように多重変速制御が行われる際には、車速変化が少ない関係上、先の変速制御と次の変速制御とにより同じ変速段の間を行き来することが多い。このように同じ変速段の間を行き来することは、つまり掴み換えを行う摩擦係合要素が同じであり、その同じ摩擦係合要素が2つの変速制御において連続してスリップ状態にされることになる。
このように連続して同じ摩擦係合要素がスリップ状態にされる場合であっても、1段の変速段の間で行き来する際(例えば3−2−3変速、4−3−4変速など)は、その変速比(ギヤ比)のステップが小さいため、自動変速機の入力回転数(即ちエンジン回転数)の変化量が小さく、変速時における上記スリップ状態となる時間も短い。そのため、例えば先の変速制御が略々終了する時点から次の変速制御が重なるような多重制御が行われ、つまり通常の変速に比して約2倍の時間が連続的なスリップ状態にされるとしても、摩擦係合要素に生じる発熱量が耐久性に悪影響を与える程度になることはない。
しかしながら、上述したような飛び変速において多重制御が行われる際、つまり2段以上離れた変速段の間で行き来する際(例えば4−2−4変速、5−2−5変速など)は、その変速比のステップが大きく、特に車速が高い(出力軸回転数が高い)場合は該入力回転数(エンジン回転数)の変化量が大きくなってしまう。そのため、上述した変速時におけるスリップ状態となる時間が上記1段の変速の場合に比して圧倒的に長くなり、更にエンジンの出力トルクが大きい場合には、摩擦係合要素に生じる発熱量も非常に大きくなってしまい、摩擦係合要素の耐久性に悪影響を与えてしまう虞がある。
そのため、このような飛び変速にあっては、例えば先の飛び変速制御が終了した後、所定の冷却期間を空け、その後、次の飛び変速制御を行うことも考えられる。しかし、このように冷却期間を設けることは、上述したようなタイムラグを生じ、エンジンブレーキに起因する引き摺り感や要求通りの出力が得られないモタつき感が生じる虞があり、ドライバビリティとして好ましくないという問題がある。
そこで本発明は、飛び変速の制御中に前の変速段に戻る反転飛び変速の判断がなされた際に、摩擦係合要素に生じる負荷量が許容範囲内である場合は多重変速制御の実行を許可するように構成し、もってドライバビリティの確保と摩擦係合要素の耐久性確保との両立を可能にする自動変速機の変速制御装置を提供することを目的とするものである。
請求項1に係る本発明は、変速歯車機構(5)における複数の動力伝達経路を各係合状態により達成する複数の摩擦係合要素(例えばC1〜C3、B1〜B5)を有し、それら摩擦係合要素同士の掴み換えにより変速を行う有段式の自動変速機(3)に用いられるものであって、
前記変速の制御中に次の変速判断がなされた際に該制御中の変速の制御を中断ないし該制御に連続して次の変速の制御を行う多重変速制御(32)が実行可能であると共に、1回の掴み換えにより2段以上離れた変速段に変速する飛び変速制御(33)が実行可能である変速制御手段(30)を備えた自動変速機の変速制御装置(1)において、
前記飛び変速(例えば4−2変速)の制御中に前記飛び変速前の変速段(例えば4速段)に戻る反転飛び変速(例えば2−4変速)の判断がなされた場合に、前記飛び変速で掴み換えを行う摩擦係合要素(例えばC3,B5)にかかる負荷量が許容範囲(A)内であることを判定する負荷量判定手段(35)と、
前記負荷量判定手段(35)の判定結果に基づき、前記反転飛び変速の前記多重変速制御(32、例えば4−2−4変速制御)の実行を許可する多重制御許可手段(37)と、を備え、
前記変速制御手段(30)は、前記飛び変速(例えば4−2変速)の制御中に前記反転飛び変速(例えば2−4変速)の判断がなされ、前記多重制御許可手段(37)により前記反転飛び変速(例えば2−4変速)が許可された際に、前記反転飛び変速の前記多重変速制御(32、例えば4−2−4変速制御)を実行する、
ことを特徴とする自動変速機の変速制御装置(1)にある。
請求項2に係る本発明は、前記変速制御手段(30)は、前記多重制御許可手段(37)により許可されなかった際に、前記反転飛び変速(例えば2−4変速)で変速すべき変速前後の変速段(例えば2速段、4速段)の中間段(例えば3速段)に変速制御した後、前記反転飛び変速で変速すべき変速後の変速段(例えば4速段)に変速制御してなる、
請求項1記載の自動変速機の変速制御装置(1)にある。
請求項3に係る本発明は、前記変速制御手段(30)は、前記反転飛び変速が3段以上離れた変速(例えば2−5変速)である場合、前記中間段として、前記反転飛び変速で変速すべき変速後の変速段(例えば5速段)から1段変速前側の変速段(例えば4速段)を選択してなる、
請求項2記載の自動変速機の変速制御装置(1)にある。
請求項4に係る本発明は、前記負荷量判定手段(35)は、前記変速歯車機構(5)に入力される入力トルク(Te)に基づき前記負荷量が前記許容範囲(A,A,A)内であることを判定してなる、
請求項1ないし3のいずれか記載の自動変速機の変速制御装置(1)にある。
請求項5に係る本発明は、前記負荷量判定手段(35)は、前記飛び変速前後における前記変速歯車機構(5)の入力軸(9a)の回転数差(例えばV)に基づき前記負荷量が前記許容範囲(A,A,A)内であることを判定してなる、
請求項1ないし4のいずれか記載の自動変速機の変速制御装置(1)にある。
請求項6に係る本発明は、前記負荷量判定手段(35)は、前記飛び変速(例えば4−2変速)の変速進行率(α)に基づき前記負荷量が前記許容範囲(A,A,A)内であることを判定してなる、
請求項1ないし5のいずれか記載の自動変速機の変速制御装置(1)にある。
請求項7に係る本発明は、前記負荷量判定手段(35)は、あらかじめ前記許容範囲(A)の情報を記録した許容範囲マップ(36)を有し、該許容範囲マップ(36)を参照することで前記負荷量が前記許容範囲(A)内であることを判定してなる、
請求項4ないし6のいずれか記載の自動変速機の変速制御装置(1)にある。
なお、上記カッコ内の符号は、図面と対照するためのものであるが、これは、発明の理解を容易にするための便宜的なものであり、特許請求の範囲の構成に何等影響を及ぼすものではない。
請求項1に係る本発明によると、飛び変速で掴み換えを行う摩擦係合要素にかかる負荷量が許容範囲内である場合は、反転飛び変速の多重変速制御が許可されて、その変速が行われるので、摩擦係合要素の耐久性に悪影響を与えることなく、ドライバビリティの向上を図ることができる。また、上記負荷量が許容範囲外である場合は、反転飛び変速の多重変速制御が許可されず、つまり多重変速制御が行われないので、当該摩擦係合要素における発熱量が大きくなることを防ぐことができ、耐久性に悪影響を与えることを防止することができる。
請求項2に係る本発明によると、変速制御手段は、多重制御許可手段により許可されなかった際に、反転飛び変速で変速すべき変速前後の変速段の中間段に変速制御した後、反転飛び変速で変速すべき変速後の変速段に変速制御するので、飛び変速で掴み換えを行った摩擦係合要素とは異なる摩擦係合要素の掴み換え変速を経由した後、反転飛び変速で変速すべき変速段に変速することができる。これにより、反転飛び変速を行った場合に比して同じ摩擦係合要素が長時間連続してスリップ状態にされることがなく、各摩擦係合要素に生じる発熱量が大きくなることを防ぐことができて、摩擦係合要素の耐久性に悪影響を与えることを防止することができる。また、飛び変速を行った後にそのまま変速せずに冷却期間を設ける場合に比して、上記中間段に変速することで引き摺り感やモタつき感の緩和を図ることができ、ドライバビリティの悪化を防ぐことができる。
請求項3に係る本発明によると、変速制御手段は、反転飛び変速が3段以上離れた変速である場合、中間段として反転飛び変速で変速すべき変速後の変速段から1段変速前側の変速段を選択し、つまり変速すべき変速段に最も変速比が近い変速段を経由するので、更に引き摺り感やモタつき感の緩和を図ることができ、ドライバビリティの悪化を防ぐことができる。
請求項4に係る本発明によると、負荷量判定手段は、変速歯車機構に入力される入力トルクに基づき負荷量が許容範囲内であることを判定するので、スリップ状態となる摩擦係合要素に作用するトルクの大きさに応じて、当該摩擦係合要素にかかる負荷量が許容範囲内であるか否かを判定することができる。
請求項5に係る本発明によると、負荷量判定手段は、飛び変速前後における変速歯車機構の入力軸の回転数差に基づき負荷量が許容範囲内であることを判定するので、飛び変速時にかかる摩擦係合要素のスリップ量(回転数差をスリップにより吸収する量)に応じて、当該摩擦係合要素にかかる負荷量が許容範囲内であるか否かを判定することができる。
請求項6に係る本発明によると、負荷量判定手段は、飛び変速の変速進行率に基づき負荷量が許容範囲内であることを判定するので、既に摩擦係合要素に生じたスリップ量(回転数差をスリップにより吸収した量)、特にスリップ状態にされた時間の長さに応じて、当該摩擦係合要素にかかる負荷量が許容範囲内であるか否かを判定することができる。
請求項7に係る本発明によると、負荷量判定手段は、あらかじめ許容範囲の情報を記録した許容範囲マップを有し、該許容範囲マップを参照することで負荷量が許容範囲内であることを判定するので、あらかじめ摩擦係合要素の耐久性等を考慮して演算された許容範囲マップに応じて瞬時に負荷量が許容範囲内であるか否かを判定することができる。
以下、本発明に係る実施の形態を図に沿って説明する。まず、本発明を適用し得る自動変速機の概略構成及び各変速段の作用を図1及び図2に沿って説明する。
本自動変速機3は、例えばFF(フロントエンジン・フロントドライブ)タイプの車両に用いて好適であり、エンジン2(図3参照)から入力された回転を前進5速段ないし後進1速段に変速して左右前輪(不図示)に伝達し得るように構成されている。
詳細には、図1に示すように、自動変速機3は、トルクコンバータ4と、各摩擦係合要素(クラッチC1〜C3、ブレーキB1〜B5)の係合状態により動力伝達経路を切換える自動変速機構(変速歯車機構)5と、上記摩擦係合要素の係合状態を油圧制御する油圧制御装置6(図3参照)と、を備えて構成されている。
トルクコンバータ4は、内側に動力伝達用の油を有するとともにロックアップクラッチ4aを有しており、エンジンクランクシャフトからの回転力は、上記油の油流(流体的接続)を介して又はロックアップクラッチ4aの機械的接続を介して主変速機構7に入力される。
自動変速機構5は、3速式の主変速機構7、3速式の副変速機構8及びディファレンシャル装置20を主要構成部として構成されており、かつこれら各部は、互に接合して一体に構成された一体ケースに収納されている。この一体ケースには、クランクシャフトと整列して配置された3本の軸、すなわち第1軸9(具体的には入力軸9a)、この第1軸9と平行な第2軸14(カウンタ軸14a)、そして第3軸18(左右車軸18l,18r)が回転自在に支持されている。
主変速機構7は、シンプルプラネタリギヤ11とダブルピニオンプラネタリギヤ10からなるプラネタリギヤユニット15を有している。シンプルプラネタリギヤ11はサンギヤS1、リングギヤR1、及びこれらギヤS1、R1に噛合するピニオンP1を支持するキャリヤCRからなる。一方、ダブルピニオンプラネタリギヤ10は、サンギヤS2、リングギヤR2、共通キャリヤCRからなり、共通キャリヤCRは、サンギヤS2に噛合するピニオンP1’と、リングギヤR2に噛合するピニオンP2とを、これらピニオンP1’,P2が相互に噛合した状態で支持している。
このような構成のプラネタリギヤユニット15に対し、エンジンクランクシャフトからトルクコンバータ4を介して連動している入力軸9aは、第1の(フォワード)クラッチC1を介してシンプルプラネタリギヤ11のリングギヤR1に連結し得ると共に、第2の(ダイレクト)クラッチC2を介してサンギヤS1に連結し得る。また、このサンギヤS2は、第1のブレーキB1にて直接係止し得ると共に、第1のワンウェイクラッチF1を介して第2のブレーキB2にて係止し得る。さらに、ダブルピニオンプラネタリギヤ10のリングギヤR2は、第3のブレーキB3及び第2のワンウェイクラッチF2にて係止し得る。そして、共通キャリヤCRが、主変速機構7の出力部材となるカウンタドライブギヤ12に連結されている。
副変速機構8は、第2軸14を構成するカウンタ軸14aの軸線方向に順に、出力ギヤ16、第1のシンプルプラネタリギヤ12及び第2のシンプルプラネタリギヤ13が配置されており、またカウンタ軸14aはベアリングを介して一体ケース側に回転自在に支持されている。上述の第1及び第2のシンプルプラネタリギヤ12,13は、シンプソンタイプであり、次のような構成である。
第1のシンプルプラネタリギヤ12は、そのリングギヤR3が前記カウンタドライブギヤ12に噛合するカウンタドリブンギヤ17に連結されており、そのサンギヤS3がカウンタ軸14aに回転自在に支持されている。そして、ピニオンP3はカウンタ軸14aに一体に連結されたフランジからなるキャリヤCR3に支持されており、またこのピニオンP3を支持するキャリヤCR3はUDダイレクトクラッチC3のインナハブに連結されている。
第2のシンプルプラネタリギヤ13は、そのサンギヤS4が前記第1のシンプルプラネタリギヤ12のサンギヤS3に連結されており、そのリングギヤR4は、カウンタ軸14aに連結されている。そして、UDダイレクトクラッチC3は、前記第1のシンプルプラネタリギヤ12のキャリヤCR3と前記連結サンギヤS3、S4との間に介在されており、かつこれら連結サンギヤS3、S4は、バンドブレーキからなる第4のブレーキB4にて係止し得る。さらに、第2のシンプルプラネタリギヤ13のピニオンP4を支持するキャリヤCR4は、第5のブレーキB5にて係止し得る。
なお、上述のブレーキB1〜B5、及びワンウェイクラッチF2は、一体ケースの内側面(同図中、斜線にて図示)に、直接的に取り付けられている。
ディファレンシャル装置20は、前車軸からなる第3軸18に配置されており、上記出力ギヤ16に噛合するリングギヤ19を有するとともにこのリングギヤ19からの回転を左右に分岐して左右前輪車軸18l、18rに伝達する。
ついで、上述構成に基づく自動変速機1の動作について図2の作動表を参照しつつ図1に沿って説明する。
D(ドライブ)レンジにおける1速(1ST)状態では、フォワードクラッチC1が接続し、かつ第2のワンウェイクラッチF2及び第5のブレーキB5が作動して、ダブルピニオンプラネタリギヤ10のリングギヤR2及び第2のシンプルプラネタリギヤ13のキャリヤCR4が停止状態に保持される。この状態では、入力軸9aの回転は、フォワードクラッチC1を介してシンプルプラネタリギヤ11のリングギヤR1に伝達され、かつダブルピニオンプラネタリギヤ10のリングギヤR2は停止状態にあるので、サンギヤS1、S2を逆方向に空転させながら共通キャリヤCRが正方向に大幅減速回転される。すなわち、主変速機構7は、1速状態にあり、この減速回転がカウンタギヤ12、17を介して副変速機構8における第1のシンプルプラネタリギヤ12のリングギヤR3に伝達される。この副変速機構8は、第5のブレーキB5により第2のシンプルプラネタリギヤ13のキャリヤCR4が停止され、1速状態にあり、前記主変速機構7の減速回転は、この副変速機構8によりさらに減速されて、出力ギヤ16から出力される。
なお、1速におけるエンジンブレーキ時には、第3のブレーキB3が作動する。
2速(2ND)状態では、フォワードクラッチC1に加えて、第2のブレーキB2が作動し、さらに、第2のワンウェイクラッチF2から第1のワンウェイクラッチF1に作動が切換わり、かつ第5のブレーキB5が作動状態に維持されている。この状態では、サンギヤS2が第2のブレーキB2及び第1のワンウェイクラッチF1により停止され、したがって、入力軸9aからフォワードクラッチC1を介して伝達されたシンプルプラネタリギヤ11のリングギヤR1の回転は、ダブルピニオンプラネタリギヤ10のリングギヤR2を正方向に空転させながらキャリヤCRを正方向に減速回転する。さらに、この減速回転は、カウンタギヤ12、17を介して副変速機構8に伝達される。すなわち、主変速機構7は2速状態となり、副変速機構8は、第5のブレーキB5の係合により1速状態にあり、これら2速状態と1速状態とが組合されて、自動変速機3全体としては2速が得られる。
なお、2速のエンジンブレーキ時には、第1のブレーキが作動する。後述の3速及び4速のエンジンブレーキ時についても同様である。
3速(3RD)状態では、フォワードクラッチC1、第2のブレーキB2及び第1のワンウェイクラッチF1はそのまま係合状態に保持され、第5のブレーキB5の係合が解除されるとともに第4のブレーキB4が係合する。すなわち、主変速機構7はそのままの状態が保持されて、上述した2速時の回転がカウンタギヤ12、17を介して副変速機構8に伝えられ、そして副変速機構8では、第1のシンプルプラネタリギヤ12のリングギヤR3からの回転がそのサンギヤS3の固定により2速回転としてキャリヤCR3から出力し、したがって、主変速機構7の2速と副変速機構8の2速とで、自動変速機3全体としては3速が得られる。
4速(4TH)状態では、主変速機構7は、フォワードクラッチC1、第2のブレーキB2及び第1のワンウェイクラッチF1が係合した上述2速及び3速状態と同じであり、副変速機構8は、第4のブレーキB4を解放するとともにUDダイレクトクラッチC3が係合する。この状態では、第1のシンプルプラネタリギヤ12のリングギヤR3とサンギヤS3、S4が連結して、プラネタリギヤ12、13が一体回転する直結回転となる。したがって、主変速機構7の2速と副変速機構8の直結(3速)とが組合されて、自動変速機3全体としては4速回転が出力ギヤ16から出力される。
5速(5TH)状態では、フォワードクラッチC1及びダイレクトクラッチC2が係合して、入力軸9aの回転がシンプルプラネタリギヤ11のリングギヤR1及びサンギヤS1にともに伝達されて、主変速機構7は、両ギヤユニット10、11が一体回転する直結回転となる。また、副変速機構8は、UDダイレクトクラッチC3が係合した直結回転となっており、したがって主変速機構7の3速(直結)と副変速機構8の3速(直結)とが組合されて、自動変速機3全体としては5速回転が出力ギヤ16から出力される。
なお、R(リバース)レンジにあっては、車速が7[Km/h]以上か以下かで切換わり、7[Km/h]以上で前進惰走している場合は、N(ニュートラル)レンジと同様に、主変速機構7が自由回転状態となる。そして、7[Km/h]以下の実質的に停止状態にある場合、ダイレクトクラッチC2及び第3のブレーキB3が係合するとともに、第5のブレーキB5が係合する。この状態では、入力軸9aの回転はダイレクトクラッチC2を介してサンギヤS1に伝達され、かつ第3のブレーキB3によりダブルピニオンプラネタリギヤ10のリングギヤR2が停止状態にあるので、シンプルプラネタリギヤ11のリングギヤR1を逆転方向に空転させながらキャリヤCRも逆転し、この逆転回転が、カウンタギヤ12、17を介して副変速機構8に伝達される。副変速機構8は、第5のブレーキB5に基づき第2のシンプルプラネタリギヤ13のキャリヤCR4が逆回転方向にも停止され、1速状態に保持される。したがって、主変速機構7の逆転回転と副変速機構8の1速回転とが組合されて、出力軸16から逆転減速回転が出力される。
次に、本発明に係る自動変速機の変速制御装置の構成について図3に沿って説明する。
図3に示すように、本自動変速機の変速制御装置1は、自動変速機3(及びエンジン2)を油圧制御(電子制御指令)するための制御部(ECU)Uを有しており、該制御部Uには、該自動変速機3に設けられ、前記入力軸9aの回転数を検出する入力軸回転数センサ21と、同じく自動変速機3に設けられ、前記カウンタ軸14aの回転数を検出する出力軸回転数(車速)センサ22と、不図示の運転席に備えられたアクセルの踏込み量を検出するアクセル開度センサ25とが接続されている。また、制御部Uは、エンジン2に接続されており、該エンジン2が、その出力軸(クランク軸)から出力している出力トルクを算出して信号出力した出力トルク信号を入力し得るように構成されている。
なお、出力軸回転数センサ22は、カウンタ軸14aの回転を検出しているが、該カウンタ軸14aは、ディファレンシャル装置20や左右前輪に常時連動しており、つまりディファレンシャル装置20のギヤ比や車輪の外径に応じて車両の車速を検出し得るものである。また、このように車速を検出するものとしては、カウンタ軸14aの回転数を検出するものに限らず、左右車軸18l,18rの回転数を検出するもの、左右前輪や後輪の回転数を検出するもの等、どのようなものを用いても構わない。
一方、上記制御部Uは、変速マップ31を有する共に、詳しくは後述する多重変速制御32、飛び変速制御33、反転飛び変速迂回制御34等の制御を行うことが可能な変速制御手段30と、変速進行度算出手段40と、許容範囲マップ36を有する負荷量判定手段35と、多重制御許可手段37とを備えて構成されている。
上記変速制御手段30は、上記アクセル開度センサ25により検出されるアクセル開度θdと、出力軸回転数センサ22により検出される車速Vとに基づき変速マップ31(詳細図は省略)を参照し、現在の変速段の領域から次の変速段の領域となったこと(変速点を通過したこと)を検出すると、所定時間経過後に変速(アップシフト又はダウンシフト変速)を判断し、判断した変速に関する変速制御を実行する。即ち、この変速制御にあっては、自動変速機3において現在の変速段から次の変速段に切換えるため、油圧制御装置6内のソレノイドバルブ(不図示)に電子制御指令を与える形で摩擦係合要素同士の掴み換え変速を行う。通常、アクセル開度θdが急激に変化された場合でない限り、この変速判断は1段の変速判断であって、即ち1段ずつ変速制御される。
上記変速制御手段30による多重変速制御32は、上述したような変速制御中に次の変速判断がなされた場合の制御であり、先の変速制御を中断して次の変速制御を開始する制御、或いは先の変速制御が完了した後、連続して次の変速制御を行う制御である。
なお、上述した摩擦係合要素の掴み換えにより変速を行う自動変速機3にあって、先の変速制御を中断して次の変速制御を行う多重変速制御は、同じ摩擦係合要素の係合・解放を途中で逆行させる場合の制御であり、つまり同じ変速段を行き来する場合の制御である。反対に、先の変速制御と次の変速制御とが異なる変速段である場合の多重変速制御は、先の変速制御による摩擦係合要素の掴み換えが完了した後でないと、次の変速制御における摩擦係合要素の掴み換えが行えないため、必然的に先の変速制御が完了した後、連続的に次の変速制御を行うことになるが、本明細書中においては、この連続した変速制御も、変速判断が先の変速制御に重なっているため、「多重変速制御」とする。
上記変速制御手段30による飛び変速制御33は、例えばアクセル開度θdが急激に変化された場合にあって、アクセル開度θd及び車速Vに基づく変速マップ31上の変速段の領域が1段変わり、所定時間以内(即ちその変速判断を出力する前)にさらに変速段の領域が1段以上変わった場合、つまり所定時間以内(不感帯)に2段以上離れた変速段の領域に変わった場合に、その2段以上離れた変速段への変速を判断し、1度の掴み換え変速により該2段以上離れた変速段に変速する制御である。
また、飛び変速制御33の実行中に上記多重変速制御32の実行により当該飛び変速前の変速段に戻る飛び変速(例えば4−2変速中の多重変速制御による2−4変速)は、つまり先の飛び変速を反転した形の飛び変速であるので、先の飛び変速と区別するため、以下の説明において「反転飛び変速」乃至その制御を「反転飛び変速制御」という。この反転飛び変速は、詳しくは後述する多重制御許可手段37に許可された際に実行される。
なお、本実施の形態において説明した自動変速機3は、構成上、主変速機構7と副変速機構8とに分かれており、例えば5−3変速、3−5変速、5−2変速、2−5変速、4−1変速、1−4変速等は両変速機構7,8において変速を行う必要が生じ(つまり計4つの摩擦係合要素の掴み換えが必要となり)、各部材の回転状態が不安定になるため、実質的に4−2変速及び2−4変速でないと上記飛び変速制御を行うことができないが、これは単に自動変速機の構成上の都合であり、特に変速機構が1列状の(主変速機構と副変速機構に分かれてない)自動変速機等にあって、例えば油圧回路の構成等に不都合がなければ、上述のような多くの種類の飛び変速制御が可能である。また、近年の自動変速機の多段化に伴い、例えば前進8段速や前進6段速等の多段変速を達成した自動変速機が提案されており(例えば特開2003−130152号公報、特開2003−240068号公報参照)、このようなものにおいて、例えば8−6変速、8−5変速、6−4変速、5−3変速等の飛び変速制御を行うことが可能なもの(或いは行う可能性があるもの)もある。従って、本実施の形態においては、4−2変速及び2−4変速を飛び変速制御の一例として説明するが、飛び変速制御がこの一例に限るものではない。
上記変速制御手段30による反転飛び迂回変速制御34は、詳しくは後述する多重制御許可手段37により上記反転飛び変速が許可されなかった際に、先の飛び変速制御が完了した後に連続して、反転飛び変速で変速すべき変速前後の変速段における中間段(例えば2−4変速であれば3速段)に変速し、さらに連続して反転飛び変速で変速すべき変速段(即ち4速段)に変速する制御である。また、反転飛び変速が3段以上離れた変速段(例えば2−5変速等)である場合には、上記中間段として、反転飛び変速で変速すべき変速段(即ち5速段)の1段変速前側の変速段(即ち1段5速段より2速段側に近い4速段)を選択する。
上記変速進行度算出手段40は、上述した変速制御手段30による各種の変速中に、入力軸回転数センサ21により検出される入力軸9aの回転数(以下、「入力回転数Nin」という)と、出力軸回転数センサ22により検出される出力軸14aの回転数(以下、「出力回転数Nout」という)と、の回転数比から、変速される次の変速段の変速比までの到達度に基づき、変速進行率(変速進行度)α[%]を算出する。
上記負荷量判定手段35は、上述した変速制御手段30が反転飛び変速を判断した際に、図4に示すような許容範囲マップ36を参照して、飛び変速及び反転飛び変速を連続的に行うことによって掴み換えを行う摩擦係合要素にかかる負荷量が許容範囲内であることを判定する。この負荷量は、実質的に摩擦係合要素の摩擦材に生じる発熱量であり、その要因としては、当該摩擦係合要素がスリップ状態において担持する伝達トルク、スリップ状態の時間や量(回転数差の吸収量)が挙げられる。そのうち、担持する伝達トルクは、エンジン2から入力軸9aに入力される入力トルク、即ちエンジン2の出力トルク(以下、「エンジントルク」という)Teに応じた値となる。また、スリップ状態の時間や量は、先の飛び変速の進行状態、即ち変速進行度算出手段40により算出される変速進行率αや、飛び変速前後の入力回転数Ninの差、即ち車両の車速Vに応じた値となる。
ここで、あらかじめ負荷量を演算して許容範囲を求める許容範囲マップ36としては、図4(a)〜(d)に示す4つの許容範囲マップ36〜36が考えられる。図4(a)に示す許容範囲マップ36は、あらかじめエンジントルクTe[Nm]と変速進行率α[%]とに基づき負荷量の許容範囲を演算して求めた許容範囲Aの情報を記録したものである。また、図4(b)に示す許容範囲マップ36は、あらかじめエンジントルクTe[Nm]と車速V[km/h]とに基づき負荷量の許容範囲を演算して求めた許容範囲Aの情報を記録したものである。さらに、図4(c)に示す許容範囲マップ36は、あらかじめ変速進行率α[%]と車速V[km/h]とに基づき負荷量の許容範囲を演算して求めた許容範囲Aの情報を記録したものである。
そして、図4(d)に示す許容範囲マップ36は、あらかじめ変速進行率α[%]と車速V[km/h]と3段階のエンジントルクTe1,Te2,Te3[Nm]とに基づき負荷量の許容範囲を演算して求めた許容範囲A1,A2,A3の情報を記録したものである。なお、この許容範囲マップ36において、エンジントルクTe1,Te2,Te3は、Te1<Te2<Te3の関係である。また、これらエンジントルクTe1,Te2,Te3の中間値は、例えば線形補間等による演算で求めることができる。従って、許容範囲マップ36においては、3段階のエンジントルクTe1,Te2,Te3についてあらかじめ許容範囲を演算したものを用いているが、2段階或いは4段階以上のエンジントルクTeについて許容範囲を演算したものを用いてもよい。
なお、上記負荷量判定手段35が許容範囲内か否かを判定する「負荷量」は、飛び変速で既にかかった負荷量から判定してもよく、また、反転飛び変速でかかるはずの負荷量から判定してもよく、さらに、飛び変速及び反転飛び変速でかかるトータルの負荷量から判定してもよい。従って、上述の許容範囲マップ36〜36には、飛び変速で既にかかった負荷量に関する許容範囲が記録されていてもよく、また、反転飛び変速でかかるはずの負荷量に関する許容範囲が記録されていてもよく、さらに、飛び変速及び反転飛び変速でかかるトータルの負荷量に関する許容範囲が記録されていてもよい。
以上の許容範囲マップ36〜36は、エンジントルクTe、変速進行率α、及び車速Vのうちの2つ又は3に基づき許容範囲Aを設定したものであるが、勿論、エンジントルクTeが低いほど許容され、変速進行率αが小さいほど許容され、車速Vが低いほど許容されるように設定されている。これら許容範囲マップ36〜36は、何れのものを用いてもよいので、以下の説明においては、これら許容範囲マップ36〜36の何れか1つを指して、単に「許容範囲マップ36」という。
一方、上記多重制御許可手段37は、上述した負荷量判定手段35が許容範囲マップ36に基づき摩擦係合要素の負荷量が許容範囲A内であることを判定すると、変速制御手段30に反転飛び変速の多重変速制御32を許可する。これを受けた変速制御手段30は、その際に行っている飛び変速制御33を中断又は該制御に連続して反転飛び変速制御を実行する。また反対に、負荷量判定手段35において上記負荷量が許容範囲A内でないと判定し、多重制御許可手段37が変速制御手段30に多重変速制御32の実行を許可しなかった場合、変速制御手段30は、上述した反転飛び迂回変速制御34を実行する。
つづいて、本自動変速機の変速制御装置1による制御を、飛び変速である4−2変速制御中に次の反転飛び変速である2−4変速判断がなされた際を一例として図5乃至図8に沿って説明する。
まず、通常のパワーオンダウンシフトである4−2変速制御(多重変速制御を行わない場合)は、大まかに、初期制御、イナーシャ相制御、終期制御、完了制御の順に行われる。即ち、初期制御では、ブレーキB5(係合側の摩擦係合要素)の油圧サーボの油圧(以下、単に「ブレーキB5の油圧」という)を上昇させてピストンと摩擦材とのガタ詰め動作を行い、クラッチC3(解放側の摩擦係合要素)の油圧サーボの油圧(以下、単に「クラッチC3の油圧」という)を1段階(待機圧まで)下降させた後、クラッチC3がスリップを開始する直前まで徐々に油圧を降下させる。
初期制御が終了するとイナーシャ相制御に移行し、該イナーシャ相制御では、クラッチC3の油圧をさらに下降し、これにより、自動変速機構5によりエンジン2と駆動車輪(出力軸14a)との間の動力伝達が除所に切り離され、負荷が軽減されたエンジン2の回転数Neが上昇を開始する。また、ブレーキB5の油圧を変速進行率αに応じてフィードバック制御しつつ上昇して、徐々にブレーキB5を係合していき、つまり実質的な自動変速機構5における回転数変化を行う。またこの間、クラッチC3の油圧を一旦上昇させ、エンジン回転数Neの過度な吹き上がりを防止しつつ、変速進行率αが所定値以上となると終期制御に移行し、該終期制御では、クラッチC3の油圧を0にするために下降させると共に、ブレーキB5の油圧上昇を早めて、ブレーキB5の係合を終了させ、つまりブレーキB5を非スリップ状態にする。
そして、ブレーキB5の係合が終了すると完了制御に移行し、該完了制御では、ブレーキB5の油圧サーボに例えばライン圧をそのまま入力するように切換える等して油圧を上昇し、つまりブレーキB5の係合を完全な状態にして、変速制御を完了させる。
本自動変速機の変速制御装置1においては、以上のような4−2変速制御中にあって2−4変速判断がなされるタイミングが、初期制御中の場合、イナーシャ相制御〜終期制御中の場合、完了制御中の場合、の3つの場合で制御を分けている。
このうち、4−2変速制御の初期制御中に2−4変速判断がなされた場合は、自動変速機構5において回転変化が始まっておらず(即ち、変速進行率α=0%)、つまりクラッチC3の油圧を緩め、ブレーキB5の油圧サーボのガタ詰めを行っただけであり、これらクラッチC3及びブレーキB5はスリップしていない状態である。そのため、変速制御手段30は、直ちに4−2変速制御を中断して2−4変速制御(反転飛び変速の多重変速制御32)を実行し、つまり下降させ始めたクラッチC3の油圧を再上昇させると共に、上昇させ始めたブレーキB5の油圧をドレーン(排出)し、これにより4速段の状態に戻す。
次に4−2変速制御のイナーシャ相制御〜終期制御中に(即ち回転変化中に)2−4変速判断がなされた場合について図5及び図7に沿って説明する。まず、図7(a)に示すように、時点t1において運転者により急激にアクセルが踏まれてアクセル開度θdが上昇し、変速マップ31における4速段の領域から3速段の領域となる変速点を越え、さらに所定時間以内である時点t2に変速マップ31における3速段の領域から3速段の領域となる変速点を越えると、時点t2から所定時間経過した時点t3において、変速制御手段30により4−2変速判断がなされる。
すると、時点t3から変速制御手段30において変速指令(フラグ)が2速段となり、4−2変速制御が開始される。つづいて変速制御手段30により油圧制御装置6に電子制御指令する形で上述した初期制御が行われ、時点t4において、自動変速機構5における実際の変速を行うイナーシャ相制御が開始されて、クラッチC3のスリップに伴うエンジン回転数Neの上昇に応じて入力回転数Ninが上昇される。またこの際、ブレーキB5はスリップ状態で徐々に係合され、自動変速機構5を徐々に2速段に切換えていき、つまり変速進行率αが増加していく。なお、変速中はロックアップクラッチ4aが解放され、トルクコンバータ4の流体伝動となるため、入力回転数Ninは、エンジン回転数Neの上昇に対して僅かに遅れが生じることになる。
ここで、例えば時点taにおいて、運転者によりアクセルが戻されてアクセル開度θdが下降し、変速マップ31における2速段の領域から3速段の領域となる変速点を越え、さらに所定時間以内である時点tbに変速マップ31における3速段の領域から4速段の領域となる変速点を越えると、時点tbから所定時間経過した時点tcにおいて、変速制御手段30により2−4変速判断がなされる。
すると、制御部Uは、図5に示す制御を開始し(S11)、まず、変速制御手段30による油圧指令値に基づき、2−4変速で係合側となるクラッチC3の油圧(係合側油圧)がピストンをストロークさせるストローク圧以上であるか否かを判定し、既にストローク圧未満となっている場合は(S12のNo)、クラッチC3を直ちに係合することができないため(ガタ詰めを行う必要があるため)、後述するステップS16に進む。
通常、イナーシャ相制御中である場合は、クラッチC3の油圧がストローク圧以上であるので(S12のYes)、ステップS13に進み、現在行っている4−2変速制御がコーストダウン制御(アクセルオンによるものでない、つまりパワーオフダウンシフト変速制御)であるか否かを判定する。当該4−2変速制御がコーストダウン制御である場合は(S13のNo)、例えばドライバによるシフトレバーの手動操作の場合やフットブレーキによる急激な速度低下の場合等であり、パワーオンによるエンジン回転数Neの上昇ではなく、ブレーキB5のスリップによる引き摺りでエンジン回転数Neを上昇させる場合であるので、既にブレーキB5に大きな負荷が生じていることが予測されるため、後述するステップS16に進む。
この実施例では、4−2変速がアクセルが踏込まれたことによるパワーオンダウンシフトであり、コーストダウン制御ではないので(S13のYes)、ステップS14に進み、負荷量判定手段35が許容範囲マップ36の許容範囲内であるか否かを判定する。図7(a)に示す例では、例えばエンジン出力トルクTe、車速V、変速進行率α等が許容範囲マップ36(図4参照)の許容範囲内である場合であって、負荷量判定手段35がクラッチC3及びブレーキB5にかかる負荷量が許容範囲内であることを判定し(S14のYes)、ステップS15に進む。
そして、負荷量判定手段35の判定結果に基づき、多重制御許可手段37が変速制御手段30による反転飛び変速の多重変速制御32を許可し、それを受けた変速制御手段30が反転飛び変速の多重変速制御32を開始する。これにより、時点tcにおいて、変速制御手段30における変速指令が4速段となり、本来時点t7で終了するはずの4−2変速制御を中断して、2−4変速制御を開始する。
すると、変速制御手段30によりブレーキB5の油圧が下降され、クラッチC3の油圧が上昇されて、入力回転数Ninが2速段から4速段の変速比に応じて回転変化し、つまり入力回転数Ninが下降される。そして、時点tdにおいて、入力回転数Ninの回転変化が略々無くなると、ブレーキB5の油圧を0にすると共にクラッチC3の油圧を上昇する終了制御を行い、さらに時点teにおいてクラッチC3の油圧を例えばライン圧に切換えて完全係合し、時点tfにおいて2−4変速制御を完了する。
一方、図7(b)に示すものは、図7(a)と同様に4−2変速制御が行われている際に、例えば上記時点taよりも4−2変速が進行した時点tgにおいて、運転者によりアクセルが戻されて、変速マップ31において2速段から3速段となり、さらに時点thに3速段から4速段となって、例えば4−2変速制御が終期制御となる時点t5よりも遅い時点tiにおいて、変速制御手段30により2−4変速判断がなされた場合である。
この図7(b)に示す場合では、例えば変速進行率αが大きく、即ちクラッチC3やブレーキB5がスリップ状態とされた時間が長く、かつスリップ量(回転数差を吸収した量)も多いので、上記図5のステップS14において、負荷量判定手段35が許容範囲マップ36に基づき負荷量が許容範囲内でないと判定し(S14のNo)、ステップS16に進む場合である。
すると、負荷量判定手段35の判定結果に基づき、多重制御許可手段37が変速制御手段30による反転飛び変速の多重変速制御32を許可せず、それを受けて変速制御手段30が反転飛び変速迂回制御34を開始する。これにより、まず、変速制御手段30は、4−2変速制御を中断せずに継続し、時点t6において終期制御から完了制御に移行し、時点t7において4−2変速制御を完了する。
つづいて変速制御手段30は、2−3変速制御を開始して初期制御を行い、ブレーキB5の油圧を1段階降下させると共に、ブレーキB4の油圧を上昇してガタ詰めを行う。ついで、時点tjにおいてイナーシャ相制御に移行し、ブレーキB5の油圧を下降して該ブレーキB5を解放すると共に、ブレーキB4の油圧を変速進行率に応じてフィードバック制御しつつ上昇し、該ブレーキB4を係合していく。この際は、アクセルが戻されたパワーオフアップシフトであるので、ブレーキB5を解放することでエンジン回転数Neは下降し、そのエンジン回転数Neの下降に合せてブレーキB4をスリップさせつつ係合するだけであるので、ブレーキB5が僅かにスリップ状態となっても、ブレーキB5に大きな負荷(発熱)が生じることはない。
そして、時点tkにおいてイナーシャ相が終わると終期制御に移行し、ブレーキB4の油圧を急上昇させ、さらに時点tlにおいて完了制御に移行して、ブレーキB4の油圧を例えばライン圧をそのまま入力するように切換える等して油圧を上昇し、つまりブレーキB4の係合を完全な状態にして、時点tmにおいて2−3変速制御を完了させる。
つづいて変速制御手段30は、時点tmより3−4変速制御を開始して初期制御を行い、ブレーキB4の油圧を1段階降下させると共に、クラッチC3の油圧を上昇してガタ詰めを行う。ついで、時点tnにおいてイナーシャ相制御に移行し、ブレーキB4を解放すると共に、同様にフィードバック制御しつつクラッチC3を係合していく。この際、ブレーキB4を解放することでエンジン回転数Neが下降し、そのエンジン回転数Neの下降に合せてクラッチC3をスリップさせつつ係合することになるが、上記4−2変速制御の完了(時点t7)より2−3変速の時間の分(時点t7〜tm)、間隔が空いており、クラッチC3がその間に冷却されているので、クラッチC3に対して連続的に負荷(発熱)が生じることはない。また、例えば2−4変速を行う場合に比してクラッチC3のスリップ時間が圧倒的に短くなるので、その分、クラッチC3の負荷(発熱)が大幅に低減されることになる。
そして、時点toにおいてイナーシャ相が終わると終期制御に移行し、クラッチC3の油圧を急上昇させ、さらに時点tpにおいて完了制御に移行して、クラッチC3の係合を完全な状態にして、時点tqにおいて3−4変速制御を完了させる。これにより、2−3−4変速が完了し、上記アクセルの戻しに応じた4速段に変速が完了するので、反転飛び変速迂回制御34も完了したことになる。
次に4−2変速制御の完了制御中に2−4変速判断がなされた場合について図6及び図8に沿って説明する。なお、4−2変速制御については、図7(b)に沿って説明したものと同様であるので、その説明を省略する。
図8(a)に示すように、例えばイナーシャ相終了間際である時点Taにおいて、運転者によりアクセルが戻されて変速マップ31における2速段から3速段となり、さらに所定時間以内である終了制御中である時点Tbに変速マップ31における3速段から4速段となると、時点Tbから所定時間経過した完了制御中である時点Tcにおいて、変速制御手段30により2−4変速判断がなされる。
すると、制御部Uは、図6に示す制御を開始し(S21)、まず、変速制御手段30による油圧指令値に基づき、2−4変速で係合側となるクラッチC3の油圧(係合側油圧)がピストンをストロークさせるストローク圧以下であるか否かを判定する(S22)。ここで、万が一、4−2変速における解放側であるクラッチC3の油圧がストローク圧以下となってない場合は、完了制御の完了後に連続して直ちに2−4変速を行うと、クラッチC3が急係合してしまう虞があるので、後述するステップS26進む。
通常、完了制御中である場合は、クラッチC3の油圧がストローク圧以下であるので(S22のYes)、ステップS23に進み、現在行っている4−2変速制御がコーストダウン制御(アクセルオンによるものでない、つまりパワーオフダウンシフト変速制御)であるか否かを判定する。当該4−2変速制御がコーストダウン制御である場合は(S23のNo)、上述したように例えばドライバによるシフトレバーの手動操作の場合やフットブレーキによる急激な速度低下の場合等であり、パワーオンによるエンジン回転数Neの上昇ではなく、ブレーキB5のスリップによる引き摺りでエンジン回転数Neを上昇させる場合であるので、既にブレーキB5に大きな負荷が生じていることが予測されるため、後述するステップS26に進む。
上述したように、ここでは4−2変速がパワーオンダウンシフトであり、コーストダウン制御ではないので(S23のYes)、ステップS24に進み、負荷量判定手段35が許容範囲マップ36の許容範囲内であるか否かを判定する。図8(a)に示す例では、例えばエンジン出力トルクTe、車速V、変速進行率α等が許容範囲マップ36(図4参照)の許容範囲内である場合であって、負荷量判定手段35がクラッチC3及びブレーキB5にかかる負荷量が許容範囲内であることを判定し(S24のYes)、ステップS25に進む。すると同様に、負荷量判定手段35の判定結果に基づき、多重制御許可手段37が変速制御手段30による反転飛び変速の多重変速制御32を許可し、それを受けた変速制御手段30が反転飛び変速の多重変速制御32を実行する。
しかしながら、この図8(a)に示す完了制御中に2−4変速判断があった場合は、既にクラッチC3の油圧が略々0であり、ブレーキB5の油圧を完全係合圧に上昇している途中であるので、直ちに2−4変速制御に移行すると、クラッチC3のガタ詰め動作やブレーキB5の解放前の待機圧に正確に制御することが難しい。一方で、4−2変速制御が完了制御中であり、あと僅かな時間で4−2変速が完了する。そこで、完了制御中に2−4変速判断がなされた場合は、4−2変速制御は中断せず、該4−2変速制御が完了した後に連続して2−4変速制御に移行する。
即ち、変速制御手段30は、時点t7において4−2変速制御が完了すると、該時点t7において変速指令を4速段として連続的に2−4変速制御に移行して開始する。そして、時点TdまでにクラッチC3のガタ詰めとブレーキB5の油圧の待機圧までの降下を行い、以降は上述した図7(a)の制御と同様に2−4変速制御のイナーシャ相制御を行って、時点Teにおいて入力回転数Ninの回転変化が略々無くなると終了制御を行い、さらに時点Tfから完了制御を行って、時点Tgにおいて2−4変速制御を完了する。
一方、図8(b)に示すものは、図8(a)と同様に4−2変速制御の完了制御中に2−4変速判断があった場合であり、即ち、例えば時点Thにおいて、運転者によりアクセルが戻されて、変速マップ31において2速段から3速段となり、さらに時点Tiに3速段から4速段となって、完了制御中の時点Tjにおいて、変速制御手段30により2−4変速判断がなされた場合である。
この図8(b)に示す場合では、例えばエンジン出力トルクTeや車速Vが大きく、即ちクラッチC3やブレーキB5がスリップ状態とされた際に作用するトルクが大きかったり、或いはスリップ量(変速前後における入力回転数変化の回転数差を吸収した量)が多いことになるので、上記図6のステップS24において、負荷量判定手段35が許容範囲マップ36に基づき負荷量が許容範囲内でないと判定し(S24のNo)、ステップS26に進む場合である。
すると、負荷量判定手段35の判定結果に基づき、多重制御許可手段37が変速制御手段30による反転飛び変速の多重変速制御32を許可せず、それを受けて変速制御手段30が反転飛び変速迂回制御34を開始する。これにより、変速制御手段30は、4−2変速制御を完了した後に連続して2−4変速制御を実行せず、時点t7から2−3変速制御を開始する。
その後は、図7(b)の場合と同様に、初期制御において、ブレーキB5の油圧を1段階降下させると共に、ブレーキB4の油圧を上昇してガタ詰めを行い、時点Tkにおいてイナーシャ相制御に移行する。この際も上述と同様に、アクセルが戻されたパワーオフアップシフトであるので、ブレーキB5を解放することでエンジン回転数Neは下降し、そのエンジン回転数Neの下降に合せてブレーキB4をスリップさせつつ係合するだけであるので、ブレーキB5が僅かにスリップ状態となっても、ブレーキB5に大きな負荷(発熱)が生じることはない。そして、時点Tlにおいてイナーシャ相が終わると終期制御に移行し、さらに時点Tmにおいて完了制御に移行して、時点Tnにおいて2−3変速制御を完了させる。
つづいて変速制御手段30は、時点Tnより3−4変速制御を開始して初期制御を行い、ついで、時点Toにおいてイナーシャ相制御に移行し、ブレーキB4を解放すると共に、同様にフィードバック制御しつつクラッチC3を係合していく。この際も上述と同様に、ブレーキB4を解放することでエンジン回転数Neが下降し、そのエンジン回転数Neの下降に合せてクラッチC3をスリップさせつつ係合することになるが、上記4−2変速制御の完了(時点t7)より2−3変速の時間の分(時点t7〜Tn)、間隔が空いており、クラッチC3がその間に冷却されているので、クラッチC3に対して連続的に負荷(発熱)が生じることはない。また、例えば2−4変速を行う場合に比してクラッチC3のスリップ時間が圧倒的に短くなるので、その分、クラッチC3の負荷(発熱)が大幅に低減されることになる。
そして、時点Tpにおいてイナーシャ相が終わると終期制御に移行し、さらに時点Tqにおいて完了制御に移行して、時点Trにおいて3−4変速制御を完了させる。これにより、2−3−4変速が完了し、上記アクセルの戻しに応じた4速段に変速が完了するので、反転飛び変速迂回制御34も完了したことになる。
以上説明したように本発明に係る自動変速機の変速制御装置1によれば、飛び変速で掴み換えを行う摩擦係合要素にかかる負荷量が許容範囲A内である場合は、反転飛び変速の多重変速制御32が許可されて、その変速が行われるので、摩擦係合要素の耐久性に悪影響を与えることなく、ドライバビリティの向上を図ることができる。また、上記負荷量が許容範囲A外である場合は、反転飛び変速の多重変速制御32が許可されず、つまり多重変速制御32が行われないので、当該摩擦係合要素における発熱量が大きくなることを防ぐことができ、耐久性に悪影響を与えることを防止することができる。
また、変速制御手段30は、多重制御許可手段37により許可されなかった際に、反転飛び変速(例えば2−4変速)で変速すべき変速前後の変速段の中間段(例えば3速段)に変速制御した後、反転飛び変速で変速すべき変速後の変速段(例えば4速段)に変速制御するので、飛び変速で掴み換えを行った摩擦係合要素(例えばクラッチC3からブレーキB5)とは異なる摩擦係合要素の掴み換え変速(例えばブレーキB5からブレーキB4)を経由した後、反転飛び変速で変速すべき変速段(例えば4速段)に変速することができる。これにより、反転飛び変速を行った場合に比して同じ摩擦係合要素が長時間連続してスリップ状態にされることがなく、各摩擦係合要素に生じる発熱量が大きくなることを防ぐことができて、摩擦係合要素の耐久性に悪影響を与えることを防止することができる。また、飛び変速を行った後にそのまま変速せずに冷却期間を設ける場合に比して、上記中間段に変速することで引き摺り感やモタつき感の緩和を図ることができ、ドライバビリティの悪化を防ぐことができる。
ここで、変速制御手段30は、反転飛び変速が3段以上離れた変速である場合(例えば5−2変速等)、中間段として反転飛び変速で変速すべき変速後の変速段(例えば5速段)から1段変速前側の変速段(例えば4速段)を選択し、つまり変速すべき変速段に最も変速比が近い変速段を経由することが考えられる。これにより、更に引き摺り感やモタつき感の緩和を図ることができ、ドライバビリティの悪化を防ぐことができる。
また、負荷量判定手段35が、自動変速機構5に入力されるエンジン出力トルクTeに基づき負荷量が許容範囲内であることを判定することで、スリップ状態となる摩擦係合要素に作用するトルクの大きさに応じて、当該摩擦係合要素にかかる負荷量が許容範囲A内であるか否かを判定することができる。
また、負荷量判定手段35が、飛び変速前後における自動変速機構5の入力軸9aの回転数差、具体的には車速Vに基づき負荷量が許容範囲内であることを判定することで、飛び変速時にかかる摩擦係合要素のスリップ量(回転数差をスリップにより吸収する量)に応じて、当該摩擦係合要素にかかる負荷量が許容範囲内であるか否かを判定することができる。
また、負荷量判定手段35は、飛び変速の変速進行率αに基づき負荷量が許容範囲内であることを判定することで、既に摩擦係合要素に生じたスリップ量(回転数差をスリップにより吸収した量)、特にスリップ状態にされた時間の長さに応じて、当該摩擦係合要素にかかる負荷量が許容範囲内であるか否かを判定することができる。
具体的には、負荷量判定手段35が、あらかじめ許容範囲の情報を記録した許容範囲マップ36を有して、該許容範囲マップ36を参照することで負荷量が許容範囲A内であることを判定することで、あらかじめ摩擦係合要素の耐久性等を考慮して演算された許容範囲マップ36に応じて瞬時に負荷量が許容範囲A内であるか否かを判定することができる。
なお、以上説明した本実施の形態において、本発明を適用し得る自動変速機としてFFタイプの車両に用いて好適な前進5速及び後進1速を達成するものを説明したが、これに限らず、FRタイプやその他のタイプの車両に用いて好適な自動変速機であっても本発明を適用することができ、かつ変速段の段数についても、飛び変速を行い得る段数を有する有段式の自動変速機であれば本発明を適用することができる。
また、本実施の形態において、特に多重変速制御として先の変速に連続して次の変速を行うもの(図8参照)を説明したが、次の変速の判断が先の変速制御中になされたものであれば、ドライバビリティを損なわない程度に間隔を空けて次の変速制御を開始するものも、連続して次の変速を行うもののうちである。
さらに、本実施の形態において、飛び変速や反転飛び変速の判断が変速マップに基づき行われるものについて説明したが、これに限らず、例えばドライバによるシフトレバー操作等によるマニュアル的な操作によって飛び変速や反転飛び変速を判断するようなものでもよい。このような場合の一例として、例えばアクセルをある程度踏込んだまま4速段から2速段に手動操作し、直ちに4速段に戻すような場合等が考えられる。
本発明を適用し得る自動変速機を示すスケルトン図。 本自動変速機の作動表。 本発明に係る自動変速機の変速制御装置を示すブロック図。 許容範囲マップの一例を示す図で、(a)は車速及び変速進行率の関係による許容範囲を示す図、(b)は車速及びエンジン出力トルクの関係による許容範囲を示す図、(c)はエンジン出力トルク及び変速進行率の関係による許容範囲を示す図、(d)は車速、変速進行率、及びエンジン出力トルクの関係による許容範囲を示す図。 イナーシャ相から終期制御中において2−4変速判断があった際の制御を示すフローチャート。 完了制御中において2−4変速判断があった際の制御を示すフローチャート。 先の変速制御におけるイナーシャ相から終期制御中に次の変速判断があった場合を示すタイムチャートで、(a)は反転飛び変速の多重変速制御を行う場合の図、(b)は反転飛び迂回変速制御を行う場合の図。 先の変速制御における完了制御中に次の変速判断があった場合を示すタイムチャートで、(a)は反転飛び変速の多重変速制御を行う場合の図、(b)は反転飛び迂回変速制御を行う場合の図。
符号の説明
1 自動変速機の変速制御装置
3 自動変速機
5 変速歯車機構(自動変速機構)
9a 変速歯車機構(自動変速機構)の入力軸
30 変速制御手段
32 多重変速制御
33 飛び変速制御
35 負荷量判定手段
36 許容範囲マップ
37 多重制御許可手段
A 許容範囲
Te 入力トルク(エンジン出力トルク)
V 入力軸の回転数差(車速)
α 変速進行率

Claims (7)

  1. 変速歯車機構における複数の動力伝達経路を各係合状態により達成する複数の摩擦係合要素を有し、それら摩擦係合要素同士の掴み換えにより変速を行う有段式の自動変速機に用いられるものであって、
    前記変速の制御中に次の変速判断がなされた際に該制御中の変速の制御を中断ないし該制御に連続して次の変速の制御を行う多重変速制御が実行可能であると共に、1回の掴み換えにより2段以上離れた変速段に変速する飛び変速制御が実行可能である変速制御手段を備えた自動変速機の変速制御装置において、
    前記飛び変速の制御中に前記飛び変速前の変速段に戻る反転飛び変速の判断がなされた場合に、前記飛び変速で掴み換えを行う摩擦係合要素にかかる負荷量が許容範囲内であることを判定する負荷量判定手段と、
    前記負荷量判定手段の判定結果に基づき、前記反転飛び変速の前記多重変速制御の実行を許可する多重制御許可手段と、を備え、
    前記変速制御手段は、前記飛び変速の制御中に前記反転飛び変速の判断がなされ、前記多重制御許可手段により前記反転飛び変速が許可された際に、前記反転飛び変速の前記多重変速制御を実行する、
    ことを特徴とする自動変速機の変速制御装置。
  2. 前記変速制御手段は、前記多重制御許可手段により許可されなかった際に、前記反転飛び変速で変速すべき変速前後の変速段の中間段に変速制御した後、前記反転飛び変速で変速すべき変速後の変速段に変速制御してなる、
    請求項1記載の自動変速機の変速制御装置。
  3. 前記変速制御手段は、前記反転飛び変速が3段以上離れた変速である場合、前記中間段として、前記反転飛び変速で変速すべき変速後の変速段から1段変速前側の変速段を選択してなる、
    請求項2記載の自動変速機の変速制御装置。
  4. 前記負荷量判定手段は、前記変速歯車機構に入力される入力トルクに基づき前記負荷量が前記許容範囲内であることを判定してなる、
    請求項1ないし3のいずれか記載の自動変速機の変速制御装置。
  5. 前記負荷量判定手段は、前記飛び変速前後における前記変速歯車機構の入力軸の回転数差に基づき前記負荷量が前記許容範囲内であることを判定してなる、
    請求項1ないし4のいずれか記載の自動変速機の変速制御装置。
  6. 前記負荷量判定手段は、前記飛び変速の変速進行率に基づき前記負荷量が前記許容範囲内であることを判定してなる、
    請求項1ないし5のいずれか記載の自動変速機の変速制御装置。
  7. 前記負荷量判定手段は、あらかじめ前記許容範囲の情報を記録した許容範囲マップを有し、該許容範囲マップを参照することで前記負荷量が前記許容範囲内であることを判定してなる、
    請求項4ないし6のいずれか記載の自動変速機の変速制御装置。

JP2006209087A 2006-07-31 2006-07-31 自動変速機の変速制御装置 Active JP4961882B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006209087A JP4961882B2 (ja) 2006-07-31 2006-07-31 自動変速機の変速制御装置
CN200780011544.6A CN101410657B (zh) 2006-07-31 2007-07-05 自动变速器的变速控制装置
PCT/JP2007/063482 WO2008015869A1 (fr) 2006-07-31 2007-07-05 Dispositif de commande de changement de vitesse pour une transmission automatique
DE112007000914.4T DE112007000914B4 (de) 2006-07-31 2007-07-05 Schaltsteuerungsvorrichtung für ein automatisches Getriebe
US11/882,185 US7841963B2 (en) 2006-07-31 2007-07-31 Shift control apparatus for an automatic transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006209087A JP4961882B2 (ja) 2006-07-31 2006-07-31 自動変速機の変速制御装置

Publications (2)

Publication Number Publication Date
JP2008032191A true JP2008032191A (ja) 2008-02-14
JP4961882B2 JP4961882B2 (ja) 2012-06-27

Family

ID=38997051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006209087A Active JP4961882B2 (ja) 2006-07-31 2006-07-31 自動変速機の変速制御装置

Country Status (5)

Country Link
US (1) US7841963B2 (ja)
JP (1) JP4961882B2 (ja)
CN (1) CN101410657B (ja)
DE (1) DE112007000914B4 (ja)
WO (1) WO2008015869A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079717A (ja) * 2007-09-26 2009-04-16 Jatco Ltd 自動変速機の変速制御装置
WO2014054813A1 (ja) * 2012-10-05 2014-04-10 アイシン・エィ・ダブリュ株式会社 車輌用駆動装置の制御装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4329864B2 (ja) * 2008-02-12 2009-09-09 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
SE534847C2 (sv) 2009-09-14 2012-01-17 Scania Cv Ab Metod och system för bestämning av antal växlingssteg i ett motorfordon
SE534853C2 (sv) * 2009-09-14 2012-01-24 Scania Cv Ab Metod och system för bestämning av antal växlingssteg i ett motorfordon
JP2011158001A (ja) * 2010-01-29 2011-08-18 Aisin Aw Co Ltd 自動変速機の制御装置および変速機装置並びに動力出力装置
JP6037001B2 (ja) * 2013-05-07 2016-11-30 トヨタ自動車株式会社 車両の変速制御装置
GB2517438B (en) * 2013-08-19 2016-02-24 Jaguar Land Rover Ltd Method and apparatus for downshifting an automatic vehicle transmission
US9371065B2 (en) * 2014-03-20 2016-06-21 GM Global Technology Operations LLC Method of controlling a transmission
JP6245227B2 (ja) 2015-06-30 2017-12-13 トヨタ自動車株式会社 自動変速機の制御装置
JP6447590B2 (ja) * 2016-07-26 2019-01-09 トヨタ自動車株式会社 車両の制御装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02245571A (ja) * 1989-01-10 1990-10-01 Mazda Motor Corp 自動変速機の変速制御装置
JPH11108178A (ja) * 1997-09-30 1999-04-20 Mazda Motor Corp 自動変速機の制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241476A (en) * 1990-05-08 1993-08-31 Chrysler Corporation Acceleration prediction responsive adaptive upshift control
JP3246286B2 (ja) * 1995-08-03 2002-01-15 トヨタ自動車株式会社 自動変速機の変速制御装置
DE19963564A1 (de) * 1999-12-29 2001-07-05 Bosch Gmbh Robert System zur Einstellung einer Getriebeübersetzung bei einem in einem Kraftfahrzeug eingebauten Getriebe
JP4524917B2 (ja) * 2000-12-28 2010-08-18 アイシン・エィ・ダブリュ株式会社 自動変速機の変速制御装置
JP2003130152A (ja) * 2001-10-30 2003-05-08 Toyota Motor Corp 自動変速機
JP3763296B2 (ja) * 2001-12-10 2006-04-05 トヨタ自動車株式会社 自動変速機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02245571A (ja) * 1989-01-10 1990-10-01 Mazda Motor Corp 自動変速機の変速制御装置
JPH11108178A (ja) * 1997-09-30 1999-04-20 Mazda Motor Corp 自動変速機の制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079717A (ja) * 2007-09-26 2009-04-16 Jatco Ltd 自動変速機の変速制御装置
JP4593606B2 (ja) * 2007-09-26 2010-12-08 ジヤトコ株式会社 自動変速機の変速制御装置
WO2014054813A1 (ja) * 2012-10-05 2014-04-10 アイシン・エィ・ダブリュ株式会社 車輌用駆動装置の制御装置
JPWO2014054813A1 (ja) * 2012-10-05 2016-08-25 アイシン・エィ・ダブリュ株式会社 車輌用駆動装置の制御装置
US9815455B2 (en) 2012-10-05 2017-11-14 Aisin Aw Co., Ltd. Control device for vehicle drive device

Also Published As

Publication number Publication date
CN101410657A (zh) 2009-04-15
DE112007000914T5 (de) 2009-06-10
US7841963B2 (en) 2010-11-30
DE112007000914B4 (de) 2016-04-28
JP4961882B2 (ja) 2012-06-27
WO2008015869A1 (fr) 2008-02-07
CN101410657B (zh) 2012-12-05
US20080064565A1 (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP4961882B2 (ja) 自動変速機の変速制御装置
JP5292782B2 (ja) 車両の変速制御装置
JP5387481B2 (ja) 自動変速機の制御装置
JP4787293B2 (ja) 自動変速機の変速制御装置
JP2009127793A (ja) 車両の駆動力制御装置
JP2006015873A (ja) 自動変速機の変速制御装置
WO2011125611A1 (ja) 自動変速機の制御装置
JP3649004B2 (ja) 自動変速機の変速制御装置
JP4257329B2 (ja) 自動変速機の制御装置
JP4935638B2 (ja) 車両の駆動力制御装置
KR20090096347A (ko) 자동 변속기의 변속 제어 장치
JP6561979B2 (ja) 車両用駆動装置の制御装置
JP2006275075A (ja) 自動変速機の制御装置
JP2004347066A (ja) 車両の制御装置および制御方法
JP5085289B2 (ja) 変速機の制御装置
JP5947070B2 (ja) 変速機の制御装置
JP6040693B2 (ja) 変速装置の制御装置
JP5272649B2 (ja) 自動変速機の制御装置
JP2015148322A (ja) 変速制御装置
JP4882606B2 (ja) 自動変速機のエンジンブレーキ制御装置
JP2010053941A (ja) 自動変速機の制御方法
JP5790535B2 (ja) 車両用自動変速機の変速制御装置
JP5978911B2 (ja) 車両の走行制御装置
JP6197654B2 (ja) 自動変速機の変速制御装置
JP4750840B2 (ja) 自動変速機の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120111

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3