JP2008010858A - キャビティー部を有する多層配線基板 - Google Patents

キャビティー部を有する多層配線基板 Download PDF

Info

Publication number
JP2008010858A
JP2008010858A JP2007144029A JP2007144029A JP2008010858A JP 2008010858 A JP2008010858 A JP 2008010858A JP 2007144029 A JP2007144029 A JP 2007144029A JP 2007144029 A JP2007144029 A JP 2007144029A JP 2008010858 A JP2008010858 A JP 2008010858A
Authority
JP
Japan
Prior art keywords
wiring board
insulating base
base material
cavity
multilayer wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007144029A
Other languages
English (en)
Other versions
JP5032205B2 (ja
Inventor
Jun Matsui
純 松井
Shingetsu Yamada
紳月 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2007144029A priority Critical patent/JP5032205B2/ja
Publication of JP2008010858A publication Critical patent/JP2008010858A/ja
Application granted granted Critical
Publication of JP5032205B2 publication Critical patent/JP5032205B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • H01L2924/15155Shape the die mounting substrate comprising a recess for hosting the device the shape of the recess being other than a cuboid
    • H01L2924/15156Side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

【課題】多層配線基板の高密度化および小型化に対応することができ、また、半導体装置をより高密度に実装することができ、さらに、半導体装置を実装するキャビティー部の形状を良好に確保し、その形成を効率よくできる、キャビティー部を有する多層配線基板を提供する。
【解決手段】複数の配線基板を積層してなる多層配線基板であって、配線基板が、熱可塑性樹脂組成物からなる絶縁基材、該絶縁基材上に設けられた導体パターン、および、該絶縁基材を貫通して設けられ導電性ペースト組成物が充填されているビアホールを備えて構成されており、多層配線基板とした際に下層側となる複数の配線基板以外の、上層側となる複数の配線基板にキャビティー用穴が形成されており、前記複数の配線基板の積層が、熱融着により行われる、キャビティー部を有する多層配線基板。
【選択図】図1

Description

本発明は、半導体チップおよび受動部品を実装するためのキャビティー部を有する多層配線基板に関する。
高密度情報化社会の発展により、電子機器の情報処理の高速化(動作周波数の高速化)、情報通信の周波数広帯域化(ブロードバンド)が進んできている。このような状況下、電子機器に搭載される基板としては、高密度な多層配線基板が求められている。そして、その配線基板材料は、比誘電率、誘電正接が低いことが求められている。
また、半導体装置の高集積化が年々進んできており、半導体装置をより高密度に実装することが求められている。このような状況下において、配線基板表面上に、半導体チップや、受動部品等の電子部品を実装するだけでは、さらなる高密度化および配線基板の小型化を実現するのは難しくなってきている。
そこで、最近では、多層配線基板にキャビティー部(凹部)を形成することで、半導体装置の実装形態を多層配線基板上の平面に限らないで、キャビティー部内部に実装できるような多層配線基板が提案されている。
例えば、特許文献1には、厚膜基板にキャビティー部を設け、そこに、半導体チップ等の電子部品を搭載することを特徴とした混成集積回路の多層厚膜基板が提案されている。
また、特許文献2には、キャビティーの形状を保持し、また、キャビティー内の回路上への樹脂の流出を防ぐため、樹脂流れを抑制したキャビティー用穴を設けた接着シートと、キャビティー用穴を設けた穴あけ配線基板を用いて加圧加熱して積層する半導体素子搭載用多層配線板が提案されている。
また、特許文献3には、キャビティー部へ半導体チップを実装した後、封止樹脂で封止し、その上層にビルドアップ層が形成されたプリント配線板が提案されている。
特開平1−258446号公報 特開平11−17051号公報 特開2001−15926号公報
特許文献1に記載の多層厚膜基板では、キャビティー部を設けることにより、多層基板を小型化することはできる。しかし、ビアの上にビアを形成するビアオンビア構造を取っていないため、半導体装置の高密度化実装という点において問題があった。
また、特許文献2に記載の多層配線板では、キャビティー内への流動はなく、キャビティーの形状を保持することができる。しかし、配線基板間の接続に、接着シートを用いているため、その流動硬化特性の制御が困難であった。また、樹脂流出を制御するため、所定の温度圧力をかけて硬化を進めているため、各層間の接着信頼性が低下する懸念があった。また、配線基板間の電気的接続に関して詳細に検討されてないので、半導体装置の高密度化実装という課題を解決できるものではなかった。
また、特許文献3のプリント配線板においては、キャビティー部をザグリ加工により削って形成している。そのため該工程において、ガラスクロス等の補強材の削りかすがヒゲのように突出するといった問題が生じることがあった。また、ザグリ加工では、極小サイズのキャビティー部を作製するには手間およびコストがかかるといった問題があった。
また、コア基板の各層間の電気的接続が貫通スルーホールにより行われているので、プリント配線板の高密度化、小型化を図ることは困難であった。
そこで、本発明は、上記の課題を解決すべく、多層配線基板の高密度化および小型化に対応することができ、また、半導体装置をより高密度に実装することができ、さらに、半導体装置を実装するキャビティー部を備え、小型のキャビティー部、複雑な形状のキャビティー部であっても効率よく形成することができる、キャビティー部を有する多層配線基板を提供することを課題とする。
以下、本発明について説明する。なお、本発明の理解を容易にするために添付図面の参照符号を括弧書きにて付記するが、これにより本発明が図示の形態に限定されるものではない。
第1の本発明は、複数の配線基板を積層してなる多層配線基板であって、配線基板が、熱可塑性樹脂組成物からなる絶縁基材(10)、該絶縁基材(10)上に設けられた導体パターン(20)、および、該絶縁基材(10)を貫通して設けられた、導電性ペースト組成物が充填されているビアホール(30)を備えて構成され、多層配線基板とした際に下層側となる複数の配線基板(100B)以外の、上層側となる複数の配線基板(100A)にキャビティー用穴(15)が形成され、複数の配線基板(100A・・・、100B・・・)の積層が熱圧着により行われる、キャビティー部(220)を有する多層配線基板(200、200A)である。
本発明のキャビティー部(220)を有する多層配線基板(200、200A)は、キャビティー部(220)を含む全体が、ビアオンビア構造を有している。これにより、多層配線基板を高密度化および小型化させることができ、また、半導体装置をより高密度に実装することができる。また、キャビティー部をザグリ加工ではなく、キャビティー用穴を有する配線基板(100A)を積層し熱圧着することにより形成しているので、キャビティー基板を効率よく形成することができる。また、小型のキャビティー部(220)や、複雑な形状のキャビティー部(220)であっても容易に作製することができる。
第2の本発明は、複数の配線基板を積層してなる多層配線基板であって、配線基板が、熱可塑性樹脂組成物からなる絶縁基材(10)、該絶縁基材(10)の少なくとも片面に設けられた熱硬化性樹脂組成物からなる接着層(40)、該接着層(40)上および/または該絶縁基材(10)上に設けられた導体パターン(20)、および、該絶縁基材(10)および接着層(40)を貫通して設けられた、導電性ペースト組成物が充填されているビアホール(30)を備えて構成され、多層配線基板とした際に下層側となる複数の配線基板(100D)以外の、上層側となる複数の配線基板(100C)にキャビティー用穴(15)が形成され、複数の配線基板(100C・・・、100D・・・)の積層が熱圧着により行われる、キャビティー部(220)を有する多層配線基板(200C、200D)である。
第2の本発明の多層配線基板(200C、200D)は、第1の本発明の効果に加え、熱硬化性樹脂組成物からなる接着層(40)を備えた配線基板を積層させているので、各配線基板間の層間接着性が優れたものとなり、配線基板間の電気的接続性に優れた多層配線基板とすることができる。また、第2の本発明の多層配線基板(200C、200D)は、熱圧着による一括積層だけでなく、熱圧着による逐次積層によっても製造することができる。
第1および第2の本発明において、上層側となる複数の配線基板(100A、100C)が、異なる大きさのキャビティー用穴を有しており、該キャビティー用穴の大きさが上層側となるに従い拡径された形態(200A、200D)とすることができる。これにより、キャビティー部(220)の側面を階段状に形成することができ、キャビティー部における半導体装置の搭載形態にバリエーションを付与することができる。例えば、図1(c)に示したように、二つの半導体装置(240)をはんだ付けにより重ねてキャビティー部(220)に搭載して、下側の半導体装置をキャビティー部の底面の導体パターン20にBGAにより接続して、上側の半導体装置をボンディングワイヤによりキャビティー部側面の導体パターン20に接続することができる。
第1および第2の本発明において、熱可塑性樹脂組成物は、260℃以上の結晶融解ピーク温度(Tm)を有する、ポリアリールケトン樹脂および非晶性ポリエーテルイミド樹脂の混合組成物であることが好ましい。このような樹脂を用いることによって、配線基板(100A、100B)を熱圧着により一体化して多層配線基板(200、200A)とすることができる。また、ビアホール中の導電性ペースト組成物を金属拡散接合させて、ビアホールの抵抗値を非常に低くすることができ、多層配線基板の吸湿耐熱性、接続信頼性、および、導体接着強度を優れたものとすることができる。
第1および第2の本発明において、導電性ペースト組成物は、導電粉末と、バインダー成分とを含み、該導電粉末および該バインダー成分の質量比が、90/10以上98/2未満であり、前記導電粉末が、第1の合金粒子と第2の金属粒子とからなり、該第1の合金粒子が130℃以上260℃未満の融点を有する非鉛半田粒子であり、該第2の金属粒子が、Au,Ag,Cuからなる群から選ばれる少なくとも一種以上であり、該第1の合金粒子と該第2の金属粒子との質量比が、76/24以上90/10未満であり、バインダー成分が、加熱により硬化する重合性単量体の混合物であり、非鉛半田粒子の融点が、バインダー成分の硬化温度範囲に含まれ、非鉛半田粒子の融点における、絶縁基材を構成する熱可塑性樹脂組成物の貯蔵弾性率が10MPa以上5GPa未満であることが好ましい。このような導電性ペースト組成物を使用することで、ビアホール30中およびビアホール30と導体パターン20との間における金属拡散接合をより効果的に生じさせることができる。
第1および第2の本発明において、配線基板(100A、100B、100C、100D)の熱圧着は、180℃以上320℃未満、3MPa以上10MPa未満、10分以上120分以下の条件で行われることが好ましい。このような条件で熱圧着を行うことによって、より効果的に金属拡散接合を生じさせることができる。
第3の本発明は、熱可塑性樹脂組成物からなる絶縁基材(10)、該絶縁基材(10)上に設けられた導体パターン(20)、および、該絶縁基材(10)を貫通して設けられ導電性ペースト組成物が充填されているビアホール(30)を備えて構成された配線基板(100B)を複数層積層する工程、この複数層積層された基板の上に、同様の配線基板にさらにキャビティー用穴(15)を形成した配線基板(100A)を複数層積層する工程、積層した配線基板すべてを、熱融着積層により一体化させる工程、を有する多層配線基板(200、200A)の製造方法である。
第4の本発明は、熱可塑性樹脂組成物からなる絶縁基材(10)、該絶縁基材(10)の少なくとも片面に設けられた熱硬化性樹脂組成物からなる接着層(40)、該接着層(40)上および/または該絶縁基材(10)上に設けられた導体パターン(20)、および、該絶縁基材(10)および該接着層(40)を貫通して設けられた、導電性ペースト組成物が充填されているビアホール(30)を備えて構成された配線基板(100D)上に、
熱可塑性樹脂組成物からなる絶縁基材(10)、該絶縁基材(10)の少なくとも片面に設けられた熱硬化性樹脂組成物からなる接着層(40)、および、該絶縁基材(10)および該接着層(40)を貫通して設けられた、導電性ペースト組成物が充填されているビアホール(30)を備えて構成された絶縁基材(50D)を重ね、該絶縁基材(50D)上に銅箔(22)を重ねて、熱圧着により一体化し、エッチングにより前記銅箔(22)を導体パターン(20)とする工程を1回または複数回繰り返して、前記配線基板(100D)上に1または複数層の前記絶縁基材(50D)および前記導体パターン(20)を逐次的に形成する工程、
さらに、前記絶縁基材(50D)にキャビティー用穴(15)が形成された絶縁基材(50C)を重ね、該絶縁基材(50C)上に銅箔(22)を重ねて、熱圧着により一体化し、エッチングにより前記銅箔(22)を導体パターン(20)とする工程を1回あるいは複数回繰り返して、キャビティー用穴(15)が形成された絶縁基材(50C)および導体パターン(20)を1または複数層逐次的に形成する工程、を備えて構成される多層配線基板(200C、200D)の製造方法である。
なお、多層配線基板(200C、200D)は、接着層(40)を有する配線基板(100C、100D)を一括積層することにより製造することもできる。
第3および第4の本発明の製造方法によると、キャビティー部(220)を有する多層配線基板(200、200A、200C、200D)をザグリ加工しなくても、熱圧着により形成することができる。そのため、製造工程が簡略化され、効率的にキャビティー部を有する多層配線基板を製造することができる。また、配線基板のキャビティー用穴(15)の形状を自由に設計することができるので、複雑な形状や小型形状のキャビティー部(220)であっても容易に作製することができる。
以下、本発明を図面に示す実施形態に基づき説明する。
<多層配線基板200、200A>
図1(a)および(b)に多層配線基板200、200Aの模式図を示した。また、図1(c)および(d)に、多層配線基板200、200Aに半導体装置240を搭載した状態を示した。
本発明の多層配線基板200、200Aは、複数の配線基板を積層して形成したものである。該複数の配線基板としては、以下の二種類の配線基板がある。一つ目は、熱可塑性樹脂組成物からなる絶縁基材10、該絶縁基材上に設けられた導体パターン20、および、該絶縁基材を貫通して設けられた、導電性ペースト組成物が充填されているビアホール30を備えて構成された配線基板100Bである。また、二つ目は、該配線基板100Bにキャビティー用穴15(図2(d)参照)が形成された配線基板100Aである。
上記の配線基板100Bが下層側に複数層積層され、そしてその上に上記の配線基板100Aが複数層積層される。そして、これら各層を熱融着により一体化させることで、図1(a)に示したキャビティー部220を有する多層配線基板200が形成される。また、図1(b)に示した形態では、配線基板100Aのキャビティー用穴15の大きさを変化させることにより、キャビティー部220の側面形状を変化させている。
<配線基板100B>
以下、配線基板100Bの各構成部材について説明する。
(熱可塑性樹脂組成物からなる絶縁基材10)
絶縁基材10を構成する熱可塑性樹脂組成物としては、結晶融解ピーク温度(Tm)が260℃以上の結晶性熱可塑性樹脂、ガラス転移温度が260℃以上の非晶性熱可塑性樹脂、または、液晶転移温度が260℃以上の液晶ポリマーからなる組成物を挙げることができる。
この中でも、熱可塑性樹脂組成物としては、結晶融解ピーク温度が260℃以上の結晶性熱可塑性樹脂を用いることが好ましい。また、特に、260℃以上の結晶融解ピーク温度を有する、ポリアリールケトン樹脂および非晶性ポリエーテルイミド樹脂の混合組成物を用いることが好ましい。
以下、絶縁基材10を構成する熱可塑性樹脂組成物として好ましい組成物である、260℃以上の結晶融解ピーク温度を有する、ポリアリールケトン樹脂および非晶性ポリエーテルイミド樹脂の混合組成物について説明する。ポリアリールケトン樹脂および非晶性ポリエーテルイミド樹脂は相溶系であり、これらの混合組成物は一つの結晶融解ピーク温度を有し、その結晶融解ピーク温度は260℃以上となっている。絶縁基材10を構成する熱可塑性樹脂組成物として、ポリアリールケトン樹脂および非晶性ポリエーテルイミド樹脂の混合組成物を用いた場合は、多層配線基板200、200Aとする際において、配線基板100A、100B同士の接着性をより良好にすることができる。また、以下において詳しく説明するが、ポリアリールケトン樹脂および非晶性ポリエーテルイミド樹脂の混合組成物を用いることにより、ビアホール30中の導電性ペースト組成物に金属拡散接合を生じさせることができる。
このポリアリールケトン樹脂は、その構造単位に芳香核結合、エーテル結合およびケトン結合を含む熱可塑性樹脂であり、その代表例としては、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン等があり、なかでも、ポリエーテルエーテルケトンが好ましい。なお、ポリエーテルエーテルケトンは、「PEEK151G」、「PEEK381G」、「PEEK450G」(いずれもVICTREX社の商品名)等として市販されている。
また、非晶性ポリエーテルイミド樹脂は、その構造単位に芳香核結合、エーテル結合およびイミド結合を含む非晶性熱可塑性樹脂である。なお、非晶性ポリエーテルイミド樹脂は、「Ultem CRS5001」、「Ultem 1000」(いずれもゼネラルエレクトリック社の商品名)等として市販されている。
ポリアリールケトン樹脂および非晶性ポリエーテルイミド樹脂の混合割合としては、配線基板100A、100B同士を積層した場合の密着性を考慮すると、ポリアリールケトン樹脂を30質量%以上、80質量%以下含有し、残部を非晶性ポリエーテルイミド樹脂および不可避不純物とした混合組成物を用いることが好ましい。ポリアリールケトン樹脂の含有量は、より好ましくは35質量%以上、75質量%以下、さらに好ましくは40質量%以上、70質量%以下である。ポリアリールケトン樹脂の含有率が高すぎる場合は、絶縁基材10を構成する熱可塑性樹脂組成物の結晶性が高くなってしまい、多層化する際の密着性が低下する。また、ポリアリールケトン樹脂の含有率が低すぎると、絶縁基材10を構成する熱可塑性樹脂組成物全体としての結晶性が低くなってしまう。そして、配線基板を積層して作製した多層配線基板200、200Aのリフロー耐熱性が低下してしまう。
絶縁基材10を構成する熱可塑性樹脂組成物は無機充填材を含有していてもよい。無機充填材としては、特に制限はなく、公知のいかなるものも使用できる。無機充填材としては、例えば、タルク、マイカ、雲母、ガラスフレーク、窒化ホウ素(BN)、板状炭カル、板状水酸化アルミニウム、板状シリカ、板状チタン酸カリウム等が挙げられる。これらは1種類を単独で添加してもよく、2種類以上を組み合わせて添加してもよい。特に、平均粒径が15μm以下、アスペクト比(粒径/厚み)が30以上の鱗片状の無機充填材が、平面方向と厚み方向の線膨張係数比を低く抑えることができ、熱衝撃サイクル試験時の基板内のクラック発生を抑制することができるので、好ましい。
無機充填材の添加量は、熱可塑性樹脂組成物100質量部に対して20質量部以上かつ50質量部以下とすることが好ましい。無機充填材の添加量が多すぎると、無機充填材の分散不良の問題が発生し、線膨張係数がばらつき易くなったり、強度低下を招き易くなったりする。また、無機充填材の添加量が少なすぎると、線膨張係数を低下させて寸法安定性を向上させる効果が小さく、リフロー工程において導体パターン20との線膨張係数差に起因する内部応力が発生し、基板にそりやねじれが発生する。
また、絶縁基材10を構成する熱可塑性樹脂組成物には、その性質を損なわない程度に、他の樹脂や無機充填材以外の各種添加剤、例えば、安定剤、紫外線吸収剤、光安定剤、核剤、着色剤、滑剤、難燃剤等を適宜添加してもよい。これら無機充填材を含めた各種添加剤を添加する方法としては、公知の方法、例えば下記に挙げる方法(a)、(b)を用いることができる。
(a)各種添加剤を、熱可塑性樹脂組成物の基材(ベース樹脂)に高濃度(代表的な含有量としては10〜60質量%程度)に混合したマスターバッチを別途作製しておき、これに熱可塑性樹脂組成物を混合して、濃度を調整し、ニーダーや押出機等を用いて機械的にブレンドする方法。
(b)熱可塑性樹脂組成物に所定の濃度の各種添加材を直接加えて、ニーダーや押出機等を用いて機械的にブレンドする方法。これらの方法の中では、(a)の方法が分散性や作業性の点から好ましい。さらに、熱可塑性樹脂組成物からなる絶縁基材10の表面には積層性を向上させる目的でコロナ処理、UV処理、プラズマ処理等を適宜施してもよい。
熱可塑性樹脂組成物からなる絶縁基材10は、公知の方法、例えばTダイを用いる押出キャスト法、あるいはカレンダー法等により作製することができる。特に限定されるものではないが、シートの製膜性や安定生産性等の点から、Tダイを用いる押出キャスト法により作製することが好ましい。また、熱可塑性樹脂組成物からなる絶縁基材10上に導体パターン20を形成する場合は、絶縁基材10を押し出す際において、銅箔22(図2(a)参照)を貼り付けることもできる。
Tダイを用いる押出キャスト法での絶縁基材10の成形温度は、用いる樹脂の流動特性や製膜性等によって適宜調整されるが、概ね、260℃以上の結晶融解ピーク温度を有する、ポリアリールケトン樹脂および非晶性ポリエーテルイミド樹脂の混合組成物の場合、360℃〜400℃である。また、絶縁基材10の押出キャスト製膜時においては、急冷製膜することにより非晶性フィルム化することが必要である。これにより、170℃〜230℃付近に弾性率が低下する領域を発現するので、この温度領域での熱成形、熱融着が可能となる。詳細には、170℃付近で弾性率が低下し始め、200℃付近において熱成形、熱融着が可能となる。図5に、ポリアリールケトン樹脂および非晶性ポリエーテルイミド樹脂の混合組成物の弾性率が温度により変化する様子を示した。なお、図5に示したグラフは、昇温速度を3℃/分として弾性率を測定したものであるが、昇温速度を10℃/分とすると、非晶から結晶への転移が遅れて、230℃付近において弾性率がもっとも低くなる。
(導体パターン20)
導体パターン20は、熱可塑性樹脂組成物からなる絶縁基材10上に、金属箔22を熱圧着等により貼り付けた後、エッチング処理して導体パターン20とする方法、熱可塑性樹脂組成物からなる絶縁基材10を押出製膜する際に金属箔22に直接ラミネートする方法、あるいは、熱可塑性樹脂組成物からなる絶縁基材10上に、レジストを形成して、メッキにより導体パターン20を形成する方法、等の通常の回路パターンを作製する方法により形成することができる。なお、以下において説明するように、本発明における好ましい形態である熱可塑性樹脂組成物からなる絶縁基材10は、急冷製膜により非晶性フィルム化されているので、比較的低温において熱圧着することが可能である。導体パターン20を形成する金属としては、Au、Ag、Cu等の電気抵抗が小さい金属を使用することができる。この中でも、配線基板の導体パターンとして使用されてきた実績が豊富であること、コストが低いことから、Cuを使用することが好ましい。
(ビアホール30)
配線基板100Bは、上記した絶縁基材10を貫通して設けられ、導電性ペースト組成物が充填されたビアホール30を有している。ビアホール30に充填される導電性ペースト組成物は、導電粉末、および、バインダー成分を含むものである。
導電粉末は、第1の合金粒子と第2の金属粒子とから構成される。第1の合金粒子は、130℃以上260℃未満の融点を有する非鉛半田粒子である。このような非鉛半田粒子としては、例えば、Sn、Sn−Ag、Sn−Cu、Sn−Sb、Sn−Bi、Sn−In、Sn−Ag−Cu、Sn−Ag−Cu−Bi、Sn−Ag−In、Sn−Ag−In−Bi、Sn−Zn、Sn−Zn−Bi、Sn−Ag−Cu−Sb、および、Sn−Ag−Biを挙げることができる。これらの非鉛半田粒子は、錫を金属拡散させるという効果において信頼をおけるものである。また、第1の合金粒子としては、これらの非鉛半田粒子の二種以上の混合物を使用することもできる。
第2の金属粒子は、Au、Ag、Cuからなる群から選ばれる少なくとも一種以上の金属粒子である。第2の金属粒子は、電気抵抗値が低い金属から形成されている粒子であり、ビアホール30の電気伝導性を担うものである。また、第2の金属粒子は、第1の合金粒子に比べて融点が高く、加熱時における導電性ペースト組成物の粘度を保持する役割を有する。
導電粉末における、第1の合金粒子および第2の金属粒子の混合割合は、質量比で、「76/24」以上「90/10」未満である(「第1の合金粒子」/「第2の金属粒子」)。この範囲を超えて、第1の合金粒子の量が多すぎると、基板を加熱積層する際に、導電性ペースト組成物の粘度の低下が大きく、導電性ペースト組成物がビアホールから流出してしまうおそれがある。
第1の合金粒子および第2の金属粒子の平均粒子径は、10μm以下であることが好ましい。第1の合金粒子をこのような粒径とすることによって、導電性ペースト組成物をビアホールに充填しやすくなり、また、金属拡散が生じやすくなる。また、第2の金属粒子をこのような粒径とすることによって、基板100Bを加熱積層する際における導電性ペースト組成物の粘度を調整する効果が良好となる。
第1の合金粒子と第2の金属粒子の平均粒径差は、2μm以下であることが好ましい。このように粒径をなるべくそろえることによって、金属拡散接合を生じやすくすることができる。
本発明において使用するバインダー成分は、加熱により硬化する重合性単量体の混合物、熱可塑性樹脂組成物、または、加熱により硬化する重合性単量体の混合物と熱可塑性樹脂組成物との混合物である。このようなバインダー成分として、加熱により硬化する重合性単量体の混合物としては、アルケニルフェノール化合物およびマレイミド類の混合物を挙げることができる。なお、アルケニルフェノール化合物および/またはマレイミド類が、高分子化合物であっても、これらを加熱することにより、架橋反応して硬化するものであれば、本発明の重合性単量体に含まれるものとする。熱可塑性樹脂組成物としては、ポリエステル系樹脂等が挙げられる。
アルケニルフェノール化合物としては、分子中に少なくとも2個のアルケニル基を有するアルケニルフェノール化合物、つまり、芳香環の水素原子の一部がアルケニル基に置換されたフェノール系化合物を挙げることができる。また、具体的には、このようなアルケニルフェノール化合物としては、ビスフェノールAまたはフェノール性水酸基含有ビフェニル骨格にアルケニル基が結合した化合物を挙げることができる。さらに具体的には、3,3´−ビス(2−プロペニル)−4,4´−ビフェニルジオール、3,3´−ビス(2−プロペニル)−2,2´−ビフェニルジオール、3,3´−ビス(2−メチル−2−プロペニル)−4,4´−ビフェニルジオール、3,3´−ビス(2−メチル−2−プロペニル)−2,2´−ビフェニルジオール等のジアルケニルビフェニルジオール化合物;2,2−ビス[4−ヒドロキシ−3−(2−プロペニル)フェニル]プロパン、2,2−ビス[4−ヒドロキシ−3−(2−メチル−2−プロペニル)フェニル]プロパン(以下、「ジメタリルビスフェノールA」という。)等のジアルケニルビスフェノール化合物を挙げることができる。この中でも、原料コストが安く、安定供給が可能であるという点から、アルケニルフェノール化合物としては、ジメタリルビスフェノールAを使用することが好ましい。ジメタリルビスフェノールAの構造式を式1に示す。
Figure 2008010858
マレイミド類としては、分子中に少なくとも2個のマレイミド基を有するマレイミド化合物を挙げることができ、具体的には、ビス(4−マレイミドフェニル)メタン等のビスマレイミド、トリス(4−マレイミドフェニル)メタン等のトリスマレイミド、ビス(3,4−ジマレイミドフェニル)メタン等のテトラキスマレイミドおよびポリ(4−マレイミドスチレン)等のポリマレイミド等を挙げることができる。この中でも、マレイミド類としては、原料コストが安く、安定供給可能であるという点から、ビス(4−マレイミドフェニル)メタンを使用することが好ましい。ビス(4−マレイミドフェニル)メタンの構造式を式2に示した。
Figure 2008010858
このバインダー成分において、アルケニルフェノール化合物およびマレイミド類の混合比は、モル比で、「30/70」以上「70/30」未満であることが好ましい(「アルケニルフェノール化合物」/「マレイミド類」)。この範囲を超えて、バインダー成分中のどちらかの成分が多すぎると、生成する樹脂が脆くなり、導電性ペースト組成物と導体パターン20との接着力が低下してしまう。
バインダー成分の硬化反応について、以下説明する。アルケニルフェノール化合物におけるアルケニル基は、マレイミド化合物のエチレン性不飽和基と交互共重合および/または付加反応し、またフェノール性水酸基もマレイミド基のエチレン性不飽和基と付加反応する。以下、バインダー成分として例示した、ジメタリルビスフェノールAおよびビス(4−マレイミドフェニル)メタンの硬化機構について、具体的に説明する。まず、120〜180℃に加熱した段階で、以下の式3で示される線状の重合体が得られる。
Figure 2008010858
さらに、200℃以上に加熱すると、例えば、以下の式4で示される三次元状に架橋した重合体が得られる。
Figure 2008010858
本発明においては、このようなバインダー成分の三次元架橋による硬化が、半田成分が第2の金属粒子および/または導体パターン20を形成する金属へ金属拡散することを促進し、これにより高度な金属拡散接合が形成されると考えられている。つまり、バインダー成分が硬化する時に、ビアホール内の第1の合金粒子および第2の金属粒子に圧力がかかり、これにより、半田成分が、金属粒子および導体パターン20を形成する金属へ金属拡散することが促進されると考えられている。バインダー成分の弾性率が、温度によって変化する様子を図4に示す。単量体混合物の弾性率は、温度の上昇により小さくなっていく。しかし、120〜180℃において式3で示した線状の重合体が形成されることによって、弾性率が急に大きくなる(図4における、「単量体混合物」のグラフから、「架橋後」のグラフとなる。)。その後、線状の重合体は、200℃以上において、式4で示される三次元状に架橋した重合体に変化していくと考えられている。架橋後のグラフは、温度の上昇と共に小さくなる傾向はある。しかし、高温領域においても溶融することなく、一定の弾性率を保っている。
このように、130〜260℃において非鉛半田粒子が融解した時に、バインダー成分は硬化反応することにより、一定の弾性率を保持する。このように、融解した非鉛半田粒子に対して、バインダーが硬化することによる圧力がかかり、これにより、導電性ペースト組成物において、金属拡散接合が生じると考えられる。そして、このような導電性ペースト組成物を用いた多層配線基板200、200Aは、そのビアホールの抵抗値が非常に低いものとなり、吸湿耐熱性、接続信頼性、および、導体接着強度に優れたものになると考えられる。
このような観点から、半田粒子が溶解した段階で、バインダー成分が硬化する必要があり、非鉛半田粒子の融点が、バインダー成分の硬化温度範囲に含まれている必要がある。これに対して、バインダー成分の硬化温度範囲に比べて、非鉛半田粒子の融点が高すぎる場合は、バインダー成分が硬化する段階において、非鉛半田粒子は未だ融解していないため、金属拡散が促進されるという効果を享受することができない。また、バインダー成分の硬化温度範囲に比べて、非鉛半田粒子の融点が低すぎる場合は、溶解した半田成分がビアホールからはみ出してしまうおそれがある。
上記したように、導電性ペースト組成物は、導電粉末およびバインダー成分を含有するものであるが、この導電粉末およびバインダー成分の混合比は、質量比で、「90/10」以上「98/2」未満である(「導電粉末」/「バインダー成分」)。この範囲を超えて、導電粉末の量が少なすぎるとビアホールに充填した導電性ペーストの電気抵抗値が増加してしまう。また、この範囲を超えて、導電粉末の量が多すぎると、導電性ペースト組成物をビアホールに印刷充填する作業性が悪化し、また、導電性ペースト組成物と導体パターン20との接着強度が低下してしまう。
(熱可塑性樹脂組成物からなる絶縁基材10の弾性率の温度に対する挙動)
ここで、熱可塑性樹脂組成物からなる絶縁基材10の温度に対する弾性率の挙動について説明する。熱可塑性樹脂組成物として、結晶融解ピーク温度が260℃以上の結晶性熱可塑性樹脂からなる組成物を用いた場合であって、この結晶性熱可塑性樹脂として、ポリエーテルエーテルケトンおよび非晶性ポリエーテルイミド樹脂の混合組成物を用いた場合における、絶縁基材10の弾性率の温度に対する挙動を図5に示した。
「積層前」と表示されているのが、多層配線基板として積層する前における、絶縁基材10の弾性率の温度に対する挙動を示したグラフである。また、「積層後」と表示されているのが、所定の条件において加熱・加圧することによって多層配線基板200、200Aとした後における、絶縁基材10の弾性率の温度に対する挙動を示したグラフである。積層前の状態では、上記したように、絶縁基材10は急冷製膜することにより非晶性フィルム化されている。よって、200℃付近という比較的低温領域において弾性率が十分に低下する。これにより、積層前の絶縁基材10は、比較的低温において熱成形、熱融着することができる。
非晶性フィルム化されている絶縁基材10は、多層配線基板200、200Aを製造する際における所定の条件下での加熱・加圧成形によって、結晶性へと変化する。これに伴って絶縁基材10の弾性率は大きく変化して、図5における積層後のグラフで示されるような挙動を示すようになる。これにより、以下に説明するように金属拡散接合を促進するという効果を発揮して、多層配線基板200を、そのビアホールの抵抗値を非常に小さくすることができると共に、吸湿耐熱性、接続信頼性、および導体接着力に優れたものとすることができると考えられている。
次に、どのように金属拡散接合が促進されるかについて説明する。ここで、導電性ペースト組成物中の非鉛半田粒子と熱可塑性樹脂組成物からなる絶縁基材10との関係が重要であり、非鉛半田粒子の融点における、樹脂組成物の貯蔵弾性率が、10MPa以上5GPa未満であることが好ましい。なお、絶縁基材10を形成する熱可塑性樹脂組成物として、上記した好ましい形態である、ポリエーテルエーテルケトンおよび非晶性ポリエーテルイミドの混合組成物を使用した場合は、図5に示すように、130℃以上260℃未満という非鉛半田粒子の融点における、熱可塑性樹脂組成物の貯蔵弾性率が、10MPa以上5GPa未満となっている。なお、熱可塑性樹脂組成物の貯蔵弾性率は、粘弾性評価装置を用い、測定周波数1Hzで昇温速度3℃/分で測定した値である。
上記のように非鉛半田粒子の融点において、熱可塑性樹脂組成物が10MPa以上5GPa未満の貯蔵弾性率を有するものとすることは、非鉛半田粒子の融点において、熱可塑性樹脂組成物にある程度の柔軟性を持たせると共に、溶融せずにある程度の弾性率を保持させていることを意味している。
このように、非鉛半田粒子の融点において、熱可塑性樹脂組成物にある程度の柔軟性を持たせることによって、導電性ペースト組成物と熱可塑性樹脂組成物とが相互になじむことができ、導電性ペースト組成物と熱可塑性樹脂組成物からなる絶縁基材10との接着性が向上する。また、非鉛半田粒子の融点において、熱可塑性樹脂組成物が溶融せずに、ある程度の弾性率を保持することによって、配線基板100Bを熱融着により積層する際に、導電性ペースト組成物をビアホールの側面である熱可塑性樹脂組成物により締め付けることができ、導電性ペースト組成物に圧力をかけることができる。これにより、非鉛半田粒子中の錫成分が第2の金属粒子および/または導体パターン部を形成する金属中に金属拡散し、金属拡散接合を形成させることができると考えられている。
(配線基板100Bの製法)
配線基板100Bの製造方法の概要を図2(a)に示した。まず、絶縁基材10を、上記した方法により、例えば、Tダイを用いた押出キャスト法により形成する。そして、金属箔22を熱圧着により絶縁基材10に貼り付け、レーザーまたは機械ドリル等を用いてビアホールを形成する。そして、金属箔22の表面にレジストを形成してエッチングする通常の方法によって、導体パターン20を形成する。その後、スクリーン印刷等の通常の印刷方法によって、導電性ペースト組成物をビアホール30に充填する。このような方法により配線基板100Bが製造される。なお、金属箔22の貼り付けを、押出製膜と同時に行ってもよいし、絶縁基材10上にレジストパターンを形成して、メッキ法により導体パターン20を形成することとしてもよい。また、以上の製法における各手順の順序は特に限定されない。
図2(b)に配線基板100Bの斜視図を示した。基板100Bの全面に亘って複数のビアホール30が形成されている。なお、図2(a)に示した断面図は、例えば、図2(b)のX−X線により切断した場合の切断面である。
<配線基板100A>
図2(d)に斜視図を示したように、配線基板100Aは、上記で説明した配線基板100Bにキャビティー用穴15が形成されて構成される。
(キャビティー用穴15)
キャビティー用穴15は、半導体装置240を搭載する位置に対応して、絶縁基材10を上下に貫くように形成される。キャビティー用穴15の大きさ、形状は特に限定されず、搭載する半導体装置240に合わせて形成される。また、図1(a)に示した多層配線基板200においては、上層側に積層された複数の配線基板100Aは、同一の形状および大きさのキャビティー用穴15を有している。これにより、配線基板200に直方体形状のキャビティー部220が形成される。
また、図1(b)に示した多層配線基板200Aにおいては、上層側に積層された複数の配線基板100Aに、異なる大きさのキャビティー用穴15が形成されている。上層側に積層された複数の配線基板100Aにおいて、より上層の配線基板100Aがより大きなキャビティー用穴15を有している。これにより、配線基板200Aに、側面が階段状のキャビティー部220が形成される。
(配線基板100Aの製造方法)
図2(c)に配線基板100Aの製造方法の概要を示した。基本的には、配線基板100Bの製造方法と同様であるが、絶縁基板10を作製した後に、絶縁基板10にキャビティー用穴15が形成される。キャビティー用穴15は、一般的には、ビク型を用いて所定の形状に打ち抜いたり、レーザーを用いて切断したりする等の方法により形成される。
その後は、配線基板100Bの場合と同様に、キャビティー用穴15を形成した絶縁基板10に、銅箔22が熱圧着等により貼り付けられ、導体パターン20およびビアホール30が形成されて配線基板100Aが形成される。また、絶縁基材10に銅箔22を貼り付けた後に、上記と同様の方法でキャビティー用穴15を形成してもよい。以上のようにして、配線基板100Aが製造される。
<多層配線基板200、200Aの製造方法>
本発明の多層配線基板200の製造方法の概要を図3に示した。多層配線基板200、200Aは、複数の配線基板100Bを下層側に、キャビティー部15を形成した複数の配線基板100Aを上層側にして積層し、これらの熱圧着させることによって製造することができる。図3に示した製造方法においては、最下層の配線基板100Bの向きを上下反転させて、配線パターン20が外側になるように配置積層されている。
積層条件としては、温度:180℃以上320℃未満、圧力:3MPa以上10MPa未満、プレス時間:10分以上120分以下とすることが好ましい。このような条件で、積層することによって、熱可塑性樹脂組成物からなる絶縁基材10が、ポリアリールケトン樹脂および非晶性ポリエーテルイミド樹脂の混合組成物からなる場合は、非晶性フィルム化されている絶縁基材10が、積層時の加熱により結晶に変化する。これにより、絶縁基材10は、非鉛半田耐熱性を発現する。また、ビアホール中の導電ペーストが金属拡散接合して、ビアホールの抵抗値を非常に小さくすることができ、吸湿耐熱性、接続信頼性、および導体接着強度に優れた多層配線基板200、200Aとすることができる。
また、多層配線基板200、200Aの製造の際には、スペーサー260が使用される。スペーサー260は、キャビティー部220と同様な形状を有しており、熱圧着の際にキャビティー部220に挿入して使用される。多層配線基板200Aを製造する場合は、階段状のスペーサー260を使用する。スペーサー260は、絶縁基材10や導体パターン20との離型性を有し、圧着時においてもキャビティー部220の形状を保持するような弾性率を有する材料により形成することができる。このような材料としては、例えば、ポリイミド樹脂を挙げることができる。また、金属のスペーサーを用いても良いし、キャビティー形状に合わせ凸状の金型を用いることもできる。
多層配線基板200、200Aを作製する際の熱圧着は、図3の上下から、プレス機の押圧治具によりプレスすることにより行われる。プレス治具と配線基板との間には、離型フィルム320およびステンレス鋼シート340が挟みこまれる。離型フィルム320は、熱圧着後に、多層配線基板200、200Aをプレス機から取り出す際の、離型性を確保するために使用される。離型フィルム320としては、例えば、ポリイミドフィルムが使用される。また、ステンレス鋼シート340は、均一に圧力をかけるために使用される。
また、多層配線基板200、200Aの製造の際には、クッション性のある離型フィルム320を用いることもできる。クッション性のある離型フィルムを構成する材料としては、特に限定されるものではなく、積層温度域で樹脂流出のないものが好適に用いられる。その材料としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(TPX)、シンジオタクチックポリスチレン(SPS)、シリコン系樹脂、フッ素系樹脂、ポリイミド(PI)樹脂等が挙げられる。単層構成でも、表層に離型性の樹脂を積層した複層構成でも構わない。
また、実際に多層配線基板200、200Aを作製する場合は、複数個の配線基板100Bを同一平面上に含む基板を複数枚積層し、その上に、複数個の配線基板100Aを同一平面上に含む基板を複数枚積層して、これらを熱圧着させる。そして、最後に多層配線基板200、200Aごとに切断する。このようにして、複数個の多層配線基板200、200Aが同時に作製される。
本発明の多層配線基板200、200Aは、キャビティー部220に半導体装置240を搭載して使用される。半導体装置240を搭載した状態を図1(c)および(d)に示した。図1(c)に示した形態は、二つの半導体装置240をはんだ付けにより重ねてキャビティー部220に搭載して、下側の半導体装置をキャビティー部の底面の導体パターン20にBGAにより接続して、上側の半導体装置をボンディングワイヤによりキャビティー部側面の導体パターン20に接続した形態である。このように、本発明の多層配線基板200Aは、キャビティー部220の形状を階段状等の複雑な形状とすることができる。そして、これにより、様々な形態で半導体装置240を搭載することができる。
また、図1(d)に示した形態は、二つの半導体装置240を並列してキャビティー部200の底部に半田付けにより搭載した形態である。この形態においては、半導体装置240は、キャビティー部220の底部においてはんだ付けされている。そして、半導体装置240と多層配線基板200との電気的な接続はボンディングワイヤにより行われている。よって、多層配線基板200のキャビティー部220の底部は、はんだ付けするための箇所として、ビアホール30が形成されていない。このように、本発明の多層配線基板200においては、半導体装置240の搭載方法を種々のパターンにより搭載することができる。そして、その搭載方法に合わせて、ビアホール30の位置を自由に調整することができる。
<多層配線基板200C、200D>
図6(a)および(b)に多層配線基板200C、200Dの模式図を示した。多層配線基板200C、200Dは、それを構成する配線基板として、熱可塑性樹脂組成物からなる絶縁基材10、該絶縁基材10の少なくとも片面に設けられた熱硬化性樹脂組成物からなる接着層40、該接着層40上および/または該絶縁基材10上に設けられた導体パターン20、および、該絶縁基材10および接着層40を貫通して設けられた、導電性ペースト組成物が充填されているビアホール30を備えて構成された配線基板100C、100Dを備えている。
<配線基板100D>
配線基板100Dは、熱可塑性樹脂組成物からなる絶縁基材10、該絶縁基材10の少なくとも片面に設けられた熱硬化性樹脂組成物からなる接着層40、該接着層40上および/または該絶縁基材10上に設けられた導体パターン20、および、該絶縁基材10および接着層40を貫通して設けられた、導電性ペースト組成物が充填されているビアホール30を備えて構成されている。熱可塑性樹脂組成物からなる絶縁基材10、導体パターン20、ビアホール30については、先に説明した配線基板100Bにおけるものと同様である。
(接着層40)
配線基板100Dにおいては、各層間の接着性を発揮するための接着層40が形成されている。接着層40は、絶縁基材10の少なくとも片面に形成されている。絶縁基材10の少なくとも片面に接着層40が形成されていれば、各層を熱圧着積層することができるが、図示したように、絶縁基材10の両面に接着層40を形成してもよい。
接着層40を形成する熱硬化性樹脂組成物を構成する材料としては、180℃から320℃未満の積層温度域で熱硬化し、非鉛半田耐熱性を有すれば、特に限定されないが、エポキシ系樹脂、ポリイミド系樹脂等が挙げられる。その中でも特に、耐熱性、電気特性等を勘案すると、前記した導電性ペースト組成物を構成するバインダー成分であるアルケニルフェノール化合物およびマレイミド類の混合物を用いることが好ましい。該混合物には、その性質を損なわない程度に、他の熱硬化性樹脂、熱可塑性樹脂や無機充填材、各種添加剤、例えば、安定剤、紫外線吸収剤、光安定剤、核剤、着色剤、滑剤、難燃剤、製膜助剤、ラジカル重合開始剤、エポキシ基反応触媒、チクソ性付与剤、シランカップリング剤等を適宜添加してもよい。
接着層40の厚みは、絶縁基材10の厚みに対して、1/5以下であることが好ましく、1/10以下であることがより好ましく、1/20以下であることがさらに好ましい。また接着層20の厚みは、好ましくは30μm以下であり、より好ましくは、20μm以下であり、さらに好ましくは、10μm以下である。接着層40の厚みが厚すぎると、形成したキャビティー部220内に樹脂が流出し、導体パターン20を覆う場合があり、また、逐次積層時に、ビアホール30部分に樹脂が流出し、金属拡散を阻害する場合がある。
(配線基板100Dの製法)
配線基板100Dの製造方法の概要を図7に示した。まず、上記した配線基板100Bの製法と同様にして絶縁基材10を、例えば、Tダイを用いた押出キャスト法により形成する。そして、予め、離型処理されたPETフィルム上に熱硬化性樹脂組成物を含有する溶液を塗布して乾燥固化して、剥離性のあるフィルム上に接着層40を形成する。そして、熱ラミネートによりこの接着層40を絶縁基材10上に熱転写することによって、絶縁基材10の両面に接着層40を形成する。そして、レーザーまたは機械ドリル等を用いてビアホールを形成する。その後、スクリーン印刷等の通常の印刷方法によって、導電性ペースト組成物をビアホールに充填し絶縁基材50Dを作製した。なお、熱硬化性樹脂組成物を含有する溶液を絶縁基材10上に直接塗布し、乾燥固化して接着層40を形成してもよい。
そして、接着層40を積層した絶縁基材10の両面に金属箔22を積層する。そして、金属箔22の表面にレジストを形成してエッチングする通常の方法によって、導体パターン20を形成する。これにより、両面に導体パターン20を備えた配線基板100D(両面基板)を作製できる。また、ビアホール30を形成させた後、銅めっきすることにより、金属箔22を形成し、エッチングすることにより、導体パターン20を形成することもできる。以上の製法における各手順の順序は特に限定されない。図2(b)に配線基板100Bの斜視図を示したように、配線基板100Dにおいても、全面に亘って複数のビアホール30が形成されている。
<絶縁基材50C>
絶縁基材50Cは、上記した絶縁基材50Dにキャビティー用穴15を形成して製造される。キャビティー用穴15は、絶縁基材10上に接着層40を形成した後に、上記した配線基板100Aにおける場合と同様の方法で形成される。絶縁基材50Cにおける、ビアホール30の形成は、キャビティー用穴15を形成した後であっても前であってもよい。
<多層配線基板200C、200Dの製造方法>
本発明の多層配線基板200C、200Dの製造方法の概要(逐次積層)を図8、図9に示した。積層方法は、熱圧着により行うことができ、一括積層および逐次積層のいずれによっても積層することができる。一括積層の場合は、片面に導体パターン20を備えた片面基板を複数層重ね合わせて、多層配線基板200、200Aの場合と同様にして熱圧着させることにより製造できる。以下、図8および図9に沿って、逐次積層により多層配線基板200C、200Dを製造する方法について説明する。
図8に多層配線基板200Cの製造方法の概要を示した。まず、配線基板100D上に絶縁基材50Dを重ね、その上に銅箔22を重ね、これらを熱圧着積層する。そして、エッチングする等の方法より、銅箔22を配線パターン20とする。この操作は、複数回繰り返してもよく、配線基板100D上に形成したい絶縁基材50Dの数に応じて、繰り返し行われる。
その後、上記の絶縁基材50Dにキャビティー用穴15が形成された絶縁基材50Cを重ね、その上に銅箔22を重ね、これらを熱圧着積層する。そして、エッチングする等の方法より、銅箔22を配線パターン20とする。この操作は、複数回繰り返してもよく、形成したい絶縁基材50Cの数に応じて、繰り返し行われる。図9に示した多層配線基板200Dの製法においても、使用されるスペーサーの形状が異なる以外は、同様にして多層配線基板200Dが製造される。以上のように、配線基板100D上に、絶縁基材50D、50Cおよび銅箔22を熱圧着積層し、銅箔をエッチングするという工程を逐次的に繰り返し行うことによって、多層配線基板200C、200Dが製造される。
上記の多層配線基板200C、200Dにおける、逐次積層の条件としては、温度:180℃以上320℃未満、圧力:3MPa以上10MPa未満、プレス時間:10分以上120分以下とすることが好ましい。このような条件で、積層することによって、熱可塑性樹脂組成物からなる絶縁基材10が、ポリアリールケトン樹脂および非晶性ポリエーテルイミド樹脂の混合組成物からなる場合は、非晶性フィルム化されている絶縁基材10が、積層時の加熱により結晶に変化する。これにより、絶縁基材10は、非鉛半田耐熱性を発現する。また、このような条件で積層することによって、熱硬化性樹脂組成物からなる接着層40が硬化し、非鉛半田耐熱性を発現する。また、ビアホール30中の導電ペーストが金属拡散接合して、ビアホール30の抵抗値を非常に小さくすることができ、吸湿耐熱性、接続信頼性、および導体接着強度に優れた多層配線基板200C、200Dとすることができる。
キャビティー用穴15が形成された絶縁基材50Cを積層する際には、キャビティー用穴15の形状に沿ったスペーサーが使用される。図8においては、一層目の絶縁基材50Cおよび銅箔22を積層する際には、絶縁基材50Cおよび銅箔22の合計厚さに相当する厚みのスペーサー262aが使用され、その後、二層目に絶縁基材50Cおよび銅箔22を積層する際には、二倍の厚さのスペーサー262bが使用される。なお、スペーサー262bの代わりに二つのスペーサー262aを用いてもよい。
図9に示した多層配線基板200Dを製造する場合には、一層目の絶縁基材50Cと二層目の絶縁基材50Cのそれぞれのキャビティー用穴15の大きさが異なっているので、それぞれのキャビティー用穴15の大きさにあったスペーサー262a、262cが使用される。二層目の配線基板100Cの積層の際に、スペーサー262a、262cの代わりに、階段状のスペーサーを使用してもよい。スペーサーの材料としては、上記した多層配線基板200、200Aの場合と同様である。
多層配線基板200、200Aにおける場合と同様に、熱プレス時には、離型フィルム320およびステンレス鋼シート340が使用される。離型フィルム320としてクッション性のある離型フィルムを用いることができる点も同様である。また、同一平面上に複数個の配線基板を含む基板を積層して複数個の多層配線基板を同時に作製することができる点も同様である。また、図1(c)および(d)に示した形態と同様にして、多層配線基板200C、200Dも、半導体装置240を搭載することができる。
以上説明したように、本発明の多層配線基板200、200A、200C、200Dは、キャビティー部220の形状を様々な形状に設計することができる。これにより、半導体装置240の搭載方法、および、その電気的接続方法に様々なバリエーションを付与することができる。そして、半導体装置240の高密度実装を可能としたものである。半導体装置としては、特に限定されるものではなく、LSIや受動部品、またCCDやCMOS等の受光素子や、発光ダイオード(LED)等を挙げることができる。
<実施例1>
(配線基板100Bの作製)
ポリエーテルエーテルケトン樹脂(PEEK450G、Tm=335℃)40質量%と、非晶性ポリエーテルイミド樹脂(Ultem 1000)60質量%とからなる樹脂混合物100質量部に対して、平均粒径5μm、平均アスペクト比50の合成マイカを39質量部混合して得られた熱可塑性樹脂組成物を溶融混練し、厚み100μmのフィルムを押し出すと同時に、片側から銅箔22をラミネーションして、片面銅張絶縁基材を得た。そして、所望の位置に、レーザーを使用して直径100μmのビアホールを形成した。そして、導電性ペースト組成物を、このビアホールにスクリーン印刷により充填した。充填後125℃、45分間加熱し、溶剤を揮発させて導電性ペーストを乾燥固化した。その後、フォトリソグラフ法により、銅箔に導体パターン20を形成した。以上の方法によって、ビア間150μm、配線間距離50μmの配線基板100Bを作製した。
上記の導電性ペースト組成物としては、Sn−Ag−Cu合金粒子(平均粒径5.55μm、融点220℃、組成:Ag3.0質量%、Cu0.5質量%、残部Sn)76質量%およびCu粒子(平均粒径5μm)24質量%の割合で混合した導電粉末97質量部に対して、ジメタリルビスフェノールA50質量%およびビス(4−マレイミドフェニル)メタン50質量%の割合で混合した重合性単量体の混合物3質量部、ならびに溶剤としてγブチロラクトン7.2質量部を添加して、3本ロールで混練して調整した導電性ペースト組成物を用いた。
(配線基板100Aの作製)
配線基板100Bにおいて作製した片面銅張絶縁基材に、キャビティー用穴15をビク型を用いて所定の形状に打ち抜くことにより形成した。このキャビティー用穴15を形成した片面銅張絶縁基材に対して、配線基板100Bを製造した場合と同様の方法で、ビアホールを形成し、導電性ペースト組成物を充填し、これを乾燥固化した。その後フォトリソグラフ法により、銅箔22に導体パターン20を形成し、配線基板100Aとした。なお、導電性ペースト組成物としては、配線基板200Bの作製において使用したものと同様のものを使用した。
(多層配線基板200の作製)
上記で得られた配線基板100Aを2枚、および、配線基板100Bを3枚用意して、3枚の配線基板100Bを下層側に積層し、2枚の配線基板100Aをその上の上層側に積層した。各配線基板を積層する際には、ビアホール30およびキャビティー用穴の位置が合うようにして積層した。そして、キャビティー部220と同様の形状、厚さのポリイミド樹脂製のスペーサー260を、キャビティー部220となる位置に配置し、真空プレスすることにより各層を積層した。プレス条件は、温度230℃、5MPa、30分間とした。このようにして、5層構成のキャビティー部220を有する多層配線基板200を作製した。
<実施例2>
(多層配線基板200Aの作製)
実施例1と同様にして、配線基板100Bを作製した。配線基板100Aとしては、一つは、実施例1と同様のキャビティー用穴15を有するものを形成し、もう一つは、一回り大きなキャビティー用穴15を有するものを形成した。そして、3枚の配線基板100Bを下層側に積層し、その上に実施例1と同様のキャビティー用穴15を有する配線基板100Aを積層し、さらにその上に一回り大きなキャビティー用穴15を有する配線基板100Aを積層した。そして、階段状のキャビティー部220と同様の形状、厚さのポリイミド樹脂製のスペーサー260をキャビティー部220となる位置に配置し、実施例1と同様にして熱圧着することによって、5層構成で、階段状のキャビティー部220を有する多層配線基板200を作製した。
<実施例3>
(配線基板100Dの作製)
ポリエーテルエーテルケトン樹脂(PEEK450G、Tm=335℃)40質量%と、非晶性ポリエーテルイミド樹脂(Ultem 1000)60質量%とからなる樹脂混合物100質量部に対して、平均粒径5μm、平均アスペクト比50の合成マイカを39質量部混合して得られた熱可塑性樹脂組成物を溶融混練し、厚み100μmのフィルム(絶縁基材)を押し出した。離型処理されたPETフィルム上にジメタリルビスフェノールA50質量%およびビス(4−マレイミドフェニル)メタン50質量%の割合で混合した重合性単量体を含有する溶液を塗布して乾燥固化し、5μmの接着層を形成し、これを絶縁基材の両面に熱転写した。
そして、所望の位置に、レーザーを使用して直径100μmのビアホールを形成した。そして、導電性ペースト組成物を、このビアホールにスクリーン印刷により充填した。充填後125℃、45分間加熱し、溶剤を揮発させて導電性ペースト組成物を乾燥固化した。以上の方法により、絶縁基材50Dを作製した。その後、12μmの銅箔を両面に、230℃、5MPa、30分の条件で積層し、フォトリソグラフ法により、銅箔に導体パターン20を形成して、ビア間150μm、配線間距離50μmの配線基板100Dを作製した。なお、上記の導電性ペースト組成物としては、実施例1と同様のものを用いた。
(絶縁基材50Cの作製)
上記した配線基板100Dの製造における場合と同様に絶縁基材の両面に接着層を形成し、キャビティー用穴15をビク型を用いて所定の形状に打ち抜くことにより形成した。このキャビティー用穴15を形成した絶縁基材に対して、配線基板100Dを製造した場合と同様の方法で、ビアホールを形成し、導電性ペースト組成物を充填し、これを乾燥固化して、絶縁基材50Cを作製した。
(多層配線基板200Cの作製)
上記で得られた配線基板100D上に、絶縁基材50Dおよび銅箔22を順に重ね、熱圧着積層して、その後、銅箔22をフォトリソグラフ法により導体パターンとする操作を二度繰り返した。さらに、絶縁基材50Cおよび銅箔22を順に重ね、熱圧着積層して、その後、銅箔22をフォトリソグラフ法により導体パターンとする操作を二度繰り返した。各絶縁基材50D、50Cを積層する際には、ビアホール30およびキャビティー用穴の位置が合うようにした。また、絶縁基材50Cを積層する際には、ポリイミド樹脂製のスペーサーを使用し、一枚目の配線基材50Cと二枚目の絶縁基板50Cとで、スペーサーの厚さを変えてそれぞれを積層した。逐次積層のプレス条件は、温度230℃、5MPa、30分間とした。このようにして、キャビティー部を有する5層構成の多層配線基板200Cを作製した。
<実施例4>
(多層配線基板200Dの作製)
実施例3と同様にして、配線基板100Dおよび絶縁基材50Dを作製した。絶縁基材50Cとしては、一つは、実施例3と同様のキャビティー用穴15を有するものを形成し、もう一つは、一回り大きなキャビティー用穴15を有するものを形成した。配線基板100D上に、絶縁基材50Dおよび銅箔22を順に重ね、熱圧着積層して、その後、銅箔22をフォトリソグラフ法により導体パターンとする操作を二度繰り返した。さらに、その上に実施例3と同様のキャビティー用穴15を有する絶縁基材50Cおよび銅箔22を順に重ね、熱圧着積層して、その後、銅箔22をフォトリソグラフ法により導体パターンとした。そして、その上に、一回り大きなキャビティー用穴15を有する絶縁基材50Cおよび銅箔22を順に重ね、熱圧着積層して、その後、銅箔22をフォトリソグラフ法により導体パターンとした。逐次積層の条件は、実施例3と同様である。
スペーサーとしては、一枚目の配線基板100Cの積層の際は、実施例3において使用した厚さの薄い方のスペーサーを使用し、二枚目の配線基板100Cの積層の際は、さらに、一回り大きなキャビティー用穴15に対応する大きさのスペーサーを重ねて(図9に示すような形態で)使用した。以上により、階段状のキャビティー部220を有する多層配線基板200Dを作製した。
<評価方法>
上記で作製した多層配線基板に対して、以下の評価を行った。それぞれの評価結果を表1に示す。
(ビア断面の外観)
得られた多層配線基板のビア部について、断面SEM観察を行い、以下の基準により評価した。
○:金属粒子が見あたらない。充填欠陥がない。
×:金属粒子が確認できる。または、金属粒子は見あたらないが充填欠陥が存在する。
(吸湿耐熱性)
得られた多層配線基板を、125℃で4時間乾燥する。そして、30℃、湿度85%の恒温恒湿槽に96時間おいて、その後、ピーク温度250℃のリフロー炉で加熱する処理を二度繰り返した。得られた多層配線基板を以下の基準により評価した。
○:基板間の積層界面に剥がれがなく、ビアホール中に膨れが生じていない。
×:基板間の積層界面に剥がれ生じ、および/または、ビアホール中に膨れが生じた。
(試験前抵抗値)
得られた多層配線基板の最上層から最下層まで配線が施されたテストパターン部において、以下の基準により評価した。
○:抵抗値が1×10−4Ωcm未満
×:抵抗値が1×10−4Ωcm以上
(接続信頼性)
上記の吸湿耐熱性における処理を施した多層配線基板に対して、以下の二つの接続信頼性試験を行った。
・耐マイグレーション試験
85℃、湿度85%の恒温恒湿槽中において、DC50Vを240時間印可した。得られた多層配線基板を以下の基準により評価した。なお、「マイグレーション」とは、例えば、銅からなる導体パターン間において、CuOが形成され、ショートしてしまう現象をいう。
○:絶縁抵抗値が低下しなかった。
×:絶縁抵抗値が低下した。
・熱衝撃試験
−25℃において9分、125℃において9分というサイクルを1000回繰り返した。得られた多層配線基板を以下の基準により評価した。なお、抵抗変化率は、「|試験前抵抗値−試験後抵抗値|/試験前抵抗値」×100(%)で表される値である。
○:抵抗変化率が、常温時および恒温時(25℃)ともに、20%未満である。
×:抵抗変化率が、常温時あるいは恒温時(25℃)のいずれかにおいて、20%以上である。
(導体接着強度)
多層配線基板上に表出した導体パターン部に針金を半田付けし、この針金を上に引き上げ、導体パターン部を剥がした時の強度を測定した。
○:強度が1N/mm以上であった。
×:強度が1N/mm未満であった。
<評価結果>
Figure 2008010858
(a)は、本発明の多層配線基板200の層構成を示す模式図である。(b)は、本発明の多層配線基板200Aの層構成を示す模式図である。(c)は、本発明の多層配線基板200Aに半導体素子240を搭載した状態を示す模式図である。(d)は、本発明の多層配線基板200に半導体素子240を搭載した状態を示す模式図である。 (a)は、配線基板100Bの製造方法の概要を示す図である。(b)は配線基板100Bの斜視図である。(c)は、配線基板100Aの製造方法の概要を示す図である。(d)は配線基板100Aの斜視図である。 多層配線基板200の製造方法の概要を示す図である。 ビアホール30中の導電性ペースト組成物中のバインダー成分の弾性率が、温度により変化する様子を示した図である。 絶縁基材10を構成する特定の熱可塑性樹脂組成物の弾性率が、温度により変化する様子を示した図である。 (a)は、本発明の多層配線基板200Cの層構成を示す模式図である。(b)は、本発明の多層配線基板200Dの層構成を示す模式図である。 配線基板100Dの製造方法の概要を示す図である。 多層配線基板200Cの製造方法の概要を示す図である。 多層配線基板200Dの製造方法の概要を示す図である。
符号の説明
10 絶縁基材
15 キャビティー用穴
20 導体パターン
30 ビアホール
40 接着層
100A、100B、100C、100D 配線基板
200、200A、200C、200D 多層配線基板
220 キャビティー部
240 半導体装置
260 スペーサー
320 離型フィルム
340 ステンレス鋼シート

Claims (8)

  1. 複数の配線基板を積層してなる多層配線基板であって、
    前記配線基板が、熱可塑性樹脂組成物からなる絶縁基材、該絶縁基材上に設けられた導体パターン、および、該絶縁基材を貫通して設けられた、導電性ペースト組成物が充填されているビアホールを備えて構成され、
    多層配線基板とした際に下層側となる複数の配線基板以外の、上層側となる複数の配線基板にキャビティー用穴が形成され、
    前記複数の配線基板の積層が熱圧着により行われる、キャビティー部を有する多層配線基板。
  2. 複数の配線基板を積層してなる多層配線基板であって、
    前記配線基板が、熱可塑性樹脂組成物からなる絶縁基材、該絶縁基材の少なくとも片面に設けられた熱硬化性樹脂組成物からなる接着層、該接着層上および/または該絶縁基材上に設けられた導体パターン、および、該絶縁基材および該接着層を貫通して設けられた、導電性ペースト組成物が充填されているビアホールを備えて構成され、
    多層配線基板とした際に下層側となる複数の配線基板以外の、上層側となる複数の配線基板にキャビティー用穴が形成され、
    前記複数の配線基板の積層が熱圧着により行われる、キャビティー部を有する多層配線基板。
  3. 前記上層側となる複数の配線基板が、異なる大きさのキャビティー用穴を有しており、該キャビティー用穴の大きさが上層側となるに従い拡径されている、請求項1または2に記載のキャビティー部を有する多層配線基板。
  4. 前記熱可塑性樹脂組成物が、260℃以上の結晶融解ピーク温度を有する、ポリアリールケトン樹脂および非晶性ポリエーテルイミド樹脂の混合組成物である、請求項1〜3のいずれかに記載のキャビティー部を有する多層配線基板。
  5. 前記導電性ペースト組成物が、導電粉末と、バインダー成分とを含み、該導電粉末および該バインダー成分の質量比が、90/10以上98/2未満であり、
    前記導電粉末が、第1の合金粒子と第2の金属粒子とからなり、該第1の合金粒子が130℃以上260℃未満の融点を有する非鉛半田粒子であり、該第2の金属粒子が、Au,Ag,Cuからなる群から選ばれる少なくとも一種以上であり、該第1の合金粒子と該第2の金属粒子との質量比が、76/24以上90/10未満であり、
    前記バインダー成分が、加熱により硬化する重合性単量体の混合物であり、前記非鉛半田粒子の融点が、前記バインダー成分の硬化温度範囲に含まれ、
    前記非鉛半田粒子の融点における、前記絶縁基材を構成する熱可塑性樹脂組成物の貯蔵弾性率が10MPa以上5GPa未満である、請求項1〜4のいずれかに記載のキャビティー部を有する多層配線基板。
  6. 前記配線基板の熱圧着が、180℃以上320℃未満、3MPa以上10MPa未満、10分以上120分以下の条件で行われるものである、請求項1〜5のいずれかに記載のキャビティー部を有する多層配線基板。
  7. 熱可塑性樹脂組成物からなる絶縁基材、該絶縁基材上に設けられた導体パターン、および、該絶縁基材を貫通して設けられ導電性ペースト組成物が充填されているビアホールを備えて構成された配線基板を複数層積層する工程、
    前記複数層積層された基板の上に、前記配線基板にさらにキャビティー用穴を形成した配線基板を複数層積層する工程、
    前記積層した配線基板すべてを、熱圧着により一体化させる工程、
    を有する多層配線基板の製造方法。
  8. 熱可塑性樹脂組成物からなる絶縁基材、該絶縁基材の少なくとも片面に設けられた熱硬化性樹脂組成物からなる接着層、該接着層上および/または該絶縁基材上に設けられた導体パターン、および、該絶縁基材および該接着層を貫通して設けられた、導電性ペースト組成物が充填されているビアホールを備えて構成された配線基板上に、
    熱可塑性樹脂組成物からなる絶縁基材、該絶縁基材の少なくとも片面に設けられた熱硬化性樹脂組成物からなる接着層、および、該絶縁基材および該接着層を貫通して設けられた、導電性ペースト組成物が充填されているビアホールを備えて構成された絶縁基材を重ね、
    該絶縁基材上に銅箔を重ねて、熱圧着により一体化し、エッチングにより該銅箔を導体パターンとする工程を1回または複数回繰り返して、前記配線基板上に1または複数層の前記絶縁基材および前記導体パターンを逐次的に形成する工程、
    さらに、前記絶縁基材にキャビティー用穴が形成された絶縁基材を重ね、該絶縁基材上に銅箔を重ねて、熱圧着により一体化し、エッチングにより該銅箔を導体パターンとする工程を1回あるいは複数回繰り返して、キャビティー用穴が形成された絶縁基材および導体パターンを1または複数層逐次的に形成する工程、
    を備えて構成される多層配線基板の製造方法。
JP2007144029A 2006-05-30 2007-05-30 キャビティー部を有する多層配線基板 Expired - Fee Related JP5032205B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007144029A JP5032205B2 (ja) 2006-05-30 2007-05-30 キャビティー部を有する多層配線基板

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006149945 2006-05-30
JP2006149945 2006-05-30
JP2007144029A JP5032205B2 (ja) 2006-05-30 2007-05-30 キャビティー部を有する多層配線基板

Publications (2)

Publication Number Publication Date
JP2008010858A true JP2008010858A (ja) 2008-01-17
JP5032205B2 JP5032205B2 (ja) 2012-09-26

Family

ID=39068734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007144029A Expired - Fee Related JP5032205B2 (ja) 2006-05-30 2007-05-30 キャビティー部を有する多層配線基板

Country Status (1)

Country Link
JP (1) JP5032205B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011514015A (ja) * 2008-06-03 2011-04-28 インテル コーポレイション バンプレス・ビルド・アップ・レイヤ(bbul)を使用したパッケージオンパッケージ
JP2020017634A (ja) * 2018-07-25 2020-01-30 日本メクトロン株式会社 多層プリント配線板の製造方法、および多層プリント配線板

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200051215A (ko) 2018-11-05 2020-05-13 삼성전기주식회사 인쇄회로기판 및 이를 포함하는 패키지 구조물

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071825A (ja) * 2003-08-25 2005-03-17 Kyocera Corp 導電性ペースト及び配線基板並びにその製造方法
JP2005353781A (ja) * 2004-06-10 2005-12-22 Mitsubishi Plastics Ind Ltd 多層配線基板用導電性ペースト組成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071825A (ja) * 2003-08-25 2005-03-17 Kyocera Corp 導電性ペースト及び配線基板並びにその製造方法
JP2005353781A (ja) * 2004-06-10 2005-12-22 Mitsubishi Plastics Ind Ltd 多層配線基板用導電性ペースト組成物

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011514015A (ja) * 2008-06-03 2011-04-28 インテル コーポレイション バンプレス・ビルド・アップ・レイヤ(bbul)を使用したパッケージオンパッケージ
JP2020017634A (ja) * 2018-07-25 2020-01-30 日本メクトロン株式会社 多層プリント配線板の製造方法、および多層プリント配線板
CN110785026A (zh) * 2018-07-25 2020-02-11 日本梅克特隆株式会社 多层印刷线路板的制造方法和多层印刷线路板
JP7062548B2 (ja) 2018-07-25 2022-05-17 日本メクトロン株式会社 多層プリント配線板の製造方法、および多層プリント配線板

Also Published As

Publication number Publication date
JP5032205B2 (ja) 2012-09-26

Similar Documents

Publication Publication Date Title
KR101153766B1 (ko) 캐비티부를 갖는 다층 배선 기판
JP4934334B2 (ja) 両面銅張板
US8044304B2 (en) Multilayer printed circuit board
JP2009065008A (ja) 導電性ペースト組成物
JP4787195B2 (ja) ビアホール充填用導電性ペースト組成物とそれを用いた多層配線基板
JP4996838B2 (ja) 多層配線基板
JP2008244091A (ja) 多層配線基板用層間接続ボンディングシート
JP5032205B2 (ja) キャビティー部を有する多層配線基板
JP4838606B2 (ja) 樹脂付き銅箔
JP4468080B2 (ja) 多層配線基板用導電性ペースト組成物
JP4468081B2 (ja) 多層配線基板用導電性ペースト組成物
JP4774215B2 (ja) 多層プリント配線基板
JP4965102B2 (ja) ビアホール充填用導電性ペースト組成物
JP4881193B2 (ja) 導電性ペースト組成物
JP4959966B2 (ja) 多層配線基板用層間接続ボンディングシート
JP2009065009A (ja) 多層配線基板
JP4965286B2 (ja) 多層配線基板
JP4422555B2 (ja) 多層配線基板用導電性ペースト組成物
JP2008103427A (ja) 離型フィルム
JP2008235833A (ja) 多層配線基板用層間接続ボンディングシート
JP4481733B2 (ja) 多層配線基板用導電性ペースト組成物
JP4481734B2 (ja) 多層配線基板用導電性ペースト組成物
JP2008244061A (ja) 多層配線基板用層間接続ボンディングシート
JP3783682B2 (ja) プリプレグ及びこのプリプレグを用いたプリント配線板の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100217

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees