JP2008008831A - 静電容量型近接センサ及びそれを搭載した温水洗浄便座装置と浴槽装置 - Google Patents

静電容量型近接センサ及びそれを搭載した温水洗浄便座装置と浴槽装置 Download PDF

Info

Publication number
JP2008008831A
JP2008008831A JP2006181303A JP2006181303A JP2008008831A JP 2008008831 A JP2008008831 A JP 2008008831A JP 2006181303 A JP2006181303 A JP 2006181303A JP 2006181303 A JP2006181303 A JP 2006181303A JP 2008008831 A JP2008008831 A JP 2008008831A
Authority
JP
Japan
Prior art keywords
electrode
detection
capacitance
proximity sensor
shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006181303A
Other languages
English (en)
Other versions
JP4645989B2 (ja
Inventor
Yoshiyuki Kaneko
義行 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2006181303A priority Critical patent/JP4645989B2/ja
Publication of JP2008008831A publication Critical patent/JP2008008831A/ja
Application granted granted Critical
Publication of JP4645989B2 publication Critical patent/JP4645989B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Toilet Supplies (AREA)
  • Bidet-Like Cleaning Device And Other Flush Toilet Accessories (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

【課題】 検出電極と対象との距離や対象の大きさにかかわらず、検出すべき対象の有無を正確に判断できる静電容量式近接センサを提供する。
【解決手段】 検出対象の静電容量を検出する検出電極と、前記検出電極の周囲に設けられた遮蔽電極と、前記遮蔽電極に前記検出電極と等電位の電圧を印加する遮断電圧出力手段と、前記検出電極と大地間の静電容量を検出する静電容量検出手段と、前記静電容量検出手段から出力される検出容量に応じて検出対象の有無を判断する判定手段を備えた静電容量型近接センサにおいて、前記遮蔽電極は、前記検出電極の近傍に設けられた第1の遮断電極と、その周辺部に設けられた第2の遮断電極とに分割され、前記第1の遮断電極には前記高周波パルスが常時印加されるとともに、前記第2の遮断電極へ前記高周波パルスの印加が選択される遮断電極選択手段とを有する。
【選択図】 図3

Description

本発明は、各種機器の使用者である人体の検出、浴槽等の水位検出、ガラスへの水滴付着の検出(降雨の検出)などを目的とした、静電容量型近接センサとその応用商品に関するものである。
静電容量型近接センサは、検出電極と検出対象との静電容量により人体や物体の有無を検出するものである。また、静電容量センサは、導体(金属)や誘電体に反応する。水は誘電体であり、水分を多く含む人体も同様に検出可能である。
静電容量式近接センサの用途としては、例えば自動車の雨滴センサのように、ガラス表面の水滴を検出するような用途がある。「自動車の窓ガラスの水滴を検出して、自動的にワイパーを動かす」「家の屋根の天窓の水滴を検出して、自動的に窓を閉じる」などの目的に使用される。また、浴槽の水溜め(湯張り)のような水位の検出への応用も考えられる。また、「液晶画面に触れるタッチスイッチ」「車の座席や温水洗浄便座への着座検出」のように人体を検出対象とするものがある。
人体検出という用途では、一般家庭に広く普及している温水洗浄便座装置の着座検出がある。これは温水洗浄便座に正しく着座していないと洗浄等の操作を受け付けないようにし、誤操作によって洗浄水を吐出して服や床を濡らさないための安全機能である。
また、温水洗浄便座の誤操作防止の他にも、便器の自動洗浄や便座暖房の自動ON・OFF制御(節電)などへの応用が可能である。この温水洗浄便座の用途では、便座の樹脂ケースの内側に検出電極を貼り付け、便座に人体が着座したことを検出する方法は既に実施されている。
静電容量型近接センサは、検出対象の「静電容量が大きい」という条件で検出容量が大きくなる。これは、静電容量検出の場合、「検出電極」「検出対象」「大地」が閉回路を構成すると考えられ、検出対象の容量が大きければ、それだけ大地に対する電位が安定するため、検出電極と検出対象との間の容量検出がし易くなるという理由による。
また、物体間の静電容量は、距離が近くなると増加する。検出電極と検出対象の関係を最も単純化して平行平板コンデンサと同等に考えることができれば、検出電極と検出対象の間の静電容量は距離に反比例する。このように、検出対象の「静電容量が大きい」「距離が近い」という条件で検出容量が大きくなる。
また、静電容量型近接センサは、検出対象である物体がない状態(定常状態、待機状態)に比較して大きな検出容量が得られたときに、物体があると判断するのが一般的である。よって、「検出対象の静電容量が大きく、距離が近い」場合は大きな検出容量が得られ易く、容易に物体有りと判定できる。逆に「検出対象の容量が小さく、距離が遠い」場合は検出容量が小さくなり、容易に物体無しと判定できる。
ところが、検出したくないものが検出電極の近くに来てしまう場合がある。例えば、人体の接近を検出したいのに、検出電極近くに水滴が付着してしまう場合などである。その対策として、検出電極近くに遮蔽電極を置き、検出電極と等電位で駆動して、遮蔽電極周囲の物体の影響を除去する方法が一般的に行われている。(特許文献1参照)
また、静電容量検出による着座センサの例として、特許文献2のような方法がある。特許文献2では、「便座内部へ人体着座面に近い方から順に、検出電極―絶縁層―保護電極―絶縁層―接地電極で構成した電極を配置し、保護電極には検出電極と同電位同位相を印加させ、検出電極と接地電極間の静電容量変化を捕えるようにしている」。
特許文献1、2とも、検出電極近くに遮蔽電極を設け、これを検出電極と同電位で駆動し、検出電極周辺の物体の静電容量の影響を除去するものである。微少な静電容量を測定して物体検出を行う場合、遮蔽電極の使用は常套手段である。
特開2001−35327 静電容量型近接センサ 特開2000−80703 静電容量式人体温水洗浄便座装置用着座センサー
しかし、静電容量式近接センサの用途では、必ずしも「検出対象の静電容量が大きく、距離が近い」とは限らず、前述のような検出方法ではうまく判断できない場合がある。
例えば温水洗浄便座の着座検出の用途の場合、検出電極は便座に露出させず、便座の樹脂ケースの内側に貼り付ける。便座ケースの樹脂の厚みは3〜4mm程度であり、更に、便座に便座カバー(一般に厚みのあるタオル地で、保温や肌触り改善のために装着する)を被せる場合もあり、その際は便座カバーの厚みが加算される。
仮に便座ケースの樹脂を3mm、便座カバーを2mmとすれば、検出電極と人体の距離は計5mmとなる。しかし、この5mmの距離であっても、便座樹脂のみの3mmの距離に比較すると距離が5/3倍であり、検出容量は3/5になって、40%も減少する(静電容量が距離に反比例すると考えた場合)。
このように、検出対象が比較的近くに来る用途では、僅かな条件差で距離の変動が大きく、検出容量が大きく変化してしまう。よって、僅かな距離の変化が大きな影響を及ぼすため、着座検出を判断する閾値の決定が困難になる。
温水洗浄便座の場合、更なる悪条件として、便座カバーが濡れた場合が考えられる。便座カバーは人体よりも必ず検出電極に近いため、便座カバーが小便などで濡れた場合、或いは洗濯後の生乾き状態で取り付けられた場合などは、水分を含んだ物体(この点では便座カバーと人体は同じである)が便座に密着することになる。
濡れた便座カバーは人体に比較してサイズが小さく静電容量も小さいとしても、水滴などに比較すれば大きな静電容量を持っており、従来の方式(特許文献1及び2など)の遮蔽電極によって影響を除去するのは容易ではない。
これに対して、子供が便座の前寄りに浅く座るなど、検出すべき条件が厳しい場合(検出電極と人体の距離が遠い、人体の静電容量が小さい)は、検出容量が十分に大きくなるとは限らない。こうして、特許文献2のような遮蔽電極を使っても、例えば、人体(子供)と濡れた便座カバーを区別することが困難な場合が生じる。
また、「ディスプレイに手をかざすと、表示が変わる」「電動ドアに手を挟みそうになると、逆にドアを開く」というように、接触することなく対象を検出する用途では、検出電極と検出対象の距離は数cm〜数10cmと遠くなり、それだけの距離が離れていても確実に検出することが必要である。
この様な用途で、例えば「ディスプレイの表面に水滴が着く」場合、水滴の容量は小さいながらも、検出電極との距離が極めて近いため、少し離れた人体よりも大きな容量が検出される可能性がある。つまり原理的には特許文献1のような遮蔽電極を用いて水滴の影響を除去できるように思われるが、仮に水滴が大きくなり、かつ検出対象が遠くなれば、ある条件で遮蔽電極の効果は限界に達する。
このように、検出電極に近いところにある障害物を除去する方法としては、特許文献1、2のような遮蔽電極を設ける方法が一般的でが、あらゆる条件を解決できる訳ではない。
逆に、水滴センサ(雨滴センサ)のように検出電極近く(ガラス面)の微少な容量の物体(水滴)を検出しようとすると、少し離れたところにある容量の大きい物体(自動車であれば、運転者、同乗者)との区別がつきにくいという問題がある。
この場合に遮蔽電極を用いると、遮蔽電極はガラス表面の水滴に対して大きな効果を発揮するので、検出すべき雨滴に対する感度を低下させ、逆効果となる。つまり、検出すべき物体が水滴のように小さいなら、遮蔽電極もそれに合わせて必要最低限の小さいものにすべきである。
その際には、遮蔽電極の効果も限られ、少し離れたところにある容量の大きい物体(人体など)の影響の除去は困難となり、これらの要因による誤検出が生じる。
同じく水を検出する用途として、水位センサや溢水検知センサがある。例えばそのセンサを用い浴槽の水位を検知してお湯張りを自動停止する浴槽装置がある。静電容量式近接センサにより浴槽装置の浴槽の水位を検知するためには、検出電極を浴槽の外側の検出したい水位の高さに貼り付けることになる。しかし、浴槽の外側は結露しやすい。また、浴槽内側には湯張りしていなくても、水はねした水滴が付着することが考えられる。
浴槽装置の水位センサの場合、このような結露や水滴で誤動作してはならない。この点では、前述の自動車の窓ガラスや屋根の天窓の水滴センサと全く逆の検出となるので、遮蔽電極により、検出電極周囲の結露、水滴の影響を除去することが必須となる。
しかし、浴槽の外側にある電極から、浴槽の厚みを介して浴槽の内側の湯張りの水を検出するため、検出電極と湯張りの水の距離が遠く、検出すべき信号として大きい静電容量が得られるとは限らない。よって、遮蔽電極を設けても、検出電極のすぐ近くの結露水などの静電容量の方が大きくなる恐れがある。また、検出感度を上げれば、浴槽の内側の水滴を誤検出する恐れがある。
このように、静電容量式近接センサにとって「検出対象の静電容量が大きく、距離も近い」という条件であれば検出の判断が容易であるが、そうでないものを検出したい場合、言い換えれば、「検出対象の静電容量は大きいが、距離が遠い」または「検出対象の距離は近いが、静電容量が小さい」ものを検出しなければならない用途では、検出すべきものと検出したくないものとの区別がつかず、誤動作となる場合があった。
本発明は上記問題を解決するためになされたもので、従来の静電容量式近接センサでは「検出電極と対象との距離」「対象の大きさ」の組み合わせによって誤検出となってしまう可能性があった場合でも、検出すべき対象の有無を正確に判断できる静電容量式近接センサを提供することを目的とする。
上記目的を達成するため、請求項1記載の発明は、検出対象の静電容量を検出する検出電極と、前記検出電極の周囲に設けられ検出対象以外のノイズを低減する遮蔽電極と、前記遮蔽電極に前記検出電極と等電位の電圧の高周波パルスを印加する遮断電圧出力手段と、前記検出電極と大地間の静電容量を検出する静電容量検出手段と、前記静電容量検出手段から出力される検出容量に応じて検出対象の有無を判断する判定手段を備えた静電容量型近接センサにおいて、前記遮蔽電極は、前記検出電極の近傍に設けられた第1の遮断電極と、その周辺部に設けられた第2の遮断電極とに分割され、前記第1の遮断電極には前記高周波パルスが常時印加されるとともに、前記第2の遮断電極へ前記高周波パルスの印加が選択される遮断電極選択手段とを有するので、遮蔽電極の面積を変えて静電容量を検出し、遮蔽電極による遮蔽効果の程度を知ることが可能となり、その情報によって検出対象の大きさを推定し、目的とする検出対象であるか否かの正確な判断を行うことができる。
請求項2記載の発明は、請求項1記載の静電容量型近接センサにおいて、前記検出電極及び前記遮断電極は面状に形成されるとともに、第1の遮蔽電極は、前記検出電極の全周を囲い且つ前記検出電極の検出面を残し覆うように形成され、前記第2の遮断電極は前記第1の遮蔽電極の外周部に設けられたので、検出電極が遮蔽電極の効果を最大限に発揮してノイズに強い検出状態となり、第1の遮蔽電極の外側にまで存在するような大きな対象物の場合、第2の遮蔽電極の遮断効果が有効になり精度よい検出が可能となる。
請求項3記載の発明は、請求項2記載の静電容量型近接センサにおいて、前記第2の遮蔽電極は、前記第1の遮蔽電極の全周を囲むように形成されたので、第2の遮蔽電極による対象物への影響を全方位に対して均一にすることができるので、精度のいい検出が可能となる。
請求項4記載の発明は、請求項3記載の静電容量型近接センサにおいて、前記第2の遮蔽電極の面積は、前記第1の遮蔽電極の面積より大きいので、遮蔽電極の面積を変えて対象物の静電容量を検出する場合、比較する面積比を大きくできるので、対象物に対しより確度の高い検出ができる。
請求項5記載の発明は、請求項1乃至4のいずれか1項に静電容量型近接センサにおいて、前記遮断電極選択手段のON状態に対応して検出対象の有無を判断する第1の閾値と、前記第1の閾値より小さい第2の閾値とを有するともに、前記遮断電極選択手段のON状態動作中に、前記検出容量が前記第1の閾値未満で且つ前記第2の閾値以上の場合、前記遮断電極選択手段をOFF状態に切替えて動作させるので、通常の検出動作では、遮蔽電極が第1及び第2の遮蔽電極を合わせた広い面積となり、遮蔽電極の効果を最大限に発揮してノイズに強い検出状態とし、検出された検出容量が中間的な値となって検出対象の有無の判定が困難な場合に限って第2の遮蔽電極をOFFして、判定の補助的な情報を得るという2段階の判定となり、効率的、かつ確度の高い検出動作ができる。
請求項6記載の発明は、請求項5記載の静電容量型近接センサにおいて、前記遮蔽電極選択手段をONからOFF状態に変更した後、前記判定手段は、前記検出容量が所定量以上増加した場合に検出対象が無いと判断するので、検出対象が有する静電容量が小さく、よってサイズが小さいと推定されるもの、すなわち検出電極のごく近くに存在する水滴などの小さな物体による誤検出を防止でき、人体など大きな物体の検出に最適である。
請求項7記載の発明は、請求項1乃至4のいずれか1項に記載の静電容量型近接センサにおいて、前記遮断電極選択手段のOFF状態に対応して検出対象の有無を判断する第1の閾値と、前記第1の閾値より小さい第2の閾値とを有するともに、前記遮断電極選択手段のOFF状態動作中に、前記検出容量が前記第1の閾値未満で且つ前記第2の閾値以上の場合、前記遮断電極選択手段をON状態に切替えて動作させるので、通常の検出動作では、遮蔽電極が第1の遮蔽電極のみの狭い面積となり、遮蔽電極の効果を制限して小さな検出対象に適した検出状態とし、検出された検出容量が中間的な値となって検出対象の有無の判定が困難な場合に限って第2の遮蔽電極をONして、判定の補助的な情報を得るという2段階の判定となり、効率的、かつ確度の高い検出動作ができる。
請求項8記載の発明は、請求項7記載の静電容量型近接センサにおいて、前記遮蔽電極選択手段をOFFからON状態に変更した後、前記判定手段は、前記検出容量が所定量以上減少した場合に検出対象が有ると判断するので、検出対象が有する静電容量が小さく、よってサイズが小さいと推定されるものに限って検出判定し、検出電極の比較的近くに存在する人体などによる誤検出を防止でき、水滴など小さな物体の検出に最適である。
請求項9記載の発明は、請求項1乃至6のいずれか1項に記載の静電容量式近接センサを便座に設け、人体の着座検出を行なうことを特徴とする温水洗浄便座装置であるので、便座上に付着する水滴や便座カバー等の影響を除去して安定した人体検出ができる。
請求項10記載の発明は、請求項1乃至6のいずれか1項に記載の静電容量式近接センサを浴槽に設け、前記浴槽の水位を検出することを特徴とする浴槽装置であるので、検出電極の近くに付着する水滴、結露水等の影響を除去して安定した水位検出ができる。
本発明によれば、まず最初に検出対象の大きさに適した面積の遮蔽電極を用いて検出を行うため、検出される静電容量が十分に大きい、または十分に小さい、というように検出対象の有無がはっきりした状況では、遮蔽電極の遮蔽効果を最適に機能させ、安定した検出を行うことができる。
一方、前記条件の検出対象の大きさに適した面積の遮蔽電極を用いて検出された静電容量が、検出対象が有るのか無いのか判断に迷うような中間的な値をとった場合、遮蔽電極の面積を変更して検出対象の静電容量の大小を判定する。その結果により、目的とする検出対象が存在するのか、そうでないのかの判定ができる。
また、遮蔽電極の面積変更の手段として、遮蔽電極を2つに分割して設け、遮蔽電圧の接続をON・OFFする方法とするので、電気的なスイッチを制御するだけで遮蔽電極の面積変更ができ、小型、低コストで、静電容量式近接センサの性能を向上できる。
また、本発明の静電容量式近接センサを温水洗浄便座装置の着座検出センサとして用いれば、小便、掃除の水などがかかりやすいトイレ機器において、これらの水滴による誤動作を防止することができる。つまり、水滴による検出容量と、人体による検出容量を判別することができるため、正確な人体検出が可能となる。
また、本発明の静電容量式近接センサを、目的の水位で自動的に湯張り(水溜め)を停止する浴槽装置の水位センサに用いれば、単なる水滴や結露水と、目的とする湯張り(水溜め)した水とを明確に区別できるので、さまざまな浴槽等への設置が可能となり、取り扱いしやすく適用範囲の広い水位センサが実現できる。
以下に、本発明の第1の実施形態について図面を参照しながら説明する。
図12は、静電容量式近接センサを搭載した温水洗浄便座装置の使用状態を示す斜視図である。便器100に取り付けられた温水洗浄便座装置101の便座102に使用者が着座し、お尻の洗浄の操作を行っている。使用者が、便座102に確実に着座していることが検出された場合のみ、洗浄の操作が受け付けられる。
温水洗浄便座装置の使用者の着座を検出するものが着座センサであり、本発明の静電容量式近接センサが使用可能である。図1は、本発明の実施形である静電容量式近接センサを着座センサとして内蔵した、便座の内部構造を示す図である。また、図2はその断面構造(図1のA−A’部)を示す図である。
図1において、樹脂製の便座ケース7の内側に、便座保温用のヒーター5とその熱を拡散するためのアルミ箔の均熱板2および3が貼られている。この均熱板とヒーターの構造は、便座を暖房するために従来より良く知られた構造であり、静電容量式近接センサのために特別に設けたものではない。
本発明では、均熱板を2と3に分割し、静電容量式近接センサの遮蔽電極として利用する。但し、検出電極や遮蔽電極は導体であればよく、アルミ箔である事、均熱板と共用する事は必須条件ではない。
図1において、1は本発明の静電容量式近接センサの検出電極であり、前述の均熱板2の一部と重なるように、便座ケース7に対して貼り付けられる。均熱板2は本発明の「第1の遮蔽電極」であり、均熱板3は本発明の「第2の遮蔽電極」である。
図1の4は、静電容量式近接センサの回路部であり、検出電極1、第1の遮蔽電極2、第2の遮蔽電極3と信号線で接続される。また、便座の外から回路駆動用の電源の供給を受け、着座の判定結果を出力する。なお、図1では図2のヒータ5を(図が煩雑となるので)省略している。
図3は静電容量式近接センサの回路部4の構成を示す回路図である。
図3において、図1、図2と同じく、1は検出電極、2は第1の遮蔽電極、3は第2の遮蔽電極である。また、静電容量検出手段10は、スイッチドキャパシタ型の検出回路である。第1の遮蔽電極は検出電極の検出面を残して覆うように構成されている。また、検出電極1の検出面から検出対象を経由して大地までの静電容量がCxである。
検出電極1に対して高周波パルス電圧を印加し、検出電極1からCxに対する充放電電荷をCfにためて電圧変換する。この電圧変換された出力によりCxの値が分かる。判定手段11は例えばA/D変換器を内蔵したマイコンであり、Cxの値によって人体の着座を判断し、その判定結果を判定出力端子へと出力する。
同時に、遮蔽電圧発生手段12により、第1の遮蔽電極2に対して、検出電極1と同電位の高周波パルスを印加する。また、遮蔽電極選択手段であるスイッチ9を介して、第2の遮蔽電極3に対しても同様に電圧が印加される。但し、その選択(スイッチ9のON・OFF)は、判定手段11が出力する信号S2によって制御される。
第1及び第2の遮蔽電極に遮蔽電圧出力手段12の電圧が印加されれば、その近傍は検出電極1とほぼ等電位となるため、第1及び第2の遮蔽電極の近傍にあるものに対して検出電極1からの充放電は行われない。よって、第1及び第2の遮蔽電極の近傍の検出感度が低下し、ノイズ等の除去効果が生じる。
図4は、図3とは異なる検出方式の、静電容量式近接センサの回路部4の構成を示す回路図である。静電容量検出手段13はCR発振回路になっており、その帰還回路の一部に検出電極1が接続される。検出電極1と大地との静電容量Cxの変化が、CR発振回路の発振周波数変化となって現れる。この周波数変化によりCxの値を得て着座判定手段11(例えばパルスカウンタ機能を有するマイコン)は人体の着座を判断し、その結果を判定出力端子へと出力する。
同時に、遮蔽電圧発生手段14(例えばバッファアンプ)により、検出電極1と同じ電圧を発生し、第1及び第2の遮蔽電極に印加する。その構成、効果は図3の場合と同様である。
以上、図3、図4共に、静電容量検出手段、遮蔽電圧出力手段、判定手段の構成は、従来からある静電容量式近接センサの回路として一般に知られているものであり、遮蔽電極が2つに分かれ、遮蔽電圧印加の選択手段を有する点の構成が本発明の特徴である。
次に、図5を用いて本発明の温水洗浄便座装置の着座検出の原理を説明する。図5は、便器100に温水洗浄便座装置101が取り付けられており、その便座102に使用者が着座している状態である。便座102の内部には、検出電極1と第1の遮蔽電極2、第2の遮蔽電極3および回路部4が内蔵されている。温水洗浄便座装置101は、制御回路104により制御される。
図5は便器周辺の各部分の静電結合状態を示す図である。図1の静電着座センサの回路部4(図3及び図4の回路に相当する部分)は、この制御回路104と電気的に接続されており(電源及びGNDラインが繋がっている)、静電結合状態を考える上では、回路部4と制御回路104は同一と考えて良い。
図5において、C5は制御回路104、つまり静電容量式近接センサの回路部4と大地との間の静電容量である。なお大地とは、電位の基準になるところという意味であり、実際には便器が設置された床、或いは建物の電位となる。
C4は使用者の人体と大地との間の静電容量である。C1は検出電極1と使用者の人体との、C2は第1の遮蔽電極2と使用者の人体との、C3は第2の遮蔽電極3と使用者の人体との静電容量である。
図5を、回路要素のみで表すと図6となる。図6を更に単純化すると図7となる。但し、図7において、図6のC5を短絡とみなして削除している。これは以下の理由による。
温水洗浄便座装置は、一般にACコンセントを電源として動作し、装置自体でアース接続することから、C5はC1〜C4に比較すると十分に大きな静電容量となる。
複数のコンデンサの直列容量は、容量の小さいものが支配的となる。よって、直列接続された容量の中で、他に比較して十分に容量の大きいものは近似的に短絡と考え無視して良い。
この理由により、C1〜C5の閉回路(C1〜C3は並列)を考える際に、C5の静電容量が十分に大きいため、図7のように短絡と考えても良い。
図7において、電圧Vの印加によりC1を流れるQを測定することが、図3及び図4のCxを測定する行為に相当する。当然、Qが大きいほどCx(検出容量)が大きいという事であり、Qがある閾値を越えれば人体が存在する、すなわち着座状態と判断する。この考え方が検出の基本である。
第1および第2の遮蔽電極(C2およびC3)の目的は、検出電極(C1)周辺のものの影響を除去することである。例えば、便座上に水滴などがあった場合、水滴をC2やC3によってC1と等電位(それに近い電位)にしてしまえば、水滴によるQの増加を防ぐことができる。
一方、検出すべき人体に対しても、C2やC3は遮蔽効果を生じる。つまり、検出すべき対象についても検出感度を低下させる。
遮蔽電極の効果としては、検出したくないものには遮蔽効果が有効に働き、検出すべきものには検出感度低下を生じない方が良い。これは、C1、C2、C3とC4の大小関係によって決まる。
まず、C1、C2、C3の値は、電極と検出対象との結合容量であるため、それぞれの電極面積と検出対象までの距離に依存する。最も単純化して考えれば、「並行平板コンデンサ」とみなすことができる。
例えば、使用者が着座した場合、検出電極1と使用者の人体(検出対象)は、便座ケース7の厚み(tとする)の距離で接近する。検出電極1の面積をSとすると、人体の表面積の方が十分に大きいので、C1は平行平板のコンデンサの静電容量の計算で求められ、
[C1=ε0×εs×S÷t]となる。ε0は真空中の誘電率、εsは便座ケース7の材質の樹脂の比誘電率であり、一般に2〜3程度である。
便座に内蔵できる程度の電極サイズ(例えば数cm□)では、C1は1pF程度の値となる。C2、C3はその面積に比例して大きくなるが、数pF程度である。
次にC4であるが、人体はある大きさを持つ導体であり、その表面積に相当する静電容量を持っている。つまり、静電容量は表面積に依存するので、水滴などの静電容量に比較すれば非常に大きい。かつ、人体は床に足をついたり、手すりがあれば握ったりすることで、大地(トイレ内の床など)との直接的な結合も存在する。
但し、人体は単純な形状(電磁気学では半径rの導体球の例が多い)でなく、体格差もあり、それが床などに対してどういう状態かにも影響されるのでC4を正確に計算することは困難であるが、一般に(経験的に)C4は数10pF〜100pF程度と考えられる。
一方、便座の上に、人体でないもの、例えば水分を多く含んだ(濡れた)便座カバーが取り付けられた場合、その便座カバー自体がその表面積に相当する静電容量を持っている。しかし、その表面積は人体に比較して小さいので、その場合のC4は、数pFか、それ以下の値となる。
このように、人体の場合のC4はC2やC3に比較して大きいため、Qは、ほぼ、C1とVだけで決まり、C2、C3に影響されない。つまり、人体検出ではC4が大きいため、C2、C3の遮蔽効果は小さく、C2、C3によって検出感度を低下させる事もない。
一方、水滴や濡れた便座カバーなど着座センサとしては検出したくないものでは、C4が小さな値となり、C2やC3と近い値となる。よって、その影響を受けやすく、遮蔽効果が強くなると考えられる。
以上が、着座センサにおいて遮蔽電極の効果の説明であり、従来から知られているものである。
本発明は、検出電極と検出対象の間の容量「C1が大きくなった時に対象があると判定する」事を基本としながら、検出対象の容量C4と遮蔽電極の容量C2、C3の大小関係によって、遮蔽効果に差が生じる点を利用し、検出精度、検出の信頼性を高めるものである。
本発明の特徴である検出動作を、図8のフローチャートを用いて説明する。図8は、図3または図4の判定手段11がマイコンであるとした場合の動作プログラムに相当する。但し、複雑な処理ではないので、マイコンを使わず、ロジック回路やコンパレータなどの回路素子によって構成することも可能である。
まず、図8のステップ001(以下S001)で着座判定動作をスタートする。S002で、遮蔽電極選択手段である遮蔽電極選択スイッチ9(以下スイッチ9)をONの状態とする。よって、第2の遮蔽電極3の遮蔽効果は有効となり、図7のC3が有効となる。この状態で、S003で容量を測定する。すなわち、図7のC1を流れるQを測定することであり、図3、図4のCxを測定することに相当する。
但し、その方法の詳細は、例えば図3または図4のような方法があるが、Cxを測定する方法を限定する必要は無い。また、スイッチ9のON・OFFを制御する信号は、図3及び図4のS2である。
S004で、この結果が閾値1以上であるか判断する。閾値1は十分に大きい数値であり、非着座時であれば、検出容量Cxがノイズや環境変化が要因で誤って越える事が無い値であり、この閾値を越える容量が検出されるならば確実に着座と判断できる値であって、閾値1以上の場合はS010へ進み、着座と判定する。
一方、S004で閾値1未満となり、S005で閾値2未満である場合、S012へ進み、非着座と判定する。閾値2は、閾値1と反対に十分に小さい値であり、検出容量Cxが着座時にノイズや環境変化が要因で誤って下回る事が無い値であり、この値未満であれば確実に非着座と判断できる値である。
以上のように判断される様子を図9のタイムチャートに示す。図9のように、検出された容量が十分に大きい値(閾値1以上)か、十分に小さい値(閾値2未満)であれば、容易に着座、非着座の判定ができる。
本発明が問題とするのは、S003の結果が、閾値1以上でも閾値2未満でもない、中間的な値をとった場合である。
例えば、使用者が極端に後ろ寄り(便座の奥側)に座ったり、足を広げて座るなどして、使用者の人体(太股)が図1の検出電極1の部分に重ならないように着座された場合、使用者が若干腰を浮かせて、便座と人体との間に隙間が出来た場合、便座に分厚い便座カバーを被せた場合、衣服の一部が便座と人体の間に挟まった場合などが考えられる。
これらの状態では、人体と検出電極の距離が離れるために、検出される容量が減少し、閾値1以上とならない可能性がある。なお、ここではノイズ等の影響を問題にしているのではなく、本来、着座状態と判断されるべき状態にも関わらず、検出容量Cxの値が不足する状況である。
一方、便座上に水滴が大量に付着した場合、便座カバーが濡れた場合などは、少量の水滴が付着した場合などに比べ、検出される容量が増加する。これが、閾値1以上となるまではなくても、閾値2を越える可能性がある。これらは、(前記同様にノイズの影響は別として)本来、非着座と判断されるべきものである。
このように、検出された容量が、閾値1と閾値2の中間の値の場合、着座と非着座のどちらに判断すべきか、これだけでは分からない。
この場合、図8でS007へ進み、遮蔽電極選択手段であるスイッチ9をOFFとする。よって、第2の遮蔽電極3の遮蔽効果は無効となり、図7のC3が無効となる。この状態で、S008で容量を測定する。
ここで前述のように、使用者が着座しているにも関わらず何らかの要因で検出電極1と人体との距離が離れてしまい、図7のC1が小さくなった場合を考える。
対象が人体であればC4はC2、C3に比較して大きい値であるため、遮蔽電極の効果は小さい。よって、スイッチ9によってC3を無効としても、もともとC3の遮蔽効果は小さいために、検出される容量の変化は小さい。
図10のように、C3を無効(スイッチ9をOFF)とすることで、C3による遮蔽効果が無くなり、検出容量に若干の増加は見られるが、その量は少ない。この増加分が閾値3未満であれば(S009)、それは「C3に比較してC4が大きいためにC3の影響が少ない」と判断でき、「C4は大きい」、すなわち「検出対象は大きい」、よって「検出対象は人体である」と推定され、着座と判断する(S010)。
この後はS002に戻って、これまで説明した動作を繰り返すので、図10のようにスイッチ9のON・OFFを繰り返す。
一方、使用者が着座しているのではなく、便座カバーが濡れているなどの理由で検出容量が閾値1と閾値2の中間の値となった場合を考える。C4は比較的小さいが、C1が大きい(濡れた便座カバーは便座に密着し、検出電極との距離が近い)ことが要因である。しかし、C2、C3の遮蔽電極による遮蔽効果が大きく、検出容量が閾値1を越えるまでには至らない。
この場合、図11のように、C3を無効(スイッチ9をOFF)とすることで、C3による遮蔽効果が無くなり、検出容量は大きく増加する。この増加分が閾値3以上であれば(S009)、それは「C3に比較してC4が小さいためにC3の影響が大きい」という判断となり、「C4は小さい」、すなわち「検出対象は小さい」、よって「検出対象は人体ではない」と推定され、非着座と判断する(S012)。
以上説明したように、「検出容量が大きいと着座」が基本的な判断基準(S004、S005の判断)であるが、検出容量が中間的な値となった場合(S007以降の動作)は、遮蔽電極の面積を変えて(S007)再測定(S008)する。対象の大きさによってC4が異なるため、遮蔽電極の面積を変えた影響の程度に差が現れ、その結果によって対象を判断(S009)できる。
なお、図8のように検出容量が中間的な値をとった時に限って遮蔽電極の面積を変えるのでなく、常に遮蔽電極の面積を切り替えながら測定し、その結果に応じて着座を判断するような処理にしても良い。
しかし、対象とするもの(この場合は着座する人体)が決まっていれば、それに合わせて遮蔽効果、すなわち遮蔽電極の面積を設定すべきであり、図8のS007〜S009の動作は、それだけでは判断が困難となる例外的な場合の動作である。よって、例外的な動作を常時行うのは無駄であり、図8のように検出容量が中間的な値となった場合に限って遮蔽面積を切り替える方が好ましい。
次に、本発明の第2の実施形態について図面を参照しながら説明する。
図13は、本発明の静電容量式近接センサを、浴槽装置の自動湯張り機能のための水位センサとして用いた場合の断面図である。検出電極、遮蔽電極の形状(正面図)は、例えば図14のようにする。
静電容量検出の回路部は、着座センサの実施例と同じく図3または図4である。また、回路の静電容量の考え方は、図6の検出対象(人体)を、湯張りされた水に置き換える。図6及び図7のC4は、浴槽にたまった水(湯)の容量である。更に、判定動作では、図8の「着座」を「水位十分」に、「非着座」を「水位不十分」に置き換えれば、着座センサの場合と同じ動作となる。
図13の湯張りの水位検出において、湯張りの水位が検出電極の高さに達していれば、浴槽内の水の量は十分に多く、図7のC4は非常に大きい値となる。(人体と比較しても数倍大きい)
しかし、浴槽の厚みによっては、検出電極と浴槽内の水との結合(図7のC1)が十分に大きい値になるとは限らない。よって、さまざまな浴槽に対して水位センサが取り付けられるとすると、水位が十分でも検出容量Cxは、図8の閾値1を越えない場合があり得る。
一方、検出電極周辺に付着した水滴や結露水によって検出容量Cxが図8の閾値2を越える場合が考えられる。しかし、水滴などの容量(C4)は数pF程度の容量しかない。よって、着座判定の場合と同様にして、遮蔽電極の面積を変えて容量測定を行うことで、浴槽にたまった大量の水か、水滴や結露水かの判断ができる。
そのため、様々な厚みの浴槽に取り付けても確実な水位検出ができる、信頼性の高い水位センサが実現できる。
次に、本発明の第3の実施形態について図面を参照しながら説明する。
図15は、本発明の静電容量式近接センサを、結露検出、降雨検出などを目的とする、水滴センサとして用いた例の断面図である。図15においてガラス8(8はガラスの断面である)に付着した水滴を検出する。なお、検出電極、遮蔽電極の形状(正面図)は、例えば図14のようにする。
静電容量検出の回路部は、前述の実施例と同じく図3または図4である。また、回路の静電容量の考え方は、図6の検出対象(人体)を、水滴に置き換え、図6及び図7のC4は、水滴の容量となる。前述の着座センサや水位センサと違い、検出すべき対象の水滴のC4は小さく、検出の障害となる例えば人体等のC4は大きい。
この検出動作を図16のフローチャートを用いて説明する。まず、図16のステップ101(以下S101)で水滴判定動作をスタートする。
S102で、遮蔽電極選択手段である遮蔽電極選択スイッチ9(以下スイッチ9)をOFFの状態とする。よって、第2の遮蔽電極3の遮蔽効果は無効となり、図7のC3が無効となる。この状態で、S103で容量を測定する。すなわち、図7のC1を流れるQを測定する。
これは、容量(C4)が小さい水滴を検出するため、遮蔽電極の効果を高くしすぎると水滴の検出が困難となるためである。スイッチ9をOFFとし、第1の遮蔽電極2のみを使用するが、この場合の遮蔽効果は、周辺環境の電気的なノイズの除去が主な目的であり、遮蔽効果としては十分である。つまり、遮蔽効果を、水滴の検出に対して必要最低限に抑える。
S104で、この検出容量が閾値1以上であるか判断する。閾値1は十分に大きい数値であり、検出容量が、水滴が無い状態でノイズや環境変化が要因で誤って越える事が無い値であり、この閾値を越える値Cxが検出されるならば確実に水滴有りと判断できる値であって、閾値1以上の場合はS010へ進み、水滴有りと判定する。
一方、S104で閾値1未満となり、S105で閾値2未満である場合、S112へ進み、水滴無しと判定する。閾値2は、閾値1と反対に十分に小さい値であり、水滴が有る時に検出容量がノイズや環境変化が要因で誤って下回る事が無い値であり、この値未満であれば確実に水滴無しと判断できる値である。
以上の判断の様子を図17のタイムチャートに示す。図17のように、検出された容量が十分に大きい値(閾値1以上)か、十分に小さい値(閾値2未満)であれば、容易に水滴の有り、無しの判定ができる。
問題となるのは、S103の結果が、閾値1以上でも閾値2未満でもない、中間的な値をとった場合である。
例えば、水滴が付着しているがその量が少ない、検出電極との距離がたまたま遠いなどの理由で閾値1を越えるには不十分であった時、図15のガラス8の厚みが大きい時、などが考えられる。本来、水滴有りと判断されるべき状態にも関わらず、検出容量Cxが不足する状況である。
一方、ガラス8に水滴が付着していなくても、その近くに人体などが近づいた場合などは、対象が大きいために検出される容量が増加する。特に、容量(C4)が小さい水滴を検出するため、第2の遮蔽電極3を使っていない(S102)ため、遮蔽効果が小さい。よって、人体などにより、検出容量が閾値1以上となるまではなくても、閾値2を越える可能性がある。これらは、本来、水滴無しと判断されるべきものである。
このように、検出された容量が、閾値1と閾値2の中間の値の場合、水滴有り、無しのどちらに判断すべきか、これだけでは分からない。
この場合、図16でS107へ進み、遮蔽電極選択手段であるスイッチ9をONとする。よって、第2の遮蔽電極3の遮蔽効果が有効となり、図7のC3が有効となる。この状態で、S108で容量を測定する。
ここで、水滴が付着しているのではなく、人体が近づいたなどの理由で検出容量が閾値1と閾値2の中間の値となった場合を考える。対象が人体であるので、C4の値は大きい。
図18のように、C3を有効(スイッチ9をON)とすることで、検出容量に若干の減少は見られるが、C4が大きいためにその減少量は少ない。この減少分が閾値3未満であれば(S109)、それは「C3に比較してC4が大きいためにC3の影響が少ない」と判断でき、「C4は大きい」、すなわち「検出対象は大きい」、よって「検出対象は人体のようなものであり、水滴ではない」と推定され、水滴無しと判断する(S112)。
次に、水滴が付着しているにも関わらず、その量や検出電極1との距離などの要因で図7のC1が小さくなった場合を考える。
対象が水滴であればC4はC1〜C3に比較して小さい値であるため、スイッチ9によってC3を有効とすると、C3の遮蔽効果は大きく、検出される容量は大幅に減少する。
この場合、図19のように、C3を有効(スイッチ9をON)とすることで、検出容量は大きく減少する。この減少分が閾値3以上であれば(S109)、それは「C3に比較してC4が小さいためにC3の影響が大きい」という判断となり、「C4は小さい」、すなわち「検出対象は小さい」、よって「検出対象は水滴である」と推定され、水滴有りと判断する(S112)。
以上説明したように、着座検出や水位検出とは全く逆の考え方であるが、遮蔽電極の面積を増やして検出対象の容量が小さいということを検出すると、水滴有りと判断できる。
なお、温水洗浄便座装置で着座検出を行った動作は、例えばタッチパネル上で操作者の指を検出する場合においても、同様に有効である。その場合、人体の臀部と指先のスケールの差を考慮すれば良い。
本発明の実施形である静電容量式近接センサを備える便座の内部構造を示す図である。 本発明の実施形である静電容量式近接センサを備える便座の断面構造を示す図である。 静電容量式近接センサの回路部3の構成を示す回路図である。 静電容量式近接センサの回路部3の構成を示す回路図である。 本発明の実施形である温水洗浄便座装置の着座検出の原理を示す図である。 図5の内容を回路要素のみで示した回路図である。 図6の内容を更に簡略化した回路図である。 本発明の温水洗浄便座装置の着座検出の動作を示すフローチャートである。 本発明の温水洗浄便座装置の着座検出で、着座と判定される動作の一例を示すタイミングチャートである。 本発明の温水洗浄便座装置の着座検出で、着座と判定される動作の一例を示すタイミングチャートである。 本発明の温水洗浄便座装置の着座検出で、非着座と判定される動作の一例を示すタイミングチャートである。 温水洗浄便座装置の使用状態を示す斜視図である。 本発明の実施形である水位センサを備えた浴槽装置の断面図である。 本発明の実施形である水位センサ及び水滴センサの検出電極および遮蔽電極の形状例を示す図である。 本発明の実施形である水滴センサを備えたガラスの断面図である。 本発明の水滴センサの動作を示すフローチャートである。 本発明の水滴センサの検出動作で、水滴有りと判定される動作の一例を示すタイミングチャートである。 本発明の水滴センサの検出動作で、水滴無しと判定される動作の一例を示すタイミングチャートである。 本発明の水滴センサの検出動作で、水滴有りと判定される動作の一例を示すタイミングチャートである。
符号の説明
1 検出電極
2 第1の遮蔽電極
3 第2の遮蔽電極
4 静電容量式近接センサの回路部
5 ヒーター
5 均熱板
7 便座ケース
9 遮蔽電極選択手段
10、13 静電容量検出手段
11 判定手段
12、14 遮蔽電圧発手段
100 便器
101 温水洗浄便座装置本体
102 便座

Claims (10)

  1. 検出対象の静電容量を検出する検出電極と、前記検出電極の周囲に設けられ検出対象以外のノイズを低減する遮蔽電極と、前記遮蔽電極に前記検出電極と等電位の電圧の高周波パルスを印加する遮断電圧出力手段と、前記検出電極と大地間の静電容量を検出する静電容量検出手段と、前記静電容量検出手段から出力される検出容量に応じて検出対象の有無を判断する判定手段を備えた静電容量型近接センサにおいて、前記遮蔽電極は、前記検出電極の近傍に設けられた第1の遮断電極と、その周辺部に設けられた第2の遮断電極とに分割され、前記第1の遮断電極には前記高周波パルスが常時印加されるとともに、前記第2の遮断電極へ前記高周波パルスの印加が選択される遮断電極選択手段とを有することを特徴とする静電容量型近接センサ。
  2. 請求項1記載の静電容量型近接センサにおいて、前記検出電極及び前記遮断電極は面状に形成されるとともに、第1の遮蔽電極は、前記検出電極の全周を囲い且つ前記検出電極の検出面を残し覆うように形成され、前記第2の遮断電極は前記第1の遮蔽電極の外周部に設けられたことを特徴とする静電容量型近接センサ。
  3. 請求項2記載の静電容量型近接センサにおいて、前記第2の遮蔽電極は、前記第1の遮蔽電極の全周を囲むように形成されたことを特徴とする静電容量型近接センサ。
  4. 請求項3記載の静電容量型近接センサにおいて、前記第2の遮蔽電極の面積は、前記第1の遮蔽電極の面積より大きいことを特徴とする静電容量型近接センサ。
  5. 請求項1乃至4のいずれか1項に記載の静電容量型近接センサにおいて、前記遮断電極選択手段のON状態に対応して検出対象の有無を判断する第1の閾値と、前記第1の閾値より小さい第2の閾値とを有するともに、前記遮断電極選択手段のON状態動作中に、前記検出容量が前記第1の閾値未満で且つ前記第2の閾値以上の場合、前記遮断電極選択手段をOFF状態に切替えて動作させることを特徴とする静電容量型近接センサ。
  6. 請求項5記載の静電容量型近接センサにおいて、前記遮蔽電極選択手段をONからOFF状態に変更した後、前記判定手段は、前記検出容量が所定量以上増加した場合に検出対象が無いと判断することを特徴とする静電容量型近接センサ。
  7. 請求項1乃至4のいずれか1項に記載の静電容量型近接センサにおいて、前記遮断電極選択手段のOFF状態に対応して検出対象の有無を判断する第1の閾値と、前記第1の閾値より小さい第2の閾値とを有するともに、前記遮断電極選択手段のOFF状態動作中に、前記検出容量が前記第1の閾値未満で且つ前記第2の閾値以上の場合、前記遮断電極選択手段をON状態に切替えて動作させることを特徴とする静電容量型近接センサ。
  8. 請求項7記載の静電容量型近接センサにおいて、前記遮蔽電極選択手段をOFFからON状態に変更した後、前記判定手段は、前記検出容量が所定量以上減少した場合に検出対象が有ると判断することを特徴とする静電容量型近接センサ。
  9. 請求項1乃至6のいずれか1項に記載の静電容量式近接センサを便座に設け、人体の着座検出を行なうことを特徴とする温水洗浄便座装置。
  10. 請求項1乃至6のいずれか1項に記載の静電容量式近接センサを浴槽に設け、前記浴槽の水位を検出することを特徴とする浴槽装置。
JP2006181303A 2006-06-30 2006-06-30 静電容量型近接センサ及びそれを搭載した温水洗浄便座装置と浴槽装置 Expired - Fee Related JP4645989B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006181303A JP4645989B2 (ja) 2006-06-30 2006-06-30 静電容量型近接センサ及びそれを搭載した温水洗浄便座装置と浴槽装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006181303A JP4645989B2 (ja) 2006-06-30 2006-06-30 静電容量型近接センサ及びそれを搭載した温水洗浄便座装置と浴槽装置

Publications (2)

Publication Number Publication Date
JP2008008831A true JP2008008831A (ja) 2008-01-17
JP4645989B2 JP4645989B2 (ja) 2011-03-09

Family

ID=39067164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006181303A Expired - Fee Related JP4645989B2 (ja) 2006-06-30 2006-06-30 静電容量型近接センサ及びそれを搭載した温水洗浄便座装置と浴槽装置

Country Status (1)

Country Link
JP (1) JP4645989B2 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216506A (ja) * 2008-03-10 2009-09-24 Fujitsu Microelectronics Ltd 容量センサー
JP2010235081A (ja) * 2009-03-31 2010-10-21 Fujikura Ltd パワーシート駆動装置
JP2010235059A (ja) * 2009-03-31 2010-10-21 Fujikura Ltd 車両用制御ペダル装置
JP2010237144A (ja) * 2009-03-31 2010-10-21 Fujikura Ltd 車両用障害物検出装置および歩行者保護用エアバッグ展開制御装置
JP2010235097A (ja) * 2009-03-31 2010-10-21 Fujikura Ltd 車両用照明装置
JP2010272991A (ja) * 2009-05-19 2010-12-02 Toyota Boshoku Corp 静電容量センサの電極構造及びそれを用いた車両用近接センサ
JP2012506042A (ja) * 2008-10-17 2012-03-08 フォルシア ブロック アバン 検出エリア内の物体を検出するセンサ装置
JP2013224902A (ja) * 2012-04-23 2013-10-31 Yazaki Corp 電極故障診断装置
CN106771740A (zh) * 2016-12-14 2017-05-31 乳源南岭智能家用机械有限公司 马桶加热座圈的自动测试装置
JP2019024933A (ja) * 2017-07-28 2019-02-21 Toto株式会社 便座装置
KR20190057233A (ko) * 2014-08-19 2019-05-28 셈테크 코포레이션 정전 용량형 근접 센서 및 이동 디바이스
US10349792B2 (en) 2014-02-27 2019-07-16 Mitsubishi Electric Corporation Hand drying apparatus
JP2020036870A (ja) * 2018-08-31 2020-03-12 Toto株式会社 便座装置
KR20200080698A (ko) * 2018-12-27 2020-07-07 주식회사 콜러노비타 온수세정기의 착좌 감지 장치
JP2021067597A (ja) * 2019-10-25 2021-04-30 Toto株式会社 人体検知センサ及び便座装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09475A (ja) * 1995-06-20 1997-01-07 Toto Ltd 着座検出装置
JP2000080703A (ja) * 1998-09-04 2000-03-21 Toto Ltd 静電容量式人体局部洗浄装置用着座センサー
JP2001035327A (ja) * 1999-07-22 2001-02-09 Sumitomo Metal Ind Ltd 静電容量型近接センサ
JP2006106008A (ja) * 2005-12-20 2006-04-20 Jsk Kk 静電容量型検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09475A (ja) * 1995-06-20 1997-01-07 Toto Ltd 着座検出装置
JP2000080703A (ja) * 1998-09-04 2000-03-21 Toto Ltd 静電容量式人体局部洗浄装置用着座センサー
JP2001035327A (ja) * 1999-07-22 2001-02-09 Sumitomo Metal Ind Ltd 静電容量型近接センサ
JP2006106008A (ja) * 2005-12-20 2006-04-20 Jsk Kk 静電容量型検出装置

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216506A (ja) * 2008-03-10 2009-09-24 Fujitsu Microelectronics Ltd 容量センサー
JP2012506042A (ja) * 2008-10-17 2012-03-08 フォルシア ブロック アバン 検出エリア内の物体を検出するセンサ装置
US8878550B2 (en) 2008-10-17 2014-11-04 Faurecia Bloc Avant Sensor device for detecting an object in a detection area
JP2010235081A (ja) * 2009-03-31 2010-10-21 Fujikura Ltd パワーシート駆動装置
JP2010235059A (ja) * 2009-03-31 2010-10-21 Fujikura Ltd 車両用制御ペダル装置
JP2010237144A (ja) * 2009-03-31 2010-10-21 Fujikura Ltd 車両用障害物検出装置および歩行者保護用エアバッグ展開制御装置
JP2010235097A (ja) * 2009-03-31 2010-10-21 Fujikura Ltd 車両用照明装置
JP2010272991A (ja) * 2009-05-19 2010-12-02 Toyota Boshoku Corp 静電容量センサの電極構造及びそれを用いた車両用近接センサ
JP2013224902A (ja) * 2012-04-23 2013-10-31 Yazaki Corp 電極故障診断装置
US10349792B2 (en) 2014-02-27 2019-07-16 Mitsubishi Electric Corporation Hand drying apparatus
EP3111817B1 (en) * 2014-02-27 2020-11-04 Mitsubishi Electric Corporation Hand dryer device
KR102159934B1 (ko) 2014-08-19 2020-09-29 셈테크 코포레이션 정전 용량형 근접 센서 및 이동 디바이스
KR20190057233A (ko) * 2014-08-19 2019-05-28 셈테크 코포레이션 정전 용량형 근접 센서 및 이동 디바이스
CN106771740A (zh) * 2016-12-14 2017-05-31 乳源南岭智能家用机械有限公司 马桶加热座圈的自动测试装置
CN106771740B (zh) * 2016-12-14 2024-04-16 乳源东阳光智能科技有限公司 马桶加热座圈的自动测试装置
JP2019024933A (ja) * 2017-07-28 2019-02-21 Toto株式会社 便座装置
JP2020036870A (ja) * 2018-08-31 2020-03-12 Toto株式会社 便座装置
JP7179261B2 (ja) 2018-08-31 2022-11-29 Toto株式会社 便座装置
KR20200080698A (ko) * 2018-12-27 2020-07-07 주식회사 콜러노비타 온수세정기의 착좌 감지 장치
KR102193607B1 (ko) * 2018-12-27 2020-12-22 주식회사 콜러노비타 온수세정기의 착좌 감지 장치
JP2021067597A (ja) * 2019-10-25 2021-04-30 Toto株式会社 人体検知センサ及び便座装置
JP7343838B2 (ja) 2019-10-25 2023-09-13 Toto株式会社 人体検知センサ及び便座装置

Also Published As

Publication number Publication date
JP4645989B2 (ja) 2011-03-09

Similar Documents

Publication Publication Date Title
JP4645989B2 (ja) 静電容量型近接センサ及びそれを搭載した温水洗浄便座装置と浴槽装置
RU2618929C1 (ru) Устройство обнаружения касания
JP6497540B2 (ja) 車両用開閉体の操作検出装置
JP5605205B2 (ja) 静電容量検出装置および接触検知センサ
US20140367975A1 (en) Door Handle Arrangement For Vehicles
JP2010139362A (ja) 静電容量式接触検知装置、ドアハンドル、およびスマートエントリーシステム
US10670427B2 (en) Capacitive sensor arrangement and vehicle outer handle
JP6824430B2 (ja) 静電センサ及びドアハンドル
JP2009218876A (ja) 静電容量タッチセンサ
JP5146657B2 (ja) タッチスイッチ検出装置及びそれを用いた給水装置
JP2010139384A (ja) 静電容量式乗員検知システム
JP2011006981A (ja) 操作入力装置及び吐水装置
JP6651451B2 (ja) 自動車両用のハンズフリーシステム
US10337181B2 (en) Toilet usage sensing system
WO2024070174A1 (ja) 静電容量センサ
JP2017032544A (ja) 接触検知装置、近接/接触検知装置、ドアハンドル装置およびその制御方法、および電子キーシステム
CN111026296A (zh) 触摸按键的响应控制方法、装置及电器
JP2010048613A (ja) 接触検知装置
JP5941822B2 (ja) 静電容量式乗員検知装置
JP2010025815A (ja) 静電容量式接触検知装置
JP2007175163A (ja) 静電式着座センサ
JP5092717B2 (ja) 静電容量式接触検知装置
CN216534916U (zh) 一种全自动饮水机
JP7179261B2 (ja) 便座装置
CN113475868A (zh) 一种智能镜柜的控制方法和智能镜柜

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4645989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101128

LAPS Cancellation because of no payment of annual fees