JP2008021598A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2008021598A
JP2008021598A JP2006194247A JP2006194247A JP2008021598A JP 2008021598 A JP2008021598 A JP 2008021598A JP 2006194247 A JP2006194247 A JP 2006194247A JP 2006194247 A JP2006194247 A JP 2006194247A JP 2008021598 A JP2008021598 A JP 2008021598A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
gas
electrode
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006194247A
Other languages
English (en)
Inventor
Keizo Furusaki
圭三 古崎
Masahiro Shibata
昌宏 柴田
Hideki Uematsu
秀樹 上松
Hiroya Ishikawa
浩也 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2006194247A priority Critical patent/JP2008021598A/ja
Publication of JP2008021598A publication Critical patent/JP2008021598A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

【課題】固体電解質形の燃料電池セルを備えた燃料電池システムにおいて、発電開始時に燃料電池セルを短時間で効率よく加熱できるようにする。
【解決手段】燃料電池スタック21を構成している複数の燃料電池セルの燃料極及び空気極に燃焼触媒を形成する。発電開始時には、空気導入バルブ2と燃料導入バルブ4とを開いて、バーナ31を点火することにより、バーナ31による燃焼ガスにて燃料電池スタック21を周囲から加熱する。また、この加熱によって燃料電池スタック21が触媒接触燃焼温度に達すると、燃料混合バルブ6及び空気混合バルブ8を開いて、燃料電池セル60の燃料ガス流路68及び酸化剤ガス流路69に、燃料ガスと酸化剤ガスとの混合ガスを供給し、この混合ガスを燃料電池セル内の燃焼触媒にて燃焼させ、その燃焼により燃料電池セルを直接加熱する。
【選択図】図1

Description

本発明は、固体電解質形の燃料電池セルを備えた燃料電池システムに関する。
従来より、固体電解質形の燃料電池セル(所謂SOFC:Solid Oxide Fuel Cell)を備えた燃料電池システムにおいては、燃料電池セルを所定温度以上に加熱しないと発電できないことから、燃料電池セルの周囲に電気ヒータを設けて、燃料電池セルを周囲から加熱するとか、燃料電池セルに燃料ガスや酸化剤ガスを供給する供給ラインに加熱装置を設けて、燃料電池セルへ供給するガスを加熱することにより、燃料電池セルをガスを介して加熱する、といったことが行われている。
また、こうした燃料電池セルの加熱のための熱源として、燃料電池セルから排出される燃料ガスと酸化剤ガスとの混合ガスを燃焼させるバーナを利用することも提案されている(例えば、特許文献1等参照)。
一方、燃料電池セルの空気極に燃焼触媒を設け、発電開始時には、酸化剤ガスに燃料ガスを混合した混合ガスを空気極に供給することにより、その混合ガスを燃焼触媒にて燃焼させ、その燃焼により燃料電池セルを直接加熱するようにすることも提案されている(例えば、特許文献2,3等参照)。
特開2002−042851号公報 特開2004−119298号公報 特開2004−281300号公報
そして、上記2つの提案の燃料電池システムのうち、前者の燃料電池システムでは、燃料電池セルの加熱に、燃料電池セルからの排出ガスを利用することから、加熱用の電気ヒータ等を別途設ける必要がなく、比較的簡単に構成することができるものの、この燃料電池システムは、バーナにより燃焼させた高温の燃焼ガスを利用して燃料電池セルを間接的に加熱するものであり、燃料電池セル内部で混合ガスを燃焼させて、燃料電池セルを直接加熱することはできないことから、加熱効率が悪く、燃料電池セルによる発電を開始する際には、燃料電池セルの加熱に時間がかかるという問題があった。
一方、後者の燃料電池システムでは、燃料電池セルの空気極に形成した燃焼触媒にて混合ガスを燃焼させることから、燃料電池セルをその内部で直接加熱することができ、前者の燃料電池システムに比べて、燃料電池セルの加熱時間を短くすることができる。
しかしながら、この燃料電池システムでは、燃焼触媒が空気極に形成されていることから、燃料電池セルが、空気極を構成する多孔質電極基材に固体電解質を形成した空気極支持膜型であれば、燃料電池セルを良好に加熱することができるが、燃料電池セルが、燃料極を構成する多孔質電極基材に固体電解質体を形成した燃料極支持膜型、若しくは、固体電解質体の基材に燃料極及び前記空気極を形成した自立膜型である場合には、燃料電池セルを良好に加熱することができず、燃料電池セルを劣化させてしまうことがあった。
つまり、燃料電池セルの燃料極に供給される燃料ガスには、炭素析出を防止するために、通常、水蒸気が添加される。このため、燃料電池セルの温度が上昇すると、燃料極側で水蒸気改質が開始され、その反応は吸熱反応であるため、セルの温度が低下する。
従って、上記後者の燃料電池システムのように、空気極に設けた触媒により混合ガスを燃焼させるようにした場合、その燃焼と同時に、燃料極側で吸熱反応が起こると、空気極側と燃料極側とに温度差が生じることになる。
またこのように温度差が生じても、空気極支持膜型の燃料電池セルでは、燃料極や固体電解質体に比べて空気極の熱容量が大きく、空気極側から燃料極を加熱できるので、特に問題とはならない。
しかし、燃料極支持膜型の燃料電池セルや、自立膜型の燃料電池セルでは、燃料極や固体電解質体の熱容量が空気極に比べて大きくなるので、上記のように、空気極側での混合ガスの燃焼と同時に、燃料極側で吸熱反応が起こると、空気極側と燃料極側との間に大きな温度差が生じ、その温度差により燃料電池セルが破損することがある。
一方、燃料電池セルにおいて、空気極側での酸化剤ガスのガス流量は、通常、燃料極側での燃料ガスのガス流量の5〜10倍に設定されていることから、空気極側では、燃料極に比べて、流れるガスによって熱が奪われ易い。
このため、上記後者の燃料電池システムのように空気極側で混合ガスを燃焼させた際には、燃焼による熱が酸化剤ガスの流れによって奪われ、燃料電池セルの加熱効率が悪いという問題もある。
本発明は、こうした問題に鑑みなされたもので、固体電解質形燃料電池において、燃料電池セルを劣化させることなく、燃料電池セルを短時間で効率よく加熱できるようにすることを目的とする。
かかる目的を達成するためになされた請求項1に記載の発明は、燃料極に供給された燃料ガスと空気極に供給された酸化剤ガスとを固体電解質体を介して化学反応させることにより電力を発生する固体電解質形の燃料電池セルと、該燃料電池セルの燃料極に燃料ガスを供給する燃料ガス供給ラインと、前記燃料電池セルの空気極に酸化剤ガスを供給する酸化剤ガス供給ラインと、前記燃料電池セルの燃料極及び空気極を通過したガスを混合して排出するガス排出ラインと、前記ガス排出ラインから排出されるガスの未燃焼成分を燃焼させて前記燃料電池セルを加熱する燃焼手段とを備えた燃料電池システムにおいて、前記燃料ガス供給ラインを流れる燃料ガスに酸化剤ガスを混合させる第1のガス混合手段を設けたことを特徴とする。
このように、本発明の燃料電池システムには、ガス排出ラインから排出されるガスの未燃焼成分を燃焼させて燃料電池セルを加熱する燃焼手段とは別に、燃料ガス供給ラインを流れる燃料ガスに酸化剤ガスを混合させる第1のガス混合手段が設けられていることから、発電を開始するために、燃料ガス供給ライン及び酸化剤ガス供給ラインを介して燃料電池セルの燃料極及び空気極にそれぞれ燃料ガス及び酸化剤ガスを供給して、これらの混合ガスである排出ガスを燃焼手段により燃焼させて燃料電池セルを加熱しているときに、第1のガス混合手段を介して燃料ガスに酸化剤ガスを混合させれば、その混合ガスが燃料電池セルの燃料極側で着火して燃焼し、その燃焼により燃料電池セルを直接加熱することができる。
よって、本発明の燃料電池システムによれば、上述した従来の燃料電池システムに比べて、燃料電池セルを効率よく加熱することができるようになり、起動時には、燃料電池セルの温度を短時間で発電可能温度まで上昇させて、発電を開始することができるようになる。
また、本発明では、第1のガス混合手段を、燃料ガス供給ラインを流れる燃料ガスに酸化剤ガスを混合させるように構成しているので、その混合ガスは、燃料電池セルの燃料極側で燃焼し、燃料電池セルを燃料極側から加熱することになる。
このため、本発明によれば、第1のガス混合手段により混合された混合ガスが燃焼することによって、燃料電池セルの空気極と燃料極との間の温度差が大きくなって、燃料電池セルを劣化又は破損させてしまうようなことはなく、燃料電池セルを長期間安定して動作させることができる。
なお、燃料電池セルの加熱に要する時間をより短くするには、請求項2に記載のように、第1のガス混合手段とは別に、酸化剤ガス供給ラインを流れる酸化剤ガスに燃料ガスを混合させる第2のガス混合手段を設けてもよい。
そして、このようにすれば、燃料電池セルの加熱時に、燃料極と空気極の両方に、燃料ガスと触媒剤ガスとの混合ガスを供給して、各電極側で混合ガスを燃焼させることが可能となり、その燃焼により燃料電池セルをより短時間で発電可能温度まで上昇させることができる。
またこの場合、燃料電池セルを、燃料極と空気極との両方から加熱することができるので、加熱によって生じる温度差をより小さくすることができ、その温度差により生じる燃料電池セルの劣化をより確実に防止することができる。
一方、ガス混合手段(詳しくは第1のガス混合手段、又は、第1及び第2のガス混合手段)により燃料電池セル内に供給される混合ガスを、より確実に燃料電池セル内で燃焼させるには、請求項3に記載のように、燃料電池セルに、燃料ガスと酸化剤ガスとの混合ガスを燃焼させる燃焼触媒を設けるとよい。
また本発明では、ガス混合手段(詳しくは第1のガス混合手段、又は、第1及び第2のガス混合手段)により、燃料電池セルの燃料極、又は、燃料極と空気極とに、混合ガスを供給することから、燃料電池セルに燃焼触媒を設ける場合には、請求項4に記載のように、燃料電池セルの燃料極の表面、又は、燃料電池セルの燃料極と空気極の表面に、燃焼触媒を形成するか、或いは、請求項6に記載のように、燃料電池セルの燃料極の内部、又は、燃料電池セルの燃料極と空気極の内部に、燃焼触媒を形成するようにすればよい。
また、請求項7に記載のように、燃料電池セルに、燃料極及び空気極にそれぞれ接続されて電力を取り出すための集電体が設けられている場合には、燃焼触媒は、燃料極に接続される集電体、又は、燃料極と空気極とにそれぞれ接続される集電体に形成してもよい。
なお、請求項4に記載のように、燃焼触媒を電極の表面に形成する場合には、燃料電池セルによる発電機能を妨げることのないよう、請求項5に記載のように、燃焼触媒を、設置対象となる電極の表面に網目状に形成することが望ましい。
次に、請求項8に記載の燃料電池システムにおいては、燃料電池セルとして、燃料極となる多孔質電極基材に固体電解質体及び空気極を形成してなる燃料極支持膜型、又は、前記固体電解質体となる基材に燃料極及び空気極を形成してなる自立膜型のものが使用される。
これは、本発明では、ガス混合手段(詳しくは第1のガス混合手段、又は、第1及び第2のガス混合手段)により、混合ガスを燃料電池セルの燃料極側、若しくは、燃料極と空気極の両方に供給するようにしているからである。
つまり、燃料極支持膜型の燃料電池セルや、自立膜型の燃料電池セルでは、燃料極や固体電解質体の熱容量が空気極に比べて大きくなるので、上記のように、燃料極側で吸熱反応が起こると、空気極側と燃料極側との間に温度差が生じやすくなる。
しかし、本発明では、ガス混合手段(詳しくは第1のガス混合手段、又は、第1及び第2のガス混合手段)により、混合ガスを燃料電池セルの燃料極側、若しくは、燃料極と空気極の両方に供給して、燃焼させるようにしているので、燃料極支持膜型、若しくは、自立膜型の燃料電池セルにて、熱容量の大きな燃料極や固体電解質体を加熱し、熱容量の違いによって空気極側と燃料極側との間に温度差が生じるのを防止することができる。
また、請求項9に記載の燃料電池システムには、燃料電池セルによる発電開始時に、燃料ガス供給ライン及び酸化剤ガス供給ラインから燃料極及び空気極へ燃料ガス及び酸化剤ガスをそれぞれ供給して、燃焼手段を動作させることにより、燃料電池セルを加熱させ、その後、ガス混合手段に対してガスを混合させることにより、その混合ガスを前記燃料電池セル内で直接燃焼させて燃料電池セルの温度を上昇させ、その後、ガス混合手段によるガスの混合を停止させて、燃料電池セルを通常発電動作に移行させる起動制御手段が備えられている。
従って、この燃料電池システムによれば、燃料電池セルによる発電開始時に、燃料電池セルを自動で加熱して、発電動作に移行させることができるようになり、燃料電池セルの使い勝手を向上できる。
また次に、請求項10に記載の燃料電池システムには、燃料電池セルの温度を検出する温度検出手段が設けられており、起動制御手段は、燃焼手段を動作させて燃料電池セルを加熱しているときに、温度検出手段による検出温度が、混合ガスが燃焼触媒にて燃焼可能な温度に達すると、ガス混合手段に対してガスを混合させ、その後、温度検出手段による検出温度が、燃料電池セルにて発電可能な温度に達すると、ガス混合手段によるガスの混合を停止させて、燃料電池セルを通常発電動作に移行させる。
従って、この燃料電池システムによれば、燃料電池セルの温度を監視しつつ、燃料電池セルを加熱することができるので、燃料電池セルをより効率よく加熱することができるようになる。
以下に本発明にかかる実施の形態を図面と共に説明する。
図1は本発明が適用された燃料電池システム1の構造を模式的に示す説明図である。
燃料電池システム1は、図1に示すように、燃料電池ユニット20と、燃料電池ユニット20に接続された多数の配管と、これらの配管に接続された多数の装置とから構成されている。
燃料電池ユニット20は、略円筒形状の燃料電池スタック21と、燃料電池スタック21の形状に沿って燃料電池スタック21の周囲を覆うカバー部材22とを備えている。
燃料電池スタック21は、図2に示すように、固体電解質形の燃料電池セル60(SOFC)が多数積層された構成とされており、内部において燃料ガスと酸化剤ガスとを固体電解質体63を介して化学反応させることにより正極端子46と負極端子48との間に電力を発生させる。なお、正極端子46及び負極端子48には、これらの端子から駆動対象物までの通電を行うための配線(正極側配線47及び負極側配線49)が接続されている。
また、負極側配線49には、燃料電池スタック21による通電を遮断可能な燃料電池スイッチ33を備えている。この燃料電池スイッチ33が通電状態のときには、燃料電池スタック21内で電力を発生させるための化学反応が起こり、燃料電池スイッチ33が遮断状態のときには、燃料電池スタック21内での化学反応は停止されることになる。なお、燃料電池スイッチ33は、後述する燃料電池制御処理(図4参照)の開始時には、遮断状態とされている。
また、燃料電池スタック21には、上部と下部との2箇所に、燃料電池スタック21の表面温度を測定するセル温度センサ41,42が配置されている。
カバー部材22は、燃料電池スタック21と密着することなく、後述するバーナ31により燃焼されたガスを導入可能な隙間が形成されている。そして、カバー部材22は、燃料電池スタック21を冷却するための冷却水を注入可能な水路23(本発明でいう流路)を備え、この水路23は、燃料電池スタック21の側面の形状に沿って螺旋状に形成されている。
次に、燃料電池ユニット20の燃料電池スタック21には、前述の配管として、まず、燃料電池ユニット20に酸化剤ガスとしての空気を導入するための空気供給管11と、燃料ガスとしての炭化水素化合物(例えばメタン)及び水蒸気を導入するための燃料供給管13とが接続されている。
そして、空気供給管11及び燃料供給管13には、それぞれ、管を流れる気体の流量を調節するための空気導入バルブ2及び燃料導入バルブ4が設けられている。
また、空気供給管11及び燃料供給管13において、空気導入バルブ2及び燃料導入バルブ4よりも下流側には、これら各管11、13同士を互いに連結するバイパス管12、14が設けられている。
そして、一方のバイパス管12には、燃料導入バルブ4を介して燃料供給管13に供給された燃料ガスの一部を空気供給管11側に供給して、空気供給管11を流れる酸化剤ガス(空気)に燃料ガスを混合させる燃料混合バルブ6が設けられており、他方のバイパス管14には、空気導入バルブ2を介して空気供給管11に供給された酸化剤ガス(空気)の一部を燃料供給管13側に供給して、燃料供給管13を流れる燃料ガスに酸化剤ガス(空気)を混合させる空気混合バルブ8が設けられている。
次に、燃料電池スタック21には、空気供給管11から導入された酸化剤ガスを排出する空気排出管15と、燃料供給管13から導入された燃料ガスを排出する燃料排出管16とが接続されている。
また、空気排出管15及び燃料排出管16よりも下流側(空気及び燃料ガスが流れる方向に対して下流側:燃料電池スタック21が接続された端部とは反対側の端部)には、空気排出管15及び燃料排出管16を流れるガスを混合する混合器17が備えられており、混合器17よりもさらに下流側には、混合気管18、バーナ31、暖気導入管19が順に接続されている。
ここで、バーナ31は、外部から供給される別の燃料ガスを燃焼させることにより種火を生成し、混合気管18から供給される未反応燃料に引火させることにより、この未反応燃料を完全燃焼させる。また、暖気導入管19の下流側の端部は、カバー部材22の内部(上端に近い位置)に接続されており、バーナ31により熱せられた排気が、暖気導入管19を介して燃料電池スタック21とカバー部材22との隙間に供給されるよう構成されている。
また、カバー部材22(下端に近い位置)には、暖気導入管19から導入された排気を排出するための排気管27が接続されている。この排気管27には、燃料電池ユニット20から近い順に、排気温度センサ43、全領域空燃比センサ44、触媒32が配置されている。
触媒32は、例えば、公知の三元触媒として構成されており、万一、バーナ31が失火した場合に備えて、未反応燃料が外部に排出されないようにするために配置されている。この触媒32を通過した排気は、排気口28から外部に排出される。
次に、カバー部材22の水路23には、冷却水を導入するための冷却水導入管24と、水路から冷却水を排出するための冷却水排出管26とが備えられている。
また、冷却水導入管24及び冷却水排出管26には、冷却水を導入または排出するための、冷却水導入バルブ25及び冷却水排出バルブ29が備えられている。
なお、各バルブの上流側にある物質(空気、燃料、及び冷却水)は、それぞれ一定の圧力で加圧されており、各バルブの開度を調節するだけで各バルブを通過する物質の流量を調節することができるよう構成されている。
次に、燃料電池スタック21の構成を説明する。
上述したように、燃料電池スタック21は、燃料電池セル60を多数積層することにより構成されているが、燃料電池セル60は、図2に示すように、燃料極61となる多孔質基板上に、固体電解質体63を形成し、更に、固体電解質体63の上に空気極62を形成した、燃料極支持膜型のものである。
そして、本実施形態では、燃料電池セル60の燃料極61及び空気極62の表面(つまり固体電解質体63とは反対側の面)に、それぞれ、燃焼触媒64及び65を形成することで、空気混合バルブ8及び燃料混合バルブ6が開かれ、これら各電極61、62に燃料ガスと酸化剤ガスとの混合ガスが供給された際に、その混合ガスを燃焼触媒64、65で燃焼できるようにされている。
なお、燃焼触媒64、65は、発電時に各電極61、62への燃料ガス又は酸化剤ガスの拡散が妨げられないために、メッシュ状(網目状)に形成されている。
また、燃料電池セル60には、燃料極61に積層された固体電解質体63の周囲を囲むように、金属製のセパレータ75が接合されている。そして、このセパレータ75の周囲は、金属製の燃料極フレーム77と、金属製の空気極フレーム78とで挟まれており、更に、これら各フレーム77、78の上下には、金属プレートであるインターコネクタ70が配置されている。
このため、燃料電池セル60の各電極61、62側には、セパレータ75と、燃料極フレーム77又は空気極フレーム78と、インターコネクタ70とで囲まれた燃料ガス流路68及び酸化剤ガス流路69がそれぞれ形成されることになる。
なお、燃料電池セル60の上下に配置されるインターコネクタ70間を絶縁するために、空気極フレーム78とセパレータ75との間には、セラミックス製の絶縁フレーム76が設けられている。
また、燃料電池セル60の各電極61、62は、上下のインターコネクタ70と対向することになるが、これらの間には、各電極61、62とインターコネクタ70とを電気的に接続するために、多孔質で導電性を有する集電体66、67が配置されている。
次に、燃料電池スタック21は、上記のように2枚のインターコネクタ70に挟まれた燃料電池セル60を、インターコネクタ70を共用させて、順に積層することにより作製されるが、
燃料電池スタック21内で各燃料電池セル60を支持するセパレータ75、絶縁フレーム76、燃料極フレーム77、空気極フレーム78、及びインターコネクタ70には、空気供給管11、燃料供給管13、空気排出管15、及び、燃料排出管16が接続されて、各燃料電池セル60に対し燃料ガス若しくは酸化剤ガスを給排する4つのマニホールド73が形成されている。
従って、本実施形態の燃料電池スタック21においては、燃料供給管13から燃料ガスを供給すれば、燃料電池スタック21内の複数の燃料電池セル60の燃料極61に燃料ガスを供給でき、空気供給管11から酸化剤ガス(空気)を供給すれば、燃料電池スタック21内の複数の燃料電池セル60の空気極62に酸化剤ガスを供給できる。
なお、図2は、燃料電池スタック21内に積層された燃料電池セル60の断面図である。そして、図2には、2つの燃料電池セル60を記載しているが、燃料電池スタック21内には、実際にはより多く(例えば10個)の燃料電池セル60が組み込まれる。また、図2は、各部の構成を解りやすく記載したものであるため、各部の寸法(大きさ)は実際のものとは異なる。
次に、本実施形態の燃料電池セル60の製造手順について説明する。
(1)燃料極グリーン基板の作成
酸化ニッケル(NiO)粉末60重量部と、イットリアを8モル%固溶させたジルコニア(8YSZ)粉末40重量部とを混合して成分原料とし、気孔形成材として人造黒鉛粉を70重量部加えた。
次に、分散剤1重量部、及び、有機溶媒としてトルエンとメチルエチルケトン(MEK)を2:3の割合で混合した溶液75重量部をそれぞれ加え、アルミナ製ポットミルを用いて64時間混合した。
その後、可塑剤としてDBPを7重量部、バインダーとしてポリビニルアルコール16重量部加えて、更に3時間混合し、スラリーとした。
そのスラリーをドクターブレード法にて、厚さ200μmのグリーンシートを得た。
このグリーンシート7枚を積層圧着し、150mm×150mmに切断して、厚さ1300μmの燃料極グリーン基板を得た。
(2)電解質層及びセリア系酸化物層(反応防止層)の形成
電解質層には8YSZ粉末を用いた。
この8YSZ粉末100重量部に、バインダーとしてポリビニルアルコール13重量部及びブチルカルビトール75重量部をそれぞれ混合して、固体電解質のスラリーを調製し、これを燃料極グリーン基板の一方の面に、厚さ25μmとなるようにスクリーン印刷した。
セリア系酸化物層(反応防止層)には、サマリアをドープしたセリア(Sm0.2Ce0.8O1.9以下SDC)を用いた。
原料粉末には、酸化サマリウム、酸化セリウムを用い、それぞれを所定量秤量し、エタノールを溶媒として湿式混合後、1400°C、6時間の条件で仮焼し、SDC粉末を得た。
その後、エタノール溶媒を加え湿式粉砕して、平均粒径を0.53μmのSDC粉末を得た。
このSDC粉末100重量部に、バインダーとしてポリビニルアルコール13重量部 及びブチルカルビトール35重量部をそれぞれ混合して、反応防止層スラリーを調整し、これを電解質層上に、厚さが10μm、120mm×120mmのサイズとなるようにスクリーン印刷し、燃料極基板、電解質層、反応防止層の三成分積層体の成形体を得た。
そして、この三成分積層体の成形体は、1400°C、1時間の条件で同時焼成を行い、三成分積層体の焼結体を得た。
(3)空気極とセパレータの形成
空気極材料には、平均粒径2μmの市販のLa0.6Sr0.4Co0.2Fe0.8Ox(以下LSCFと表記)粉末と、上記SDC粉末と同様の手法により任意の粒径に調整したSDC粉末を用いた。
上記LSCF粉末とSDC粉末の混合粉100重量部に、バインダーとしてポリビニルアルコール13重量部及びブチルカルビトール35重量部をそれぞれ混合して空気極スラリーを調整し、これを上記電解質層上に100mm×100mmのサイズで、30μm厚となるように印刷した。そして、1200°C、1時間の条件で焼き付けた。
(4)燃焼触媒の形成
上述した(1)〜(3)の手順で作製した燃料極支持膜型燃料電池セル60の燃料極61と空気極62の表面に、平均粒径9μmからなる白金粉末を空気極材料と同様の手法にてペースト状に調整し、これをメッシュ状にスクリーン印刷し、1000°Cで焼き付けた。
この結果、燃料極61及び空気極62の表面にメッシュ状の燃焼触媒64及び65が形成された本実施形態の燃料電池セル60を製造できる。
次に、図3は、本実施形態の燃料電池システム1の制御系の構成を表すブロック図である。
図3に示すように、燃料電池システム1の制御系は、CPU、ROM、RAM等を有する公知のマイクロコンピュータとしての制御部51を中心にして構成されている。そして、この制御部51には、燃料電池スタック21からの出力(例えば、電圧や電流)をモニタする電圧測定部53及び発電電力量測定部54としての測定回路が内蔵されている。
そして、この制御部51は、使用者により操作される指令入力部52を介して、燃料電池スタック21による発電開始指令が入力されると、上述したセル温度センサ41、42、排気温度センサ43、及び、全領域空燃比センサ44による検出結果に基づいて、空気導入バルブ2、燃料導入バルブ4、燃料混合バルブ6、空気混合バルブ8、及びバーナ31を制御することにより、燃料電池スタック21を発電可能な状態(温度)に制御し、その後、燃料電池スイッチ33をオンして、燃料電池スタック21から電気負荷への電源供給を開始させる。
以下、このように制御部51にて実行される燃料電池制御処理について、図4に示すフローチャートに沿って説明する。
なお、この燃料電池制御処理を実行するに当たって、制御部51内(ROM)には、各種バルブの開度(基準量)や、燃料電池セルを加熱(又は冷却)するのに必要な温度情報が記憶されている。また、制御部51内(ROM)には、全領域空燃比センサ44による目標の空燃比範囲を示す許容空燃比範囲も記憶されている。
図4に示す燃料電池制御処理は、指令入力部52を介して燃料電池システム1の起動指令が入力されると開始され、S110〜S160(Sはステップを表す)にて、バーナ31を点火及び燃焼させるための制御を行う。
即ち、S110では、空気導入バルブ2及び燃料導入バルブ4をROMに記憶された第1基準量だけ開き、S120に移行する。
S120では、燃料ガス及び空気(酸化剤ガス)がバーナ31に到達する直前に、バーナ31を点火させる。なお、バーナ31の点火タイミングは、制御部51に内蔵されたタイマにより制御し、S110の処理後、予め設定された時間が経過すると、S120の処理を実行する。
そして、S130に移行し、各温度センサ41〜43により検出された温度がROMに記憶された許容範囲内であるか否かを判定する。各温度センサ41〜43により検出された温度の全てが許容範囲内であればS150に移行し、各温度センサ41〜43により検出された温度の何れかが許容範囲外であればS140に移行する。
S140では、空気導入バルブ2及び燃料導入バルブ4を閉じると共に、バーナ31を消火し、燃料電池制御処理を終了する。つまり、燃料電池システム1に異常が発生したものとして、このシステムを停止させる。
また、S150では、全領域空燃比センサ44による検出結果がROMに記憶された許容空燃比範囲内に収まっているか否かを判定する。検出結果が許容空燃比範囲に収まっていればS170に移行し、検出結果が許容空燃比範囲に収まっていなければS160に移行する。なお、本実施例において許容空燃比範囲は、例えば、空気過剰率が1.1〜2.0になるよう設定されている。
S160では、全領域空燃比センサ44による検出結果が許容空燃比範囲に収まるよう空気導入バルブ2の開度調節を行い、S130に戻る。
次に、S170〜S250では、燃料電池スタック21が発電可能な目標温度になるまで暖気を行うための処理を実行する。
即ち、S170では、第1基準量よりも空気及び燃料ガスをより多く供給するために、空気導入バルブ2及び燃料導入バルブ4を、ROMに記憶された第2基準量だけ開く。
そして、S180に移行し、全領域空燃比センサ44による検出結果がROMに記憶された許容空燃比範囲内に収まっているか否かを判定する。検出結果が許容空燃比範囲に収まっていればS200に移行し、検出結果が許容空燃比範囲に収まっていなければS190に移行する。
S190では、全領域空燃比センサ44による検出結果が許容空燃比範囲に収まるよう空気導入バルブ2の開度調節を行い、S180に戻る。
S200では、各温度センサ41〜43により検出された温度がROMに記憶された触媒接触燃焼温度以上であるか否かを判定する。なお、触媒接触燃焼温度は、燃料電池セル60の電極61、62に形成されている燃焼触媒64、65にて、燃料ガスと空気との混合ガスを燃焼可能な温度を表す。
そして、各温度センサ41〜43により検出された温度の全てが触媒接触燃焼温度以上であればS210に移行し、各温度センサ41〜43により検出された温度の何れかが触媒接触燃焼温度未満であればS180に戻る。
S210では、燃料混合バルブ6及び空気混合バルブ8を、予めROM内に記憶されている制御量で開弁(具体的には予め設定されたデューティ比でデューティ駆動)することで、空気供給管11への燃料ガスの供給、及び、燃料供給管13への酸化剤ガス(空気)の供給を開始し、S220に移行する。
S220では、各温度センサ41〜43により検出された温度がROMに記憶された発電可能温度以上であるか否かを判定し、各温度センサ41〜43により検出された温度の全てが発電可能温度以上であればS230に移行し、各温度センサ41〜43により検出された温度の何れかが発電可能温度未満であればS180に戻る。
S230では、燃料混合バルブ6及び空気混合バルブ8を閉じて、空気供給管11への燃料ガスの供給、及び、燃料供給管13への酸化剤ガス(空気)の供給を停止し、S240に移行する。
S240では、電圧測定部53を介して燃料電池スタック21からの出力電圧をモニタリングし、出力電圧が正常であるか否かを判定する。出力電圧が正常であればS250に移行し、出力電圧が正常でなければS180に戻る。
次に、S250〜S280では、燃料電池スタック21が行う発電に備えて、燃料供給量をさらに増加させる処理を行う。
即ち、S250では、空気導入バルブ2及び燃料導入バルブ4をROMに記憶された第3基準量だけ開き、S260に移行する。
S260では、全領域空燃比センサ44による検出結果がROMに記憶された許容空燃比範囲内に収まっているか否かを判定する。検出結果が許容空燃比範囲に収まっていればS280に移行し、検出結果が許容空燃比範囲に収まっていなければS270に移行する。
S270では、全領域空燃比センサ44による検出結果が許容空燃比範囲に収まるよう空気導入バルブ2の開度調節を行い、S260に戻る。
また、S280では、燃料電池スイッチ33を遮断状態から通電状態に切り替え、電気負荷への電力供給を開始する。
そして、S290では、電気負荷での電力消費量に応じて、燃料導入バルブ4及び空気導入バルブ2の開度を制御する発電制御処理を実行する。
なお、この発電制御処理は、発電電力量測定部54にて測定した発電電力量(つまり電気負荷側での電力消費量)に基づき、燃料電池スタック21での発電に必要な燃料量を算出し、燃料導入バルブ4からの燃料供給量がこの算出結果と一致するよう、燃料導入バルブ4の開度を制御すると共に、全領域空燃比センサ44からの検出信号に基づき、燃料電池スタック21に供給された空気と燃料ガスとの比(空燃比)が最も発電効率のよい目標空燃比となるように空気導入バルブ2の開度を制御する、といった手順で実行される。
また、この発電制御処理の実行中には、セル温度センサ41、42及び排気温度センサ43からの検出信号に基づき、燃料電池スタック21の温度上昇を監視し、燃料電池スタック21の温度が適正温度を越えると、冷却水導入バルブ25及び冷却水排出バルブ29を開いて、燃料電池スタック21を冷却する、冷却制御も実行される。
以上説明したように、本実施形態の燃料電池システム1においては、燃料電池スタック21を構成している複数の燃料電池セル60の燃料極61と空気極62とに、それぞれ、燃焼触媒64、65が形成されている。
そして、この燃料電池スタック21にて発電を行う際には、まず、空気導入バルブ2と燃料導入バルブ4とを開いて、バーナ31を点火することにより、これら各バルブ2、4を介して燃料電池スタック21に供給した燃料ガスと酸化剤ガス(空気)との混合ガスをバーナ31にて燃焼させ、その燃焼ガスにて、燃料電池スタック21を周囲から加熱する。
また、この加熱によって、燃料電池スタック21が触媒接触燃焼温度に達すると、燃料混合バルブ6及び空気混合バルブ8を開いて、燃料電池セル60の燃料ガス流路68及び酸化剤ガス流路69に、燃料ガスと酸化剤ガスとの混合ガスを供給する。
この結果、その混合ガスは、燃料極61及び空気極62にそれぞれ形成された燃焼触媒65、66にて燃焼し、その燃焼により、燃料電池セル60が直接加熱されて、その温度が急上昇する。
従って、本実施形態の燃料電池システムによれば、燃料電池スタック21による発電の開始指令を受けてから、燃料電池スタック21が発電可能温度に達するまでの時間を、従来システムに比べて、極めて短くすることができる。
また、本実施形態では、燃料電池スタック21を、空気極62や固体電解質体63に比べて燃料極61の熱容量が大きい燃料極支持膜型の燃料電池セル60にて構成し、しかも、触媒燃焼によって燃料電池セル60を温度上昇させる際には、燃料電池セル60の両電極61、62に混合ガスを供給するようにしているので、例えば、燃料電池セル60の空気極62側に混合ガスを供給して、燃料電池セル60を空気極62側から加熱するようにした場合に比べて、燃料電池セル60に熱応力を発生させることなく、効率よく加熱することができる。
なお、本実施形態においては、空気供給管11が、本発明の酸化剤ガス供給ラインに相当し、燃料供給管13が、本発明の燃料ガス供給ラインに相当し、混合気管18が、本発明のガス排出ラインに相当し、バーナ31が、本発明の燃焼手段に相当する。また、空気混合バルブ8及びバイパス管14が、本発明の第1のガス混合手段に相当し、燃料混合バルブ6及びバイパス管12が、本発明の第2のガス混合手段に相当し、セル温度センサ41、42が、本発明の温度検出手段に相当し、制御部51が、本発明の起動制御手段に相当する。
以上、本発明の一実施形態について説明したが、本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内にで、種々の態様をとることができる。
例えば、上記実施形態では、燃料電池スタック21において、燃料電池セル60には、燃料極61と空気極62の両方に燃焼触媒64、65が形成されているものとして説明したが、空気極62に燃焼触媒65が形成されていない燃料電池セルを用い、その燃料電池セルが触媒接触燃焼温度に達した際には、燃料極61側にだけ混合ガスを供給するようにしてもよい。
また、上記実施形態では、燃料電池セル60の電極表面(燃料極61、空気極62の表面)に、燃焼触媒64、65を形成するものとして説明したが、燃焼触媒は、その電極内に形成するようにしてもよい。
なお、このように電極(燃料極61、空気極62)内に燃焼触媒を形成するには、例えば、上述した(4)の工程に変えて、上述した(1)〜(3)の工程にて作製した燃料電池セル60の燃料極61と空気極62に対し、塩化白金酸水溶液をエタノールで希釈し白金濃度を5g/Lとしたものを滴下塗布して乾燥させる工程を、2回繰り返し行うことで、各電極61、62に白金を担持させるようにすればよい。
また、燃焼触媒は、必ずしも、燃料電池セル60の燃料極61や空気極62に形成する必要はなく、これら各電極61、62に接触する集電体66、67に形成してもよい。そして、このように各集電体66、67に実際に燃焼触媒を形成する際には、次のようにすればよい。
つまり、例えば、燃料極61とインターコネクタ70との間に設けられる集電体66は、ニッケルフェルト等にて構成され、空気極62とインターコネクタ70との間に設けられる集電体67は、LSCFの導電性セラミック多孔体や金属フェルト等にて構成されるが、これら各集電体66、67に燃焼触媒を形成する際には、上記各電極61、62に白金を担持させるのと同様の手順で、塩化白金酸水溶液をエタノールで希釈し白金濃度を5g/Lとしたものを滴下塗布して乾燥させる工程を、2回繰り返し行い、各集電体66、67に白金を担持させればよい。
また、例えば、ニッケルフェルトからなる集電体66(燃料極61側)に燃焼触媒を形成する際には、平均粒径9μmからなる白金粉末を1g、フェルト内にまぶし、LSCFの導電性セラミックからなる集電体67(空気極62側)に燃焼触媒を形成する際には、平均粒径9μmからなる白金粉末を1g、LSCF粉末と混合して、1200°Cで焼成するようにしてもよい。
なお、燃焼触媒の材料としては、上述した白金(Pt)に限らず、Pd、Rh、Ir、Au、Ag、Re等の他の貴金属系触媒を使用することができる。また、燃料電池セル60は、燃料極支持膜型に限らず、自立膜型のものであっても、上記と同様に燃焼触媒を形成することで、上記実施形態と同様の効果を得ることができる。
実施形態の燃料電池システムの構成を模式的に表す説明図である。 燃料電池セルの構成及びその積層状態を表す断面図である。 燃料電池システムの制御系の構成を表すブロック図である。 制御部にて実行される燃料電池制御処理を表すフローチャートである。
符号の説明
1…燃料電池システム、2…空気導入バルブ、4…燃料導入バルブ、6…燃料混合バルブ、8…空気混合バルブ、11…空気供給管、12…バイパス管、13…燃料供給管、14…バイパス管、15…空気排出管、16…燃料排出管、17…混合器、18…混合気管、19…暖気導入管、20…燃料電池ユニット、21…燃料電池スタック、22…カバー部材、23…水路、24…冷却水導入管、25…冷却水導入バルブ、26…冷却水排出管、27…排気管、28…排気口、29…冷却水排出バルブ、31…バーナ、32…触媒、33…燃料電池スイッチ、41,42…セル温度センサ、43…排気温度センサ、44…全領域空燃比センサ、46…正極端子、47…正極側配線、48…負極端子、49…負極側配線、51…制御部、52…指令入力部、53…電圧測定部、54…発電電力量測定部、60…燃料電池セル、61…燃料極、62…空気極、63…固体電解質体、64,65…燃焼触媒、66,67…集電体、68…燃料ガス流路、69…酸化剤ガス流路、70…インターコネクタ、73…マニホールド、75…セパレータ、76…絶縁フレーム、77…燃料極フレーム、78…空気極フレーム。

Claims (10)

  1. 燃料極に供給された燃料ガスと空気極に供給された酸化剤ガスとを固体電解質体を介して化学反応させることにより電力を発生する固体電解質形の燃料電池セルと、
    該燃料電池セルの燃料極に燃料ガスを供給する燃料ガス供給ラインと、
    前記燃料電池セルの空気極に酸化剤ガスを供給する酸化剤ガス供給ラインと、
    前記燃料電池セルの燃料極及び空気極を通過したガスを混合して排出するガス排出ラインと、
    前記ガス排出ラインから排出されるガスの未燃焼成分を燃焼させ、該燃焼熱により前記燃料電池セルを加熱する燃焼手段と、
    を備えた燃料電池システムにおいて、
    前記燃料ガス供給ラインを流れる燃料ガスに酸化剤ガスを混合させる第1のガス混合手段を設けたことを特徴とする燃料電池システム。
  2. 前記酸化剤ガス供給ラインを流れる酸化剤ガスに燃料ガスを混合させる第2のガス混合手段を設けたことを特徴とする請求項1に記載の燃料電池システム。
  3. 前記燃料電池セルには、前記燃料ガスと前記酸化剤ガスとの混合ガスを燃焼させる燃焼触媒が設けられていることを特徴とする請求項1又は請求項2に記載の燃料電池システム。
  4. 前記燃焼触媒は、前記燃料電池セルの燃料極の表面、又は、前記燃料電池セルの燃料極と空気極の表面に形成されていることを特徴とする請求項3に記載の燃料電池システム。
  5. 前記燃焼触媒は、設置対象となる電極の表面に網目状に形成されていることを特徴とする請求項4に記載の燃料電池システム。
  6. 前記燃焼触媒は、前記燃料電池セルの燃料極の内部、又は、前記燃料電池セルの燃料極と空気極の内部に形成されていることを特徴とする請求項3に記載の燃料電池システム。
  7. 前記燃料電池セルには、燃料極及び空気極にそれぞれ接続されて電力を取り出すための集電体が設けられており、
    前記燃焼触媒は、燃料極に接続される集電体、又は、燃料極と空気極とにそれぞれ接続される集電体に形成されていることを特徴とする請求項3に記載の燃料電池システム。
  8. 前記燃料電池セルは、燃料極となる多孔質電極基材に固体電解質体及び空気極を形成してなる燃料極支持膜型、又は、前記固体電解質体となる基材に燃料極及び空気極を形成してなる自立膜型であることを特徴とする請求項1〜請求項7の何れかに記載の燃料電池システム。
  9. 前記燃料電池セルによる発電開始時に、前記燃料ガス供給ライン及び酸化剤ガス供給ラインから燃料極及び空気極へ燃料ガス及び酸化剤ガスをそれぞれ供給して、前記燃焼手段を動作させることにより、前記燃料電池セルを加熱させ、その後、前記ガス混合手段に対してガスを混合させることにより、該混合ガスを前記燃料電池セル内で直接燃焼させて前記燃料電池セルの温度を上昇させ、その後、前記ガス混合手段によるガスの混合を停止させて、前記燃料電池セルを通常発電動作に移行させる起動制御手段を備えたことを特徴とする請求項1〜請求項8の何れかに記載の燃料電池システム。
  10. 前記燃料電池セルの温度を検出する温度検出手段を備え、
    前記起動制御手段は、前記燃焼手段を動作させて前記燃料電池セルを加熱しているときに、前記温度検出手段による検出温度が、前記混合ガスが前記燃焼触媒にて燃焼可能な温度に達すると、前記ガス混合手段に対してガスを混合させ、その後、前記温度検出手段による検出温度が、前記燃料電池セルにて発電可能な温度に達すると、前記ガス混合手段によるガスの混合を停止させて、燃料電池セルを通常発電動作に移行させることを特徴とする請求項9に記載の燃料電池システム。
JP2006194247A 2006-07-14 2006-07-14 燃料電池システム Pending JP2008021598A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006194247A JP2008021598A (ja) 2006-07-14 2006-07-14 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006194247A JP2008021598A (ja) 2006-07-14 2006-07-14 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2008021598A true JP2008021598A (ja) 2008-01-31

Family

ID=39077403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006194247A Pending JP2008021598A (ja) 2006-07-14 2006-07-14 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2008021598A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070676A (ja) * 2007-09-13 2009-04-02 Casio Comput Co Ltd 発電装置
JP2018006003A (ja) * 2016-06-27 2018-01-11 三菱日立パワーシステムズ株式会社 燃料電池の制御装置及び制御方法並びに発電システム
JP2018006004A (ja) * 2016-06-27 2018-01-11 三菱日立パワーシステムズ株式会社 燃料電池の制御装置及び制御方法並びに発電システム
WO2022137335A1 (ja) * 2020-12-22 2022-06-30 日産自動車株式会社 固体酸化物型燃料電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293525A (ja) * 1996-04-30 1997-11-11 Mitsubishi Heavy Ind Ltd 固体電解質型燃料電池発電システム
JP2003045464A (ja) * 2001-07-26 2003-02-14 Kyocera Corp 燃料電池及びその発電方法
JP2004311437A (ja) * 2003-04-01 2004-11-04 Hewlett-Packard Development Co Lp 燃料電池内の温度を高める方法及びシステム
JP2004335161A (ja) * 2003-05-01 2004-11-25 Mitsubishi Materials Corp 固体酸化物形燃料電池およびセパレータおよび運転方法
JP2006107949A (ja) * 2004-10-06 2006-04-20 Tokyo Gas Co Ltd 耐熱合金製インターコネクタを有する固体酸化物形燃料電池及びその運転方法
JP2006185802A (ja) * 2004-12-28 2006-07-13 Nissan Motor Co Ltd 固体酸化物形燃料電池の運転方法及び固体酸化物形燃料電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293525A (ja) * 1996-04-30 1997-11-11 Mitsubishi Heavy Ind Ltd 固体電解質型燃料電池発電システム
JP2003045464A (ja) * 2001-07-26 2003-02-14 Kyocera Corp 燃料電池及びその発電方法
JP2004311437A (ja) * 2003-04-01 2004-11-04 Hewlett-Packard Development Co Lp 燃料電池内の温度を高める方法及びシステム
JP2004335161A (ja) * 2003-05-01 2004-11-25 Mitsubishi Materials Corp 固体酸化物形燃料電池およびセパレータおよび運転方法
JP2006107949A (ja) * 2004-10-06 2006-04-20 Tokyo Gas Co Ltd 耐熱合金製インターコネクタを有する固体酸化物形燃料電池及びその運転方法
JP2006185802A (ja) * 2004-12-28 2006-07-13 Nissan Motor Co Ltd 固体酸化物形燃料電池の運転方法及び固体酸化物形燃料電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070676A (ja) * 2007-09-13 2009-04-02 Casio Comput Co Ltd 発電装置
JP2018006003A (ja) * 2016-06-27 2018-01-11 三菱日立パワーシステムズ株式会社 燃料電池の制御装置及び制御方法並びに発電システム
JP2018006004A (ja) * 2016-06-27 2018-01-11 三菱日立パワーシステムズ株式会社 燃料電池の制御装置及び制御方法並びに発電システム
WO2022137335A1 (ja) * 2020-12-22 2022-06-30 日産自動車株式会社 固体酸化物型燃料電池

Similar Documents

Publication Publication Date Title
JP3731650B2 (ja) 燃料電池
US20110076573A1 (en) Solid Oxide Type Fuel Cell and Operating Method Thereof
JP5013748B2 (ja) 固体酸化物燃料電池
JP2003243000A (ja) 固体酸化物形燃料電池システムおよびその制御方法
JP5133511B2 (ja) 固体電解質型燃料電池スタック及び固体電解質型燃料電池モジュール
JP2008021597A (ja) 固体電解質形燃料電池及び燃料電池システム
JP2008021598A (ja) 燃料電池システム
JP6635851B2 (ja) 燃料電池モジュールおよび燃料電池モジュールの制御方法
US7722980B2 (en) Solid oxide fuel cell directly utilizing flame
JP4736309B2 (ja) 固体電解質型燃料電池の運転開始時の予熱方法
JP2004335163A (ja) 固体酸化物形燃料電池およびその運転方法
JP2005038855A (ja) 燃料電池システム
JP5619482B2 (ja) 燃料電池
JP6521232B2 (ja) 固体酸化物形燃料電池システム
JP2010267394A (ja) 発電装置
JP2006086019A (ja) 固体酸化物形燃料電池および運転開始時の予熱方法
JP2016054147A (ja) 固体酸化物形燃料電池システム
WO2012043646A1 (ja) 固体酸化物型燃料電池
CA2444873A1 (en) Methods and systems for elevating a temperature within a fuel cell
JP2017033653A (ja) 固体酸化物形燃料電池スタック、固体酸化物形燃料電池モジュールおよび固体酸化物形燃料電池システム
JP6218114B2 (ja) 固体酸化物型燃料電池
JP4461705B2 (ja) 固体酸化物形燃料電池の運転方法
JP2015128001A (ja) 固体酸化物型燃料電池
JP6189190B2 (ja) 燃料電池還元装置および燃料電池還元方法
JP6229496B2 (ja) 固体酸化物型燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121211