JP2007514849A - System, method and catalyst for producing crude product - Google Patents
System, method and catalyst for producing crude product Download PDFInfo
- Publication number
- JP2007514849A JP2007514849A JP2006545526A JP2006545526A JP2007514849A JP 2007514849 A JP2007514849 A JP 2007514849A JP 2006545526 A JP2006545526 A JP 2006545526A JP 2006545526 A JP2006545526 A JP 2006545526A JP 2007514849 A JP2007514849 A JP 2007514849A
- Authority
- JP
- Japan
- Prior art keywords
- crude
- catalyst
- crude product
- content
- column
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 658
- 239000012043 crude product Substances 0.000 title claims abstract description 486
- 238000000034 method Methods 0.000 title claims description 248
- 239000000203 mixture Substances 0.000 claims abstract description 299
- 239000000047 product Substances 0.000 claims abstract description 153
- 239000007788 liquid Substances 0.000 claims abstract description 65
- 229910052751 metal Inorganic materials 0.000 claims description 407
- 239000002184 metal Substances 0.000 claims description 407
- 239000011148 porous material Substances 0.000 claims description 255
- 239000010779 crude oil Substances 0.000 claims description 194
- 150000002739 metals Chemical class 0.000 claims description 175
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 164
- 229910052739 hydrogen Inorganic materials 0.000 claims description 150
- 230000000737 periodic effect Effects 0.000 claims description 150
- 239000001257 hydrogen Substances 0.000 claims description 149
- 238000009826 distribution Methods 0.000 claims description 138
- 150000001875 compounds Chemical class 0.000 claims description 132
- 238000004519 manufacturing process Methods 0.000 claims description 76
- 150000003839 salts Chemical class 0.000 claims description 73
- 239000013058 crude material Substances 0.000 claims description 71
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 70
- 229910052717 sulfur Inorganic materials 0.000 claims description 70
- 239000011593 sulfur Substances 0.000 claims description 70
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 69
- 239000001301 oxygen Substances 0.000 claims description 69
- 229910052760 oxygen Inorganic materials 0.000 claims description 69
- 229910052750 molybdenum Inorganic materials 0.000 claims description 66
- 239000011733 molybdenum Substances 0.000 claims description 66
- 239000002994 raw material Substances 0.000 claims description 66
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 63
- -1 alkali metal salt Chemical class 0.000 claims description 61
- 238000012545 processing Methods 0.000 claims description 59
- 229910052783 alkali metal Inorganic materials 0.000 claims description 53
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 52
- 230000008569 process Effects 0.000 claims description 28
- 150000004831 organic oxygen compounds Chemical class 0.000 claims description 17
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 15
- 239000002253 acid Substances 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 9
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 9
- 229910052721 tungsten Inorganic materials 0.000 claims description 9
- 239000010937 tungsten Substances 0.000 claims description 9
- 239000001201 calcium disodium ethylene diamine tetra-acetate Substances 0.000 claims description 7
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 7
- 239000000446 fuel Substances 0.000 claims description 5
- 150000002894 organic compounds Chemical class 0.000 claims description 4
- 239000000314 lubricant Substances 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 109
- 150000007524 organic acids Chemical class 0.000 description 94
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 79
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 77
- 229910052720 vanadium Inorganic materials 0.000 description 64
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 63
- 239000008186 active pharmaceutical agent Substances 0.000 description 50
- 238000009835 boiling Methods 0.000 description 49
- 230000002829 reductive effect Effects 0.000 description 48
- 230000001276 controlling effect Effects 0.000 description 47
- 229930195733 hydrocarbon Natural products 0.000 description 46
- 230000005484 gravity Effects 0.000 description 45
- 150000002430 hydrocarbons Chemical class 0.000 description 45
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 45
- 229910010271 silicon carbide Inorganic materials 0.000 description 45
- 238000010521 absorption reaction Methods 0.000 description 41
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 36
- 235000005985 organic acids Nutrition 0.000 description 34
- 239000007789 gas Substances 0.000 description 31
- 238000000926 separation method Methods 0.000 description 30
- 239000004215 Carbon black (E152) Substances 0.000 description 29
- 150000001340 alkali metals Chemical class 0.000 description 27
- 150000001342 alkaline earth metals Chemical class 0.000 description 26
- 238000002156 mixing Methods 0.000 description 24
- 230000008859 change Effects 0.000 description 23
- 229910052759 nickel Inorganic materials 0.000 description 20
- 229910052757 nitrogen Inorganic materials 0.000 description 18
- 125000005842 heteroatom Chemical group 0.000 description 15
- 230000007423 decrease Effects 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 238000012360 testing method Methods 0.000 description 12
- 238000011144 upstream manufacturing Methods 0.000 description 12
- 238000002441 X-ray diffraction Methods 0.000 description 11
- 239000012159 carrier gas Substances 0.000 description 11
- 230000003247 decreasing effect Effects 0.000 description 11
- 230000002411 adverse Effects 0.000 description 10
- 239000012018 catalyst precursor Substances 0.000 description 10
- 238000005470 impregnation Methods 0.000 description 10
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 9
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 9
- 229910052700 potassium Inorganic materials 0.000 description 9
- 239000011591 potassium Substances 0.000 description 9
- 230000009467 reduction Effects 0.000 description 9
- 229910052708 sodium Inorganic materials 0.000 description 9
- 239000011734 sodium Substances 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000010941 cobalt Substances 0.000 description 8
- 229910017052 cobalt Inorganic materials 0.000 description 8
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 8
- 230000000875 corresponding effect Effects 0.000 description 8
- 238000005260 corrosion Methods 0.000 description 8
- 230000007797 corrosion Effects 0.000 description 8
- 229910052742 iron Inorganic materials 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 229910001868 water Inorganic materials 0.000 description 8
- 239000010457 zeolite Substances 0.000 description 8
- 239000002002 slurry Substances 0.000 description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical group [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 229910052791 calcium Inorganic materials 0.000 description 6
- 239000011575 calcium Substances 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- 239000000356 contaminant Substances 0.000 description 6
- 239000008367 deionised water Substances 0.000 description 6
- 229910021641 deionized water Inorganic materials 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- 238000005486 sulfidation Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910021536 Zeolite Inorganic materials 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 5
- 238000012512 characterization method Methods 0.000 description 5
- 238000004821 distillation Methods 0.000 description 5
- 150000002431 hydrogen Chemical class 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000005191 phase separation Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000571 coke Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 239000000395 magnesium oxide Substances 0.000 description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 4
- 150000002751 molybdenum Chemical class 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- 229910001928 zirconium oxide Inorganic materials 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical group [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000005078 molybdenum compound Substances 0.000 description 3
- 150000002752 molybdenum compounds Chemical class 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- HNNQYHFROJDYHQ-UHFFFAOYSA-N 3-(4-ethylcyclohexyl)propanoic acid 3-(3-ethylcyclopentyl)propanoic acid Chemical compound CCC1CCC(CCC(O)=O)C1.CCC1CCC(CCC(O)=O)CC1 HNNQYHFROJDYHQ-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- QXYJCZRRLLQGCR-UHFFFAOYSA-N dioxomolybdenum Chemical compound O=[Mo]=O QXYJCZRRLLQGCR-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000008246 gaseous mixture Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 241000180579 Arca Species 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 241000158500 Platanus racemosa Species 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 241001164238 Zulia Species 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000011066 ex-situ storage Methods 0.000 description 1
- 229910001657 ferrierite group Inorganic materials 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000009975 flexible effect Effects 0.000 description 1
- 238000004508 fractional distillation Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000013542 high molecular weight contaminant Substances 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 150000002898 organic sulfur compounds Chemical class 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000001935 peptisation Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 229940072033 potash Drugs 0.000 description 1
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- SDKPSXWGRWWLKR-UHFFFAOYSA-M sodium;9,10-dioxoanthracene-1-sulfonate Chemical compound [Na+].O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2S(=O)(=O)[O-] SDKPSXWGRWWLKR-UHFFFAOYSA-M 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- GKLVYJBZJHMRIY-UHFFFAOYSA-N technetium atom Chemical compound [Tc] GKLVYJBZJHMRIY-UHFFFAOYSA-N 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 150000003681 vanadium Chemical class 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/20—Vanadium, niobium or tantalum
- B01J23/22—Vanadium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/28—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G29/00—Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
- C10G29/04—Metals, or metals deposited on a carrier
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/04—Liquid carbonaceous fuels essentially based on blends of hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/66—Pore distribution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0203—Impregnation the impregnation liquid containing organic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/202—Heteroatoms content, i.e. S, N, O, P
- C10G2300/203—Naphthenic acids, TAN
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/205—Metal content
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Liquid Carbonaceous Fuels (AREA)
- Lubricants (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
原油原料を1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する。原油生成物の1つ以上の他の特性は、原油原料のそれぞれの特性に比べて10%以上変化できる。
【選択図】図1
The crude feed is contacted with one or more catalysts to produce a total product including a crude product that is a liquid mixture at 25 ° C. and 0.101 MPa. One or more other properties of the crude product can vary by more than 10% compared to the respective properties of the crude feed.
[Selection] Figure 1
Description
発明の分野
本発明は、一般には原油原料(crude feed)を処理するためのシステム、方法及び触媒に関し、またこのようなシステム、方法及び触媒を用いて製造できる組成物に関する。更に詳しくは、ここで説明した特定の実施態様は、原油原料を、25℃、0.101MPaにおいて液体混合物であって、該原油原料の特性に対してそれぞれ変化させた1種以上の特性を有する原油生成物を含む全生成物に転化するためのシステム、方法及び触媒に関する。
The present invention relates generally to systems, methods and catalysts for treating crude feed and to compositions that can be produced using such systems, methods and catalysts. More particularly, the specific embodiments described herein are one or more properties wherein the crude feed is a liquid mixture at 25 ° C. and 0.101 MPa, each altered with respect to the properties of the crude feed. The present invention relates to systems, methods and catalysts for conversion to total products including crude product.
関連技術の説明
原油を経済的に輸送できないか、或いは従来の設備を用いて処理できないような不適当な特性を1つ以上有する原油(crude)は、普通、“不利な原油”と言われている。
2. Description of Related Art Crude oils that have one or more inappropriate properties that cannot be transported economically or processed using conventional equipment are usually referred to as “unfavorable crude oils”. Yes.
不利な原油は、原油原料の全酸価(“TAN”)の一因となる酸性成分を含有する可能性がある。比較的高いTANを持った不利な原油は、輸送中及び/又は処理中、金属成分の腐食の一因となる可能性がある。不利な原油から酸性成分を除去するには、各種塩基により酸性成分を化学的に中和して行なってよい。或いは、輸送設備及び/又は処理設備に耐腐食性金属を使用してもよい。耐腐食性金属の使用すると、非常に高価になることが多く、したがって、現存の設備に耐腐食性金属を使用するのは望ましくないかも知れない。他の腐食防止方法は、不利な原油の輸送及び/又は処理前にこれに腐食防止剤を添加することも可能である。しかし腐食防止剤を使用すると、原油の処理に使用する設備及び/又は原油から製造する生成物に悪影響を与える恐れがある。 Unfavorable crude oil may contain acidic components that contribute to the total acid number (“TAN”) of the crude feed. Unfavorable crude oil with a relatively high TAN can contribute to corrosion of metal components during transportation and / or processing. In order to remove acidic components from disadvantageous crude oil, the acidic components may be chemically neutralized with various bases. Alternatively, a corrosion-resistant metal may be used for transportation equipment and / or processing equipment. The use of corrosion resistant metals is often very expensive and therefore it may not be desirable to use corrosion resistant metals in existing equipment. Other corrosion prevention methods may add a corrosion inhibitor to the crude oil before it is transported and / or processed. However, the use of corrosion inhibitors can adversely affect equipment used to process the crude oil and / or products produced from the crude oil.
不利な原油は、比較的高水準の残留物を含有することが多い。このような高水準の残留物は、従来設備を用いて輸送及び/又は処理するのを困難かつ高価にする傾向がある。 Unfavorable crude oils often contain relatively high levels of residue. Such high levels of residue tend to make it difficult and expensive to transport and / or process using conventional equipment.
不利な原油は、有機的に結合したヘテロ原子(例えば硫黄、酸素及び窒素)を含有することが多い。有機的に結合したヘテロ原子は、幾つかの場合、触媒に対し悪影響を及ぼす恐れがある。
不利な原油は、比較的多量の金属汚染物、例えばニッケル、バナジウム、及び/又は鉄を含有する可能性がある。このような原油の処理中、金属の汚染物及び/又は化合物は、触媒の表面又は空隙内に沈着するかも知れない。このような沈着は、触媒の活性を減退させる恐れがある。
不利な原油の処理中、触媒表面にはコークスが高速度で生成及び/又は沈着する。コークスで汚染された触媒の触媒活性を再生するには高価になる可能性がある。再生中に使用する高温は、触媒の活性を低下させ、及び/又は触媒を劣化させる恐れもある。
Unfavorable crude oils often contain organically bound heteroatoms (eg, sulfur, oxygen and nitrogen). Organically bonded heteroatoms can adversely affect the catalyst in some cases.
Unfavorable crude oils can contain relatively large amounts of metal contaminants, such as nickel, vanadium, and / or iron. During the processing of such crude oil, metal contaminants and / or compounds may be deposited on the surface or voids of the catalyst. Such deposition can reduce the activity of the catalyst.
During the processing of adverse crude oil, coke is produced and / or deposited at a high rate on the catalyst surface. It can be expensive to regenerate the catalytic activity of a catalyst contaminated with coke. High temperatures used during regeneration may reduce the activity of the catalyst and / or degrade the catalyst.
不利な原油は、有機酸の金属塩中の金属(例えばカルシウム、カリウム及び/又はナトリウム)を含有する可能性がある。有機酸金属塩中の金属は、通常、従来法、例えば脱塩及び/又は洗浄では不利な原油から分離しない。
従来法では、有機酸金属塩中の金属が存在する場合が多い。通常、触媒の該表面附近に沈着するニッケル及びバナジウムに対し、有機酸金属塩中の金属は、特に触媒床頂部の触媒粒子間の空隙に優先的に沈着する可能性がある。汚染物、例えば有機酸金属塩中の金属が触媒床の頂部に沈着すると、触媒床内の圧力降下が増大し、触媒床を効果的に閉塞させる恐れがある。更に、有機酸金属塩中の金属が触媒を急速に不活性化させる恐れがある。
Unfavorable crude oil may contain metals (eg calcium, potassium and / or sodium) in metal salts of organic acids. The metal in the organic acid metal salt is usually not separated from crude oil which is disadvantageous by conventional methods such as desalting and / or washing.
In the conventional method, the metal in the organic acid metal salt often exists. In general, the metal in the organic acid metal salt may preferentially deposit in the voids between the catalyst particles at the top of the catalyst bed, as opposed to nickel and vanadium deposited near the surface of the catalyst. When contaminants, such as metals in organic acid metal salts, are deposited on top of the catalyst bed, the pressure drop in the catalyst bed increases and can effectively block the catalyst bed. In addition, the metal in the organic acid metal salt can quickly deactivate the catalyst.
不利な原油には有機酸素化合物が含まれるかも知れない。不利な原油1g当たり酸素を0.002g以上含有する不利な原油を処理する処理設備は、処理中、種々の問題が起こる可能性がある。処理中、加熱すると、有機酸素化合物は、高級酸化化合物(例えばアルコールの酸化により形成されたケトン及び/又は酸、及び/又はエーテルの酸化により形成された酸)を形成する可能性がある。これらの酸化化合物は、処理した原油から除去することが困難であり、及び/又は処理中、設備を汚染/腐食して、輸送ラインに閉塞を生じるかも知れない。 Unfavorable crude oil may contain organic oxygen compounds. Processing facilities that process unfavorable crude oil containing 0.002 g or more of oxygen per gram of unfavorable crude oil can have various problems during processing. Upon heating during processing, the organic oxygen compounds may form higher oxidation compounds (eg, ketones and / or acids formed by the oxidation of alcohols and / or acids formed by the oxidation of ethers). These oxidized compounds are difficult to remove from the processed crude oil and / or may contaminate / corrode equipment during processing, resulting in blockages in the transport line.
不利な原油は、水素不足の炭化水素を含有する可能性がある。水素不足の炭化水素を処理する際は、特に分解処理により不飽和片が生成する場合、一般に定常量の水素を添加する必要がある。処理中、不飽和片のコークス化を防止するため、通常、活性水素化触媒を含む水素化を必要とするかも知れない。水素を作るには費用がかかり、及び/又はこれを処理設備に輸送するには費用がかかる。 Unfavorable crude oil may contain hydrogen deficient hydrocarbons. When treating hydrocarbons deficient in hydrogen, it is generally necessary to add a steady amount of hydrogen, especially when unsaturated fragments are produced by cracking. During processing, hydrogenation with an active hydrogenation catalyst may usually be required to prevent coking of unsaturated pieces. Making hydrogen is expensive and / or transporting it to a processing facility is expensive.
不利な原油は、従来の設備で処理中に不安定性を示す傾向もある。原油の不安定性は、処理中、成分の相分離及び/又は望ましくない副生物(例えば硫化水素、水及び二酸化炭素)の生成で起こりやすい。
従来法は、不利な原油の選択した特性を変化させる場合、他の特性を大きく変化させることもなく、選択した特性を変化させる能力に欠けることが多い。例えば従来法は、多くの場合、不利な原油中の特定成分(例えば硫黄又は金属汚染物)の含有量を単に所望量まで変化させながら、同時にTANを大きく低下させる能力に欠けている。
Unfavorable crude oil also tends to show instability during processing with conventional equipment. Crude oil instability is likely to occur during processing due to phase separation of components and / or formation of undesirable by-products (eg, hydrogen sulfide, water and carbon dioxide).
Conventional methods often lack the ability to change selected properties without significantly changing other properties when changing the selected properties of the disadvantaged crude. For example, conventional methods often lack the ability to significantly reduce TAN while simultaneously changing the content of certain components (such as sulfur or metal contaminants) in adverse crude oils to the desired amount.
原油の品質を改良する幾つかの方法として、不利な原油に希釈剤を添加して、不利な特性を与える成分の重量割合を低下させる方法がある。しかし、希釈剤の添加は、希釈剤費及び/又は不利な原油を取扱うために増加した費用により、一般に不利な原油の処理費は増大する。幾つかの場合、不利な原油に希釈剤を添加するのは、このような原油の安定性を低下させる。 Some methods of improving the quality of crude oil include adding diluents to disadvantageous crude oils to reduce the weight percentage of components that give adverse properties. However, the addition of diluents generally increases the cost of processing unfavorable crude oil due to diluent costs and / or increased costs for handling the disadvantaged crude. In some cases, adding diluents to disadvantaged crudes reduces the stability of such crudes.
Sudhakar等のUSP 6,547,957、Meyers等のUSP 6,277,269、Grande等のUSP 6,063,266、Bearden等のUSP 5,928,502、Bearden等のUSP 5,914,030、Trachte等のUSP 5,897,769、Trachte等のUSP 5,871,636、Tanaka等のUSP 5,851,381には、原油を処理するための各種方法、システム及び触媒が記載されている。しかし、これらの特許に記載された方法、システム及び触媒は、前記多くの技術的問題のため、適用性が制限されている。 USP 6,547,957 of Sudhakar et al., USP 6,277,269 of Meyers et al., USP 6,063,266 of Grande et al., USP 5,928,502 of Bearden et al., USP 5,914,030 of Bearden et al. US Pat. No. 5,897,769 to Trchte et al., USP 5,871,636 to Tachte et al., USP 5,851,381 to Tanaka et al. Describe various methods, systems and catalysts for treating crude oil. However, the methods, systems and catalysts described in these patents have limited applicability due to the many technical problems.
要するに、不利な原油は、一般に望ましくない特性(例えば比較的高いTAN、処理中、不安定化する傾向、及び/又は処理中、比較的多量の水素を消費する傾向)を有する。他の望ましくない特性は、望ましくない成分(例えば残留物、有機的に結合したヘテロ原子、金属汚染物、有機酸金属塩中の金属、及び/又は有機酸素化合物)を比較的多量に含有することである。これらの特性は、従来の輸送及び/又は処理設備において、腐食の増大、触媒寿命の低下、プロセスの閉塞、及び/又は処理中の水素の使用量増大等の問題を起こしやすい。
したがって、不利な原油を更に望ましい特性を有する原油生成物に転化するために改良したシステム、方法、及び/又は触媒が極めて経済的かつ技術的に必要である。また、不利な原油の選択した特性を変える場合、他の特性だけを選択的に変化させながら、選択した特性を変化できるシステム、方法、及び/又は触媒も極めて経済的かつ技術的に必要である。 Accordingly, there is a very economical and technical need for improved systems, methods, and / or catalysts for converting disadvantageous crudes into crude products with more desirable properties. There is also a very economical and technical need for systems, methods, and / or catalysts that can change selected properties of an unfavorable crude oil while selectively changing other properties while selectively changing other properties. .
発明の概要
ここに記載の発明は、一般的には原油原料を、原油生成物及び、幾つかの実施態様では、非凝縮性ガスを含む全生成物に転化するためのシステム、方法及び触媒に関する。ここに記載の発明は、一般的には各種成分の新規な組合わせからなる新規な組成物にも関する。このような組成物は、ここに記載のシステム及び方法を用いて得られる。
本発明は、全酸価(TAN)(ASTM法D664で測定)が0.3以上である原油原料を、触媒の少なくとも1種は、中央値細孔径が90〜180Åの範囲にあり、かつ細孔サイズ分布における全細孔数の60%以上が中央値細孔径の45Å以内の細孔径を有する細孔サイズ分布(ASTM法D4282で測定)を示す1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物のTANが原油原料のTANに対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法を提供する。
SUMMARY OF THE INVENTION The invention described herein generally relates to systems, methods and catalysts for converting crude feed into a crude product and, in some embodiments, a total product comprising non-condensable gases. . The invention described herein also relates to novel compositions that generally consist of novel combinations of various components. Such compositions are obtained using the systems and methods described herein.
The present invention relates to a crude oil raw material having a total acid number (TAN) (measured by ASTM method D664) of 0.3 or more, and at least one of the catalysts has a median pore diameter in the range of 90 to 180 mm, At least 25% of the total pore number in the pore size distribution is brought into contact with one or more catalysts exhibiting a pore size distribution (measured by ASTM method D4282) having a pore diameter within 45 mm of the median pore diameter. Manufacturing a total product including a crude product that is a liquid mixture at 0.101 MPa, and controlling the contact conditions so that the TAN of the crude product is 90% or less of the TAN of the crude feed. A method for producing a crude product containing the same is provided.
また本発明は、TAN(ASTM法D664で測定)が0.3以上である原油原料を、触媒の少なくとも1種は、中央値細孔径が90Å以上である細孔サイズ分布(ASTM法D4282で測定)を有し、該細孔サイズ分布の触媒は触媒1g当たり、モリブデン、1種以上のモリブデン化合物又はそれらの混合物を、モリブデンの重量として計算して、0.0001〜0.08g含有する1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物のTANが原油原料のTANに対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 Further, the present invention relates to a crude oil raw material having a TAN (measured by ASTM method D664) of 0.3 or more, and at least one catalyst has a pore size distribution having a median pore diameter of 90 mm or more (measured by ASTM method D4282). The catalyst having the pore size distribution is a kind containing 0.0001 to 0.08 g of molybdenum, one or more molybdenum compounds or a mixture thereof, calculated as the weight of molybdenum, per 1 g of the catalyst. A step of producing a total product including a crude product which is a liquid mixture at 25 ° C. and 0.101 MPa by contacting with the above catalyst, and the TAN of the crude product is 90% or less of the TAN of the crude feed. Thus, a method for producing a crude product including a step of controlling contact conditions is also provided.
また本発明は、TAN(ASTM法D664で測定)が0.3以上である原油原料を、触媒の少なくとも1種は、中央値細孔径が180Å以上である細孔サイズ分布(ASTM法D4282で測定)を有し、該細孔サイズ分布の触媒は周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含む1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物のTANが原油原料のTANに対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 Further, the present invention relates to a crude oil raw material having a TAN (measured by ASTM method D664) of 0.3 or more, and at least one catalyst has a pore size distribution having a median pore diameter of 180 mm or more (measured by ASTM method D4282). And the pore size distribution catalyst comprises one or more metals in column 6 of the periodic table, one or more compounds of one or more metals in column 6 of the periodic table, or a mixture thereof. A step of producing a total product including a crude product which is a liquid mixture at 25 ° C. and 0.101 MPa by contacting with at least a seed catalyst, and TAN of the crude product is 90% or less relative to TAN of the crude feed Thus, a method for producing a crude product comprising the step of controlling contact conditions is also provided.
また本発明は、TAN(ASTM法D664で測定)が0.3以上である原油原料を、触媒の少なくとも1種は、(a)周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物、及び(b)周期表第10欄の1種以上の金属、周期表第10欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を合計第10欄金属対合計第6欄金属のモル比で1〜10の範囲で含む1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物のTANが原油のTANに対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 Further, the present invention provides a crude oil raw material having a TAN (measured by ASTM method D664) of 0.3 or more, wherein at least one of the catalysts is (a) one or more metals in the sixth column of the periodic table; One or more compounds of one or more metals in the column, or a mixture thereof, and (b) one or more metals in the tenth column of the periodic table, one or more metals in the tenth column of the periodic table Or a mixture thereof in a liquid mixture at 25 ° C. and 0.101 MPa in contact with one or more catalysts comprising a total column 10 metal to total column 6 metal molar ratio in the range of 1-10. Providing a method for producing a crude product including a step of producing an entire product including a certain crude product, and a step of controlling contact conditions so that the TAN of the crude product is 90% or less of the TAN of the crude product. To do.
また本発明は、TAN(ASTM法D664で測定)が0.3以上である原油原料を、触媒の少なくとも1種は、(a)周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を、第一触媒1g当たり金属の重量として計算して、0.0001〜0.06gの範囲で有する第一触媒、及び(b)周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を、第二触媒1g当たり金属の重量として計算して、0.02g以上有する第二触媒を含有する1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物のTANが原油原料のTANに対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 Further, the present invention provides a crude oil raw material having a TAN (measured by ASTM method D664) of 0.3 or more, wherein at least one of the catalysts is (a) one or more metals in the sixth column of the periodic table; A first catalyst having one or more compounds of one or more metals in the column, or mixtures thereof, in the range of 0.0001 to 0.06 g, calculated as the weight of metal per gram of first catalyst, and ( b) Calculate one or more metals in column 6 of the periodic table, one or more compounds of one or more metals in column 6 of the periodic table, or a mixture thereof as the weight of metal per gram of the second catalyst. Producing a total product comprising a crude product which is a liquid mixture at 25 ° C. and 0.101 MPa by contacting with one or more catalysts containing a second catalyst having 0.02 g or more, and a crude product Less than 90% of TAN of crude oil raw material So that the method for producing a crude product comprising the step of controlling the contacting conditions are also provided.
また本発明は、(a)周期表第5欄の1種以上の金属、周期表第5欄の1種以上の金属の1種以上の化合物、又はそれらの混合物、及び(b)X線回折で測定したθ−アルミナ含有量が支持体材料1g当たり0.1g以上である支持体材料を含むと共に、触媒は中央値細孔径が230Å以上である細孔サイズ分布(ASTM法D4282で測定)を有する触媒組成物も提供する。 The present invention also provides (a) one or more metals in column 5 of the periodic table, one or more compounds of one or more metals in column 5 of the periodic table, or a mixture thereof, and (b) X-ray diffraction. In addition, the catalyst has a pore size distribution (measured by ASTM method D4282) having a median pore diameter of 230 mm or more. A catalyst composition having the same is also provided.
また本発明は、(a)周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物、及び(b)X線回折で測定したθ−アルミナ含有量が支持体材料1g当たり0.1g以上である支持体材料を含むと共に、触媒は中央値細孔径が230Å以上である細孔サイズ分布(ASTM法D4282で測定)を有する触媒組成物も提供する。 The present invention also provides (a) one or more metals in column 6 of the periodic table, one or more compounds of one or more metals in column 6 of the periodic table, or a mixture thereof, and (b) X-ray diffraction. In addition, the catalyst has a pore size distribution (measured by ASTM method D4282) having a median pore diameter of 230 mm or more. Also provided is a catalyst composition having.
また本発明は、(a)周期表第5欄の1種以上の金属、周期表第5欄の1種以上の金属の1種以上の化合物、周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物、及び(b)X線回折で測定したθ−アルミナ含有量が支持体材料1g当たり0.1g以上である支持体材料を含むと共に、触媒は中央値細孔径が230Å以上である細孔サイズ分布(ASTM法D4282で測定)を有する触媒組成物も提供する。 The present invention also includes (a) one or more metals in the fifth column of the periodic table, one or more compounds of one or more metals in the fifth column of the periodic table, one or more metals in the sixth column of the periodic table, One or more compounds of one or more metals in the sixth column of the periodic table, or mixtures thereof, and (b) θ-alumina content measured by X-ray diffraction is 0.1 g or more per gram of the support material. In addition to including the support material, the catalyst also provides a catalyst composition having a pore size distribution (measured by ASTM method D4282) having a median pore diameter of 230 mm or greater.
また本発明は、θ−アルミナを含有する支持体と、1種以上の金属とを組合わせて支持体/金属混合物を形成する工程であって、該金属の1種以上は、周期表第5欄の1種以上の金属、周期表第5欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含有する該工程、得られたθ−アルミナ支持体/金属混合物を400℃以上の温度で熱処理する工程、及び中央値細孔径が230Å以上である細孔サイズ分布(STM法D4282で測定)を有する触媒を形成する工程を含む触媒の製造方法も提供する。 Furthermore, the present invention is a step of forming a support / metal mixture by combining a support containing θ-alumina and one or more metals, wherein one or more of the metals are included in the periodic table 5th. The process comprising one or more metals in the column, one or more compounds of one or more metals in the fifth column of the periodic table, or mixtures thereof, and the resulting θ-alumina support / metal mixture at 400 ° C. There is also provided a method for producing a catalyst comprising a step of heat-treating at the above temperature and a step of forming a catalyst having a pore size distribution (measured by STM method D4282) having a median pore diameter of 230 mm or more.
また本発明は、θ−アルミナを含有する支持体と、1種以上の金属とを組合わせて支持体/金属混合物を形成する工程であって、該金属の1種以上は周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含有する該工程、得られたθ−アルミナ支持体/金属混合物を400℃以上の温度で熱処理する工程、及び中央値細孔径が230Å以上である細孔サイズ分布(ASTM法D4282で測定)を有する触媒を形成する工程を含む触媒の製造方法も提供する。 Further, the present invention is a step of forming a support / metal mixture by combining a support containing θ-alumina and one or more metals, wherein one or more of the metals are listed in column 6 of the periodic table. The process comprising one or more metals of the above, one or more compounds of one or more metals in the sixth column of the periodic table, or a mixture thereof, and the obtained θ-alumina support / metal mixture at 400 ° C. or higher There is also provided a method for producing a catalyst comprising a step of heat-treating at a temperature of and a step of forming a catalyst having a pore size distribution (measured by ASTM method D4282) having a median pore diameter of 230 mm or more.
また本発明は、TAN(ASTM法D664で測定)が0.3以上である原油原料を、1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程であって、該触媒の少なくとも1種は、中央値細孔径が180Å以上である細孔サイズ分布(ASTM法D4282で測定)を有し、該細孔サイズ分布の触媒はθ−アルミナと周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物とを含む該工程、及び原油生成物のTANが原油原料のTANに対し90%以下となるように接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The invention also includes a crude product that is a liquid mixture at 25 ° C. and 0.101 MPa by contacting a crude feed having a TAN (measured by ASTM method D664) of 0.3 or more with one or more catalysts. A process for producing a total product, wherein at least one of the catalysts has a pore size distribution (measured by ASTM method D4282) having a median pore diameter of 180 mm or more, and the catalyst having the pore size distribution Wherein the process comprises θ-alumina and one or more metals from column 6 of the periodic table, one or more compounds of one or more metals from column 6 of the periodic table, or mixtures thereof; and There is also provided a method for producing a crude product comprising a step of controlling contact conditions so that TAN is 90% or less of TAN of crude oil feedstock.
また本発明は、TAN(ASTM法D664で測定)が0.3以上で酸素含有量(ASTM法E385で測定)が原油原料1g当たり0.0001g以上である原油原料を、水素源の存在下で1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程であって、該触媒の少なくとも1種は、中央値細孔径が90Å以上である細孔サイズ分布(ASTM法D4282で測定)を有する該工程、及び原油生成物のTANが原油原料のTANに対し90%以下となるように、かつ原油生成物の酸素含有量が原油原料の酸素含有量に対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also provides a crude material having a TAN (measured by ASTM method D664) of 0.3 or more and an oxygen content (measured by ASTM method E385) of 0.0001 g or more per gram of crude material in the presence of a hydrogen source. Contacting with one or more catalysts to produce a total product comprising a crude product that is a liquid mixture at 25 ° C. and 0.101 MPa, wherein at least one of the catalysts has a median pore size The process having a pore size distribution (measured by ASTM method D4282) of 90 mm or more, and the crude product TAN is 90% or less of the crude feedstock TAN, and the crude product oxygen content is There is also provided a method for producing a crude product including a step of controlling contact conditions so that the oxygen content of the crude feed becomes 90% or less.
また本発明は、TAN(ASTM法D664で測定)が0.1以上である原油原料を、触媒の少なくとも1種は周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を触媒1g当たり、金属の重量として計算して、0.001g以上含有する1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び接触帯での液体の時間当たり空間速度が10h−1を超えると共に、原油生成物のTANが原油原料のTANに対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 In addition, the present invention provides a crude feedstock having a TAN (measured by ASTM method D664) of 0.1 or more, at least one of the catalysts is one or more metals in the sixth column of the periodic table, and one of the sixth column in the periodic table. One or more compounds of the above metals, or a mixture thereof, calculated as the weight of the metal per gram of the catalyst, contacted with one or more catalysts containing 0.001 g or more, and at 25 ° C. and 0.101 MPa Manufacturing the entire product including the crude product, which is a liquid mixture, and the hourly space velocity of the liquid in the contact zone exceeds 10 h −1 and the crude product TAN is 90% of the crude feed TAN Also provided is a method for producing a crude product comprising the step of controlling the contact conditions so that:
また本発明は、TAN(ASTM法D664で測定)が0.1以上で硫黄含有量(ASTM法D4294で測定)が原油原料1g当たり0.0001g以上である原油原料を、水素源の存在下に、触媒の少なくとも1種は周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含有する1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び接触中、原油原料の相分離を防止するため、該原油原料が選択された割合で分子状水素を吸収し、1つ以上の接触帯での液体の時間当たり空間速度が10h−1を超え、原油生成物の硫黄含有量が原油の硫黄含有量に対し70〜130%で原油生成物のTANが原油原料のTANに対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also provides a crude material having a TAN (measured by ASTM method D664) of 0.1 or more and a sulfur content (measured by ASTM method D4294) of 0.0001 g or more per gram of crude material in the presence of a hydrogen source. And at least one catalyst comprises one or more metals in the sixth column of the periodic table, one or more compounds of one or more metals in the sixth column of the periodic table, or one or more catalysts containing a mixture thereof. Contacting to produce a total product comprising a crude product that is a liquid mixture at 25 ° C. and 0.101 MPa, and a proportion of the crude feed selected to prevent phase separation of the crude feed during contact Absorbs molecular hydrogen at one or more of the contact zones and the liquid has a space velocity per hour exceeding 10 h −1 and the crude product has a sulfur content of 70-130% of the crude oil sulfur content. The product TAN is crude oil raw material There is also provided a method for producing a crude product including a step of controlling contact conditions so that the TAN is 90% or less.
また本発明は、原油原料をガス状水素源の存在下に1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び接触中、原油原料の相分離を防止するため、該原油原料が選択された割合で分子状水素を吸収するように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also includes a step of producing a total product including a crude product that is a liquid mixture at 25 ° C. and 0.101 MPa by contacting the crude feed with one or more catalysts in the presence of a gaseous hydrogen source, Also provided is a method for producing a crude product comprising the step of controlling the contact conditions such that the crude feed absorbs molecular hydrogen at a selected rate to prevent phase separation of the crude feed during contact.
また本発明は、原油原料を1種以上の触媒の存在下に水素と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油原料が第二水素吸収条件とは異なる第一水素吸収条件及び次いで第二水素吸収条件で水素と接触するように、原油原料/全生成物混合物のP値が1.5未満に低下するのを防止するため、第一水素吸収条件での総水素吸収量が制御されるように、かつ原油生成物の1つ以上の特性が原油原料のそれぞれの特性の90%以下、変化するように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also provides a process for producing a crude product comprising a crude product that is a liquid mixture at 25 ° C. and 0.101 MPa by contacting the crude feed with hydrogen in the presence of one or more catalysts, and a crude feed Prevents the P-value of the crude feed / total product mixture from falling below 1.5 so that it contacts hydrogen under the first hydrogen absorption condition and then the second hydrogen absorption condition, which is different from the second hydrogen absorption condition Therefore, the contact conditions are such that the total hydrogen absorption at the first hydrogen absorption condition is controlled and that one or more characteristics of the crude product change by 90% or less of the respective characteristics of the crude feed. There is also provided a method for producing a crude product comprising a step of controlling.
また本発明は、TAN(ASTM法D664で測定)が0.3以上である原油原料を第一温度で及び引き続き第二温度で1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び第一接触温度が第二接触温度よりも30℃以上低く、かつ原油生成物のTANが原油原料のTANに対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also provides that a crude feed having a TAN (measured by ASTM method D664) of 0.3 or more is contacted with one or more catalysts at a first temperature and subsequently at a second temperature at 25 ° C. and 0.101 MPa. A step of producing a whole product including a crude product which is a liquid mixture, and the first contact temperature is 30 ° C. or more lower than the second contact temperature, and the TAN of the crude product is 90% or less of the TAN of the crude feed Also provided is a method for producing a crude product comprising a step of controlling contact conditions.
また本発明は、TAN(ASTM法D664で測定)が0.3以上で硫黄含有量(ASTM法D4294で測定)が原油原料1g当たり0.0001g以上である原油原料を、触媒の少なくとも1種は周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含む1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物のTANが原油のTANに対し90%以下で原油生成物の硫黄含有量が原油原料の硫黄含有量に対し70〜130%となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 In addition, the present invention provides a crude material having a TAN (measured by ASTM method D664) of 0.3 or more and a sulfur content (measured by ASTM method D4294) of 0.0001 g or more per 1 g of crude material. In contact with one or more catalysts comprising one or more metals of column 6 of the periodic table, one or more compounds of one or more metals of column 6 of the periodic table, or mixtures thereof, A process for producing a total product including a crude product that is a liquid mixture at 101 MPa, and the crude product TAN is less than 90% of the crude TAN and the crude product sulfur content is the sulfur content of the crude feed Further, a method for producing a crude product including a step of controlling the contact conditions so as to be 70 to 130% is also provided.
また本発明は、TAN(ASTM法D664で測定)が0.1以上で残留物含有量(ASTM法D5307で測定)が原油原料1g当たり0.1g以上である原油原料を、触媒の少なくとも1種は周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含む1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物のTANが原油原料のTANに対し90%以下で原油生成物の硫黄含有量が原油原料の硫黄含有量に対し70〜130%となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also provides a crude material having a TAN (measured by ASTM method D664) of 0.1 or more and a residue content (measured by ASTM method D5307) of 0.1 g or more per gram of crude material, at least one kind of catalyst. Is contacted with one or more metals of one or more metals in column 6 of the periodic table, one or more compounds of one or more metals in column 6 of the periodic table, or mixtures thereof, at 25 ° C., A process for producing a total product including a crude product which is a liquid mixture at 0.101 MPa, and the crude product TAN is 90% or less of the crude feedstock TAN and the crude product sulfur content is sulfur of the crude feedstock There is also provided a method for producing a crude product including a step of controlling contact conditions so that the content is 70 to 130%.
また本発明は、TAN(ASTM法D664で測定)が0.1以上で真空ガス油(VGO)含有量(ASTM法D5307で測定)が原油原料1g当たり0.1g以上である原油原料を、触媒の少なくとも1種は周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含む1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物のTANが原油原料のTANに対し90%以下で原油生成物のVGO含有量が原油原料のVGO含有量に対し70〜130%となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also provides a crude oil feedstock having a TAN (measured by ASTM method D664) of 0.1 or more and a vacuum gas oil (VGO) content (measured by ASTM method D5307) of 0.1 g or more per gram of crude feedstock. At least one of the compounds in contact with one or more metals in the sixth column of the periodic table, one or more compounds of one or more metals in the sixth column of the periodic table, or a mixture thereof. Manufacturing a total product including a crude product which is a liquid mixture at 25 ° C. and 0.101 MPa, and the crude product TAN is 90% or less of the crude feedstock TAN and the crude product has a VGO content of There is also provided a method for producing a crude product comprising a step of controlling contact conditions so that the content of crude oil is 70 to 130% of the VGO content.
また本発明は、TAN(ASTM法D664で測定)が0.3以上でVGO含有量(ASTM法D5307で測定)が原油原料1g当たり0.1g以上である原油原料を1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程であって、触媒の少なくとも1種は支持体を、周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物と組合わせて触媒前駆体とし、次いでこれを1種以上の硫黄含有化合物の存在下に500℃未満の温度で加熱して触媒を形成することにより得られる該工程、及び原油生成物のTANが原油原料のTANに対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 Further, the present invention contacts a crude material having a TAN (measured by ASTM method D664) of 0.3 or more and a VGO content (measured by ASTM method D5307) of 0.1 g or more per 1 g of crude material with one or more catalysts. And producing a total product including a crude product that is a liquid mixture at 25 ° C. and 0.101 MPa, wherein at least one catalyst comprises a support and one or more of the columns in column 6 of the periodic table. Combined with metal, one or more compounds of one or more metals in column 6 of the periodic table, or a mixture thereof to form a catalyst precursor, which is then less than 500 ° C. in the presence of one or more sulfur-containing compounds And a step of controlling the contact conditions such that the TAN of the crude product is 90% or less of the TAN of the crude feed. Manufacturing method Subjected to.
また本発明は、粘度(ASTM法D2669で測定)が37.8℃(100°F)で10cSt以上でAPI比重(ASTM法D6822で測定)が10以上である原油原料を、触媒の少なくとも1種は周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含む1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物の37.8℃での粘度が原油原料の37.8℃での粘度に対し90%以下で原油生成物のAPI比重が原油原料のAPI比重に対し70〜130%となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also provides a crude feedstock having a viscosity (measured by ASTM method D2669) of 37.8 ° C. (100 ° F.) and 10 cSt and an API specific gravity (measured by ASTM method D6822) of 10 or more. Is contacted with one or more metals including one or more metals in column 6 of the periodic table, one or more compounds of one or more metals in column 6 of the periodic table, or mixtures thereof, at 25 ° C., Producing a total product including a crude product which is a liquid mixture at 0.101 MPa, and the viscosity of the crude product at 37.8 ° C. is less than 90% of the viscosity of the crude feed at 37.8 ° C. There is also provided a method for producing a crude product including a step of controlling contact conditions such that the API specific gravity of the crude product is 70 to 130% with respect to the API specific gravity of the crude feed.
また本発明は、TAN(ASTM法D664で測定)が0.1以上である原油原料を、バナジウム、バナジウムの1種以上の化合物、又はそれらの混合物を含む少なくとも1種の触媒及び周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの組合わせを含む追加の触媒を含有する1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物のTANが原油原料のTANに対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also provides a crude feedstock having a TAN (measured by ASTM method D664) of 0.1 or more, at least one catalyst containing vanadium, one or more compounds of vanadium, or a mixture thereof, and a periodic table. In contact with one or more catalysts containing one or more metals in the column, one or more compounds of one or more metals in the sixth column of the periodic table, or an additional catalyst comprising combinations thereof, 25 A step of producing a whole product including a crude product which is a liquid mixture at 0.1 ° C. at 0.1 ° C., and a step of controlling contact conditions so that the TAN of the crude product is 90% or less of the TAN of the crude feed A method for producing a crude product comprising
また本発明は、TAN(ASTM法D664で測定)が0.1以上である原油原料を1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、接触中、水素を発生させる工程、及び原油生成物のTANが原油原料のTANに対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also includes a crude feedstock having a TAN (measured by ASTM method D664) of 0.1 or more in contact with one or more catalysts, including a crude product that is a liquid mixture at 25 ° C. and 0.101 MPa. Production of a crude product including a step of producing a product, a step of generating hydrogen during contact, and a step of controlling contact conditions so that the TAN of the crude product is 90% or less of the TAN of the crude feed. A method is also provided.
また本発明は、TAN(ASTM法D664で測定)が0.1以上である原油原料を、触媒の少なくとも1種はバナジウム、バナジウムの1種以上の化合物、又はそれらの混合物を含む1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び接触温度が200℃以上で原油生成物のTANが原油原料のTANに対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also provides a crude feedstock having a TAN (measured by ASTM method D664) of 0.1 or more, at least one of the catalysts containing one or more compounds including vanadium, one or more compounds of vanadium, or a mixture thereof. Contacting the catalyst to produce a total product including a crude product which is a liquid mixture at 25 ° C. and 0.101 MPa, and the contact temperature is 200 ° C. or higher and the TAN of the crude product is relative to the TAN of the crude feed There is also provided a method for producing a crude product including a step of controlling the contact conditions so that it is 90% or less.
また本発明は、TAN(ASTM法D664で測定)が0.1以上である原油原料を、触媒の少なくとも1種はバナジウム、バナジウムの1種以上の化合物、又はそれらの混合物を含む1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、接触中、水素源含有ガスを原油原料流とは反対方向のガス流で供給する工程、及び原油生成物のTANが原油原料のTANに対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also provides a crude feedstock having a TAN (measured by ASTM method D664) of 0.1 or more, at least one of the catalysts containing one or more compounds including vanadium, one or more compounds of vanadium, or a mixture thereof. A step of producing a total product including a crude product which is a liquid mixture at 25 ° C. and 0.101 MPa in contact with a catalyst, and supplying a hydrogen source-containing gas in a gas flow in a direction opposite to that of the crude feed during the contact. And a method for producing a crude product including a step of controlling contact conditions such that the TAN of the crude product is 90% or less of the TAN of the crude feed.
また本発明は、合計Ni/V/Fe含有量(ASTM法D5708で測定)が原油原料1g当たり0.00002g以上である原油原料を、触媒の少なくとも1種はバナジウム、バナジウムの1種以上の化合物、又はそれらの混合物を含み、該バナジウム触媒は中央値細孔径が180Å以上である細孔サイズ分布を有する1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物の合計Ni/V/Fe含有量が原油原料の合計Ni/V/Fe含有量に対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also provides a crude feedstock having a total Ni / V / Fe content (measured by ASTM method D5708) of 0.00002 g or more per gram of crude feedstock, wherein at least one of the catalysts is vanadium and one or more compounds of vanadium. Or a mixture thereof, wherein the vanadium catalyst is contacted with one or more catalysts having a pore size distribution with a median pore diameter of 180 mm or more, and a crude oil production that is a liquid mixture at 25 ° C. and 0.101 MPa Control the contact conditions so that the total Ni / V / Fe content of the crude product is 90% or less of the total Ni / V / Fe content of the crude raw material. There is also provided a method for producing a crude product comprising the steps of:
また本発明は、1種以上の有機酸の1種以上のアルカリ金属塩、1種以上の有機酸の1種以上のアルカリ土類金属塩、又はそれらの混合物を含み、有機酸金属塩中のアルカリ金属塩及びアルカリ土類金属塩の合計含有量(ASTM法D1318で測定)が原油原料1g当たり0.00001g以上である原油原料を、触媒の少なくとも1種はバナジウム、バナジウムの1種以上の化合物、又はそれらの混合物を含む1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物の有機酸金属塩中のアルカリ金属及びアルカリ土類金属の合計含有量が原油原料の有機酸金属塩中のアルカリ金属及びアルカリ土類金属の合計含有量に対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also includes one or more alkali metal salts of one or more organic acids, one or more alkaline earth metal salts of one or more organic acids, or a mixture thereof, A crude feedstock having a total content of alkali metal salt and alkaline earth metal salt (measured by ASTM method D1318) of 0.00001 g or more per gram of crude feedstock, at least one catalyst is vanadium, one or more compounds of vanadium Or a total product comprising a crude product, which is a liquid mixture at 25 ° C. and 0.101 MPa, in contact with one or more catalysts comprising a mixture thereof, or an organic acid metal salt of a crude product So that the total content of alkali metal and alkaline earth metal is 90% or less with respect to the total content of alkali metal and alkaline earth metal in the organic acid metal salt of the crude oil raw material, Method for producing a crude product comprising the step of controlling the tactile conditions are also provided.
また本発明は、1種以上の有機酸の1種以上のアルカリ金属塩、1種以上の有機酸の1種以上のアルカリ土類金属塩、又はそれらの混合物を含有すると共に、有機酸金属塩中のアルカリ金属塩及びアルカリ土類金属塩の合計含有量(ASTM法D1318で測定)が原油原料1g当たり0.00001g以上である原油原料を、触媒の少なくとも1種は、中央値細孔径が90〜180Åの範囲であり、かつ全細孔数の60%以上が中央値細孔径の45Å以内の細孔径を有する細孔サイズ分布(ASTM法D4282で測定)を示す1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物の有機酸金属塩中のアルカリ金属及びアルカリ土類金属の合計含有量が原油原料の有機酸金属塩中のアルカリ金属及びアルカリ土類金属の合計含有量に対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also includes one or more alkali metal salts of one or more organic acids, one or more alkaline earth metal salts of one or more organic acids, or a mixture thereof, and an organic acid metal salt A crude material having a total content of alkali metal salt and alkaline earth metal salt (measured by ASTM method D1318) of 0.00001 g or more per gram of crude material, at least one of the catalysts has a median pore diameter of 90 In contact with one or more catalysts exhibiting a pore size distribution (measured by ASTM method D4282) having a pore size in the range of ~ 180% and having a pore diameter of not less than 45% of the median pore diameter, with more than 60% of the total number of pores Producing a total product including a crude product which is a liquid mixture at 25 ° C. and 0.101 MPa, and a total content of alkali metals and alkaline earth metals in the organic acid metal salt of the crude product So it becomes 90% or less with respect to the total content of alkali metals and alkaline earth metals in metal salts of organic acids of the crude feed, the production method of the crude product comprising the step of controlling the contacting conditions are also provided.
また本発明は、合計Ni/V/Fe含有量(ASTM法D5708で測定)が原油原料1g当たり0.00002g以上である原油原料を、触媒の少なくとも1種は、中央値細孔径が90〜180Åの範囲であり、かつ細孔サイズ分布での全細孔数の60%以上が中央値細孔径の45Å以内の細孔径を有する細孔サイズ分布(ASTM法D4282で測定)を示す1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物の合計Ni/V/Fe含有量が原油原料の合計Ni/V/Fe含有量に対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also relates to a crude material having a total Ni / V / Fe content (measured by ASTM method D5708) of 0.00002 g or more per gram of crude material, and at least one of the catalysts has a median pore diameter of 90 to 180%. And one or more kinds of pore size distributions (measured by ASTM method D4282) in which 60% or more of the total number of pores in the pore size distribution has a pore diameter within 45 mm of the median pore diameter Contacting the catalyst to produce a total product comprising a crude product that is a liquid mixture at 25 ° C. and 0.101 MPa, and the total Ni / V / Fe content of the crude product is the total Ni / There is also provided a method for producing a crude product including a step of controlling contact conditions so that the V / Fe content is 90% or less.
また本発明は、1種以上の有機酸の1種以上のアルカリ金属塩、1種以上の有機酸の1種以上のアルカリ土類金属塩、又はそれらの混合物を含有すると共に、有機酸金属塩中のアルカリ金属塩及びアルカリ土類金属塩の合計含有量(ASTM法D1318で測定)が原油原料1g当たり0.00001g以上である原油原料を、触媒の少なくとも1種は、中央値細孔径が180Å以上である細孔サイズ分布(ASTM法D4282で測定)を有し、該細孔サイズ分布の触媒は周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含む1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物の有機酸金属塩中のアルカリ金属及びアルカリ土類金属の合計含有量が原油原料の有機酸金属塩中のアルカリ金属及びアルカリ土類金属の合計含有量に対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also includes one or more alkali metal salts of one or more organic acids, one or more alkaline earth metal salts of one or more organic acids, or a mixture thereof, and an organic acid metal salt A crude material having a total content of alkali metal salt and alkaline earth metal salt (measured by ASTM method D1318) of 0.00001 g or more per gram of crude material, at least one of the catalysts has a median pore diameter of 180 径The pore size distribution (measured by ASTM method D4282) is as described above, and the catalyst of the pore size distribution is composed of one or more metals in the sixth column of the periodic table and one or more metals in the sixth column of the periodic table. Producing a total product comprising a crude product which is a liquid mixture at 25 ° C. and 0.101 MPa by contacting with one or more catalysts comprising one or more compounds, or mixtures thereof, and crude product Organic acids Control the contact conditions so that the total content of alkali metal and alkaline earth metal in the metal salt is 90% or less of the total content of alkali metal and alkaline earth metal in the organic acid metal salt of crude oil There is also provided a method for producing a crude product comprising the steps of:
また本発明は、1種以上の有機酸の1種以上のアルカリ金属塩、1種以上の有機酸の1種以上のアルカリ土類金属塩、又はそれらの混合物を含有すると共に、有機酸金属塩中のアルカリ金属塩及びアルカリ土類金属塩の合計含有量(ASTM法D1318で測定)が原油原料1g当たり0.00001g以上である原油原料を、触媒の少なくとも1種は、中央値細孔径が230Å以上である細孔サイズ分布(ASTM法D4282で測定)を有し、該細孔サイズ分布の触媒は周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含む1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物の有機酸金属塩中のアルカリ金属及びアルカリ土類金属の合計含有量が原油原料の有機酸金属塩中のアルカリ金属及びアルカリ土類金属の合計含有量に対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also includes one or more alkali metal salts of one or more organic acids, one or more alkaline earth metal salts of one or more organic acids, or a mixture thereof, and an organic acid metal salt A crude material having a total content of alkali metal salt and alkaline earth metal salt (measured by ASTM method D1318) of 0.00001 g or more per gram of crude material, at least one of the catalysts has a median pore diameter of 230Å The pore size distribution (measured by ASTM method D4282) is as described above, and the catalyst of the pore size distribution is composed of one or more metals in the sixth column of the periodic table and one or more metals in the sixth column of the periodic table. Producing a total product comprising a crude product which is a liquid mixture at 25 ° C. and 0.101 MPa by contacting with one or more catalysts comprising one or more compounds, or mixtures thereof, and crude product Organic acids Control the contact conditions so that the total content of alkali metal and alkaline earth metal in the metal salt is 90% or less of the total content of alkali metal and alkaline earth metal in the organic acid metal salt of crude oil There is also provided a method for producing a crude product comprising the steps of:
また本発明は、合計Ni/V/Fe含有量(ASTM法D5708で測定)が原油原料1g当たり0.00002g以上である原油原料を、触媒の少なくとも1種は、中央値細孔径が230Å以上である細孔サイズ分布(ASTM法D4282で測定)を有し、該細孔サイズ分布の触媒は周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含む1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物の合計Ni/V/Fe含有量が原油原料の合計Ni/V/Fe含有量に対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also provides a crude feedstock having a total Ni / V / Fe content (measured by ASTM method D5708) of 0.00002 g or more per gram of crude feedstock, and at least one of the catalysts has a median pore diameter of 230 mm or more. It has a certain pore size distribution (measured by ASTM method D4282), and the catalyst of the pore size distribution is one or more metals in the sixth column of the periodic table and one or more metals in the sixth column of the periodic table A step of producing a total product comprising a crude product, which is a liquid mixture at 25 ° C. and 0.101 MPa, in contact with one or more catalysts comprising the above compounds, or mixtures thereof, and the sum of the crude products There is also provided a method for producing a crude product including a step of controlling contact conditions such that the Ni / V / Fe content is 90% or less with respect to the total Ni / V / Fe content of the crude raw material.
また本発明は、1種以上の有機酸の1種以上のアルカリ金属塩、1種以上の有機酸の1種以上のアルカリ土類金属塩、又はそれらの混合物を含有すると共に、有機酸金属塩中のアルカリ金属塩及びアルカリ土類金属塩の合計含有量(ASTM法D1318で測定)が原油原料1g当たり0.00001g以上である原油原料を、触媒の少なくとも1種は、中央値細孔径が90Å以上である細孔サイズ分布(ASTM法D4282で測定)を有し、該細孔サイズ分布の触媒は触媒1g当たりモリブデン、1種以上のモリブデン化合物又はそれらの混合物を、モリブデンの重量として計算して、0.0001〜0.3g含有する1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物の有機酸金属塩中のアルカリ金属及びアルカリ土類金属の合計含有量が原油原料の有機酸金属塩中のアルカリ金属及びアルカリ土類金属の合計含有量に対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also includes one or more alkali metal salts of one or more organic acids, one or more alkaline earth metal salts of one or more organic acids, or a mixture thereof, and an organic acid metal salt A crude material having a total content of alkali metal salt and alkaline earth metal salt (measured by ASTM method D1318) of 0.00001 g or more per gram of crude material, at least one of the catalysts has a median pore diameter of 90% The pore size distribution (measured by ASTM method D4282) is as described above, and the catalyst of the pore size distribution is calculated by calculating molybdenum, one or more molybdenum compounds or a mixture thereof as the weight of molybdenum per gram of catalyst. To produce a total product including a crude product which is a liquid mixture at 25 ° C. and 0.101 MPa in contact with one or more catalysts containing 0.0001 to 0.3 g And the total content of alkali metal and alkaline earth metal in the organic acid metal salt of the crude product is 90% of the total content of alkali metal and alkaline earth metal in the organic acid metal salt of the crude raw material. Also provided is a method for producing a crude product comprising the step of controlling the contact conditions so that:
また本発明は、TAN(ASTM法D664で測定)が0.3以上であり、合計Ni/V/Fe含有量(ASTM法D5708で測定)が原油原料1g当たり0.00002g以上である原油原料を、触媒の少なくとも1種は、中央値細孔径が90Å以上である細孔サイズ分布(ASTM法D4282で測定)を有し、該細孔サイズ分布の触媒は触媒1g当たり、モリブデン、1種以上のモリブデン化合物又はそれらの混合物を、モリブデンの重量として計算して、合計0.0001〜0.3g含有する1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物のTANが原油原料のTANに対し90%以下で原油生成物の合計Ni/V/Fe含有量が原油原料の合計Ni/V/Fe含有量に対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also provides a crude material having a TAN (measured by ASTM method D664) of 0.3 or more and a total Ni / V / Fe content (measured by ASTM method D5708) of 0.00002 g or more per gram of crude material. At least one of the catalysts has a pore size distribution (measured by ASTM method D4282) having a median pore diameter of 90 mm or more, and the catalyst of the pore size distribution is one or more kinds of molybdenum per gram of the catalyst. A crude product that is a liquid mixture at 25 ° C. and 0.101 MPa in contact with one or more catalysts containing a total of 0.0001-0.3 g of molybdenum compounds or mixtures thereof, calculated as the weight of molybdenum The crude product TAN is 90% or less of the crude feed TAN, and the crude product has a total Ni / V / Fe content of Such that 90% or less relative to the total Ni / V / Fe content of the raw materials, the manufacturing method of the crude product comprising the step of controlling the contacting conditions are also provided.
また本発明は、1種以上の有機酸の1種以上のアルカリ金属塩、1種以上の有機酸の1種以上のアルカリ土類金属塩、又はそれらの混合物を含有すると共に、有機酸金属塩中のアルカリ金属塩及びアルカリ土類金属塩の合計含有量(ASTM法D1318で測定)が原油原料1g当たり0.00001g以上である原油原料を、触媒の少なくとも1種は、(a)周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物及び(b)周期表第10欄の1種以上の金属、周期表第10欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を合計第10欄金属対合計第6欄金属のモル比で1〜10の範囲で含む1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物の有機酸金属塩中のアルカリ金属及びアルカリ土類金属の合計含有量が原油原料の有機酸金属塩中のアルカリ金属及びアルカリ土類金属の合計含有量に対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also includes one or more alkali metal salts of one or more organic acids, one or more alkaline earth metal salts of one or more organic acids, or a mixture thereof, and an organic acid metal salt A crude material having a total content of alkali metal salt and alkaline earth metal salt (measured by ASTM method D1318) of 0.00001 g or more per gram of crude material, at least one of the catalysts is: One or more metals in column 6, one or more compounds of one or more metals in column 6 of the periodic table, or mixtures thereof; and (b) one or more metals in column 10 of the periodic table, periodic table One or more compounds of one or more metals in column 10 or mixtures thereof are contacted with one or more catalysts comprising a total column 10 metal to total column 6 metal molar ratio in the range of 1-10. At 25 ° C. and 0.101 MPa with a liquid mixture The total production of the product including the crude oil product, and the total content of alkali metal and alkaline earth metal in the organic acid metal salt of the crude product is alkali metal and alkali in the organic acid metal salt of the crude material There is also provided a method for producing a crude product including a step of controlling contact conditions such that the total content of earth metals is 90% or less.
また本発明は、合計Ni/V/Fe含有量(ASTM法D5708で測定)が原油原料1g当たり0.00002g以上である原油原料を、触媒の少なくとも1種は、(a)周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物及び(b)周期表第10欄の1種以上の金属、周期表第10欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を合計第10欄金属対合計第6欄金属のモル比で1〜10の範囲で含む1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物の合計Ni/V/Fe含有量が原油原料の合計Ni/V/Fe含有量に対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also provides a crude feedstock having a total Ni / V / Fe content (measured by ASTM method D5708) of 0.00002 g or more per gram of crude feedstock, wherein at least one of the catalysts is (a) column 6 of the periodic table One or more metals, one or more compounds of one or more metals in the sixth column of the periodic table, or mixtures thereof; and (b) one or more metals in the tenth column of the periodic table, column 10 of the periodic table. Contacting one or more compounds of one or more metals, or a mixture thereof with one or more catalysts comprising a total column 10 metal to total column 6 metal molar ratio in the range of 1-10, Producing a total product including a crude product which is a liquid mixture at 25 ° C. and 0.101 MPa, and the total Ni / V / Fe content of the crude product becomes the total Ni / V / Fe content of the crude feed The contact condition is controlled so that it is 90% or less. Also it provides method for producing a crude product comprising extent.
また本発明は、1種以上の有機酸の1種以上のアルカリ金属塩、1種以上の有機酸の1種以上のアルカリ土類金属塩、又はそれらの混合物を含有すると共に、有機酸金属塩中のアルカリ金属塩及びアルカリ土類金属塩の合計含有量(ASTM法D1318で測定)が原油原料1g当たり0.00001g以上である原油原料を、(a)周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を、第一触媒1g当たり、金属の重量として計算して、0.0001〜0.06g含有する第一触媒及び(b)周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を第二触媒1g当たり、金属の重量として計算して、0.02g以上含有する1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物の有機酸金属塩中のアルカリ金属及びアルカリ土類金属の合計含有量が原油原料の有機酸金属塩中のアルカリ金属及びアルカリ土類金属の合計含有量に対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also includes one or more alkali metal salts of one or more organic acids, one or more alkaline earth metal salts of one or more organic acids, or a mixture thereof, and an organic acid metal salt A crude oil raw material having a total content of alkali metal salt and alkaline earth metal salt (measured by ASTM method D1318) of 0.00001 g or more per gram of crude oil raw material is (a) one or more kinds in the sixth column of the periodic table. A metal, one or more compounds of one or more metals in the sixth column of the periodic table, or a mixture thereof, calculated as the weight of the metal per 1 g of the first catalyst, is contained in 0.0001 to 0.06 g. One catalyst and (b) one or more metals in column 6 of the periodic table, one or more compounds of one or more metals in column 6 of the periodic table, or a mixture thereof per gram of the second catalyst Calculated as 1 type containing 0.02g or more Contacting the above catalyst to produce a total product comprising a crude product that is a liquid mixture at 25 ° C. and 0.101 MPa, and alkali metals and alkaline earth metals in the organic acid metal salt of the crude product There is also a method for producing a crude product including a step of controlling the contact conditions so that the total content of is 90% or less with respect to the total content of alkali metals and alkaline earth metals in the organic acid metal salt of the crude oil raw material. provide.
また本発明は、1種以上の有機酸の1種以上のアルカリ金属塩、1種以上の有機酸の1種以上のアルカリ土類金属塩、又はそれらの混合物を含有すると共に、有機酸金属塩中のアルカリ金属塩及びアルカリ土類金属塩の合計含有量(ASTM法D1318で測定)が原油原料1g当たり0.00001g以上である原油原料を、触媒の少なくとも1種は、周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を触媒1g当たり、金属の重量として計算して、0.001g含有する1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び接触帯での液体の時間当たり空間速度が10h−1を超えると共に、原油生成物の有機酸金属塩中のアルカリ金属及びアルカリ土類金属の合計含有量が原油原料の有機酸金属塩中のアルカリ金属及びアルカリ土類金属の合計含有量に対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also includes one or more alkali metal salts of one or more organic acids, one or more alkaline earth metal salts of one or more organic acids, or a mixture thereof, and an organic acid metal salt A crude material having a total content of alkali metal salt and alkaline earth metal salt (measured by ASTM method D1318) of 0.00001 g or more per gram of crude material, at least one catalyst is One or more metals, one or more compounds of one or more metals in the sixth column of the periodic table, or a mixture thereof, calculated as the weight of metal per gram of catalyst, and containing one or more metals containing 0.001 g Producing a total product comprising a crude product which is a liquid mixture at 25 ° C. and 0.101 MPa in contact with the catalyst, and the hourly space velocity of the liquid in the contact zone exceeds 10 h −1 ; Living The total content of alkali metal and alkaline earth metal in the organic acid metal salt of the product is 90% or less with respect to the total content of alkali metal and alkaline earth metal in the organic acid metal salt of the crude oil raw material. Also provided is a method for producing a crude product comprising a step of controlling contact conditions.
また本発明は、合計Ni/V/Fe含有量(ASTM法D5708で測定)が原油原料1g当たり0.00002g以上である原油原料を、触媒の少なくとも1種は、周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を触媒1g当たり、金属の重量として計算して、0.001g以上含有する1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び接触帯での液体の時間当たり空間速度が10h−1を超えると共に、原油生成物の合計Ni/V/Fe含有量が原油原料の合計Ni/V/Fe含有量に対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also provides a crude feedstock having a total Ni / V / Fe content (measured by ASTM method D5708) of 0.00002 g or more per gram of crude feedstock, and at least one catalyst is one of the sixth column of the periodic table. One or more catalysts containing 0.001 g or more of the above metals, one or more compounds of one or more metals in the sixth column of the periodic table, or a mixture thereof, calculated as the weight of the metal per 1 g of the catalyst. Producing a total product comprising a crude product that is a liquid mixture at 25 ° C. and 0.101 MPa, and a space velocity of liquid in the contact zone per hour exceeding 10 h −1 and producing crude oil There is also provided a method for producing a crude product including a step of controlling contact conditions such that the total Ni / V / Fe content of the product is 90% or less with respect to the total Ni / V / Fe content of the crude raw material.
また本発明は、酸素含有量(ASTM法E385で測定)が原油原料1g当たり0.0001g以上で硫黄含有量(ASTM法D4294で測定)が原油原料1g当たり0.0001g以上である原油原料を、触媒の少なくとも1種は、周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含有する1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物の酸素含有量が原油の酸素含有量に対し90%以下で原油生成物の硫黄含有量が原油原料の硫黄含有量に対し70〜130%となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also provides a crude material having an oxygen content (measured by ASTM method E385) of 0.0001 g or more per gram of crude material and a sulfur content (measured by ASTM method D4294) of 0.0001 g or more of gram of crude material, At least one of the catalysts is one or more catalysts containing one or more metals in column 6 of the periodic table, one or more compounds of one or more metals in column 6 of the periodic table, or mixtures thereof. Producing a total product including a crude product that is a liquid mixture at 25 ° C. and 0.101 MPa, and producing a crude product with an oxygen content of the crude product of 90% or less relative to the oxygen content of the crude product. There is also provided a method for producing a crude product including a step of controlling contact conditions such that the sulfur content of the product is 70 to 130% with respect to the sulfur content of the crude oil raw material.
また本発明は、合計Ni/V/Fe含有量(ASTM法D5708で測定)が原油原料1g当たり0.00002g以上で硫黄含有量(ASTM法D4294で測定)が原油原料1g当たり0.0001g以上である原油原料を、触媒の少なくとも1種は、周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含有する1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物の合計Ni/V/Fe含有量が原油原料の合計Ni/V/Fe含有量に対し90%以下で原油生成物の硫黄含有量が原油原料の硫黄含有量に対し70〜130%となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 In addition, the present invention has a total Ni / V / Fe content (measured by ASTM method D5708) of 0.00002 g or more per gram of crude material and a sulfur content (measured by ASTM method D4294) of 0.0001 g or more of gram of crude material. One crude feedstock, at least one of the catalysts contains one or more metals in column 6 of the periodic table, one or more compounds of one or more metals in column 6 of the periodic table, or a mixture thereof 1 Producing a total product, including a crude product, which is a liquid mixture at 25 ° C. and 0.101 MPa, in contact with at least a seed catalyst, and the crude product has a total Ni / V / Fe content of the crude feed A crude product comprising a step of controlling contact conditions such that the sulfur content of the crude product is 70 to 130% with respect to the sulfur content of the crude feed at 90% or less of the total Ni / V / Fe content. Made of The method is also provided.
また本発明は、1種以上の有機酸の1種以上のアルカリ金属塩、1種以上の有機酸の1種以上のアルカリ土類金属塩、又はそれらの混合物を含有すると共に、有機酸金属塩中のアルカリ金属塩及びアルカリ土類金属塩の合計含有量(ASTM法D1318で測定)が原油原料1g当たり0.00001g以上で残留物含有量(ASTM法D5307で測定)が原油原料1g当たり0.1g以上である原油原料を、触媒の少なくとも1種は、周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含有する1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物の有機酸金属塩中のアルカリ金属及びアルカリ土類金属の合計含有量が原油原料の有機酸金属塩中のアルカリ金属及びアルカリ土類金属の合計含有量に対し90%以下で原油生成物の残留物含有量が原油原料の残留物含有量に対し70〜130%となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also includes one or more alkali metal salts of one or more organic acids, one or more alkaline earth metal salts of one or more organic acids, or a mixture thereof, and an organic acid metal salt The total content of alkali metal salt and alkaline earth metal salt (measured by ASTM method D1318) is 0.00001 g or more per gram of crude oil feedstock, and the residual content (measured by ASTM method D5307) is 0.000 per gram of crude oil feedstock. 1 g or more of crude raw material, at least one of the catalysts is one or more metals in the sixth column of the periodic table, one or more compounds of one or more metals in the sixth column of the periodic table, or a mixture thereof. Producing a total product comprising a crude product, which is a liquid mixture at 25 ° C. and 0.101 MPa, in contact with one or more containing catalysts, and alkali metals in the organic acid metal salt of the crude product and A The total content of potash earth metal is 90% or less with respect to the total content of alkali metals and alkaline earth metals in the organic acid metal salt of crude oil raw material, and the crude product residue content contains crude oil raw material residue There is also provided a method for producing a crude product comprising a step of controlling contact conditions so that the amount is 70 to 130%.
また本発明は、残留物含有量(ASTM法D5307で測定)が原油原料1g当たり0.1g以上で合計Ni/V/Fe含有量(ASTM法D5708で測定)が原油原料1g当たり0.00002g以上である原油原料を、触媒の少なくとも1種は、周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含有する1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物の合計Ni/V/Fe含有量が原油原料の合計Ni/V/Fe含有量に対し90%以下で原油生成物の残留物含有量が原油原料の残留物含有量に対し70〜130%となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 In addition, the present invention has a residue content (measured by ASTM method D5307) of 0.1 g or more per gram of crude feed and a total Ni / V / Fe content (measured by ASTM method D5708) of 0.00002 g or more per gram of crude feed. In the crude oil raw material, at least one of the catalysts contains one or more metals in column 6 of the periodic table, one or more compounds of one or more metals in column 6 of the periodic table, or a mixture thereof. Producing a total product comprising a crude product which is a liquid mixture at 25 ° C. and 0.101 MPa in contact with one or more catalysts, and the total Ni / V / Fe content of the crude product is a crude feed The step of controlling the contact conditions so that the crude product residue content is 70 to 130% of the crude material residue content at 90% or less of the total Ni / V / Fe content of Production of crude product The method is also provided.
また本発明は、1種以上の有機酸の1種以上のアルカリ金属塩、1種以上の有機酸の1種以上のアルカリ土類金属塩、又はそれらの混合物を含有すると共に、有機酸金属塩中のアルカリ金属塩及びアルカリ土類金属塩の合計含有量(ASTM法D1318で測定)が原油原料1g当たり0.0001g以上で真空ガス油(VGO)含有量(ASTM法D5307で測定)が原油原料1g当たり0.1g以上である原油原料を、触媒の少なくとも1種は、周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含有する1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物の有機酸金属塩中のアルカリ金属及びアルカリ土類金属の合計含有量が原油原料の有機酸金属塩中のアルカリ金属及びアルカリ土類金属の合計含有量に対し90%以下で原油生成物のVGO含有量が原油原料のVGO含有量に対し70〜130%となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also includes one or more alkali metal salts of one or more organic acids, one or more alkaline earth metal salts of one or more organic acids, or a mixture thereof, and an organic acid metal salt The total content of alkali metal salt and alkaline earth metal salt (measured by ASTM method D1318) is 0.0001 g or more per gram of crude material, and the content of vacuum gas oil (VGO) (measured by ASTM method D5307) is crude material. 1 g or more of a raw material of crude oil that is 0.1 g or more per gram, one or more compounds of one or more metals in column 6 of the periodic table, one or more metals in column 6 of the periodic table, or In contact with one or more catalysts containing the mixture to produce a total product including a crude product which is a liquid mixture at 25 ° C. and 0.101 MPa, and in an organic acid metal salt of the crude product Arca The total content of metal and alkaline earth metal is 90% or less of the total content of alkali metal and alkaline earth metal in the organic acid metal salt of the crude oil raw material, and the VGO content of the crude product contains the VGO of the crude oil raw material. There is also provided a method for producing a crude product including a step of controlling the contact conditions so that the amount is 70 to 130%.
また本発明は、合計Ni/V/Fe含有量(ASTM法D5708で測定)が原油原料1g当たり0.00002g以上でVGO含有量(ASTM法D5307で測定)が原油原料1g当たり0.1g以上である原油原料を、触媒の少なくとも1種は、周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含有する1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程、及び原油生成物の合計Ni/V/Fe含有量が原油原料の合計Ni/V/Fe含有量に対し90%以下で原油生成物のVGO含有量が原油原料のVGO含有量に対し70〜130%となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 In addition, the present invention has a total Ni / V / Fe content (measured by ASTM method D5708) of 0.00002 g or more per gram of crude material and a VGO content (measured by ASTM method D5307) of 0.1 g or more per gram of crude material. One crude feedstock, at least one of the catalysts contains one or more metals in column 6 of the periodic table, one or more compounds of one or more metals in column 6 of the periodic table, or a mixture thereof 1 Producing a total product, including a crude product, which is a liquid mixture at 25 ° C. and 0.101 MPa, in contact with at least a seed catalyst, and the crude product has a total Ni / V / Fe content of the crude feed A crude product comprising a step of controlling contact conditions such that the VGO content of the crude product is 70 to 130% of the VGO content of the crude feed at 90% or less of the total Ni / V / Fe content. Made of The method is also provided.
また本発明は、1種以上の有機酸の1種以上のアルカリ金属塩、1種以上の有機酸の1種以上のアルカリ土類金属塩、又はそれらの混合物を含有すると共に、有機酸金属塩中のアルカリ金属塩及びアルカリ土類金属塩の合計含有量(ASTM法D1318で測定)が原油原料1g当たり0.00001g以上である原油原料を1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程であって、触媒の少なくとも1種は支持体を、周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物と組合わせて触媒前駆体とし、次いでこれを1種以上の硫黄含有化合物の存在下に400℃未満の温度で加熱して触媒を形成することにより得られる該工程、及び原油生成物の有機酸金属塩中のアルカリ金属及びアルカリ土類金属の合計含有量が原油原料の有機酸金属塩中のアルカリ金属及びアルカリ土類金属の合計含有量に対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also includes one or more alkali metal salts of one or more organic acids, one or more alkaline earth metal salts of one or more organic acids, or a mixture thereof, and an organic acid metal salt A crude material having a total content of alkali metal salt and alkaline earth metal salt (measured by ASTM method D1318) of 0.00001 g or more per gram of crude material is brought into contact with one or more catalysts, A process for producing a total product comprising a crude product which is a liquid mixture at 101 MPa, wherein at least one of the catalysts is a support, one or more metals in column 6 of the periodic table, column 6 of the periodic table A catalyst precursor in combination with one or more compounds of one or more metals, or mixtures thereof, which is then heated at a temperature below 400 ° C. in the presence of one or more sulfur-containing compounds. To form And the total content of alkali metals and alkaline earth metals in the organic acid metal salt of the crude product is the total content of alkali metals and alkaline earth metal in the organic acid metal salt of the crude raw material. On the other hand, a method for producing a crude product including a step of controlling contact conditions so as to be 90% or less is also provided.
また本発明は、合計Ni/V/Fe含有量(ASTM法D5708で測定)が原油原料1g当たり0.00002g以上である原油原料を1種以上の触媒と接触させて、25℃、0.101MPaにおいて液体混合物である原油生成物を含む全生成物を製造する工程であって、触媒の少なくとも1種は支持体を、周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物と組合わせて触媒前駆体とし、次いでこれを1種以上の硫黄含有化合物の存在下に400℃未満の温度で加熱して触媒を形成することにより得られる該工程、及び原油生成物の合計Ni/V/Fe含有量が原油原料の合計Ni/V/Fe含有量に対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also provides a crude feedstock having a total Ni / V / Fe content (measured by ASTM method D5708) of 0.00002 g or more per gram of crude feedstock, brought into contact with one or more catalysts at 25 ° C. and 0.101 MPa. In which a crude product, which is a liquid mixture, is produced, wherein at least one of the catalysts is a support, one or more metals in column 6 of the periodic table, 1 of column 6 of the periodic table. Combining with one or more compounds of one or more metals, or mixtures thereof, to form a catalyst precursor, which is then heated at a temperature below 400 ° C. in the presence of one or more sulfur-containing compounds to form a catalyst. And the step of controlling the contact conditions so that the total Ni / V / Fe content of the crude product is 90% or less with respect to the total Ni / V / Fe content of the crude raw material. Including crude oil products The method is also provided.
また本発明は、0.101MPaにおいて95〜260℃の沸点範囲を有する炭化水素を原油組成物1g当たり0.001g以上、0.101MPaにおいて260〜320℃の沸点範囲を有する炭化水素を原油組成物1g当たり0.001g以上、0.101MPaにおいて320〜650℃の沸点範囲を有する炭化水素を原油組成物1g当たり0.001g以上、及び1種以上の触媒を原油組成物1g当たり0gを超え0.01g未満含有する原油組成物も提供する。 Further, the present invention relates to a hydrocarbon having a boiling range of 95 to 260 ° C. at 0.101 MPa per crude oil composition at 0.001 g or more, and a hydrocarbon having a boiling range of 260 to 320 ° C. at 0.101 MPa to a crude oil composition. 0.001 g or more per gram, hydrocarbon having a boiling range of 320 to 650 ° C. at 0.101 MPa, 0.001 g or more per gram of crude oil composition, and one or more catalysts exceeding 0 g per gram of crude oil composition. A crude oil composition containing less than 01 g is also provided.
また本発明は、それぞれ組成物1g当たり、硫黄を0.01g以上(ASTM法D4294で測定)、残留物を0.2g以上(ASTM法D5307で測定)含有すると共に、MCR含有量(重量、ASTM法D4530で測定)対C5アスファルテン含有量(重量、ASTM法D2007で測定)の重量比が1.5以上である原油組成物も提供する。 In addition, the present invention contains 0.01 g or more of sulfur (measured by ASTM method D4294) and 0.2 g or more of residue (measured by ASTM method D5307) per 1 g of the composition, and MCR content (weight, ASTM). Law D4530 measured at) to C 5 asphaltenes content (weight, the weight ratio of the measurement) by ASTM method D2007 also provides oil compositions it is 1.5 or more.
また本発明は、MCR含有量(ASTM法D4530で測定)が原油原料1g当たり0.001g以上である原油原料を1種以上の触媒と接触させて、25℃、0.101MPaにおいて凝縮可能な原油生成物を含む全生成物を製造する工程であって、触媒の少なくとも1種は支持体を、周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物と組合わせて触媒前駆体とし、次いでこれを1種以上の硫黄含有化合物の存在下に500℃未満の温度で加熱して触媒を形成することにより得られる該工程、及び原油生成物のMCR含有量が原油原料のMCR含有量に対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 The present invention also provides a crude oil which has a MCR content (measured by ASTM method D4530) of 0.001 g or more per 1 g of crude feed and is brought into contact with one or more catalysts and can be condensed at 25 ° C. and 0.101 MPa. A step of producing a total product including products, wherein at least one of the catalysts comprises a support, one or more metals in column 6 of the periodic table, one of one or more metals in column 6 of the periodic table. The catalyst precursor obtained by combining with one or more compounds, or a mixture thereof, to form a catalyst precursor, which is then heated at a temperature of less than 500 ° C. in the presence of one or more sulfur-containing compounds. There is also provided a method for producing a crude product comprising a step and a step of controlling contact conditions such that the MCR content of the crude product is 90% or less of the MCR content of the crude feed.
また本発明は、 MCR含有量(ASTM法D4530で測定)が原油原料1g当たり0.001g以上である原油原料を、触媒の少なくとも1種は、中央値細孔径が70〜180Åの範囲にあり、かつ細孔サイズ分布における全細孔数の60%以上が中央値細孔径の45Å以内の細孔径を有する細孔サイズ分布(ASTM法D4282で測定)を示す1種以上の触媒と接触させて、25℃、0.101MPaにおいて凝縮可能な原油生成物を含む全生成物を製造する工程、及び原油生成物のMCR含有量が原油原料のMCR含有量に対し90%以下となるように、接触条件を制御する工程を含む原油生成物の製造方法も提供する。 Further, the present invention provides a crude material having an MCR content (measured by ASTM method D4530) of 0.001 g or more per gram of crude material, and at least one of the catalysts has a median pore diameter in the range of 70 to 180 mm, And at least 60% of the total number of pores in the pore size distribution is contacted with one or more catalysts showing a pore size distribution (measured by ASTM method D4282) having a pore diameter within 45 mm of the median pore diameter, A process for producing a total product including a crude product condensable at 25 ° C. and 0.101 MPa, and contact conditions such that the MCR content of the crude product is 90% or less of the MCR content of the crude feed. There is also provided a method for producing a crude product comprising a step of controlling.
また本発明は、それぞれ原油組成物1g当たり、酸素を0.004g以下(ASTM法E385で測定)、硫黄を0.003g以下(ASTM法D4294で測定)、及び残留物を0.3g以上(ASTM法D5307で測定)含有する原油組成物も提供する。 In addition, the present invention relates to 0.004 g or less of oxygen (measured by ASTM method E385), 0.003 g or less of sulfur (measured by ASTM method D4294), and 0.3 g or more of residue (ASTM) per gram of crude oil composition. A crude oil composition is also provided, as measured by Method D5307.
また本発明は、それぞれ原油組成物1g当たり、酸素を0.004g以下(ASTM法E385で測定)、硫黄を0.003g以下(ASTM法D4294で測定)、塩基性窒素を0.04g以下(ASTM法D2896で測定)、及び残留物を0.2g以上(ASTM法D5307で測定)含有すると共に、TANが0.5以下(ASTM法D664で測定)である原油組成物も提供する。 Further, according to the present invention, oxygen is 0.004 g or less (measured by ASTM method E385), sulfur is 0.003 g or less (measured by ASTM method D4294), and basic nitrogen is 0.04 g or less per 1 g of crude oil composition (ASTM And a crude oil composition containing 0.2 g or more of residue (measured by ASTM method D5307) and having a TAN of 0.5 or less (measured by ASTM method D664).
また本発明は、硫黄を0.001g以上(ASTM法D4294で測定)、残留物を0.2g以上(ASTM法D5307で測定)含有すると共に、MCR含有量(ASTM法D4530で測定)対C5アスファルテン含有量(ASTM法D2007で測定)の重量比が1.5以上でTANが0.5以下(ASTM法D664で測定)である原油組成物も提供する。 Further, the present invention contains not less than 0.001 g of sulfur (measured by ASTM method D4294), 0.2 g or more of residue (measured by ASTM method D5307), and MCR content (measured by ASTM method D4530) versus C 5. A crude oil composition having a weight ratio of asphaltene content (measured by ASTM method D2007) of 1.5 or more and TAN of 0.5 or less (measured by ASTM method D664) is also provided.
幾つかの実施態様では、本発明は、本発明方法又は組成物の1つ以上と組合わせて、以下の原油原料も提供する。この原油原料は、(a)製油所で処理、蒸留、及び/又は分別蒸留されされていない、(b)炭素数が5以上の成分を原油原料1g当たり0.5g以上含有し、(c)炭化水素の一部は、0.101MPaで100℃未満の沸点範囲分布、0.101MPaで100〜200℃の沸点範囲分布、0.101MPaで200〜300℃の沸点範囲分布、0.101Mpaで300〜400℃の沸点範囲分布、及び0.101MPaで400〜650℃の沸点範囲分布である炭化水素を含み、(d)原油原料1g当たり、沸点範囲分布が0.101MPaで100℃未満の炭化水素を0.001g以上、沸点範囲分布が0.101MPaで100〜200℃の炭化水素を0.001g以上、沸点範囲分布が0.101Mpaで200〜300℃の炭化水素を0.001g以上、沸点範囲分布が0.101MPaで300〜400℃の炭化水素を0.001g以上、及び沸点範囲分布が0.101MPaで400〜650℃の炭化水素を0.001g以上含み、(e)TANが0.1以上、0.3以上、或いは0.3〜20、0.4〜10又は0.5〜5の範囲であり、(f)初期沸点が0.101MPaで200℃以上であり、(g)ニッケル、バナジウム及び鉄を含み、(h)合計Ni/V/Fe含有量が原油原料1g当たり0.00002g以上であり、(i)硫黄を含有し、(j)硫黄含有量が原油原料1g当たり少なくとも0.0001g又は0.05gであり、(k)VGO含有量が原油原料1g当たり0.001g以上であり、(l)残留物含有量が原油原料1g当たり0.1g以上であり、(m)酸素含有炭化水素を含み、(n)1種以上の有機酸の1種以上のアルカリ金属塩、1種以上の有機酸の1種以上のアルカリ土類金属塩、又はそれらの混合物を含み、(o)有機酸の少なくとも1種の亜鉛塩を含み、及び/又は(p)有機酸の少なくとも1種の砒素塩を含む。 In some embodiments, the present invention also provides the following crude feed in combination with one or more of the methods or compositions of the present invention. This crude oil feedstock contains (a) 0.5 g or more of a component having 5 or more carbon atoms per gram of crude feedstock, which is not treated, distilled and / or fractionally distilled at a refinery, and (c) Some hydrocarbons have a boiling range distribution of 0.101 MPa below 100 ° C., a boiling range distribution of 100-200 ° C. at 0.101 MPa, a boiling range distribution of 200-300 ° C. at 0.101 MPa, and 300 at 0.101 MPa. A hydrocarbon having a boiling range distribution of ˜400 ° C. and a hydrocarbon having a boiling range distribution of 0.101 MPa and 400 to 650 ° C., and (d) a hydrocarbon having a boiling range distribution of 0.101 MPa and less than 100 ° C. 0.001 g or more, boiling point range distribution of 0.101 MPa and hydrocarbons of 100 to 200 ° C. 0.001 g or more, boiling point range distribution of 0.101 MPa and 200 to 300 ° C. 0.001 g or more of hydrogen fluoride, 0.001 g or more of hydrocarbon at 300 to 400 ° C. with a boiling range distribution of 0.101 MPa, and 0.001 g or more of hydrocarbon at 400 to 650 ° C. with a boiling range distribution of 0.101 MPa (E) TAN is 0.1 or more, 0.3 or more, or 0.3 to 20, 0.4 to 10, or 0.5 to 5, and (f) the initial boiling point is 0.101 MPa. 200 g or higher, (g) containing nickel, vanadium, and iron, (h) the total Ni / V / Fe content is 0.00002 g or more per gram of crude material, (i) containing sulfur, (j ) Sulfur content is at least 0.0001 g / g crude oil feedstock, (k) VGO content is 0.001 g or more per g crude feedstock, and (l) Residue content per g crude feedstock. 0 1 m or more, (m) containing oxygen-containing hydrocarbons, (n) one or more alkali metal salts of one or more organic acids, one or more alkaline earth metal salts of one or more organic acids, Or a mixture thereof, (o) containing at least one zinc salt of an organic acid, and / or (p) containing at least one arsenic salt of an organic acid.
幾つかの実施態様では、本発明は、本発明方法又は組成物の1つ以上と組合わせて、原油(crude)からナフサ及びナフサよりも揮発性の化合物を除去して得られる原油原料も提供する。 In some embodiments, the present invention also provides a crude feed obtained by removing naphtha and volatile compounds from naphtha in combination with one or more of the methods or compositions of the present invention. To do.
幾つかの実施態様では、本発明は、本発明方法又は組成物の1つ以上と組合わせて、以下の方法も提供する。この方法は、C5アスファルテン及びMCRを含有する原油原料を1種以上の触媒と接触させて、C5アスファルテン及びMCRを含有する原油生成物を含む全生成物を製造する方法において、(a)原油生成物のC5アスファルテン含有量とMCR含有量との合計S’が原油原料のC5アスファルテン含有量とMCR含有量との合計Sに対し99%以下になるように、接触条件を制御し、及び/又は(b)原油生成物のMCR含有量対原油生成物のC5アスファルテン含有量の重量比が1.2〜2.0又は1.3〜1.9の範囲になるように、接触条件を制御するというものである。 In some embodiments, the present invention also provides the following methods in combination with one or more of the methods or compositions of the present invention. This method is a crude feed containing C 5 asphaltenes and MCR is contacted with one or more catalysts, a method to produce a total product that includes a crude product containing C 5 asphaltenes and MCR, (a) so that the total S of the C 5 asphaltenes content and MCR content of the crude product 'is 99% or less relative to the total S of the C 5 asphaltenes content and MCR content of the crude feed, controls the contacting conditions and / or (b) so that the weight ratio of C 5 asphaltenes content of MCR content to the crude product of the crude product is in the range of 1.2 to 2.0 or 1.3 to 1.9, The contact condition is controlled.
幾つかの実施態様では、本発明は、本発明方法又は組成物の1つ以上と組合わせて、(a)ガス状、(b)水素ガス、(c)メタン、(d)軽質炭化水素、(e)不活性ガス、及び/又は(f)それらの混合物である水素源も提供する。 In some embodiments, the present invention is combined with one or more of the methods or compositions of the present invention to: (a) gaseous, (b) hydrogen gas, (c) methane, (d) light hydrocarbons, Also provided is a hydrogen source that is (e) an inert gas and / or (f) a mixture thereof.
幾つかの実施態様では、本発明は、本発明方法又は組成物の1つ以上と組合わせて、原油原料を、沖合設備上にあるか又は該設備に連結した接触帯中で1種以上の触媒と接触させて、原油生成物を含む全生成物を製造する方法も提供する。 In some embodiments, the present invention, in combination with one or more of the methods or compositions of the present invention, provides the crude feed with one or more in a contact zone that is on or connected to an offshore facility. Also provided is a method for producing a total product, including a crude product, in contact with a catalyst.
幾つかの実施態様では、本発明は、本発明方法又は組成物の1つ以上と組合わせて、原油原料をガス及び/又は水素源の存在下に1種以上の触媒と接触させて、原油生成物を含む全生成物を製造する工程、及び接触条件を、(a)ガス状水素源対原油原料の比が、1種以上の触媒と接触した原油原料1m3当たりガス状水素源5〜800標準m3の範囲であり、(b)選択した総水素吸収速度が水素源の部分圧により制御され、(c)原油生成物のTANは0.3未満であるが、水素吸収は接触中、原油原料と全生成物との相分離を実質的に起こさせる水素吸収量よりも少なくなるように、水素吸収速度が制御され、(d)選択した水素吸収速度が、原油原料1m3当たり水素源1〜30又は1〜80標準m3の範囲であり、(e)ガス及び/又は水素源の時間当たり液体の空間速度が11h−1以上、15h−1以上、又は20h−1以下であり、(f)接触中、ガス及び/又は水素源の部分圧が制御され、(g)接触温度が50〜500℃の範囲であり、ガス及び/又は水素源の時間当たり全液体空間速度が0.1〜30h−1の範囲であり、またガス及び/又は水素源の全圧が1.0〜20MPaの範囲であり、(h)ガス及び/又は水素源の流れが原油原料流とは反対方向であり、(i)原油生成物のH/Cが原油原料のH/Cに対し70〜130%であり、(j)原油原料の水素吸収が、原油原料1m3当たり水素80標準m3以下、及び/又は1〜80又は1〜50標準m3の範囲であり、(k)原油生成物の合計Ni/V/Fe含有量(ASTM法D5708で測定)が原油原料のNi/V/Fe含有量に対し90%以下、50%以下又は10%以下であり、(l)原油生成物の硫黄含有量が原油原料の硫黄含有量に対し70〜130%又は80〜120%であり、(m)原油生成物のVGO含有量が原油原料のVGO含有量に対し70〜130%又は90〜110%であり、(n)原油生成物の残留物含有量が原油原料の残留物含有量に対し70〜130%又は90〜110%であり、(o)原油生成物の酸素含有量が原油原料の酸素含有量に対し90%以下、70%以下、50%以下、40%以下又は10%以下であり、(p)原油生成物における有機酸金属塩中のアルカリ金属及びアルカリ土類金属の合計含有量が、原油原料における有機酸金属塩中のアルカリ金属及びアルカリ土類金属の含有量に対し90%以下、50%以下又は10%以下であり、(q)接触中の原油原料のP値が1.5以上であり、(r)原油生成物の37.8℃での粘度が原油原料の37.8℃での粘度に対し90%以下、50%以下又は10%以下であり、(s)原油生成物のAPI比重が原油原料のAPI比重に対し70〜130%であり、及び/又は(t)原油生成物のTANが原油原料のTANに対し90%以下、50%以下、30%以下、20%以下、10%以下、及び/又は0.001〜0.5、0.01〜0.2、又は0.05〜0.1の範囲となるように、制御する工程を含む方法も提供する。 In some embodiments, the present invention combines crude oil feed with one or more catalysts in the presence of a gas and / or hydrogen source in combination with one or more of the methods or compositions of the present invention. The steps for producing the total product, including the product, and the contact conditions are as follows: (a) a gaseous hydrogen source 5 to 1 m 3 of crude feed that has a gaseous hydrogen source to crude feed ratio in contact with one or more catalysts. 800 standard m 3 range, (b) the selected total hydrogen absorption rate is controlled by the partial pressure of the hydrogen source, and (c) the crude product has a TAN of less than 0.3, but the hydrogen absorption is in contact The hydrogen absorption rate is controlled so that the amount of hydrogen absorption is substantially less than the amount of hydrogen absorption that causes the phase separation between the crude material and the total product, and (d) the selected hydrogen absorption rate is hydrogen per 1 m 3 of crude material. Source 1-30 or 1-80 standard m 3 in range, (e) gas and Beauty / or space velocity of the liquid hourly hydrogen source 11h -1 or more, 15h -1 or more, or 20h -1 or less, in contact (f), the partial pressure of the gas and / or hydrogen source is controlled, (G) the contact temperature is in the range of 50-500 ° C., the total liquid space velocity per hour of the gas and / or hydrogen source is in the range of 0.1-30 h −1 , and the total gas and / or hydrogen source is The pressure is in the range of 1.0-20 MPa, (h) the gas and / or hydrogen source stream is in the opposite direction to the crude feed stream, and (i) the crude product H / C is the crude feed H / C a 70 to 130% relative to C, the hydrogen absorption of (j) the crude feed is crude feed 1 m 3 of hydrogen per 80 standard m 3 or less, and / or in the range of 1 to 80 or 1 to 50 standard m 3, (K) Total Ni / V / Fe content of crude product (ASTM method D5708) ) Is 90% or less, 50% or less, or 10% or less with respect to the Ni / V / Fe content of the crude material, and (l) the sulfur content of the crude product is 70% with respect to the sulfur content of the crude material. (M) The crude product has a VGO content of 70-130% or 90-110% of the crude product VGO content, and (n) the crude product residue. The product content is 70 to 130% or 90 to 110% with respect to the residual content of the crude material, and (o) the oxygen content of the crude product is 90% or less, 70% with respect to the oxygen content of the crude material. 50% or less, 40% or less, or 10% or less, and (p) the total content of alkali metal and alkaline earth metal in the organic acid metal salt in the crude product is Of alkali metals and alkaline earth metals 90% or less, 50% or less, or 10% or less of the amount, (q) the P value of the crude oil raw material in contact is 1.5 or more, and (r) the viscosity of the crude product at 37.8 ° C. Is 90% or less, 50% or less, or 10% or less with respect to the viscosity at 37.8 ° C. of the crude material, and (s) the API specific gravity of the crude product is 70 to 130% with respect to the API specific gravity of the crude material. And / or (t) the TAN of the crude product is 90% or less, 50% or less, 30% or less, 20% or less, 10% or less, and / or 0.001 to 0.5 relative to the TAN of the crude material. There is also provided a method including a step of controlling to be in the range of 0.01 to 0.2, or 0.05 to 0.1.
幾つかの実施態様では、本発明は、本発明方法又は組成物の1つ以上と組合わせて、原油原料を1種以上の触媒と接触させて、原油生成物を含む全生成物を製造する工程、及び接触条件を制御して、有機酸素含有化合物を低下させる工程であって、(a)粗生成生物の酸素含有量が原油原料の酸素含有量の90%以下になるように、選択した有機酸素化合物の含有量を低下させ、(b)有機酸素含有化合物の少なくとも1種の化合物は、カルボン酸の金属塩を含有し、(c)有機酸素含有化合物の少なくとも1種の化合物は、カルボン酸のアルカリ金属塩を含有し、(d)有機酸素含有化合物の少なくとも1種の化合物は、カルボン酸のアルカリ土類金属塩を含有し、(e)有機酸素含有化合物の少なくとも1種の化合物は、カルボン酸の金属塩(但し、該金属は周期表第12欄の1種以上の金属を含む)を含有し、(f)原油生成物中のカルボキシル非含有有機化合物の含有量は、原油原料中のカルボキシル非含有有機化合物の含有量に対し90%以下であり、及び/又は(g)原油原料中の酸素含有化合物の少なくとも1種は、ナフテン酸又はカルボキシル非含有有機酸素化合物から生じる該制御工程を含む方法も提供する。 In some embodiments, the present invention combines a crude feed with one or more catalysts in combination with one or more of the methods or compositions of the present invention to produce a total product including a crude product. The process and the contact conditions are controlled to reduce the organic oxygen-containing compound, and (a) the oxygen content of the crude product is selected so as to be 90% or less of the oxygen content of the crude raw material. The content of the organic oxygen compound is reduced, (b) at least one compound of the organic oxygen-containing compound contains a metal salt of a carboxylic acid, and (c) at least one compound of the organic oxygen-containing compound is a carboxylic acid. An alkali metal salt of an acid; (d) at least one compound of an organic oxygen-containing compound contains an alkaline earth metal salt of a carboxylic acid; and (e) at least one compound of an organic oxygen-containing compound is Carboxylic acid gold Salt (provided that the metal contains one or more metals in column 12 of the periodic table), and (f) the content of the non-carboxylated organic compound in the crude product is the non-carboxyl content in the crude feed There is also a method including the control step of 90% or less with respect to the content of the organic compound and / or (g) at least one of the oxygen-containing compounds in the crude oil raw material is generated from a naphthenic acid or carboxyl-free organic oxygen compound. provide.
幾つかの実施態様では、本発明は、本発明方法又は組成物の1つ以上と組合わせて、原油原料を1種以上の触媒と接触させる工程を含む方法であって、(a)原油原料は触媒の少なくとも1種と第一温度で接触させた後、第二温度で接触させると共に、第一接触温度は第二接触温度よりも30℃以上低くなるように、接触条件を制御し、(b)原油原料は水素と第一水素吸収条件で、次いで第二水素吸収条件で接触させると共に、第一水素吸収条件の温度は、第二水素吸収条件の温度よりも30℃以上低くし、(c)原油原料は、触媒の少なくとも1種と第一温度で接触させた後、第二温度で接触させると共に、第一接触温度は第二接触温度よりも200℃以下低くなるように、接触条件を制御し、(d)接触中、水素ガスを発生させ、(e)接触中、水素ガスを発生させると共に、原油原料が発生水素の少なくとも一部を吸収するように、接触条件も制御し、(f)原油原料を第一触媒及び第二触媒と接触させ、原油と第一触媒との接触により、原油原料のTANに対し90%以下であるTANを有する第一原油生成物を生成させると共に、第一原油生成物と第二触媒との接触により、第一原油生成物のTANに対し90%以下であるTANを有する原油生成物を生成させ、(g)接触を積重ね床反応器で行い、(h)接触を沸騰床反応器で行い、(i)原油原料は、1種以上の触媒と接触させた後、引き続き追加の触媒と接触させ、(j)触媒の1種以上は、バナジウム触媒であり、原油原料はバナジウム触媒と接触させた後、水素源の存在下で追加の触媒と接触させ、(k)水素を原油原料1m3当たり1〜20標準m3の範囲で発生させ、(l)接触中、水素を発生させ、原油原料をガス及び/又は発生した水素の少なくとも一部の存在下に追加触媒と接触させると共に、ガスの流れが原油原料及び発生水素の流れとは反対方向になるように、接触条件も制御し、(m)原油原料を第一温度でバナジウム触媒と接触させ、引き続き第二温度で追加の触媒と接触させると共に、第一温度が第二温度よりも30℃以上低くなるように、接触条件を制御し、(n)接触中、水素ガスを発生させ、原油原料を追加の触媒と接触させると共に、追加触媒が発生水素ガスの少なくとも一部を吸収するように、接触条件を制御し、及び/又は(o)引き続き、原油原料を第二温度で追加触媒と接触させると共に、第二温度が180℃以上になるように、接触条件を制御する該方法も提供する。 In some embodiments, the invention comprises a method comprising contacting a crude feed with one or more catalysts in combination with one or more of the inventive methods or compositions comprising: (a) a crude feed Is contacted with at least one kind of catalyst at the first temperature and then at the second temperature, and the contact condition is controlled so that the first contact temperature is 30 ° C. or more lower than the second contact temperature. b) The crude raw material is brought into contact with hydrogen under the first hydrogen absorption condition and then under the second hydrogen absorption condition, and the temperature of the first hydrogen absorption condition is lower by 30 ° C. than the temperature of the second hydrogen absorption condition; c) The crude feedstock is brought into contact with at least one of the catalysts at the first temperature and then at the second temperature, and the contact condition is such that the first contact temperature is 200 ° C. or lower than the second contact temperature. (D) hydrogen gas is generated during the contact, and (e During the contact, hydrogen gas is generated and the contact conditions are controlled so that the crude feed absorbs at least part of the generated hydrogen. (F) The crude feed is brought into contact with the first catalyst and the second catalyst, The contact with the first catalyst produces a first crude product having a TAN that is 90% or less of the TAN of the crude feed, and the first crude product is produced by the contact between the first crude product and the second catalyst. Producing a crude product having a TAN that is 90% or less relative to the TAN of the product, (g) contacting in a stacked bed reactor, (h) contacting in a boiling bed reactor, (i) crude feedstock (1) one or more of the catalysts is a vanadium catalyst and the crude feed is contacted with the vanadium catalyst and then the presence of a hydrogen source. Under contact with additional catalyst, (k) The iodine is generated in the range of crude feed 1 m 3 per 20 standard m 3, (l) in contact, to generate hydrogen, additional crude feed in the presence of at least a portion of the gas and / or hydrogen generated catalyst And the contact conditions are controlled so that the gas flow is in the opposite direction of the crude feed and generated hydrogen, and (m) the crude feed is brought into contact with the vanadium catalyst at the first temperature, followed by the second The contact condition is controlled so that the first temperature is 30 ° C. or more lower than the second temperature, and (n) hydrogen gas is generated during the contact, and the crude feed is added Contacting the catalyst and controlling the contact conditions such that the additional catalyst absorbs at least a portion of the generated hydrogen gas and / or (o) subsequently contacting the crude feed with the additional catalyst at a second temperature; Second temperature is 18 ℃ so that the above also provides the method of controlling the contacting conditions.
幾つかの実施態様では、本発明は、本発明方法又は組成物の1つ以上と組合わせて、原油原料を1種以上の触媒と接触させる工程を含む方法であって、(a)触媒は、アルミナ、シリカ、シリカ−アルミナ、酸化チタン、酸化ジルコニウム、酸化マグネシウム、又はそれらの混合物を含む支持体に担持された触媒であり、(b)触媒は多孔質支持体に担持された触媒であり、(c)該方法は更に硫化の前に400℃を超える温度で熱処理した追加の触媒を含み、(d)触媒の少なくとも1種の寿命が、0.5年以上であり、及び/又は(e)触媒の少なくとも1種は、固定床中にあるか、或いは原油原料中にスラリー化される該方法も提供する。 In some embodiments, the present invention is a method comprising contacting a crude feed with one or more catalysts in combination with one or more of the methods or compositions of the present invention, wherein (a) the catalyst is A catalyst supported on a support comprising alumina, silica, silica-alumina, titanium oxide, zirconium oxide, magnesium oxide, or a mixture thereof; and (b) the catalyst is a catalyst supported on a porous support. (C) the process further comprises an additional catalyst heat-treated at a temperature above 400 ° C. prior to sulfiding, (d) at least one life of the catalyst is 0.5 years or more, and / or ( e) The method also provides that the at least one catalyst is in a fixed bed or slurried in a crude feed.
幾つかの実施態様では、本発明は、本発明方法又は組成物の1つ以上と組合わせて、原油原料を1種以上の触媒と接触させる工程を含む方法も提供する。ここで、該触媒の少なくとも1種は、担持触媒又は塊状金属触媒であって、担持触媒又は塊状金属触媒は、(a)周期表第5〜10欄の1種以上の金属、周期表第5〜10欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含み、(b)触媒1g当たり、周期表第5〜10欄の1種以上の金属、周期表第5〜10欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を0.0001g以上、又は0.0001〜0.6g又は0.001〜0.3g含有し、(c)周期表第6〜10欄の1種以上の金属、周期表第6〜10欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含み、(d)周期表第7〜10欄の1種以上の金属、周期表第7〜10欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含み、(e)触媒1g当たり、周期表第7〜10欄の1種以上の金属、周期表第7〜10欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を0.0001〜0.6g又は0.001〜0.3g含有し、(f)周期表第5〜6欄の1種以上の金属、周期表第5〜6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含み、(g)周期表第5欄の1種以上の金属、周期表第5欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含み、(h)触媒1g当たり、周期表第5欄の1種以上の金属、周期表第5欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を0.0001g以上、又は0.0001〜0.6g、0.001〜0.3g、0.005〜0.1g又は0.01〜0.08g含有し、(i)周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含み、(j)触媒1g当たり、周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を0.0001〜0.6g、0.001〜0.3g、0.005〜0.1g又は0.01〜0.08g含有し、(k)周期表第10欄の1種以上の金属、周期表第10欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含み、(l)触媒1g当たり、周期表第10欄の1種以上の金属、周期表第10欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を0.0001〜0.6g又は0.001〜0.3g含有し、(m)バナジウム、バナジウムの1種以上の化合物、又はそれらの混合物を含み、(n)ニッケル、ニッケルの1種以上の化合物、又はそれらの混合物を含み、(o)コバルト、コバルトの1種以上の化合物、又はそれらの混合物を含み、(p)モリブデン、モリブデンの1種以上の化合物、又はそれらの混合物を含み、(q)触媒1g当たり、モリブデン、モリブデンの1種以上の化合物、又はそれらの混合物を0.001〜0.3g又は0.005〜0.1g含有し、(r)タングステン、タングステンの1種以上の化合物、又はそれらの混合物を含み、(s)触媒1g当たり、モリブデン、モリブデンの1種以上の化合物、又はそれらの混合物を0.001〜0.3g含有し、(t)周期表第6欄の1種以上の金属及び周期表第10欄の1種以上の金属を第10欄金属対第6欄金属の比で1〜5含有し、(u)周期表第15欄の1種以上の元素、周期表第15欄の1種以上の元素の1種以上の化合物、又はそれらの混合物を含み、(v) 触媒1g当たり、周期表第15欄の1種以上の元素、周期表第15欄の1種以上の元素の1種以上の化合物、又はそれらの混合物を0.00001〜0.06g含有し、(w)燐、燐の1種以上の化合物又はそれらの混合物を含み、(x)触媒1g当たり、α−アルミナを0.1g以下含有し、及び/又は(y)触媒1g当たり、θ−アルミナを0.5g以上含有する。 In some embodiments, the present invention also provides a method comprising contacting a crude feed with one or more catalysts in combination with one or more of the methods or compositions of the present invention. Here, at least one of the catalysts is a supported catalyst or a bulk metal catalyst, and the supported catalyst or the bulk metal catalyst is (a) one or more metals in columns 5 to 10 of the periodic table, periodic table 5th. 1 to 1 or more compounds of 1 or more types of metals of 10th column, or mixtures thereof, (b) 1 or more types of metals of 5th to 10th column of periodic table per 1g of catalyst, 5th to 10th of periodic table Containing 0.0001 g or more, or 0.0001 to 0.6 g or 0.001 to 0.3 g of one or more compounds of one or more metals in the column, (c) Periodic Table 6 Including one or more metals in columns 10 to 10, one or more compounds of one or more metals in columns 6 to 10 of the periodic table, or a mixture thereof, (d) one of columns 7 to 10 in the periodic table The above metals, one or more compounds of one or more metals in columns 7 to 10 of the periodic table, or mixtures thereof (E) 1 g of one or more metals in columns 7 to 10 of the periodic table, one or more compounds of one or more metals in columns 7 to 10 of the periodic table, or a mixture thereof per 1 g of catalyst. 0001-0.6g or 0.001-0.3g inclusive, (f) one or more metals in columns 5-6 of the periodic table, one or more metals in columns 5-6 of the periodic table (G) one or more metals of the fifth column of the periodic table, one or more compounds of one or more metals of the fifth column of the periodic table, or a mixture thereof, (H) 0.0001 g or more of one or more metals in the fifth column of the periodic table, one or more compounds of one or more metals in the fifth column of the periodic table, or a mixture thereof per 1 g of the catalyst. 0001-0.6g, 0.001-0.3g, 0.005-0.1g or 0.01-0.08g, Including one or more metals in the sixth column of the periodic table, one or more compounds of one or more metals in the sixth column of the periodic table, or a mixture thereof; (j) per 1 g of catalyst in the sixth column of the periodic table One or more metals, one or more compounds of one or more metals in the sixth column of the periodic table, or a mixture thereof is 0.0001 to 0.6 g, 0.001 to 0.3 g, 0.005 to 0 0.1 g or 0.01 to 0.08 g, (k) one or more metals in column 10 of the periodic table, one or more compounds of one or more metals in column 10 of the periodic table, or mixtures thereof (1) one or more metals in column 10 of the periodic table, one or more compounds of one or more metals in column 10 of the periodic table, or a mixture thereof per gram of catalyst 0.0001-0 1.6 g or 0.001 to 0.3 g, (m) one or more compounds of vanadium, vanadium, or Including (n) nickel, one or more compounds of nickel, or mixtures thereof; (o) including cobalt, one or more compounds of cobalt, or mixtures thereof; and (p) molybdenum One or more compounds of molybdenum, or a mixture thereof, and (q) 0.001 to 0.3 g or 0.005 of one or more compounds of molybdenum, molybdenum, or a mixture thereof per gram of catalyst. Containing 0.1 g of (r) tungsten, one or more compounds of tungsten, or mixtures thereof; (s) 0.1 g of molybdenum, one or more compounds of molybdenum, or mixtures thereof per gram of catalyst; 001-0.3g, and (t) one or more metals in column 6 of the periodic table and one or more metals in column 10 of the periodic table in a ratio of column 10 metal to column 6 metal 1 to Containing (u) one or more elements of column 15 of the periodic table, one or more compounds of one or more elements of column 15 of the periodic table, or a mixture thereof, (v) per gram of catalyst, Containing 0.00001 to 0.06 g of one or more elements in the 15th column of the periodic table, one or more compounds of 1 or more elements in the 15th column of the periodic table, or a mixture thereof, (w) phosphorus, One or more compounds of phosphorus or a mixture thereof, (x) containing 0.1 g or less of α-alumina per gram of catalyst, and / or (y) 0.5 g or more of θ-alumina per gram of catalyst contains.
幾つかの実施態様では、本発明は、本発明方法又は組成物の1つ以上と組合わせて、触媒を形成する方法も提供する。この方法は、θ−アルミナを含有する支持体と、1種以上の金属とを組合わせて支持体/金属混合物を形成する工程及びθ−アルミナ支持体/金属混合物を400℃以上の温度で熱処理する工程を含み、更に(a)支持体/金属混合物を水と配合してペーストを形成し、ペーストを押出す工程、及び(b)アルミナを800℃以上の温度で熱処理して、θ−アルミナを得る工程、及び/又は(c)触媒を硫化する工程を含む。 In some embodiments, the present invention also provides a method of forming a catalyst in combination with one or more of the methods or compositions of the present invention. This method comprises the steps of combining a support containing θ-alumina with one or more metals to form a support / metal mixture and heat treating the θ-alumina support / metal mixture at a temperature of 400 ° C. or higher. And (a) the step of extruding the paste by forming the paste by mixing the support / metal mixture with water, and (b) heat-treating the alumina at a temperature of 800 ° C. or higher, and θ-alumina And / or (c) sulfiding the catalyst.
幾つかの実施態様では、本発明は、本発明方法又は組成物の1つ以上と組合わせて、原油原料を1種以上の触媒と接触させる工程を含む方法も提供する。この方法で、触媒の少なくとも1種の細孔サイズ分布は、(a)中央値細孔径が60Å以上、90Å以上、180Å以上、200Å以上、230Å以上、300Å以上、230Å以下、500Å以下、又は90〜180Å、100〜140Å、120〜130Å、230〜250Å、180〜500Å、230〜500Å又は60〜300Åの範囲であり、(b)全細孔数の60%以上が中央値細孔径の45Å以内、35Å以内、又は25Å以内の細孔径を有し、(c)表面積が60m2/g以上、90m2/g以上、100m2/g以上、120m2/g以上、150m2/g以上、200m2/g以上、又は220m2/g以上であり、及び/又は(d)全細孔の合計容積が0.3cm3/g以上、0.4cm3/g以上、0.5cm3/g以上、又は0.7cm3/g以上である。 In some embodiments, the present invention also provides a method comprising contacting a crude feed with one or more catalysts in combination with one or more of the methods or compositions of the present invention. In this way, the at least one pore size distribution of the catalyst has the following: (a) median pore size of 60 to 90, 90 to 180, 200 to 230, 300 to 300, 230 to 500, -180cm, 100-140mm, 120-130mm, 230-250mm, 180-500mm, 230-500mm or 60-300mm, (b) 60% or more of the total number of pores is within 45mm of the median pore diameter (C) a surface area of 60 m 2 / g or more, 90 m 2 / g or more, 100 m 2 / g or more, 120 m 2 / g or more, 150 m 2 / g or more, 200 m 2 / g or more, or 220m and 2 / g or more, and / or (d) the total volume of all the pores is 0.3 cm 3 / g or more, 0.4 cm 3 / g or more, .5cm 3 / g or more, or 0.7 cm 3 / g or more.
幾つかの実施態様では、本発明は、本発明方法又は組成物の1つ以上と組合わせて、原油原料を支持体に担持された1種以上の触媒と接触させる工程を含む方法も提供する。ここで、支持体は、(a)アルミナ、シリカ、シリカ−アルミナ、酸化チタン、酸化ジルコニウム、酸化マグネシウム、又はそれらの混合物、及び/又はゼオライトを含み、(b)γ−アルミナ及び/又はδ−アルミナを含み、(c)支持体1g当たり、γ−アルミナを0.5g以上含有し、(d)支持体1g当たり、θ−アルミナを0.3g以上又は0.5g以上含有し、(e)α−アルミナ、γ−アルミナ、δ−アルミナ、θ−アルミナ、又はそれらの混合物を含み、(f)支持体1g当たり、α−アルミナを0.1g以下含有する。 In some embodiments, the present invention also provides a method comprising contacting a crude feed with one or more catalysts supported on a support in combination with one or more of the methods or compositions of the present invention. . Here, the support includes (a) alumina, silica, silica-alumina, titanium oxide, zirconium oxide, magnesium oxide, or a mixture thereof, and / or zeolite, and (b) γ-alumina and / or δ- (C) containing 0.5 g or more of γ-alumina per gram of support, (d) containing 0.3 g or more or 0.5 g or more of θ-alumina per gram of support, (e) It contains α-alumina, γ-alumina, δ-alumina, θ-alumina, or a mixture thereof, and (f) contains 0.1 g or less of α-alumina per 1 g of support.
幾つかの実施態様では、本発明は、本発明方法又は組成物の1つ以上と組合わせて、バナジウム触媒も提供する。このバナジウム触媒は、(a)中央値細孔径が60Å以上である細孔サイズ分布を有し、(b)θ−アルミナ含有支持体を有すると共に、中央値細孔径が60Å以上である細孔サイズ分布を有し、(c)周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含み、(d)触媒1g当たり、周期表第6欄の1種以上の金属、周期表第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を0.001g以上含有する。 In some embodiments, the present invention also provides a vanadium catalyst in combination with one or more of the methods or compositions of the present invention. The vanadium catalyst has (a) a pore size distribution having a median pore diameter of 60 mm or more, (b) a pore size having a θ-alumina-containing support and a median pore diameter of 60 mm or more. (C) one or more metals in column 6 of the periodic table, one or more compounds of one or more metals in column 6 of the periodic table, or a mixture thereof; (d) 1 g of catalyst In general, it contains 0.001 g or more of one or more metals in the sixth column of the periodic table, one or more compounds of one or more metals in the sixth column of the periodic table, or a mixture thereof.
幾つかの実施態様では、本発明は、本発明方法又は組成物の1つ以上と組合わせて、原油生成物も提供する。この原油生成物は、(a)TANが0.1以下、又は0.001〜0.5、0.01〜0.2、又は0.05〜0.1であり、(b)有機酸金属塩中にアルカリ金属及びアルカリ土類金属を、原油生成物1g当たり0.000009g以下含有し、(c)Ni/V/Feを原油生成物1g当たり0.00002g以下含有し、及び/又は(d)原油生成物1g当たり、触媒の少なくとも1種を、0gを超え0.01g未満含有する。
幾つかの実施態様では、本発明は、本発明方法又は組成物の1つ以上と組合わせて、1種以上の有機酸の1種以上のアルカリ金属塩、1種以上の有機酸の1種以上のアルカリ土類金属塩、又はそれらの混合物も提供する。ここで、(a)アルカリ金属の少なくとも1種はリチウム、ナトリウム又はカリウムであり、及び/又は(b)アルカリ土類金属の少なくとも1種はマグネシウム又はカルシウムである。
In some embodiments, the present invention also provides a crude product in combination with one or more of the methods or compositions of the present invention. This crude product has (a) TAN of 0.1 or less, or 0.001 to 0.5, 0.01 to 0.2, or 0.05 to 0.1, and (b) an organic acid metal Contains 0.000009 g or less of alkali metal and alkaline earth metal per gram of crude product in salt, (c) contains 0.00002 g or less of Ni / V / Fe per gram of crude product, and / or (d ) More than 0 g and less than 0.01 g of at least one catalyst per 1 g of crude product.
In some embodiments, the present invention is used in combination with one or more of the methods or compositions of the present invention, one or more alkali metal salts of one or more organic acids, one of one or more organic acids. Also provided are the above alkaline earth metal salts, or mixtures thereof. Here, (a) at least one of the alkali metals is lithium, sodium or potassium, and / or (b) at least one of the alkaline earth metals is magnesium or calcium.
幾つかの実施態様では、本発明は、本発明方法又は組成物の1つ以上と組合わせて、原油原料を1種以上の触媒と接触させて原油生成物を含む全生成物を製造する工程を含む方法も提供する。この方法は、更に(a)原油原料を、該原油原料と同じか又は異なる原油と配合して、輸送用に好適なブレンドを形成する工程、(b)原油原料を、該原油原料と同じか又は異なる原油と組合わせて、処理設備用に好適なブレンドを形成する工程、(c)原油生成物を精留(fractionate)する工程、及び/又は(d)原油生成物を1種以上の蒸留物フラクションに精留して、蒸留物フラクションの少なくとも1種から輸送用燃料を製造する工程を含む。 In some embodiments, the present invention combines a crude feed with one or more catalysts in combination with one or more of the methods or compositions of the present invention to produce a total product comprising a crude product. A method is also provided. The method further comprises (a) blending a crude feed with a crude that is the same as or different from the crude feed to form a blend suitable for transport; (b) whether the crude feed is the same as the crude feed. Or in combination with different crudes to form a blend suitable for a processing facility, (c) fractionating the crude product, and / or (d) one or more distillations of the crude product. Rectifying the product fraction to produce a transportation fuel from at least one of the distillate fractions.
幾つかの実施態様では、本発明は、本発明方法又は組成物の1つ以上と組合わせて、支持体に担持した触媒組成物も提供する。この触媒組成物は、(a)支持体1g当たり、θ−アルミナを0.3g以上又は0.5g以上含有し、(b)支持体中にδ−アルミナを含有し、(c)支持体1g当たり、α−アルミナを0.1g以下含有し、(d)中央値細孔径が230Å以上である細孔サイズ分布を有し、(e)細孔サイズ分布での細孔の細孔容積が0.3cm3/g以上又は0.7cm3/g以上であり、(f)表面積が60m2/g以上又は90m2/g以上であり、(g)周期表第7〜10欄の1種以上の金属、第7〜10欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含み、(h)周期表第5欄の1種以上の金属、第5欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含み、(i)周期表第5欄の1種以上の金属、第5欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を、触媒1g当たり0.0001〜0.6g又は0.001〜0.3g含有し、(j)周期表第6欄の1種以上の金属、第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含み、(k)周期表第6欄の1種以上の金属、第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を、触媒1g当たり0.0001〜0.6g又は0.001〜0.3g含有し、(l)バナジウム、バナジウムの1種以上の化合物、又はそれらの混合物を含み、(m)モリブデン、モリブデンの1種以上の化合物、又はそれらの混合物を含み、(n)タングステン、タングステンの1種以上の化合物、又はそれらの混合物を含み、(o)コバルト、コバルトの1種以上の化合物、又はそれらの混合物を含み、及び/又は(p)ニッケル、ニッケルの1種以上の化合物、又はそれらの混合物を含む。 In some embodiments, the present invention also provides a catalyst composition supported on a support in combination with one or more of the methods or compositions of the present invention. This catalyst composition contains (a) 0.3 g or more or 0.5 g or more of θ-alumina per 1 g of support, (b) contains δ-alumina in the support, and (c) 1 g of support. The composition contains 0.1 g or less of α-alumina, (d) has a pore size distribution with a median pore diameter of 230 mm or more, and (e) has a pore volume of 0 in the pore size distribution. .3cm is a 3 / g or more, or 0.7 cm 3 / g or more, (f) and a surface area of 60 m 2 / g or more or 90m 2 / g or more, (g) the period 7-10 column one or more tables Metal, one or more compounds of one or more metals in columns 7-10, or a mixture thereof, (h) one or more metals in column 5 of the periodic table, one or more of column 5 One or more compounds of the above metals, or mixtures thereof, (i) one or more metals in column 5 of the periodic table, One or more compounds of one or more metals, or mixtures thereof, containing 0.0001 to 0.6 g or 0.001 to 0.3 g per gram of catalyst, (j) one or more of column 6 of the periodic table A metal, one or more compounds of one or more metals in column 6, or a mixture thereof, (k) one or more metals in column 6 of the periodic table, one or more metals in column 6 1 or more compounds, or a mixture thereof, 0.0001 to 0.6 g or 0.001 to 0.3 g per gram of catalyst, (l) one or more compounds of vanadium, vanadium, or their Including (m) molybdenum, one or more compounds of molybdenum, or mixtures thereof; (n) including tungsten, one or more compounds of tungsten, or mixtures thereof; (o) cobalt, cobalt One or more compounds of Includes a mixture thereof and / or (p) nickel, one or more compounds of nickel, or a mixture thereof.
幾つかの実施態様では、本発明は、本発明方法又は組成物の1つ以上と組合わせて、原油組成物も提供する。この原油組成物は、(a)TANが1以下、0.5以下、0.3以下又は0.1以下であり、(b)組成物1g当たり、沸点範囲分布が0.101MPaで95〜260℃の炭化水素を0.001g以上、沸点範囲分布が0.101MPaで260〜320℃の炭化水素を0.001g以上、0.005g以上、又は0.01g以上、及び沸点範囲分布が0.101MPaで320〜650℃の炭化水素を0.001g以上含有し、(c)塩基性窒素を組成物1g当たり0.0005g以上含有し、(d)全窒素を組成物1g当たり0.001g以上又は0.01g以上含有し、及び/又は(e)合計ニッケル及びバナジウムを組成物1g当たり0.00005g以下含有する。 In some embodiments, the present invention also provides a crude oil composition in combination with one or more of the methods or compositions of the present invention. In this crude oil composition, (a) TAN is 1 or less, 0.5 or less, 0.3 or less, or 0.1 or less, and (b) the boiling range distribution is 0.101 MPa per gram of the composition of 95 to 260. ° C hydrocarbon is 0.001 g or more, boiling range distribution is 0.101 MPa and 260 to 320 ° C. hydrocarbon is 0.001 g or more, 0.005 g or more, or 0.01 g or more, and boiling range distribution is 0.101 MPa. 0.001 g or more of hydrocarbon at 320 to 650 ° C., (c) 0.0005 g or more of basic nitrogen per gram of composition, and (d) 0.001 g or more of total nitrogen per gram of composition or 0 0.01 g or more, and / or (e) 0.00005 g or less of total nickel and vanadium per gram of the composition.
幾つかの実施態様では、本発明は、本発明方法又は組成物の1つ以上と組合わせて、1種以上の触媒を含む原油組成物も提供する。ここで、触媒の少なくとも1種は、(a)中央値細孔径が180Å以上、500Å以下、及び/又は90〜180Å、100〜140Å、120〜130Åの範囲である細孔サイズ分布を有し、(b)中央値細孔径が90Å以上であり、かつ細孔サイズ分布での全細孔数の60%を超える細孔が中央値細孔径の45Å以内、35Å以内、又は25Å以内の細孔径を有し、(c)表面積が100m2/g以上、120m2/g以上又は220m2/g以上であり、及び/又は(d)アルミナ、シリカ、シリカ−アルミナ、酸化チタン、酸化ジルコニウム、酸化マグネシウム、ゼオライト、及び/又はそれらの混合物を含む支持体を有し、(e)周期表第5〜10欄の1種以上の金属、第5〜10欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含み、(f)周期表第5欄の1種以上の金属、第5欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含み、(g)周期表第5欄の1種以上の金属、第5欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を、触媒1g当たり0.0001g以上含有し、(h)周期表第6欄の1種以上の金属、第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含み、(i)周期表第6欄の1種以上の金属、第6欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を、触媒1g当たり0.0001g以上含有し、(j)周期表第10欄の1種以上の金属、第10欄の1種以上の金属の1種以上の化合物、又はそれらの混合物を含み、及び/又は(k)周期表第15欄の1種以上の元素、第15欄の1種以上の元素の1種以上の化合物、又はそれらの混合物を含む。 In some embodiments, the present invention also provides a crude oil composition comprising one or more catalysts in combination with one or more of the methods or compositions of the present invention. Here, at least one of the catalysts has (a) a pore size distribution having a median pore diameter of 180 to 500 mm and / or a range of 90 to 180 mm, 100 to 140 mm, 120 to 130 mm, (B) A pore having a median pore diameter of 90 mm or more and exceeding 60% of the total number of pores in the pore size distribution has a median pore diameter within 45 mm, 35 mm, or 25 mm. And (c) a surface area of 100 m 2 / g or more, 120 m 2 / g or more or 220 m 2 / g or more, and / or (d) alumina, silica, silica-alumina, titanium oxide, zirconium oxide, magnesium oxide And (e) one or more metals in columns 5-10 of the periodic table, one or more metals in columns 5-10 of the periodic table. Compound, also (F) one or more metals in the fifth column of the periodic table, one or more compounds of one or more metals in the fifth column, or a mixture thereof, and (g) a periodic table Containing at least 0.0001 g of one or more metals in column 5, one or more compounds of one or more metals in column 5, or a mixture thereof per gram of catalyst, (h) column 6 of periodic table Including one or more metals, one or more compounds of one or more metals in column 6, or mixtures thereof, (i) one or more metals in column 6 of the periodic table, one of columns 6 One or more compounds of the above metals, or a mixture thereof, containing 0.0001 g or more per gram of catalyst, (j) one or more metals in column 10 of the periodic table, one or more metals in column 10 And / or a mixture thereof and / or (k) one or more elements of column 15 of the periodic table One or more compounds of one or more elements of the column 15, or mixtures thereof.
更なる実施態様では、本発明の特定の実施態様の特徴を本発明の他の実施態様の特徴と組合わせてよい。例えば本発明の一実施態様を他の実施態様のいずれかと組合わせてよい。
更なる実施態様では、原油生成物は、ここで説明した方法及びシステムのいずれかで得られる。
更なる実施態様では、ここで説明した特定の実施態様に他の特徴を追加してよい。
In further embodiments, features of certain embodiments of the invention may be combined with features of other embodiments of the invention. For example, one embodiment of the invention may be combined with any of the other embodiments.
In further embodiments, the crude product is obtained in any of the methods and systems described herein.
In further embodiments, other features may be added to the specific embodiments described herein.
図面の簡単な説明
本発明の利点は、以下の詳細な説明により添付図面を参照して、当業者に明かとなろう。
図1は、接触システムの一実施態様の概略図である。
図2A、2Bは、2つの接触帯を有する接触システムの一実施態様の概略図である。
図3A、3Bは、3つの接触帯を有する接触システムの一実施態様の概略図である。
図4は、接触システムと組合わせた配合帯の一実施態様の概略図である。
図5は、接触システムと組合わせた配合帯の一実施態様の概略図である。
図6は、分離帯と接触システムと配合帯とを組合わせた一実施態様の概略図である。
BRIEF DESCRIPTION OF THE DRAWINGS The advantages of the present invention will become apparent to those skilled in the art from the following detailed description, taken in conjunction with the accompanying drawings.
FIG. 1 is a schematic diagram of one embodiment of a contact system.
2A and 2B are schematic views of one embodiment of a contact system having two contact zones.
3A and 3B are schematic views of one embodiment of a contact system having three contact zones.
FIG. 4 is a schematic diagram of one embodiment of a blending band in combination with a contact system.
FIG. 5 is a schematic diagram of one embodiment of a blending band in combination with a contact system.
FIG. 6 is a schematic diagram of one embodiment combining a separation zone, a contact system, and a blending zone.
図7は、原油原料を3種の触媒と接触させる一実施態様での原油原料及び原油生成物の代表的な特性表である。
図8は、原油原料を1種以上の触媒と接触させる一実施態様での荷重した平均床温度対運転長さのグラフである。
図9は、原油原料を2種の触媒と接触させる一実施態様での原油原料及び原油生成物の代表的な特性表である。
図10は、原油原料を2種の触媒と接触させる一実施態様での原油原料及び原油生成物の代表的な他の特性表である。
図11は、原油原料を4種の異なる触媒系(system)と接触させる実施態様での原油原料及び原油生成物の表である。
図12は、原油原料を4種の異なる触媒系と接触させる実施態様での原油生成物のP値対運転時間のグラフである。
図13は、原油原料を4種の異なる触媒系と接触させる実施態様での原油原料による総水素吸収量対運転時間のグラフである。
図14は、原油原料を4種の異なる触媒系と接触させる実施態様での原油生成物の残留物含有量(重量%)対運転時間のグラフである。
FIG. 7 is a representative characterization table for crude feed and crude product in one embodiment where the crude feed is contacted with three catalysts.
FIG. 8 is a graph of loaded average bed temperature versus operating length for one embodiment of contacting a crude feed with one or more catalysts.
FIG. 9 is a representative characterization table for a crude feed and crude product in one embodiment where the crude feed is contacted with two catalysts.
FIG. 10 is another exemplary characteristic table for a crude feed and crude product in one embodiment where the crude feed is contacted with two catalysts.
FIG. 11 is a table of crude feed and crude product in an embodiment in which a crude feed is contacted with four different catalyst systems.
FIG. 12 is a graph of crude product P-value versus operating time for an embodiment in which a crude feed is contacted with four different catalyst systems.
FIG. 13 is a graph of total hydrogen absorption versus operating time for a crude feed in an embodiment where the crude feed is contacted with four different catalyst systems.
FIG. 14 is a graph of crude product residue content (% by weight) versus operating time for an embodiment in which a crude feed is contacted with four different catalyst systems.
図15は、原油原料を4種の異なる触媒系と接触させる実施態様での原油生成物のAPI比重の変化対運転時間のグラフである。
図16は、原油原料を4種の異なる触媒系と接触させる実施態様での原油生成物の酸素含有量(重量%)対運転時間のグラフである。
図17は、原油原料を、モリブデン触媒及びバナジウム触媒を種々の量で含む触媒系;バナジウム触媒及びモリブデン/バナジウム触媒を含む触媒系;及びガラスビーズと接触させる実施態様での原油原料及び原油生成物の代表的な特性表である。
図18は、原油原料を種々の時間当たり液体の空間速度で1種以上の触媒と接触させる実施態様での原油原料及び原油生成物の特性表である。
FIG. 15 is a graph of the change in API specific gravity versus operating time of a crude product in an embodiment in which a crude feed is contacted with four different catalyst systems.
FIG. 16 is a graph of crude product oxygen content (% by weight) versus operating time for an embodiment in which a crude feed is contacted with four different catalyst systems.
FIG. 17 illustrates a crude feed and crude product in an embodiment in which the crude feed is contacted with a catalyst system comprising various amounts of molybdenum and vanadium catalysts; a catalyst system comprising a vanadium catalyst and a molybdenum / vanadium catalyst; and glass beads. It is a typical characteristic table.
FIG. 18 is a crude feed and crude product characterization table for embodiments in which a crude feed is contacted with one or more catalysts at various liquid hourly space velocities.
図19は、原油原料を種々の接触温度で接触させる実施態様で原油原料及び原油生成物の特性表である。
本発明は種々の変形及び代替形態に対し感受性であるが、その特定の実施態様を図面で例示する。これらの図面は一定の縮小比になり得ない。図面及びその詳細な説明は、本発明を開示した特定の形態に限定することを意図するものではなく、逆に本発明は付属の特許請求の範囲で定義した本発明の精神及び範囲内に含まれる、あらゆる変形、均等物及び代替物を含むことを理解すべきである。
FIG. 19 is a table of characteristics of crude feed and crude product in embodiments where the crude feed is contacted at various contact temperatures.
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are illustrated in the drawings. These drawings cannot have a constant reduction ratio. The drawings and detailed description thereof are not intended to limit the invention to the particular forms disclosed, but on the contrary, the invention is intended to be within the spirit and scope of the invention as defined by the appended claims. It should be understood that all variations, equivalents and alternatives are included.
詳細な説明
本発明の特定の実施態様を、ここで更に詳細に説明する。使用した用語は以下のように定義する。
“ASTM”とは、American Standard Testing and Materialsを言う。
“API比重”とは、15.5℃(60°F)でのAPI比重を言う。API比重はASTM法D6822で測定する。
原油原料及び原油生成物の水素原子の割合(%)及び炭素原子の割合(%)は、ASTM法D5291で測定する。原油原料、全生成物及び/又は原油生成物の沸点範囲分布は、特に断らない限り、ASTM法D5307で測定する。
“C5アスファルテン”とはペンタンに不溶のアスファルテンを言う。C5アスファルテン含有量はASTM法D2007で測定する。
DETAILED DESCRIPTION Particular embodiments of the present invention will now be described in further detail. The terms used are defined as follows.
“ASTM” refers to American Standard Testing and Materials.
“API specific gravity” refers to API specific gravity at 15.5 ° C. (60 ° F.). API specific gravity is measured by ASTM method D6822.
The proportion (%) of hydrogen atoms and the proportion (%) of carbon atoms in crude feed and crude product are measured by ASTM method D5291. Unless otherwise indicated, the boiling range distribution of crude feed, total product and / or crude product is measured by ASTM method D5307.
Say the asphaltenes insoluble in pentane and "C 5 asphaltenes". C 5 asphaltenes content is as determined by ASTM Method D2007.
“第X欄(column)金属”とは、周期表第X欄の1種以上の金属、及び/又は周期表第X欄の1種以上の金属の1種以上の化合物を言う。但し、Xは周期表の欄番号(例えば1〜12)に相当する。例えば“第6欄金属”とは、周期表第6欄の1種以上の金属、及び/又は周期表第6欄の1種以上の金属の1種以上の化合物を言う。
“第X欄元素”とは、周期表第X欄の1種以上の元素、及び/又は周期表第X欄の1種以上の元素の1種以上の化合物を言う。但し、Xは周期表の列番号(例えば13〜18)に相当する。例えば“第15欄元素”とは、周期表第15欄の1種以上の元素、及び/又は周期表第15欄の1種以上の元素の1種以上の化合物を言う。
"Column X metal" refers to one or more compounds of one or more metals in column X of the periodic table and / or one or more metals in column X of the periodic table. However, X is equivalent to the column number (for example, 1-12) of a periodic table. For example, “sixth column metal” refers to one or more compounds of one or more metals in column 6 of the periodic table and / or one or more metals in column 6 of the periodic table.
“Column X element” refers to one or more elements in column X of the periodic table and / or one or more compounds of one or more elements in column X of the periodic table. However, X is equivalent to the column number (for example, 13-18) of a periodic table. For example, “15th column element” refers to one or more compounds in the 15th column of the periodic table and / or one or more compounds of 1 or more elements in the 15th column of the periodic table.
本出願の範囲では、周期表金属の重量、周期表金属の化合物の重量、周期表元素の重量、又は周期表元素の化合物の重量は、金属の重量又は元素の重量として計算する。例えばMoO3を触媒1g当たり0.1g使用するならば、触媒中のモリブデン金属の計算重量は、触媒1g当たり0.067gである。
“含有量”とは、基質(例えば原油原料、全生成物又は原油生成物)の全重量に対し、重量分率又は重量百分率として表した基質中の成分の重量を言う。“重量ppm”とは、百万重量部当たりの重量部を言う。
“原油原料/全生成物混合物”とは、処理中、触媒と接触させる混合物を言う。
In the scope of this application, the weight of the periodic table metal, the weight of the compound of the periodic table metal, the weight of the periodic table element, or the weight of the compound of the periodic table element is calculated as the weight of the metal or the weight of the element. For example, if 0.1 g of MoO 3 is used per gram of catalyst, the calculated weight of molybdenum metal in the catalyst is 0.067 g per gram of catalyst.
“Content” refers to the weight of a component in a substrate expressed as a weight fraction or percentage by weight relative to the total weight of the substrate (eg, crude feed, total product or crude product). “Weight ppm” refers to parts by weight per million parts by weight.
"Crude feed / total product mixture" refers to the mixture that is contacted with the catalyst during processing.
“蒸留物”とは、0.101MPaにおいて204℃(400°F)〜343℃(650°F)の沸点範囲分布を有する炭化水素を言う。蒸留物含有量は、ASTM法D5307で測定する。
“ヘテロ原子”とは、炭化水素の分子構造中に含まれる酸素、窒素及び/又は硫黄を言う。ヘテロ原子含有量は、酸素についてはASTM法E385、全窒素については同D5762、硫黄については同D4294で測定する。“全塩基性窒素”とは、pKaが40未満の窒素化合物を言う。塩基性窒素(“bn”)はASTM法D2896で測定する。
“Distillate” refers to a hydrocarbon having a boiling range distribution of 204 ° C. (400 ° F.) to 343 ° C. (650 ° F.) at 0.101 MPa. The distillate content is measured by ASTM method D5307.
“Heteroatom” refers to oxygen, nitrogen and / or sulfur contained in the molecular structure of a hydrocarbon. The heteroatom content is measured by ASTM method E385 for oxygen, D5762 for total nitrogen, and D4294 for sulfur. “Total basic nitrogen” refers to nitrogen compounds having a pKa of less than 40. Basic nitrogen ("bn") is measured by ASTM method D2896.
“水素源”とは、水素、及び/又は、原油原料及び触媒の存在下で反応して原油原料中の化合物に水素を与える際の化合物を言う。水素源としては、炭化水素(例えばメタン、エタン、プロパン、ブタンのようなC1〜C4炭化水素)、水又はそれらの混合物が挙げられる。原油原料中の化合物に付与した総水素量を評価するため、物質収支を行ってよい。 “Hydrogen source” refers to a compound when hydrogen and / or a reaction in the presence of a crude material and a catalyst to give hydrogen to a compound in the crude material. As the hydrogen source, hydrocarbons (e.g. methane, ethane, propane, C 1 -C 4 hydrocarbons such as butane), water, or mixtures thereof. A material balance may be performed to evaluate the total amount of hydrogen imparted to the compound in the crude oil feedstock.
“平板圧潰強度”とは、触媒の破壊に必要な圧縮力を言う。平板圧潰強度はASTM法D4179で測定する。
“LHSV”とは、触媒の全容積当たり液体原油原料の容積割合(速度)を言い、時間(h−1)で表す。触媒の全容積は、ここで説明した接触帯中の全ての触媒の容積を合計して算出する。
“Plate crushing strength” refers to the compressive force required to destroy the catalyst. The flat plate crushing strength is measured by ASTM method D4179.
“LHSV” refers to the volume ratio (rate) of the liquid crude feed per total volume of the catalyst and is expressed in time (h −1 ). The total volume of the catalyst is calculated by adding up the volumes of all the catalysts in the contact zone described here.
“液体混合物”とは、標準温度及び圧力(25℃、0.101MPa;以下、“STP”と言う)において液体である1種以上の化合物を含む組成物、又はSTPにおいて液体である1種以上の化合物とSTPにおいて固体である1種以上の化合物との組合わせを含む組成物を言う。
“周期表”とは、International Union of Pure and Applied Chemistry(IUPAC)で2003年11月に規定された周期表を言う。
“Liquid mixture” refers to a composition comprising one or more compounds that are liquid at standard temperature and pressure (25 ° C., 0.101 MPa; hereinafter referred to as “STP”), or one or more liquids in STP. And a composition comprising one or more compounds that are solid in STP.
The “periodic table” refers to a periodic table defined in November 2003 by the International Union of Pure and Applied Chemistry (IUPAC).
“有機酸金属塩中の金属”とは、アルカリ金属、アルカリ土類金属、亜鉛、砒素、クロム又はそれらの組合わせを言う。有機酸金属塩中の金属含有量は、ASTM法D1318で測定する。“ミクロ炭素残留物”(“MCR”)とは、基質の蒸発及び熱分解後に残存する炭素残留物の量を言う。MCR含有量は、 ASTM法D4530で測定する。 “Metal in an organic acid metal salt” refers to an alkali metal, alkaline earth metal, zinc, arsenic, chromium, or a combination thereof. The metal content in the organic acid metal salt is measured by ASTM method D1318. “Microcarbon residue” (“MCR”) refers to the amount of carbon residue remaining after evaporation and pyrolysis of the substrate. The MCR content is measured by ASTM method D4530.
“ナフサ”とは、0.101MPaにおいて38℃(100°F)〜200℃(392°F)の沸点範囲分布を有する炭化水素を言う。ナフサ含有量は、ASTM法D5307で測定する。
“Ni/V/Fe”とは、ニッケル、バナジウム、鉄、又はそれらの組合わせを言う。
“Ni/V/Fe含有量”とは、ニッケル、バナジウム、鉄、又はそれらの組合わせの含有量を言う。Ni/V/Fe含有量は、ASTM法D5708で測定する。
“Naphtha” refers to a hydrocarbon having a boiling range distribution of 38 ° C. (100 ° F.) to 200 ° C. (392 ° F.) at 0.101 MPa. Naphtha content is measured by ASTM method D5307.
“Ni / V / Fe” refers to nickel, vanadium, iron, or a combination thereof.
“Ni / V / Fe content” refers to the content of nickel, vanadium, iron, or a combination thereof. The Ni / V / Fe content is measured by ASTM method D5708.
“Nm3/m3 ”とは、原油原料1m3当たりガスの標準m3を言う。
“カルボキシル非含有有機酸素化合物”とは、カルボキシル(−CO2−)基を含有しない有機酸素化合物を言う。カルボキシル非含有有機酸素化合物としては、限定されるものではないが、いずれもカルボキシル基を含有しない、エーテル、環式エーテル、アルコール、芳香族アルコール、ケトン、アルデヒド、又はそれらの組合わせが挙げられる。
“Nm 3 / m 3 ” refers to the standard m 3 of gas per m 3 of crude feed.
The “carboxyl-free organic oxygen compound” refers to an organic oxygen compound that does not contain a carboxyl (—CO 2 —) group. Non-carboxylable organic oxygen compounds include, but are not limited to, ethers, cyclic ethers, alcohols, aromatic alcohols, ketones, aldehydes, or combinations thereof that do not contain any carboxyl groups.
“非凝縮性ガス”とは、STPにおいてガスである成分及び/又は成分の混合物を言う。
“P(解凝固)値”とは、原油原料中のアスファルテンの凝固傾向を表す数値を言う。P値の測定法は、J.J.Heithaus“Measurement and Significance of Asphaltene Peptitization”,Jounal of Petroleum,第48巻,第458号,1962年2月,pp.45〜53に記載されている。
“Non-condensable gas” refers to components and / or mixtures of components that are gases in STP.
“P (decoagulation) value” refers to a numerical value indicating the solidification tendency of asphaltenes in crude oil raw materials. The method for measuring the P value is described in J. Org. J. et al. Heithaus “Measurement and Significance of Asphaltene Peptization”, Journal of Petroleum, Vol. 48, No. 458, February 1962, p. 45-53.
“細孔径”、“中央値細孔径”及び“細孔容積”とは、ASTM法D4284(接触角140°での水銀多孔度測定)で測定した細孔径、中央値細孔径及び細孔容積を言う。これら値の測定には、micromeritics(登録商標)A9220(Micromeritics Inc.,Norcross,Georgia,U.S.A.)が使用できる。
“残留物”とは、ASTM法D5307で測定して、沸点範囲分布が538℃(1000°F)を超える成分を言う。
“Pore diameter”, “median pore diameter” and “pore volume” are the pore diameter, median pore diameter and pore volume measured by ASTM method D4284 (measurement of mercury porosity at a contact angle of 140 °). To tell. For measurement of these values, micromeritics (registered trademark) A9220 (Micromeritics Inc., Norcross, Georgia, USA) can be used.
“Residue” refers to a component having a boiling point range distribution above 538 ° C. (1000 ° F.) as measured by ASTM method D5307.
“SCFB”とは、原油原料1バレル当たりガスの標準立方フィートを言う。
触媒の“表面積”は、ASTM法D3663で測定する。
“TAN”とは、サンプル1g当たりKOHのmgとして表した全酸価を言う。TANは、ASTM法D664で測定する。
“VGO”とは、沸点範囲分布が0.101MPaにおいて343℃(650°F)〜538℃(1000°F)の炭化水素を言う。VGO含有量はASTM法D5307で測定する。
“SCFB” refers to standard cubic feet of gas per barrel of crude feed.
The “surface area” of the catalyst is measured by ASTM method D3663.
“TAN” refers to the total acid number expressed as mg KOH / g sample. TAN is measured by ASTM method D664.
“VGO” refers to a hydrocarbon having a boiling range distribution of 343 ° C. (650 ° F.) to 538 ° C. (1000 ° F.) at 0.101 MPa. The VGO content is measured by ASTM method D5307.
“粘度”とは、37.8℃(100°F)での動粘度を言う。粘度はASTM法D445で測定する。
本出願に関連して、基質の特性について試験して得られた値が試験法の限界値外であれば、試験法を改変及び/又は再較正して、このような特性を試験してよいものと理解すべきである。
“Viscosity” refers to kinematic viscosity at 37.8 ° C. (100 ° F.). Viscosity is measured by ASTM method D445.
In the context of this application, if the values obtained when testing for substrate properties are outside the limits of the test method, the test method may be modified and / or recalibrated to test such properties. Should be understood.
原油は、炭化水素含有配合物から製造及び/又は乾留(retort)し、次いで安定化してよい。原油は生原油(crude oil)を含有してよい。原油は、一般に固体、半固体、及び/又は液体である。安定化法としては、限定されるものではないが、原油から非凝縮性ガス、水、塩又はそれらの組合わせを除去して、安定化原油を形成する方法が挙げられる。このような安定化は、多くの場合、製造及び/又は乾留場所又はその近辺で行ってよい。 Crude oil may be produced and / or retorted from a hydrocarbon-containing blend and then stabilized. The crude oil may contain crude oil. Crude oil is generally solid, semi-solid, and / or liquid. Stabilization methods include, but are not limited to, methods that remove non-condensable gases, water, salts, or combinations thereof from crude oil to form stabilized crude oil. Such stabilization may often be performed at or near the manufacturing and / or carbonization site.
安定化原油は、通常、特定の沸点範囲分布を有する複数の成分(例えばナフサ、蒸留物、VGO、及び/又は潤滑油)を製造するために、処理設備で蒸留又は精留を行っていない。蒸留法としては、限定されるものではないが、常圧蒸留法及び/又は真空蒸留法が挙げられる。未蒸留及び/又は非精留安定化原油は、炭素数が5以上の成分を、原油1g当たり0.5g以上の量で含有してよい。安定化原油の例としては、原油全体、トッピング済み(topped)原油、脱塩原油、トッピング済み脱塩原油、又はそれらの組合わせが挙げられる。“トッピング済み”とは、0.101MPaにおいて35℃未満(1気圧で95°F未満)の沸点を有する複数成分の少なくとも幾つかの成分が除去されるように、処理した原油を言う。通常、トッピング済み原油は、これらの成分を、トッピング済み原油1g当たり0.1g以下、0.05g以下又は0.02g以下含有する。 Stabilized crude oil is typically not distilled or rectified in a processing facility to produce multiple components (eg, naphtha, distillate, VGO, and / or lubricating oil) having a specific boiling range distribution. Examples of the distillation method include, but are not limited to, an atmospheric distillation method and / or a vacuum distillation method. Undistilled and / or non-rectified crude oil may contain a component having 5 or more carbon atoms in an amount of 0.5 g or more per gram of crude oil. Examples of stabilized crude oils include whole crude oil, topped crude oil, desalted crude oil, topped desalted crude oil, or combinations thereof. “Topped” refers to a crude oil that has been treated such that at least some of the components having a boiling point of less than 35 ° C. (less than 95 ° F. at 1 atmosphere) at 0.101 MPa are removed. Usually, topped crude oil contains 0.1 g or less, 0.05 g or less, or 0.02 g or less of these components per 1 g of topped crude oil.
幾つかの安定化原油は、輸送キャリヤー(例えばパイプライン、トラック又は船舶)により従来の処理設備に輸送可能な特性を有する。その他の原油は、不利になる不適当な特性を1つ以上有する。不利な原油は、輸送キャリヤー及び/又は処理設備に受入れ不能かも知れず、したがって、不利な原油に与える経済的価値は低い。この経済的価値は、不利な原油を含むリザーバーが製造、輸送及び/又は処理にコストがかかり過ぎるとみなされるような価値であるかも知れない。 Some stabilized crude oils have the property of being transportable to conventional processing equipment by transport carriers (eg, pipelines, trucks or ships). Other crude oils have one or more inappropriate properties that are disadvantageous. Unfavorable crude oil may be unacceptable to transportation carriers and / or processing facilities, and therefore has a low economic value for disadvantaged crude oil. This economic value may be such that a reservoir containing adverse crude oil is considered too expensive to manufacture, transport and / or process.
不利な原油の特性としては、限定されるものではないが、(a)TANが0.1以上、0.3以上、b)粘度が10cSt以上、c)API比重が19以下、d)合計Ni/V/Fe含有量が原油1g当たり0.00002g以上又は0.0001g以上、e)合計ヘテロ原子含有量が原油1g当たり0.005g以上、(f)残留物含有量が原油1g当たり0.01g以上、g)C5アスファルテン含有量が原油1g当たり0.04g以上、h)MCR含有量が原油1g当たり0.002g以上、i)有機酸金属塩中の金属の含有量が原油1g当たり0.00001g以上、又はj)それらの組合わせが挙げられる。幾つかの実施態様では不利な原油は、該原油1g当たり、残留物を0.2g以上、0.3g以上、0.5g以上又は0.9g以上含有するかも知れない。幾つかの実施態様では不利な原油は、TANが0.1又は0.3〜20、0.3又は0.5〜10、0.4又は0.5〜5の範囲にあってよい。特定の実施態様では不利な原油は、該原油1g当たり、硫黄を0.005g以上、0.01g以上又は0.02g以上含有してよい。 Disadvantageous characteristics of crude oil include, but are not limited to: (a) TAN is 0.1 or more, 0.3 or more, b) Viscosity is 10 cSt or more, c) API specific gravity is 19 or less, d) Total Ni / V / Fe content of 0.00002 g or more per gram of crude oil or 0.0001 g or more, e) Total heteroatom content of 0.005 g or more per gram of crude oil, (f) Residue content of 0.01 g per gram of crude oil above, g) C 5 asphaltenes content of crude oil 1g per 0.04g least, h) MCR content of more than 0.002g per crude 1g, i) 0 per crude 1g content of metals in metal salts of organic acids. 00001 g or more, or j) a combination thereof. In some embodiments, the disadvantaged crude may contain 0.2 g or more, 0.3 g or more, 0.5 g or more, or 0.9 g or more of residue per gram of the crude oil. In some embodiments, the disadvantaged crude may have a TAN in the range of 0.1 or 0.3 to 20, 0.3 or 0.5 to 10, 0.4 or 0.5 to 5. In certain embodiments, the disadvantaged crude oil may contain 0.005 g or more, 0.01 g or more, or 0.02 g or more of sulfur per gram of the crude oil.
不利な原油は、限定されるものではないが、以下の特性:(a)TANが0.5以上、b)酸素含有量が原油原料1g当たり0.005g以上、c)C5アスファルテン含有量が原油原料1g当たり0.04g以上、d)10以上のAPI比重を有する原油原料について、所望粘度(例えば>10cSt)よりも高い粘度、e)有機酸金属塩中の金属の含有量が原油1g当たり0.00001g以上、又はf)それらの組合わせを有する。 Disadvantaged crudes, but are not limited to, the following characteristics: (a) TAN of 0.5 or more, b) the oxygen content of the crude feed 1g per 0.005g above, c) C 5 asphaltenes content 0.04 g or more per gram of crude feed, d) For crude feed having an API specific gravity of 10 or more, the viscosity is higher than the desired viscosity (eg> 10 cSt), e) the metal content in the organic acid metal salt per gram of crude oil 0.00001 g or more, or f) a combination thereof.
不利な原油は、該原油1g当たり、沸点範囲分布が0.101MPaにおいて95〜200℃の炭化水素を0.001g以上、0.005g以上又は0.01g以上;沸点範囲分布が0.101MPaにおいて200〜300℃の炭化水素を0.01g以上、0.005g以上又は0.001g以上;沸点範囲分布が0.101MPaにおいて300〜400℃の炭化水素を0.001g以上、0.005g以上又は0.01g以上;及び沸点範囲分布が0.101MPaにおいて400〜650℃の炭化水素を0.001g以上、0.005g以上又は0.01g以上含有してよい。 Unfavorable crude oil is 0.001 g or more, 0.005 g or more, or 0.01 g or more of hydrocarbon at 95 to 200 ° C. per 1 g of the crude oil at a boiling range distribution of 0.101 MPa; ˜300 ° C. hydrocarbon at 0.01 g or more, 0.005 g or more, or 0.001 g or more; at a boiling point range distribution of 0.101 MPa, 300 to 400 ° C. hydrocarbon at 0.001 g or more, 0.005 g or more, or 0.001 g or more. 01 g or more; and a boiling point range distribution of 0.101 MPa, the hydrocarbon at 400 to 650 ° C. may be contained 0.001 g or more, 0.005 g or more, or 0.01 g or more.
不利な原油は、該原油1g当たり、沸点範囲分布が0.101MPaにおいて100℃以下の炭化水素を0.001g以上、0.005g以上又は0.01g以上;沸点範囲分布が0.101MPaにおいて100〜200℃の炭化水素を0.001g以上、0.005g以上又は0.01g以上;沸点範囲分布が0.101MPaにおいて200〜300℃の炭化水素を0.001g以上、0.005g以上又は0.01g以上;沸点範囲分布が0.101MPaにおいて300〜400℃の炭化水素を0.001g以上、0.005g以上又は0.01g以上;及び沸点範囲分布が0.101MPaにおいて400〜650℃の炭化水素を0.001g以上、0.005g以上又は0.01g以上含有してよい。 Unfavorable crude oil is 0.001 g or more, 0.005 g or more or 0.01 g or more of hydrocarbons having a boiling point range distribution of 0.101 MPa per gram of crude oil; 0.001 g or more, 0.005 g or more or 0.01 g or more of hydrocarbon at 200 ° C .; 0.001 g or more, 0.005 g or more or 0.01 g of hydrocarbon at 200 to 300 ° C. at a boiling point range distribution of 0.101 MPa Or more; 0.001 g or more, 0.005 g or more, or 0.01 g or more of hydrocarbon at 300 to 400 ° C. at a boiling range distribution of 0.101 MPa; and 400 to 650 ° C. of hydrocarbon at a boiling range distribution of 0.101 MPa You may contain 0.001g or more, 0.005g or more, or 0.01g or more.
幾つかの不利な原油は、沸点が100℃を超える成分の他に、沸点範囲分布が0.101MPaにおいて100℃以下の炭化水素を、該原油1g当たり0.001g以上、0.005g以上又は0.01g以上含有してよい。通常、不利な原油は、このような炭化水素を、該原油1g当たり0.2g以下又は0.1g以下含有してよい。 Some disadvantageous crude oils, in addition to components with boiling points above 100 ° C., hydrocarbons with a boiling range distribution of 0.101 MPa at 100 ° C. or less, 0.001 g or more, 0.005 g or more or 0 .01g or more may be contained. Generally, disadvantaged crude oils may contain no more than 0.2 g or 0.1 g of such hydrocarbons per gram of crude oil.
幾つかの不利な原油は、沸点範囲分布が0.101MPaにおいて200℃以上の炭化水素を、該原油1g当たり0.001g以上、0.005g以上又は0.01g以上含有してよい。
幾つかの不利な原油は、沸点範囲分布が0.101MPaにおいて650℃以上の炭化水素を、該原油1g当たり0.001g以上、0.005g以上又は0.01g以上含有してよい。
Some disadvantageous crude oils may contain 0.001 g or more, 0.005 g or more, or 0.01 g or more of hydrocarbons with a boiling range distribution of 0.101 MPa at 200 ° C. or more per gram of the crude oil.
Some disadvantageous crude oils may contain 0.001 g or more, 0.005 g or more, or 0.01 g or more of hydrocarbons having a boiling range distribution of 0.101 MPa and 650 ° C. or more per gram of the crude oil.
ここで説明した方法で処理してよい不利な原油の例としては、限定されるものではないが、世界中の以下の地域:米国の湾岸(Gulf Coast)及び南カリフォルニア、カナダのタールサンド、ブラジルのSantos及びCampos流域、エジプトのスエズ運河、チャド、英国の北海、アンゴラの沖合、中国のBohai湾、ベネゼラのZulia、マレーシア、及びインドネシアのスマトラの原油が挙げられる。 Examples of unfavorable crudes that may be processed in the manner described herein include, but are not limited to, the following regions of the world: US Gulf Coast and Southern California, Canada's Tar Sands, Brazil Santos and Campos Basin in Egypt, Suez Canal in Egypt, Chad, North Sea in England, Offshore Angola, Bohai Bay in China, Zulia in Venezuela, Malaysia, and Sumatra in Indonesia.
処理すべき原油及び/又は不利な原油は、ここでは“原油原料”と言う。原油原料は、ここで説明したようにトッピングしてよい。原油原料の処理で得られる原油生成物は、一般に輸送及び/又は処理用に好適である。ここで説明したように製造した原油生成物の特性は、原油原料よりもWest Texas Intermediate原油の対応する特性に近いか、或いはBrent原油の対応する特性に近いので、原油原料の経済的価値が高まる。このような原油生成物は、予備処理を少なくするか、予備処理しないで、精製できるので、精製効率が高まる。予備処理には、不純物を除去するための、脱硫、脱金属及び/又は大気圧蒸留を含んでよい。 Crude oil to be processed and / or disadvantaged crude is referred to herein as “crude raw material”. The crude feed may be topped as described herein. Crude oil products obtained from the processing of crude feed are generally suitable for transport and / or processing. The properties of the crude product produced as described herein are closer to the corresponding properties of West Texas Intermediate crude than the crude feed, or closer to the corresponding properties of Brent crude, thus increasing the economic value of the crude feed . Such crude oil products can be refined with little or no pretreatment, thus increasing the refining efficiency. Pretreatment may include desulfurization, demetallization and / or atmospheric distillation to remove impurities.
ここで説明した本発明による原油原料の処理には、1つの接触帯及び/又は2つ以上の接触帯での触媒による処理を含んでよい。接触帯では、原油原料の少なくとも1種の特性は、原油原料と1種以上の触媒との接触により、原油原料の前記特性に比べて変化できる。幾つかの実施態様では接触は、水素源の存在下で行われる。幾つかの実施態様では、水素源は、特定の接触条件下で反応して原油原料中の化合物に比較的少量の水素を供給する1種以上の炭化水素である。 The treatment of the crude feed according to the present invention as described herein may include treatment with a catalyst in one contact zone and / or two or more contact zones. In the contact zone, at least one characteristic of the crude feed can be changed compared to that of the crude feed by contacting the crude feed with one or more catalysts. In some embodiments, the contacting is performed in the presence of a hydrogen source. In some embodiments, the hydrogen source is one or more hydrocarbons that react under specified contact conditions to provide a relatively small amount of hydrogen to the compounds in the crude feed.
図1は、接触帯102を有する接触システム100の該略図である。原油原料は導管104経由で接触帯102に入る。接触帯は反応器、反応器の一部、反応器の複数部分、又はそれらの組合わせであってよい。接触帯の例としては、積重ね床反応器、固定床反応器、沸騰床反応器、連続撹拌槽反応器(“CSTR”)、流動床反応器、噴霧反応器、及び液/液接触器が挙げられる。幾つかの実施態様では、接触システムは、沖合設備上又は該設備に連結している。接触システム100での原油原料と触媒との接触は、連続式又はバッチ式であってよい。 FIG. 1 is a schematic representation of a contact system 100 having a contact zone 102. Crude oil feed enters contact zone 102 via conduit 104. The contact zone may be a reactor, a part of the reactor, a plurality of parts of the reactor, or a combination thereof. Examples of contact zones include stacked bed reactors, fixed bed reactors, ebullated bed reactors, continuous stirred tank reactors (“CSTR”), fluidized bed reactors, spray reactors, and liquid / liquid contactors. It is done. In some embodiments, the contact system is on or coupled to an offshore facility. Contact between the crude oil feedstock and the catalyst in the contact system 100 may be continuous or batch.
接触帯は、1種以上(例えば2種)の触媒を含有してよい。幾つかの実施態様では、原油原料と2種の触媒の最初の触媒との接触で、原油のTANを低下できる。引き続き、TANが低下した原油と第二の触媒との接触で、ヘテロ原子の含有量は低下し、API比重は増大する。他の実施態様では、原油原料と1種以上の触媒との接触後、原油生成物のTAN、粘度、Ni/V/Fe含有量、ヘテロ原子含有量、残留物含有量、API比重、又はこれら特性の組合わせは、原油原料の同じ特性に比べて、10%以上変化する。 The contact zone may contain one or more (for example, two) catalysts. In some embodiments, contacting the crude feed with the first of the two catalysts can reduce the TAN of the crude. Subsequently, the contact of the crude oil having a reduced TAN with the second catalyst decreases the heteroatom content and increases the API specific gravity. In other embodiments, after contacting the crude feed with one or more catalysts, the crude product TAN, viscosity, Ni / V / Fe content, heteroatom content, residue content, API gravity, or these The combination of properties varies by more than 10% compared to the same properties of the crude feed.
幾つかの実施態様では、接触帯における触媒の容積は、接触帯中の原油原料の全容積に対し、10〜60容量%、20〜50容量%又は30〜40容量%の範囲である。幾つかの実施態様では、触媒と原油原料とのスラリーは、触媒を、接触帯中の原油原料100g当たり0.001〜10g、0.005〜5g、又は0.01〜3g含有する。 In some embodiments, the volume of catalyst in the contact zone ranges from 10-60%, 20-50%, or 30-40% by volume relative to the total volume of crude feed in the contact zone. In some embodiments, the catalyst and crude feed slurry contains 0.001 to 10 g, 0.005 to 5 g, or 0.01 to 3 g of catalyst per 100 g of crude feed in the contact zone.
接触帯での接触条件としては、限定されるものではないが、温度、圧力、水素源の流れ、原油原料の流れ、又はそれらの組合わせが挙げられる。幾つかの実施態様では接触条件は、特定の特性を有する原油生成物を製造するため、制御される。接触帯の温度は、50〜500℃、60〜440℃、70〜430℃、又は80〜420℃の範囲であってよい。接触帯の圧力は、0.1〜20MPa、1〜12MPa、4〜10MPa、又は6〜8MPaの範囲であってよい。原油原料のLHSVは、一般に0.1〜30h−1、0.5〜25h−1、1〜20h−1、1.5〜15h−1、又は2〜10h−1の範囲である。。幾つかの実施態様ではLHSVは、5h−1以上、11h−1以上、15h−1以上、又は20h−1以上である。 Contact conditions in the contact zone include, but are not limited to, temperature, pressure, hydrogen source flow, crude feed flow, or combinations thereof. In some embodiments, the contact conditions are controlled to produce a crude product with specific characteristics. The temperature of the contact zone may be in the range of 50-500 ° C, 60-440 ° C, 70-430 ° C, or 80-420 ° C. The pressure in the contact zone may be in the range of 0.1-20 MPa, 1-12 MPa, 4-10 MPa, or 6-8 MPa. LHSV of the crude feed will generally 0.1~30h -1, 0.5~25h -1, 1~20h -1 , in the range of 1.5~15H -1, or 2~10h -1. . LHSV In some embodiments, 5h -1 or more, 11h -1 or more, 15h -1 or more, or 20h -1 or more.
水素源をガス(例えば水素ガス)として供給する場合、ガス状水素源対原油原料の比が、通常、0.1〜100,000Nm3/m3、0.5〜10,000Nm3/m3、1〜8,000Nm3/m3、2〜5,000Nm3/m3、5〜3,000Nm3/m3、又は10〜800Nm3/m3の範囲で触媒と接触させる。幾つかの実施態様では水素源は、担体ガスと組合わせて、接触帯に再循環させる。担体ガスは、例えば窒素、ヘリウム及び/又はアルゴンであってよい。担体ガスは、接触帯での原油原料の流れ及び/又は水素源の流れを容易にする。担体ガスは、接触帯での混合も増進する可能性がある。幾つかの実施態様では水素源(例えば水素、メタン又はエタン)を担体ガスとして使用し、接触帯に再循環させてよい。 When the hydrogen source is supplied as a gas (for example, hydrogen gas), the ratio of the gaseous hydrogen source to the crude oil raw material is usually 0.1 to 100,000 Nm 3 / m 3 , 0.5 to 10,000 Nm 3 / m 3. 1 to 8,000 Nm 3 / m 3 , 2 to 5,000 Nm 3 / m 3 , 5 to 3,000 Nm 3 / m 3 , or 10 to 800 Nm 3 / m 3 . In some embodiments, the hydrogen source is recycled to the contact zone in combination with a carrier gas. The carrier gas can be, for example, nitrogen, helium and / or argon. The carrier gas facilitates the flow of crude feed and / or the flow of hydrogen source in the contact zone. The carrier gas can also enhance mixing in the contact zone. In some embodiments, a hydrogen source (eg, hydrogen, methane or ethane) may be used as a carrier gas and recycled to the contact zone.
水素源は、導管104内の原油原料と並流で、又は導管106経由で別途に接触帯102に入れてよい。接触帯102では、原油原料と触媒との接触により、原油生成物を含む全生成物、及び幾つかの実施態様では、ガスを生成する。幾つかの実施態様では、担体ガスを原油原料及び/又は導管106中の水素源と組み合わせる。全生成物は、接触帯102を出て、導管110経由で分離帯108に入ってよい。 The hydrogen source may enter the contact zone 102 either in parallel with the crude feed in conduit 104 or separately via conduit 106. In contact zone 102, the contact between the crude feed and the catalyst produces a total product, including a crude product, and in some embodiments, a gas. In some embodiments, the carrier gas is combined with a crude feed and / or a hydrogen source in conduit 106. All products may exit contact zone 102 and enter separation zone 108 via conduit 110.
分離帯108では、公知の分離技術、例えば気−液分離を用いて、全生成物から原油生成物及びガスを分離できる。原油生成物は、導管112経由で分離帯108を出た後、輸送キャリヤー、パイプライン、貯蔵容器、製油所、その他の処理帯、又はそれらの組合わせに輸送できる。ガスとしては、処理中に生成したガス(例えば硫化水素、二酸化炭素、及び/又は一酸化炭素)、過剰のガス状水素源、及び/又は担体ガスが挙げられる。過剰ガスは、接触システム100に再循環し、精製し、他の処理帯、貯蔵容器、又はそれらの組合わせに輸送してよい。 In the separation zone 108, the crude product and gas can be separated from the total product using known separation techniques such as gas-liquid separation. The crude product exits separation zone 108 via conduit 112 and can then be transported to transport carriers, pipelines, storage vessels, refineries, other processing zones, or combinations thereof. Gases include gases produced during processing (eg, hydrogen sulfide, carbon dioxide, and / or carbon monoxide), excess gaseous hydrogen source, and / or carrier gas. Excess gas may be recycled to the contact system 100, purified, and transported to other processing zones, storage vessels, or combinations thereof.
幾つかの実施態様では、全生成物を製造するための原油原料と触媒との接触は、2つ以上の接触帯で行われる。全生成物を分離して、原油生成物及びガスを生成できる。
図2及び図3は、2つ又は3つの接触帯を有する接触システム100の実施態様の概略図である。図2A、2Bにおいて、接触システム100は接触帯102、114を有する。図3A、3Bでは、接触帯102、114、116を有する。図2A、3Aでは、接触帯102、114、116は一反応器中で別々の接触帯として示す。原油原料は導管104経由で接触帯102に入る。
In some embodiments, the contact between the crude feed and the catalyst to produce the entire product occurs in more than one contact zone. All products can be separated to produce crude product and gas.
2 and 3 are schematic views of an embodiment of a contact system 100 having two or three contact zones. 2A and 2B, the contact system 100 has contact zones 102,114. 3A and 3B, the contact zones 102, 114, and 116 are provided. 2A and 3A, contact zones 102, 114, 116 are shown as separate contact zones in one reactor. Crude oil feed enters contact zone 102 via conduit 104.
幾つかの実施態様では、担体ガスは導管106中の水素源と組合わせ、混合物として接触帯中に導入される。特定の実施態様では、図1、3A、3Bに示すように、水素源及び/又は担体ガスは導管106経由で別途に、及び/又は例えば導管106’経由の原油原料流とは反対方向で、原油原料と一緒に1つ以上の接触帯に入ってよい。原油原料流とは反対に水素源及び/又は担体ガスを加えると、原油原料と触媒との混合及び/又は接触を増進できる。 In some embodiments, the carrier gas is combined with the hydrogen source in conduit 106 and introduced as a mixture into the contact zone. In certain embodiments, as shown in FIGS. 1, 3A, 3B, the hydrogen source and / or carrier gas is separately via conduit 106 and / or in the opposite direction to the crude feed stream, eg, via conduit 106 ′, One or more contact zones may be entered along with the crude feed. Adding a hydrogen source and / or carrier gas as opposed to a crude feed stream can enhance mixing and / or contact between the crude feed and the catalyst.
接触帯102での原油原料と触媒との接触により原料流が生成する。原料流は、接触帯102から接触帯114に流れる。図3A、3Bでは、原料流は接触帯114から接触帯116に流れる。
接触帯102、114、116は、1種以上の触媒を含有してよい。図2Bに示すように、原料流は導管118経由で接触帯102を出て、接触帯114に入る。図3Bに示すように、原料流は導管118経由で接触帯114を出て、接触帯116に入る。
A feed stream is generated by contact of the crude feed with the catalyst in the contact zone 102. The raw material stream flows from the contact zone 102 to the contact zone 114. In FIGS. 3A and 3B, the raw material stream flows from the contact zone 114 to the contact zone 116.
Contact zones 102, 114, 116 may contain one or more catalysts. As shown in FIG. 2B, the feed stream exits contact zone 102 via conduit 118 and enters contact zone 114. As shown in FIG. 3B, the feed stream exits contact zone 114 via conduit 118 and enters contact zone 116.
原料流は、接触帯114及び/又は接触帯116中で追加の触媒と接触して、全生成物を生成できる。全生成物は接触帯114及び/又は接触帯116を出て、導管110経由で分離帯108に入る。全生成物からは原油生成物及び/又はガスが分離される。原油生成物は、導管112経由で分離帯108を出る。 The feed stream can be contacted with additional catalyst in contact zone 114 and / or contact zone 116 to produce a total product. All products exit contact zone 114 and / or contact zone 116 and enter separation zone 108 via conduit 110. Crude product and / or gas is separated from the total product. The crude product exits separation zone 108 via conduit 112.
図4は、接触システム100上流の分離帯の一実施態様の概略図である。不利な原油(トッピングしたものでも、しないものでもよい)は、導管122経由で分離帯120に入る。分離帯120では、当該技術分野で公知の分離技術(例えばスパージング(sparging)、膜分離、減圧)を用いて、不利な原油の少なくとも一部を分離して、原油原料が生成する。例えば不利な原油から水を少なくとも一部分離できる。他の例では、不利な原油から、沸点範囲分布が95℃未満又は100℃未満の成分が少なくとも一部分離して、原油原料を生成できる。幾つかの実施態様では、不利な原油からナフサ及びナフサよりも揮発しやすい化合物の少なくとも一部が分離される。幾つかの実施態様では、これら分離した成分の少なくとも一部は、導管124経由で分離帯120を出る。 FIG. 4 is a schematic diagram of one embodiment of a separation zone upstream of the contact system 100. Unfavorable crude oil (which may or may not be topped) enters separation zone 120 via conduit 122. The separation zone 120 separates at least a portion of the unfavorable crude oil using a separation technique known in the art (eg, sparging, membrane separation, reduced pressure) to produce a crude feedstock. For example, water can be at least partially separated from unfavorable crude oil. In another example, a crude feedstock can be produced by separating at least a portion of the components having a boiling range distribution below 95 ° C or below 100 ° C from adverse crude oil. In some embodiments, naphtha and at least some of the more volatile compounds than naphtha are separated from adverse crude oil. In some embodiments, at least some of these separated components exit separation zone 120 via conduit 124.
分離帯120で得られた原油原料は、幾つかの実施態様では沸点範囲分布が100℃以上の複数成分の混合物、或いは幾つかの実施態様では沸点範囲分布が120℃以上の複数成分の混合物を含有する。通常、分離した原油原料は、沸点範囲分布が100〜1000℃、120〜900℃、又は200〜800℃の複数成分の混合物を含有する。原油原料の少なくとも一部は、分離帯120を出て、導管126経由で接触帯100(例えば図1〜3の接触帯参照)に入り、更に処理されて、原油生成物を生成する。幾つかの実施態様では、分離帯120は脱塩ユニットの上流又は下流に配置できる。処理後、原油生成物は導管112経由で接触システム100を出る。 In some embodiments, the crude feed obtained in the separation zone 120 is a mixture of multiple components with a boiling range distribution of 100 ° C. or higher in some embodiments, or in some embodiments a mixture of multiple components with a boiling range distribution of 120 ° C. or higher. contains. Usually, the separated crude oil raw material contains a mixture of a plurality of components having a boiling range distribution of 100 to 1000 ° C, 120 to 900 ° C, or 200 to 800 ° C. At least a portion of the crude feed exits the separation zone 120 and enters the contact zone 100 via conduit 126 (see, for example, the contact zone of FIGS. 1-3) and is further processed to produce a crude product. In some embodiments, the separation zone 120 can be located upstream or downstream of the desalination unit. After processing, the crude product exits contact system 100 via conduit 112.
幾つかの実施態様では原油生成物は、原油原料と同じか又は異なる原油とブレンドされる。例えば原油生成物は、異なる粘度を有する原油と組合わされて、原油生成物の粘度と原油の粘度との間の粘度を有するブレンド生成物を得ることができる。他の例では、TANの異なる原油とブレンドして、原油生成物のTANと原油のTANとの間のTANを有する生成物を得ることができる。このようなブレンド生成物は、輸送及び/又は処理用に好適かも知れない。 In some embodiments, the crude product is blended with a crude that is the same as or different from the crude feed. For example, the crude product can be combined with crude oils having different viscosities to obtain a blended product having a viscosity between that of the crude product and that of the crude product. In another example, it may be blended with crude oils of different TANs to obtain a product having a TAN between the crude product TAN and the crude TAN. Such blended products may be suitable for transport and / or processing.
図5に示すように、特定の実施態様では、原油は、導管104経由で接触システム100には入り、得られる原油生成物の少なくとも一部は、導管128経由で接触システム100を出た後、配合帯130に導入される。配合帯130では原油生成物の少なくとも一部は、1種以上のプロセス流(例えば1種以上の原油原料の分離で生じたナフサのような炭化水素流)、原油、原油原料又はそれらの混合物と組合わされて、ブレンド生成物が生成する。プロセス流、原油、原油原料又はそれらの混合物は、配合帯130に直接、又は導管132経由でこのような配合帯の上流に導入される。配合帯の中又は近くに混合システムを設けてもよい。ブレンド生成物は、製油所及び/又は輸送キャリヤーにより指定された製品規格に適合するかも知れない。製品規格としては、限定されるものではないが、API比重、TAN、粘度又はそれらの組合わせの限界値又は範囲が挙げられる。ブレンド生成物は、輸送又は処理のため、導管134経由で配合帯130を出る。 As shown in FIG. 5, in certain embodiments, crude oil enters contact system 100 via conduit 104, and after at least a portion of the resulting crude product exits contact system 100 via conduit 128, Introduced into the blending zone 130. In blending zone 130, at least a portion of the crude product is one or more process streams (eg, naphtha-like hydrocarbon streams resulting from the separation of one or more crude feeds), crude oil, crude feed or mixtures thereof. Combined to produce a blended product. Process streams, crude oil, crude feed or mixtures thereof are introduced directly into the blending zone 130 or upstream of such blending zone via conduit 132. A mixing system may be provided in or near the blending zone. The blended product may meet product specifications specified by refineries and / or transportation carriers. Product specifications include, but are not limited to, API specific gravity, TAN, viscosity, or limits or ranges of combinations thereof. The blended product exits blend zone 130 via conduit 134 for transport or processing.
図6では、不利な原油は、導管122から分離帯120に入り、前述のように分離されて、原油原料を形成する。次いで原油原料は、導管126から接触システム100に入る。不利な原油から分離された少なくとも幾つかの成分は、導管124経由で分離帯120を出る。原油生成物の少なくとも一部は、接触システム100を出て、導管128から配合帯130に入る。その他のプロセス流及び/又は原油は配合帯130に直接、又は導管132経由で入り、原油生成物と組合わされて、ブレンド生成物を形成する。ブレンド生成物は、導管134経由で配合帯130を出る。 In FIG. 6, unfavorable crude oil enters separation zone 120 from conduit 122 and is separated as described above to form a crude feed. The crude feed then enters the contact system 100 through conduit 126. At least some of the components separated from the unfavorable crude leaves the separation zone 120 via conduit 124. At least a portion of the crude product exits contact system 100 and enters conduit 130 through conduit 128. Other process streams and / or crude oil enter the blending zone 130 directly or via conduit 132 and combine with the crude product to form a blended product. The blended product exits blend zone 130 via conduit 134.
原油生成物及び/又はブレンド生成物は、製油所及び/又は処理設備に輸送される。原油生成物及び/又はブレンド生成物は、輸送用燃料、加熱用燃料、潤滑剤又は化学薬品のような工業製品を製造するため、処理してよい。処理には、1種以上の蒸留物フラクションを製造するための原油生成物及び/又はブレンド生成物の蒸留及び/又は分別蒸留が含まれる。幾つかの実施態様では、原油生成物、ブレンド生成物及び/又は1種以上の蒸留物フラクションを水素化してよい。 The crude product and / or blended product is transported to refineries and / or processing facilities. The crude product and / or blended product may be processed to produce industrial products such as transportation fuels, heating fuels, lubricants or chemicals. Processing includes distillation and / or fractional distillation of the crude product and / or blend product to produce one or more distillate fractions. In some embodiments, the crude product, blend product and / or one or more distillate fractions may be hydrogenated.
幾つかの実施態様では原油生成物のTANは、原油原料のTANに対し90%以下、50%以下、30%以下又は10%以下である。幾つかの実施態様では原油生成物のTANは、原油原料のTANに対し1〜80%、20〜70%、30〜60%、又は40〜50%の範囲である。幾つかの実施態様では原油生成物のTANは、1以下、0.5以下、0.3以下、0.2以下、0.1以下、又は0.05以下である。原油生成物のTANは、多くの場合、0.0001以上であり、更に多くの場合、0.001以上である。幾つかの実施態様では、原油生成物のTANは、0.001〜0.5、0.01〜0.2、又は0.05〜0.1の範囲であってよい。 In some embodiments, the TAN of the crude product is 90% or less, 50% or less, 30% or less, or 10% or less relative to the TAN of the crude feed. In some embodiments, the crude product TAN ranges from 1-80%, 20-70%, 30-60%, or 40-50% of the crude feed TAN. In some embodiments, the crude product has a TAN of 1 or less, 0.5 or less, 0.3 or less, 0.2 or less, 0.1 or less, or 0.05 or less. The TAN of the crude product is often greater than or equal to 0.0001 and more often greater than or equal to 0.001. In some embodiments, the TAN of the crude product may range from 0.001 to 0.5, 0.01 to 0.2, or 0.05 to 0.1.
幾つかの実施態様では原油生成物の合計Ni/V/Fe含有量は、原油原料の合計Ni/V/Fe含有量に対し90%以下、50%以下、10%以下、5%以下、又は3%以下である。幾つかの実施態様では原油生成物の合計Ni/V/Fe含有量は、原油原料の合計Ni/V/Fe含有量に対し1〜80%、10〜70%、20〜60%、又は30〜50%の範囲である。特定の実施態様では原油生成物中の合計Ni/V/Fe含有量は、1×10−7〜5×10−5g、3×10−7〜2×10−5g、又は1×10−6〜1×10−5gの範囲である。特定の実施態様では原油生成物のNi/V/Fe含有量は、2×10−5g以下である。幾つかの実施態様では原油生成物の合計Ni/V/Fe含有量は、原油原料の合計Ni/V/Fe含有量に対し70〜130%、80〜120%、又は90〜110%の範囲である。 In some embodiments, the crude product has a total Ni / V / Fe content of 90% or less, 50% or less, 10% or less, 5% or less, or the total Ni / V / Fe content of the crude feedstock, or 3% or less. In some embodiments, the crude product has a total Ni / V / Fe content of 1-80%, 10-70%, 20-60%, or 30 relative to the total Ni / V / Fe content of the crude feed. It is in the range of ˜50%. In certain embodiments, the total Ni / V / Fe content in the crude product is 1 × 10 −7 to 5 × 10 −5 g, 3 × 10 −7 to 2 × 10 −5 g, or 1 × 10. It is in the range of −6 to 1 × 10 −5 g. In certain embodiments, the crude product has a Ni / V / Fe content of 2 × 10 −5 g or less. In some embodiments, the crude product has a total Ni / V / Fe content in the range of 70-130%, 80-120%, or 90-110% relative to the total Ni / V / Fe content of the crude feed. It is.
幾つかの実施態様では原油生成物における有機酸金属塩中の金属の合計含有量は、原油原料における有機酸金属塩中の金属の合計含有量に対し90%以下、50%以下、10%以下、又は5%以下である。特定の実施態様では、原油生成物における有機酸金属塩中の金属の合計含有量は、原油原料における有機酸金属塩中の金属の合計含有量に対し1〜80%、10〜70%、20〜60%、又は30〜50%の範囲である。金属塩を形成する有機酸としては、限定されるものではないが、カルボン酸、チオール、イミド、スルホン酸及びスルホネートが挙げられる。カルボン酸の例としては、限定されるものではないが、ナフテン酸、フェナントレン酸及び安息香酸が挙げられる。金属塩の金属部分としては、アルカリ金属(例えばリチウム、ナトリウム、カリウム)、アルカリ土類金属(例えばマグネシウム、カルシウム、バリウム)、第12欄金属(例えば亜鉛、カドミウム)、第15欄金属(例えば砒素)、第6欄金属(例えばクロム)又はそれらの混合物が挙げられる。 In some embodiments, the total content of metals in the organic acid metal salt in the crude product is 90% or less, 50% or less, 10% or less with respect to the total content of the metal in the organic acid metal salt in the crude feed. Or 5% or less. In a particular embodiment, the total content of metals in the organic acid metal salt in the crude product is 1-80%, 10-70%, 20 relative to the total content of metal in the organic acid metal salt in the crude feed. It is in the range of -60% or 30-50%. Organic acids that form metal salts include, but are not limited to, carboxylic acids, thiols, imides, sulfonic acids, and sulfonates. Examples of carboxylic acids include, but are not limited to, naphthenic acid, phenanthreic acid, and benzoic acid. The metal portion of the metal salt includes alkali metals (eg, lithium, sodium, potassium), alkaline earth metals (eg, magnesium, calcium, barium), column 12 metals (eg, zinc, cadmium), column 15 metals (eg, arsenic) ), Column 6 metals (e.g. chromium) or mixtures thereof.
特定の実施態様では、原油生成物における有機酸金属塩の金属の合計含有量は、原油生成物1g当たり0.0000001〜0.00005g、0.0000003〜0.00002g、又は0.000001〜0.00001gの範囲である。幾つかの実施態様では原油生成物における有機酸金属塩の金属の合計含有量は、原油原料における有機酸金属塩の金属の合計含有量に対し70〜130%、80〜120%又は90〜110%の範囲である。 In certain embodiments, the total metal content of the organic acid metal salt in the crude product is from 0.0000001 to 0.00005 g, 0.0000003 to 0.00002 g, or 0.000001 to 0.001 g per gram of crude product. The range is 00001 g. In some embodiments, the total metal content of the organic acid metal salt in the crude product is 70-130%, 80-120%, or 90-110 based on the total metal content of the organic acid metal salt in the crude feed. % Range.
特定の実施態様では、接触条件下で原油原料と触媒との接触により製造された原油生成物のAPI比重は、原油原料のAPI比重に対し70〜130%、80〜120%、90〜110%又は100〜130%の範囲である。特定の実施態様では原油生成物のAPI比重は、14〜40、15〜30又は16〜25である。
特定の実施態様では原油生成物の粘度は、原油原料の粘度に対し90%以下、80%以下、又は70%以下である。幾つかの実施態様では原油生成物の粘度は、原油原料の粘度に対し10〜60%、20〜50%、又は30〜40%の範囲である。幾つかの実施態様では原油生成物の粘度は原油原料の粘度に対し90%以下であるが、原油生成物のAPI比重は原油原料のAPI比重に対し70〜130%、80〜120%又は90〜110%の範囲である。
In certain embodiments, the API specific gravity of the crude product produced by contacting the crude feed and catalyst under contact conditions is 70-130%, 80-120%, 90-110% relative to the crude feed API specific gravity. Or it is the range of 100 to 130%. In certain embodiments, the crude product has an API specific gravity of 14-40, 15-30, or 16-25.
In certain embodiments, the viscosity of the crude product is 90% or less, 80% or less, or 70% or less relative to the viscosity of the crude feed. In some embodiments, the viscosity of the crude product ranges from 10-60%, 20-50%, or 30-40% relative to the viscosity of the crude feed. In some embodiments, the viscosity of the crude product is 90% or less relative to the viscosity of the crude feed, but the API specific gravity of the crude product is 70-130%, 80-120%, or 90% relative to the crude feed API. It is in the range of ~ 110%.
幾つかの実施態様では原油生成物の合計ヘテロ原子含有量は、原油原料の合計ヘテロ原子含有量に対し90%以下、50%以下、10%以下、又は5%以下である。幾つかの実施態様では原油生成物の合計ヘテロ原子含有量は、原油原料の合計ヘテロ原子含有量に対し1%以上、30%以上、80%以上、又は99%以上である。
幾つかの実施態様では原油生成物の硫黄含有量は、原油原料の硫黄含有量に対し90%以下、50%以下、10%以下、又は5%以下である。特定の実施態様では原油生成物の硫黄含有量は、原油原料の硫黄含有量に対し1%以上、30%以上、80%以上、又は99%以上である。幾つかの実施態様では原油生成物の硫黄含有量は、原油原料の硫黄含有量に対し70〜130%、80〜120%、又は90〜110%の範囲である。
In some embodiments, the total heteroatom content of the crude product is 90% or less, 50% or less, 10% or less, or 5% or less relative to the total heteroatom content of the crude feed. In some embodiments, the total heteroatom content of the crude product is 1% or greater, 30% or greater, 80% or greater, or 99% or greater relative to the total heteroatom content of the crude feed.
In some embodiments, the crude product has a sulfur content of 90% or less, 50% or less, 10% or less, or 5% or less relative to the sulfur content of the crude feed. In certain embodiments, the sulfur content of the crude product is 1% or greater, 30% or greater, 80% or greater, or 99% or greater relative to the sulfur content of the crude feed. In some embodiments, the sulfur content of the crude product ranges from 70-130%, 80-120%, or 90-110% relative to the sulfur content of the crude feed.
幾つかの実施態様では原油生成物の合計窒素含有量は、原油原料の合計窒素含有量に対し90%以下、80%以下、10%以下、又は5%以下であってよい。特定の実施態様では原油生成物の合計窒素含有量は、原油原料の合計窒素含有量に対し1%以上、30%以上、80%以上、又は99%以上である。
幾つかの実施態様では原油生成物の塩基性窒素含有量は、原油原料の塩基性窒素含有量に対し95%以下、90%以下、50%以下、10%以下、又は5%以下である。特定の実施態様では、原油生成物の塩基性窒素含有量は、原油原料の塩基性窒素含有量に対し1%以上、30%以上、80%以上、又は99%以上である。
In some embodiments, the total nitrogen content of the crude product may be 90% or less, 80% or less, 10% or less, or 5% or less relative to the total nitrogen content of the crude feed. In certain embodiments, the total nitrogen content of the crude product is 1% or greater, 30% or greater, 80% or greater, or 99% or greater relative to the total nitrogen content of the crude feed.
In some embodiments, the crude product has a basic nitrogen content of 95% or less, 90% or less, 50% or less, 10% or less, or 5% or less relative to the basic nitrogen content of the crude feed. In certain embodiments, the crude product has a basic nitrogen content of 1% or greater, 30% or greater, 80% or greater, or 99% or greater relative to the basic nitrogen content of the crude feed.
幾つかの実施態様では、原油生成物の酸素含有量は、原油原料の酸素含有量に対し90%以下、50%以下、30%以下、10%以下、又は5%以下であってよい。特定の実施態様では原油生成物の酸素含有量は、原油原料の酸素含有量に対し1%以上、30%以上、80%以上、又は99%以上である。幾つかの実施態様では原油生成物の酸素含有量は、原油原料の酸素含有量に対し1〜80%、10〜70%、20〜60%、又は30〜50%の範囲である。幾つかの実施態様では原油生成物中のカルボン酸化合物の合計含有量は、原油原料中のカルボン酸化合物の合計含有量に対し90%以下、50%以下、10%以下、又は5%以下であってよい。特定の実施態様では、原油生成物中のカルボン酸化合物の合計含有量は、原油原料中のカルボン酸化合物の合計含有量に対し1%以上、30%以上、80%以上、又は99%以上である。 In some embodiments, the oxygen content of the crude product may be 90% or less, 50% or less, 30% or less, 10% or less, or 5% or less relative to the oxygen content of the crude feed. In certain embodiments, the oxygen content of the crude product is 1% or greater, 30% or greater, 80% or greater, or 99% or greater relative to the oxygen content of the crude feed. In some embodiments, the oxygen content of the crude product ranges from 1-80%, 10-70%, 20-60%, or 30-50% relative to the oxygen content of the crude feed. In some embodiments, the total content of carboxylic acid compounds in the crude product is 90% or less, 50% or less, 10% or less, or 5% or less relative to the total content of carboxylic compounds in the crude feed. It may be. In certain embodiments, the total content of carboxylic acid compounds in the crude product is 1% or more, 30% or more, 80% or more, or 99% or more with respect to the total content of carboxylic acid compounds in the crude feed. is there.
幾つかの実施態様では、選択した有機酸素化合物を原油原料中で減少させてよい。幾つかの実施態様では、カルボキシル非含有有機酸素化合物の前に、カルボン酸及び/又はカルボン酸金属塩を化学的に減少させてよい。原油生成物中のカルボン酸及びカルボキシル非含有有機酸素化合物は、一般に公知の分光分析法(例えば赤外線分析、質量分析、及び/又はガスクロマトグラフィ)を用いた原油生成物の分析により区別できる。 In some embodiments, selected organic oxygen compounds may be reduced in the crude feed. In some embodiments, the carboxylic acid and / or carboxylic acid metal salt may be chemically reduced before the carboxyl-free organic oxygen compound. Carboxylic acid and non-carboxylated organic oxygen compounds in the crude product can generally be distinguished by analysis of the crude product using known spectroscopic methods (eg, infrared analysis, mass spectrometry, and / or gas chromatography).
特定の実施態様では原油生成物の酸素含有量は、原油原料の酸素含有量に対し90%以下、80%以下、70%以下、又は50%以下であり、また原油生成物のTANは、原油原料のTANに対し90%以下、70%以下、50%以下、又は40%以下である。特定の実施態様では、原油生成物の酸素含有量は、原油原料の酸素含有量に対し1%以上、30%以上、80%以上、又は99%以上であり、また原油生成物のTANは、原油原料のTANに対し1%以上、30%以上、80%以上、又は99%以上である。 In certain embodiments, the oxygen content of the crude product is 90% or less, 80% or less, 70% or less, or 50% or less relative to the oxygen content of the crude feed, and the crude product TAN is It is 90% or less, 70% or less, 50% or less, or 40% or less with respect to TAN of a raw material. In certain embodiments, the oxygen content of the crude product is 1% or more, 30% or more, 80% or more, or 99% or more with respect to the oxygen content of the crude feed, and the crude product TAN is: It is 1% or more, 30% or more, 80% or more, or 99% or more with respect to TAN of crude oil raw material.
更に原油生成物中のカルボン酸及び/又はカルボン酸金属塩の含有量は、原油原料中のカルボン酸及び/又はカルボン酸金属塩の含有量に対し90%以下、70%以下、50%以下、又は40%以下であり、また原油生成物中のカルボキシル非含有有機酸素化合物の含有量は、原油原料中のカルボキシル非含有有機酸素化合物の含有量に対し70〜130%、80〜120%、又は90〜110%の範囲内であってよい。 Furthermore, the content of the carboxylic acid and / or carboxylic acid metal salt in the crude product is 90% or less, 70% or less, 50% or less with respect to the content of the carboxylic acid and / or carboxylic acid metal salt in the crude material. Or 40% or less, and the content of the non-carboxylated organic oxygen compound in the crude product is 70 to 130%, 80 to 120%, or the content of the noncarboxylated organic oxygen compound in the crude feed It may be in the range of 90-110%.
幾つかの実施態様では原油生成物は、分子構造中に水素を原油生成物1g当たり0.05〜0.15g又は0.09〜0.13g含有する。原油生成物は、分子構造中に炭素を原油生成物1g当たり0.8〜0.9g又は0.82〜0.88g含有してよい。原油生成物の水素原子対炭素原子(H/C)の比は、原油原料のH/C原子比に対し70〜130%、80〜120%、又は90〜110%の範囲内であってよい。原油原料のH/C原子比に対し原油生成物のH/C原子比が10〜30%以内であれば、このプロセスでの水素の吸収及び/又は消費が少なく、及び/又は水素が現場で生成することを示す。 In some embodiments, the crude product contains 0.05 to 0.15 g or 0.09 to 0.13 g hydrogen per gram of crude product in the molecular structure. The crude product may contain 0.8 to 0.9 g or 0.82 to 0.88 g of carbon per gram of crude product in the molecular structure. The ratio of hydrogen to carbon atoms (H / C) of the crude product may be in the range of 70-130%, 80-120%, or 90-110% relative to the H / C atomic ratio of the crude feed. . If the H / C atomic ratio of the crude product is within 10-30% relative to the H / C atomic ratio of the crude feed, less hydrogen is absorbed and / or consumed in the process and / or Indicates to generate.
原油生成物は、或る沸点範囲の成分を含有する。幾つかの実施態様では原油生成物は、原油生成物1g当たり、沸点範囲分布が0.101MPaで100℃以下の炭化水素を0.001g以上、又は0.001〜0.5g;沸点範囲分布が0.101Mpaで100〜200℃の炭化水素を0.001g以上、又は0.001〜0.5g;沸点範囲分布が0.101Mpaで200〜300℃の炭化水素を0.001g以上、又は0.001〜0.5g;沸点範囲分布が0.101MPaで300〜400℃の炭化水素を0.001g以上、又は0.001〜0.5g ;及び沸点範囲分布が0.101MPaで400〜538℃の炭化水素を0.001g以上、又は0.001〜0.5g含有する。 Crude oil products contain components in a certain boiling range. In some embodiments, the crude product has a boiling range distribution of 0.001 g or more, or 0.001 to 0.5 g of hydrocarbons with a boiling range distribution of 0.101 MPa and 100 ° C. or less per gram of crude product; 0.001 g or more of hydrocarbon at 100 to 200 ° C. at 0.101 Mpa, or 0.001 to 0.5 g; 0.001 g or more of hydrocarbon at 200 to 300 ° C. at a boiling point range distribution of 0.101 Mpa, or 0.001 g. 0.001 g or more of hydrocarbons having a boiling point range distribution of 0.101 MPa and 300 to 400 ° C., or 0.001 to 0.5 g; and a boiling range distribution of 400 to 538 ° C. with 0.101 MPa. Contains 0.001 g or more, or 0.001 to 0.5 g of hydrocarbon.
幾つかの実施態様では原油生成物は、原油生成物1g当たり、沸点範囲分布が0.101MPaで100℃以下の炭化水素を0.001g以上、及び/又は沸点範囲分布が0.101Mpaで100〜200℃の炭化水素を0.001g以上含有する。
幾つかの実施態様では原油生成物は、ナフサを原油生成物1g当たり0.001g以上又は0.01g以上含有してよい。他の実施態様では原油生成物は、ナフサを原油生成物1g当たり0.6g以下又は0.8g以下の含有量で含有してよい。
In some embodiments, the crude product has a boiling range distribution of 0.101 MPa and 100 ° C. or less hydrocarbons at 0.001 g or more and / or a boiling range distribution of 0.101 Mpa per gram of crude product. Contains 0.001 g or more of hydrocarbon at 200 ° C.
In some embodiments, the crude product may contain 0.001 g or more or 0.01 g or more of naphtha per gram of crude product. In other embodiments, the crude product may contain naphtha at a content of 0.6 g or less or 0.8 g or less per gram of crude product.
幾つかの実施態様では原油生成物の蒸留物含有量は、原油原料の蒸留物含有量に対し70〜130%、80〜120%、又は90〜110%の範囲である。原油生成物の蒸留物含有量は、原油生成物1g当たり0.00001〜0.5g、0.001〜0.3g又は0.002〜0.2gの範囲であってよい。
特定の実施態様では原油生成物のVGO含有量は、原油原料のVGO含有量に対し70〜130%、80〜120%、又は90〜110%の範囲である。幾つかの実施態様では原油生成物のVGO含有量は、原油生成物1g当たり0.00001〜0.8g、0.001〜0.5g、0.002〜0.4g又は0.001〜0.3gの範囲である。
In some embodiments, the distillate content of the crude product ranges from 70-130%, 80-120%, or 90-110% relative to the distillate content of the crude feed. The distillate content of the crude product may range from 0.00001 to 0.5 g, 0.001 to 0.3 g, or 0.002 to 0.2 g per gram of crude product.
In certain embodiments, the crude product has a VGO content in the range of 70-130%, 80-120%, or 90-110% relative to the VGO content of the crude feed. In some embodiments, the crude product has a VGO content of 0.00001 to 0.8 g, 0.001 to 0.5 g, 0.002 to 0.4 g, or 0.001 to 0.000 per gram of crude product. The range is 3 g.
幾つかの実施態様では原油生成物の残留物含有量は、原油原料の残留物含有量に対し70〜130%、80〜120%、又は90〜110%の範囲である。原油生成物の残留物含有量は、原油生成物1g当たり0.00001〜0.8g、0.0001〜0.5g、0.0005〜0.4g、0.001〜0.3g、0.005〜0.2g又は0.01〜0.1gの範囲である。 In some embodiments, the crude product residue content ranges from 70-130%, 80-120%, or 90-110% relative to the crude feed residue content. The residue content of the crude product is 0.00001-0.8 g, 0.0001-0.5 g, 0.0005-0.4 g, 0.001-0.3 g, 0.005 per gram of crude product. It is the range of -0.2g or 0.01-0.1g.
特定の実施態様では原油生成物のMCR含有量は、原油原料のMCR含有量に対し70〜130%、80〜120%、又は90〜110%の範囲であるが、原油生成物のC5アスファルテン含有量は、原油原料のC5アスファルテン含有量に対し90%以下、80%以下、又は50%以下である。特定の実施態様では原油生成物のC5アスファルテン含有量は、原油原料のC5アスファルテン含有量に対し10%以上、60%以上、又は70%以上であるが、原油生成物のMCR含有量は、原油原料のMCR含有量に対し10〜30%の範囲内である。幾つかの実施態様では、MCR含有量を比較的安定に維持しながら、原油生成物のC5アスファルテン含有量を低下させると、原油原料及び/又は全生成物混合物の安定性が向上するかも知れない。 MCR content of the crude product in certain embodiments, from 70 to 130% relative to MCR content of the crude feed, 80% to 120%, or 90-110% of the is in the range, C 5 asphaltenes of the crude product content is 90% or less relative to C 5 asphaltenes content of the crude feed, 80% or less, or 50% or less. C 5 asphaltenes content of the crude product in certain embodiments, more than 10% relative to C 5 asphaltenes content of the crude feed, at least 60%, or 70% or more, MCR content of the crude product In the range of 10 to 30% of the MCR content of the crude oil raw material. In some embodiments, while maintaining the MCR content of relatively stable, reducing the C 5 asphaltenes content of the crude product, may stability of the crude feed and / or total product mixture improves Absent.
幾つかの実施態様では、原油原料中の高粘度成分に対する原油生成物中の高粘度成分間の数学的関係を得るため、C5アスファルテン含有量及びMCR含有量を組合わせてもよい。例えば原油原料のMCR含有量と原油原料のC5アスファルテン含有量との合計をSとし、原油生成物のMC含有量と原油生成物のC5アスファルテン含有量との合計をS’とすれば、これらの合計を原油原料中の高粘度成分の総減量を評価するのに比較(S’対S)できる。原油原料のS’は、Sに対し1〜99%、10〜90%、又は20〜80%の範囲であってよい。幾つかの実施態様では原油生成物のMCR含有量対C5アスファルテン含有量の比は、1.0〜3.0、1.2〜2.0、又は1.3〜1.9の範囲である。 In some embodiments, to obtain a mathematical relationship between the high viscosity components in the crude product relative to the high viscosity components in the crude feed may be combined with C 5 asphaltenes content and MCR content. For example the sum of the C 5 asphaltenes content of MCR content and crude feed in crude feed and S, the sum of the C 5 asphaltenes content of MC contents and crude product of the crude product if S ', These sums can be compared (S 'vs. S) to evaluate the total weight loss of high viscosity components in the crude feed. The crude feedstock S ′ may range from 1 to 99%, 10 to 90%, or 20 to 80% of S. MCR content The ratio of C 5 asphaltenes content of the crude product in some embodiments, 1.0~3.0,1.2~2.0, or in the range of 1.3 to 1.9 is there.
特定の実施態様では原油生成物のMCR含有量は、原油原料に対し90%以下、80%以下、50%以下、又は10%以下である。幾つかの実施態様では原油生成物のMCR含有量は、原油原料のMCR含有量に対し1〜80%、10〜70%、20〜60%、又は30〜50%の範囲である。幾つかの実施態様では原油生成物は、MCRを原油生成物1g当たり0.0001〜0.1g、0.005〜0.08g、又は0.01〜0.05g含有する。 In certain embodiments, the MCR content of the crude product is 90% or less, 80% or less, 50% or less, or 10% or less relative to the crude feed. In some embodiments, the MCR content of the crude product ranges from 1-80%, 10-70%, 20-60%, or 30-50% relative to the MCR content of the crude feed. In some embodiments, the crude product contains 0.0001-0.1 g, 0.005-0.08 g, or 0.01-0.05 g of MCR per gram of crude product.
幾つかの実施態様では原油生成物は、触媒を原油生成物1g当たり、0gを超え0.01g未満、0.000001〜0.001g、又は0.00001〜0.0001g含有する。この触媒は、輸送及び/又は処理中、原油生成物の安定化を助ける。また触媒は、腐食及び摩擦を防止し、及び/又は原油生成物の水分離能力を向上できる。ここで説明した方法は、処理中、原油生成物に、ここで説明した1種以上の触媒を加えるように構成してもよい。 In some embodiments, the crude product contains more than 0 g and less than 0.01 g, 0.000001 to 0.001 g, or 0.00001 to 0.0001 g of catalyst per gram of crude product. This catalyst helps stabilize the crude product during transportation and / or processing. The catalyst can also prevent corrosion and friction and / or improve the water separation capacity of the crude product. The methods described herein may be configured to add one or more catalysts described herein to the crude product during processing.
接触システム100で製造された原油生成物は原油原料とは異なる特性を有する。このような特性としては、限定されるものではないが、a)TANの低下、b)粘度の低下、c)合計Ni/V/fe含有量の減少、d)硫黄、酸素、窒素又はそれらの組合わせ含有量の減少、e)残留物含有量の減少、f)C5アスファルテン含有量の減少,g)MCR含有量の減少、h)API比重の増大、i)有機酸金属塩中の金属含有量の減少、j)又はそれらの組合わせが挙げられる。幾つかの実施態様では原油原料に対する原油生成物の1種以上の特性は、その他の特性は大きく変化させずに、或いは実質的に変化させずに、選択的に変化させてよい。例えばTAN以外の他の成分(例えば硫黄、残留物、Ni/V/fe、又はVGO)の量を大きく変化させることなく、原油原料のTANだけを選択的に低下させることが望ましいかも知れない。このようにして、接触中の水素吸収は、他の成分では濃厚にならないが、TANの低下で“濃厚”になり得る。したがって、水素の使用量を少なくしながら、しかも、このような少量の水素は、原油原料中の他の成分を減少させるのにも使用されるので、原油原料のTANを低下できる。例えば不利な原油はTANが高いが、硫黄含有量が処理及び/又は輸送規格に適合するのに受入れ可能であれば、このような原油原料は、硫黄を減少させることもなく、一層効率的に処理して、TANを低下できる。 The crude product produced with the contact system 100 has different properties than the crude feed. Such properties include, but are not limited to: a) reduced TAN, b) reduced viscosity, c) reduced total Ni / V / fe content, d) sulfur, oxygen, nitrogen or their reduction of combinatorial content, e) reduction of the residue content, f) C 5 reduced asphaltenes content, g) reduction of MCR content, h) increased API gravity, i) metals in metal salts of organic acids Reducing the content, j) or a combination thereof. In some embodiments, one or more characteristics of the crude product relative to the crude feed may be selectively changed without significantly or substantially changing other characteristics. For example, it may be desirable to selectively reduce only the TAN of the crude feedstock without significantly changing the amount of other components (eg, sulfur, residue, Ni / V / fe, or VGO) other than TAN. In this way, the hydrogen absorption during contact is not enriched with other components, but can be “rich” with a decrease in TAN. Accordingly, while reducing the amount of hydrogen used, such a small amount of hydrogen is also used to reduce other components in the crude oil feed, so that the TAN of the crude feed can be reduced. For example, unfavorable crude oil has a high TAN, but if the sulfur content is acceptable to meet processing and / or transportation standards, such crude feed will be more efficient without reducing sulfur. TAN can be reduced by processing.
本発明の1つ以上の実施態様で使用される触媒は、1種以上の塊状金属及び/又は支持体上に担持した金属を含有してよい。これらの金属は、元素状であっても金属化合物の形態であってもよい。ここで説明する触媒は、前駆体として接触帯中に導入し(例えば硫黄及び/又は硫黄含有原油原料を前駆体と接触させる)、次いで接触帯中で触媒として活性となってもよい。使用される触媒又は触媒の組合わせは、市販品であってもなくてもよい。使用される市販触媒の例としては、HDS3; HDS22; HDN60; C234; C311; C344; C411; C424; C344; C444; C447; C454; C448; C524; C534; DN110; DN120; DN130; DN140; DN190; DN200; DN800; DN2118; DN2318; DN3100; DN3110; DN3300; DN3310; RC400; RC410; RN412; RN400; RN420; RN440; RN450; RN650; RN5210; RN5610; RN5650; RM430; RM5030; Z603; Z623; Z673; Z703; Z713; Z723; Z753;及びZ763(以上はCRI International,Inc.,米国テキサス州ヒューストンから得られる)が挙げられる。 The catalyst used in one or more embodiments of the present invention may contain one or more bulk metals and / or metals supported on a support. These metals may be elemental or in the form of metal compounds. The catalyst described herein may be introduced as a precursor into the contact zone (eg, contacting sulfur and / or a sulfur-containing crude feed with the precursor) and then active as a catalyst in the contact zone. The catalyst or combination of catalysts used may or may not be a commercial product. Examples of commercial catalysts used include: HDS3; HDS22; HDN60; C234; C311; C344; C411; C424; C344; C444; C447; C454; C448; C524; C534; DN110; DN120; DN130; DN140; DN190; DN200; DN800; DN2118; DN2318; DN3100; DN3110; DN3300; DN3310; RC400; RC410; RN412; RN400; RN420; RN440; RN450; RN650; RN5210; RN5610; RN5650; RM430; RM5030; Z603; Z623; Z703; Z703 Z713; Z723; Z753; and Z763 (obtained from CRI International, Inc., Houston, Texas, USA).
幾つかの実施態様では原油原料の特性変化に使用される触媒は、支持体上に第5〜10欄金属を含む。第5〜10欄金属としては、限定されるものではないが、バナジウム、クロム、モリブデン、タングステン、マンガン、テクネチウム、レニウム、鉄、コバルト、ニッケル、ルテニウム、パラジウム、ロジウム、オスミウム、イリジウム、白金、又はそれらの混合物が挙げられる。触媒の第5〜10欄金属含有量は、触媒1g当たり0.0001g以上、0.001g以上、0.01g以上、又は0.0001〜0.6g、0.005〜0.3g、0.001〜0.1g又は0.01〜0.08gの範囲であってよい。幾つかの実施態様では触媒は、第5〜10欄金属の他に第15欄元素を含有する。第15欄元素の例としては燐がある。触媒の第15欄元素の合計含有量は、触媒1g当たり0.000001〜0.1g、0.00001〜0.06g、0.00005〜0.03g又は0.0001〜0.001gの範囲であってよい。 In some embodiments, the catalyst used to change the properties of the crude feedstock comprises columns 5-10 metal on the support. Columns 5-10 include, but are not limited to, vanadium, chromium, molybdenum, tungsten, manganese, technetium, rhenium, iron, cobalt, nickel, ruthenium, palladium, rhodium, osmium, iridium, platinum, or A mixture thereof may be mentioned. Columns 5 to 10 metal content of the catalyst is 0.0001 g or more, 0.001 g or more, 0.01 g or more, or 0.0001 to 0.6 g, 0.005 to 0.3 g, 0.001 per 1 g of the catalyst. It may be in the range of ~ 0.1g or 0.01-0.08g. In some embodiments, the catalyst contains column 15 elements in addition to column 5-10 metals. An example of an element in the fifteenth column is phosphorus. The total content of the 15th column element of the catalyst was in the range of 0.000001 to 0.1 g, 0.00001 to 0.06 g, 0.00005 to 0.03 g or 0.0001 to 0.001 g per gram of catalyst. It's okay.
特定の実施態様では触媒は第6欄金属を含む。触媒の合計第6欄金属含有量は、触媒1g当たり0.0001g以上、0.01g以上、0.02g以上、及び/又は0.0001〜0.6g、0.001〜0.3g、0.005〜0.1g又は0.01〜0.08gの範囲であってよい。幾つかの実施態様では触媒は、触媒1g当たり、ダイ6欄金属を0.0001〜0.06g含有する。幾つかの実施態様では触媒は、第6欄金属の他に第15欄元素を含有する。 In certain embodiments, the catalyst comprises a column 6 metal. The total column 6 metal content of the catalyst is 0.0001 g or more, 0.01 g or more, 0.02 g or more, and / or 0.0001 to 0.6 g, 0.001 to 0.3 g, 0. It may be in the range of 005 to 0.1 g or 0.01 to 0.08 g. In some embodiments, the catalyst contains 0.0001-0.06 g of die 6 column metal per gram of catalyst. In some embodiments, the catalyst contains a column 15 element in addition to the column 6 metal.
幾つかの実施態様では触媒は、第6欄金属と第5欄金属及び/又は第7〜10欄金属との組合わせを含有する。第6欄金属対第5欄金属のモル比は0.1〜20、1〜10、又は2〜5の範囲であってよい。第6欄金属対第7〜10欄金属のモル比は0.1〜20、1〜10、又は2〜5の範囲であってよい。幾つかの実施態様では触媒は、第6欄金属と第5欄金属及び/又は第7〜10欄金属との組合わせの他に、第15欄元素を含有する。他の実施態様では触媒は、第6欄金属と第10欄金属とを含有する。触媒中の合計第10欄金属対合計第6欄金属のモル比は、1〜10又は2〜5の範囲である。特定の実施態様では触媒は、第5欄金属と第10欄金属とを含有する。触媒中の合計第10欄金属対合計第5欄金属のモル比は、1〜10又は2〜5の範囲である。 In some embodiments, the catalyst contains a combination of column 6 metal and column 5 metal and / or column 7-10 metal. The molar ratio of column 6 metal to column 5 metal may range from 0.1 to 20, 1 to 10, or 2 to 5. The molar ratio of column 6 metal to columns 7-10 may be in the range of 0.1-20, 1-10, or 2-5. In some embodiments, the catalyst contains a column 15 element in addition to the combination of column 6 metal with column 5 metal and / or column 7-10. In another embodiment, the catalyst contains column 6 metal and column 10 metal. The molar ratio of total column 10 metal to total column 6 metal in the catalyst ranges from 1-10 or 2-5. In a particular embodiment, the catalyst contains column 5 metal and column 10 metal. The molar ratio of total column 10 metal to total column 5 metal in the catalyst is in the range of 1-10 or 2-5.
幾つかの実施態様では第5〜10欄金属は、触媒を形成するため、支持体に導入されるか担持される。特定の実施態様では第5〜10欄金属は第15欄元素と組合わせて、触媒を形成するため、支持体に導入されるか担持される。金属及び/又は元素を担持する実施態様では、触媒の重量は、全支持体、全金属及び全元素を含む。支持体は多孔質であってよく、耐火性酸化物、多孔質炭素系材料、ゼオライト、又はそれらの組合わせが挙げられる。耐火性酸化物としては、限定されるものではないが、アルミナ、シリカ、シリカ−アルミナ、酸化チタン、酸化ジルコニウム、酸化マグネシウム又はそれらの組合わせが挙げられる。支持体は、市場のメーカー、例えばCriterion Catalysts and Technologies LP(米国テキサス州ヒューストン)から入手できる。多孔質炭素系材料としては、限定されるものではないが、活性炭及び/又は多孔質グラファイトが挙げられる。ゼオライトの例としては、Y−ゼオライト、β−ゼオライト、モルデナイトゼオライト、ZSM−5ゼオライト、及びフェリエライトゼオライトが挙げられる。ゼオライトは、市場のメーカー、例えばZeolyst(米国ペンシルバニア州Vallay Forge)から入手できる。 In some embodiments, Columns 5-10 metal is introduced or supported on the support to form a catalyst. In certain embodiments, column 5-10 metals are combined with column 15 elements to be introduced or supported on the support to form a catalyst. In embodiments carrying metals and / or elements, the weight of the catalyst includes all supports, all metals and all elements. The support can be porous and includes refractory oxides, porous carbon-based materials, zeolites, or combinations thereof. Refractory oxides include, but are not limited to, alumina, silica, silica-alumina, titanium oxide, zirconium oxide, magnesium oxide, or combinations thereof. Supports are available from market manufacturers such as Criterion Catalysts and Technologies LP (Houston, Texas, USA). Examples of the porous carbon-based material include, but are not limited to, activated carbon and / or porous graphite. Examples of zeolites include Y-zeolite, β-zeolite, mordenite zeolite, ZSM-5 zeolite, and ferrierite zeolite. Zeolites are available from commercial manufacturers such as Zeolist (Valley Forge, PA, USA).
幾つかの実施態様では支持体は、平均細孔径が150Å以上、170Å以上又は180Å以上の支持体から作られる。特定の実施態様では支持体は、支持体材料の水性ペーストを成形して作られる。幾つかの実施態様では、ペーストの押出しを助けるため、ペーストに酸が添加される。押出し可能なペーストに所望の稠度を付与するのに必要とするような量及び/又は方法で水及び希酸を加える。酸の例としては、限定されるものではないが、硝酸、酢酸、硫酸及び塩酸が挙げられる。 In some embodiments, the support is made from a support having an average pore size of 150 mm or more, 170 mm or more, or 180 mm or more. In certain embodiments, the support is made by molding an aqueous paste of the support material. In some embodiments, an acid is added to the paste to aid in the extrusion of the paste. Water and dilute acid are added in the amount and / or manner required to impart the desired consistency to the extrudable paste. Examples of acids include but are not limited to nitric acid, acetic acid, sulfuric acid and hydrochloric acid.
ペーストは、一般に公知の触媒押出法及び触媒切断法を用いて押出し、切断し、押出物を形成してよい。押出物は、5〜260℃又は85〜235℃の温度範囲で所定時間(例えば0.5〜8時間)、熱処理し、及び/又は押出物の水分が所望水準に達するまで乾燥してよい。熱処理した押出物は、平均細孔径が150Å以上の支持体を形成するため、800〜1200℃又は900〜1100℃の範囲の温度で熱処理してよい。 The paste may be extruded and cut using generally known catalyst extrusion methods and catalyst cutting methods to form extrudates. The extrudate may be heat treated at a temperature range of 5 to 260 ° C. or 85 to 235 ° C. for a predetermined time (eg, 0.5 to 8 hours) and / or dried until the moisture content of the extrudate reaches a desired level. The heat-treated extrudate may be heat-treated at a temperature in the range of 800 to 1200 ° C or 900 to 1100 ° C in order to form a support having an average pore diameter of 150 mm or more.
特定の実施態様では支持体は、γ−アルミナ、θ−アルミナ、δ−アルミナ、α−アルミナ、又はそれらの組合わせを含む。γ−アルミナ、δ−アルミナ、α−アルミナ、又はそれらの組合わせの量は、X線回折で測定して、触媒支持体1g当たり0.0001〜0.99g、0.001〜0.5g、0.01〜0.1gの範囲、又は0.1g以下であってよい。幾つかの実施態様では、X線回折で測定した支持体のθ−アルミナ含有量は、単独で又は他の形態のアルミナとの組合わせで、支持体1g当たり0.1〜0.99g、0.5〜0.9g又は0.6〜0.8gの範囲である。幾つかの実施態様では支持体は、θ−アルミナを、X線回折で測定して、0.1g以上、0.3g以上、0.5g以上、又は0.8g以上含有する。 In certain embodiments, the support comprises γ-alumina, θ-alumina, δ-alumina, α-alumina, or combinations thereof. The amount of γ-alumina, δ-alumina, α-alumina, or a combination thereof is 0.0001-0.99 g, 0.001-0.5 g per gram of catalyst support, as measured by X-ray diffraction. It may be in the range of 0.01 to 0.1 g, or 0.1 g or less. In some embodiments, the θ-alumina content of the support, as measured by X-ray diffraction, is 0.1-0.99 g / g support, alone or in combination with other forms of alumina, .5 to 0.9 g or 0.6 to 0.8 g. In some embodiments, the support contains 0.1 g or more, 0.3 g or more, 0.5 g or more, or 0.8 g or more of θ-alumina as measured by X-ray diffraction.
触媒は一般に公知の触媒製造法を用いて製造される。触媒製造法の例は、Gabrielov等のUSP 6,218,333、Gabrielov等のUSP 6,290,841、Boon等のUSP 5,744,025、及びBhan等の米国出願公開No.20030111391に記載されている。
幾つかの実施態様では支持体は、触媒を形成するため、金属を含浸してよい。特定の実施態様では支持体は、金属を含浸する前に、400〜1200℃、450〜1000℃、又は600〜900℃の範囲の温度で熱処理してよい。幾つかの実施態様では触媒の製造中、含浸助剤を使用してよい。含浸助剤の例としては、クエン酸成分、エチレンジアミンテトラ酢酸(EDTA)、アンモニア、又はそれらの混合物が挙げられる。
The catalyst is generally produced using a known catalyst production method. Examples of catalyst preparation methods include USP 6,218,333 by Gabrilov et al., USP 6,290,841 by Gabrilov et al, USP 5,744,025 by Boon et al, and US Application Publication No. 20030111391.
In some embodiments, the support may be impregnated with a metal to form a catalyst. In certain embodiments, the support may be heat treated at a temperature in the range of 400-1200 ° C, 450-1000 ° C, or 600-900 ° C before impregnating the metal. In some embodiments, an impregnation aid may be used during catalyst manufacture. Examples of the impregnation aid include a citric acid component, ethylenediaminetetraacetic acid (EDTA), ammonia, or a mixture thereof.
特定の実施態様では触媒は、支持体の熱処理造形混合物に第5〜10欄金属を添加又は導入して(“上張り(overlaying)”)、形成してもよい。ほぼ均一な又は比較的均一な金属濃度を有する熱処理造形支持体の上に金属を上張りすると、有利な触媒特性が得られることが多い。金属を各々上張り後、造形した支持体を熱処理すると、触媒の触媒活性が向上する傾向がある。上張り法を用いた触媒の製造法は、Bhan等の米国出願公開No.20030111391に記載されている。 In certain embodiments, the catalyst may be formed by adding or introducing a column 5-10 metal ("overlaying") to the heat-treated shaped mixture of the support. Advantageous catalytic properties are often obtained when a metal is overlaid on a heat treated shaped support having a substantially uniform or relatively uniform metal concentration. When the shaped support is heat-treated after each metal is overlaid, the catalytic activity of the catalyst tends to be improved. A catalyst production method using the overlay method is described in US application publication no. 20030111391.
第5〜10欄金属/支持体混合物を形成するため、第5〜10欄金属は、好適な混合装置で混合してよい。第5〜10族金属/支持体混合物は、好適な混合装置を用いて混合してよい。好適な混合装置の例としては、タンブラー、固定シェル又はトラフ、マラーミキサー(例えばバッチタイプ又は連続タイプ)、衝撃ミキサー、その他、第5〜10欄金属/支持体混合物が好適に得られる、一般に公知のミキサー又は一般に公知の装置が挙げられる。特定の実施態様では、第5〜10欄金属が支持体中にほぼ均一に分散するまでこれらの材料を混合する。 To form the column 5-10 metal / support mixture, the column 5-10 metal may be mixed in a suitable mixing device. The Group 5-10 metal / support mixture may be mixed using a suitable mixing device. Examples of suitable mixing devices are generally known, such as tumblers, fixed shells or troughs, muller mixers (eg batch type or continuous type), impact mixers, etc. Or a generally known apparatus. In certain embodiments, these materials are mixed until the Columns 5-10 metal is substantially uniformly dispersed in the support.
幾つかの実施態様では、支持体と金属とを配合後、触媒は150〜750℃、200〜740℃、又は400〜730℃の温度に加熱する。
幾つかの実施態様では、第5〜10族金属の少なくとも一部が、対応する金属酸化物に転化するよう、揮発分を除去するため、触媒は、熱空気及び/又は酸素に富む空気の存在下、400〜1000℃の温度で熱処理してよい。
In some embodiments, after compounding the support and metal, the catalyst is heated to a temperature of 150-750 ° C, 200-740 ° C, or 400-730 ° C.
In some embodiments, the catalyst is present in the presence of hot air and / or oxygen-rich air to remove volatiles so that at least a portion of the Group 5-10 metal is converted to the corresponding metal oxide. Below, you may heat-process at the temperature of 400-1000 degreeC.
しかし、他の実施態様では第5〜10欄金属を金属酸化物に転化することなく、大部分の揮発成分を除去するため、35〜500℃(例えば300℃未満、400℃未満又は500℃未満)の範囲の温度で、1〜3時間の範囲の時間、触媒は、空気の存在下、熱処理してもよい。このような方法で作った触媒は、一般に“未焼成”触媒と言われる。硫化法と組み合せて、この方法で触媒を作ると、活性金属は支持体中にほぼ分散できる。このような触媒の製造法は、Gabrielov等のUSP 6,218,333及びUSP 6,290,841に記載されている。 However, in other embodiments, to remove most volatile components without converting column 5-10 metal to metal oxide, 35 to 500 ° C (eg, less than 300 ° C, less than 400 ° C, or less than 500 ° C). The catalyst may be heat treated in the presence of air at a temperature in the range of 1-3) for a time in the range of 1-3 hours. Catalysts made in this way are generally referred to as “green” catalysts. When a catalyst is made in this way in combination with the sulfiding method, the active metal can be substantially dispersed in the support. The preparation of such catalysts is described in US Pat. No. 6,218,333 and USP 6,290,841 by Gabriel et al.
特定の実施態様では、θ−アルミナ支持体/第5〜10欄金属混合物を形成するため、θ−アルミナ支持体は第5〜10族金属と組合わせてよい。θ−アルミナ支持体/第5〜10欄金属混合物は、中央値細孔径が230Å以上の細孔サイズ分布を有する触媒を形成するため、400℃以上の温度で熱処理してよい。通常、このような熱処理は、1200℃以下の温度で行われる。 In certain embodiments, the θ-alumina support may be combined with a Group 5-10 metal to form a θ-alumina support / Columns 5-10 metal mixture. The θ-alumina support / columns 5-10 metal mixture may be heat treated at a temperature of 400 ° C. or higher to form a catalyst having a pore size distribution with a median pore diameter of 230 mm or more. Usually, such heat treatment is performed at a temperature of 1200 ° C. or lower.
幾つかの実施態様では支持体(市販の支持体でも、或いはここで説明したようにして作った支持体でも)は、担持した触媒及び/又は塊状金属触媒と組合わせてよい。幾つかの実施態様では担持触媒は第15欄金属を含有してよい。例えば担持触媒及び/又は塊状金属触媒は、平均粒度が1〜50μ、2〜45μ、又は5〜40μの粉末に圧潰してよい。この粉末は、埋込み金属触媒を形成するため、支持体と組合わせてよい。幾つかの実施態様では、中央値細孔径が80〜200Å、90〜180Å、又は120〜130Åの範囲の細孔サイズ分布を有する触媒を形成するため、前記粉末は支持体と組合わせた後、標準的な方法で押出してよい。 In some embodiments, a support (either a commercially available support or a support made as described herein) may be combined with a supported catalyst and / or a bulk metal catalyst. In some embodiments, the supported catalyst may contain a column 15 metal. For example, the supported catalyst and / or the bulk metal catalyst may be crushed into a powder having an average particle size of 1 to 50 μ, 2 to 45 μ, or 5 to 40 μ. This powder may be combined with a support to form an embedded metal catalyst. In some embodiments, the powder is combined with a support to form a catalyst having a pore size distribution with a median pore size in the range of 80-200cm, 90-180cm, or 120-130cm; Extrusion may be done by standard methods.
幾つかの実施態様では、触媒と支持体とを組合わせると、金属の少なくとも一部は、埋込み金属触媒(例えば支持体中に埋込む)の表面下に存在し、これにより埋込まない金属触媒の場合よりも表面上の金属を少なくできる。幾つかの実施態様では触媒表面上の金属が少ないと、接触中、金属の少なくとも一部が触媒表面に移動することにより、触媒の寿命及び/又は触媒活性が増大する。これらの金属は、触媒と原油原料との接触中、触媒表面の侵食により、触媒表面に移動する可能性がある。 In some embodiments, when the catalyst and support are combined, at least a portion of the metal is present below the surface of the embedded metal catalyst (eg, embedded in the support), thereby preventing the metal catalyst from being embedded. Less metal than on the surface. In some embodiments, less metal on the catalyst surface increases catalyst life and / or activity by moving at least a portion of the metal to the catalyst surface during contact. These metals may migrate to the catalyst surface due to erosion of the catalyst surface during contact between the catalyst and the crude feed.
幾つかの実施態様では、触媒成分の内部添加及び/又は混合により、第6欄酸化物結晶構造中の第6欄金属の構造化オーダーは、埋込み触媒の結晶構造中の第6欄金属のほぼランダムなオーダーに変化する。第6欄金属のオーダーは、粉末X線回折法により測定できる。金属酸化物中の元素状金属のオーダーに対する触媒中の元素状金属のオーダーは、第6欄酸化物のX線回折中の第6欄金属のピークのオーダーを触媒のX線回折スペクトル中の第6欄金属のピークのオーダーと比較することにより測定できる。X線回折スペクトル中の第6欄金属と関連するパターンの広がり及び/又は不存在から、第6欄金属は結晶構造中にほぼランダムに整列していると評価できる。 In some embodiments, due to internal addition and / or mixing of the catalyst components, the structuring order of the column 6 metal in the column 6 oxide crystal structure is approximately that of the column 6 metal in the crystal structure of the embedded catalyst. Change to a random order. Column 6 The metal order can be measured by powder X-ray diffraction. The order of the elemental metal in the catalyst relative to the order of the elemental metal in the metal oxide is the order of the peak of the column 6 metal in the X-ray diffraction of the column 6 oxide and the order of the peak in the X-ray diffraction spectrum of the catalyst. It can be measured by comparing with the peak order of column 6 metal. From the broadening and / or absence of patterns associated with column 6 metal in the X-ray diffraction spectrum, it can be estimated that the column 6 metal is almost randomly aligned in the crystal structure.
例えば三酸化モリブテンと中央値細孔径が180Å以上のアルミナ支持体とを組合わせて、アルミナ/三酸化モリブデン混合物を形成できる。三酸化モリブデンは、明確なパターン(例えば、明確なD001、D002、及び/又はD003ピークス)を有する。アルミナ/第6欄三酸化物混合物は、538℃(1000°F)以上の温度で熱処理して、X線回折スペクトルで二酸化モリブデンのパターンを示さない(例えばD001ピークがない)触媒を製造できる。 For example, an alumina / molybdenum trioxide mixture can be formed by combining molybdenum trioxide and an alumina support having a median pore diameter of 180 mm or more. Molybdenum trioxide has a well-defined pattern (eg, well-defined D 001 , D 002 , and / or D 003 peaks). The alumina / column 6 trioxide mixture can be heat treated at a temperature of 538 ° C. (1000 ° F.) or higher to produce a catalyst that does not show a molybdenum dioxide pattern in the X-ray diffraction spectrum (eg, no D001 peak). .
幾つかの実施態様では触媒は、細孔構造で特徴付けられる。各種細孔構造のパラメーターとしては、限定されるものではないが、細孔径、細孔容積、表面積又はそれらの組合わせが挙げられる。触媒は、合計量の細孔サイズ対細孔径の分布を持ってよい。この細孔サイズ分布の中央値細孔径は、30〜1000Å、50〜500Å、又は60〜300Åの範囲であってよい。幾つかの実施態様では、触媒1g当たりγ−アルミナを0.5g以上含有する触媒は、中央値細孔径が60〜200Å、90〜180Å、100〜140Å、又は120〜130Åの範囲の細孔サイズ分布を有する。他の実施態様では、触媒1g当たりθ−アルミナを0.1g以上含有する触媒は、中央値細孔径が180〜500Å、200〜300Å、又は230〜250Åの範囲の細孔サイズ分布を有する。幾つかの実施態様では細孔サイズ分布の中央値細孔径は、120Å以上、150Å以上、180Å以上、200Å以上、220Å以上、230Å以上、又は300Å以上である。このような中央値細孔径は、通常、1000Å以下である。 In some embodiments, the catalyst is characterized by a pore structure. Various pore structure parameters include, but are not limited to, pore diameter, pore volume, surface area, or combinations thereof. The catalyst may have a total amount of pore size versus pore size distribution. The median pore diameter of this pore size distribution may be in the range of 30-1000cm, 50-500cm, or 60-300cm. In some embodiments, the catalyst containing 0.5 g or more of γ-alumina per gram of catalyst has a pore size in the range of median pore size in the range of 60-200 mm, 90-180 mm, 100-140 mm, or 120-130 mm. Have a distribution. In other embodiments, a catalyst containing 0.1 g or more of θ-alumina per gram of catalyst has a pore size distribution with a median pore diameter in the range of 180-500 mm, 200-300 mm, or 230-250 mm. In some embodiments, the median pore diameter of the pore size distribution is 120Å or more, 150Å or more, 180Å or more, 200Å or more, 220Å or more, 230Å or more, or 300Å or more. Such median pore diameter is usually 1000 mm or less.
触媒は、中央値細孔径が60Å以上又は90Å以上の細孔サイズ分布を持っていてよい。幾つかの実施態様では触媒は、中央値細孔径が90〜180Å、100〜140Å、又は120〜130Åの範囲の細孔サイズ分布を有すると共に、細孔サイズ分布での全細孔数の60%以上が中央値細孔径の45Å以内、35Å以内、又は25Å以内の細孔径を有する。特定の実施態様では触媒は、中央値細孔径が70〜180Åの範囲の細孔サイズ分布を有すると共に、細孔サイズ分布での全細孔数の60%以上が中央値細孔径の45Å以内、35Å以内、又は25Å以内の細孔径を有する。 The catalyst may have a pore size distribution with a median pore size of 60 mm or more or 90 mm or more. In some embodiments, the catalyst has a pore size distribution with a median pore size in the range of 90-180, 100-140, or 120-130 and 60% of the total number of pores in the pore size distribution. The above has a pore diameter within 45 mm, 35 mm, or 25 mm of the median pore diameter. In a particular embodiment, the catalyst has a pore size distribution with a median pore diameter in the range of 70-180 cm, and more than 60% of the total pore number in the pore size distribution is within 45 mm of the median pore diameter, It has a pore diameter of 35 mm or less, or 25 mm or less.
細孔サイズ分布の中央値細孔径が180Å以上、200Å以上、又は230Å以上である実施態様では、細孔サイズ分布での全細孔数の60%を超える細孔は、中央値細孔径の50Å以内、70Å以内、又は90Å以内の細孔径を有する。幾つかの実施態様では触媒は、中央値細孔径が180〜500Å、200〜400Å又は230〜300Åの範囲であり、かつ細孔サイズ分布での全細孔数の60%以上が中央値細孔径の50Å以内、70Å以内、又は90Å以内の細孔径を有する。 In embodiments where the median pore diameter of the pore size distribution is 180 mm or more, 200 mm or more, or 230 mm or more, pores that exceed 60% of the total number of pores in the pore size distribution are 50 mm of the median pore diameter. Within, 70 mm, or 90 mm. In some embodiments, the catalyst has a median pore diameter in the range of 180-500 mm, 200-400 mm, or 230-300 mm, and more than 60% of the total number of pores in the pore size distribution is the median pore diameter. The pore diameter is within 50 mm, within 70 mm, or within 90 mm.
幾つかの実施態様では細孔の細孔容積は、0.3cm3/g以上、0.7cm3/g以上又は0.9cm3/g以上であってよい。特定の実施態様では、細孔の細孔容積は、0.3〜0.99cm3/g、0.4〜0.8cm3/g又は0.5〜0.7cm3/gの範囲であってよい。
幾つかの実施態様では、中央値細孔径が90〜180Åの範囲である細孔サイズ分布を有する触媒は、表面積が100m2/g以上、120m2/g以上、170m2/g以上、220m2/g以上、又は270m2/g以上である。このような表面積は、100〜300m2/g、120〜270m2/g、130〜250m2/g、又は170〜220m2/gの範囲であってよい。
Pore volume of pores in some embodiments, 0.3 cm 3 / g or more, may be at 0.7 cm 3 / g or more, or 0.9 cm 3 / g or more. In certain embodiments, the pore volume of the pores, a range of 0.3~0.99cm 3 /g,0.4~0.8cm 3 / g or 0.5~0.7cm 3 / g You can.
In some embodiments, the catalyst having a pore size distribution with a median pore diameter in the range of 90-180 mm has a surface area of 100 m 2 / g or more, 120 m 2 / g or more, 170 m 2 / g or more, 220 m 2. / G or more, or 270 m 2 / g or more. Such a surface area may be in the range of 100-300 m 2 / g, 120-270 m 2 / g, 130-250 m 2 / g, or 170-220 m 2 / g.
特定の実施態様では、中央値細孔径が180〜300Åの範囲である細孔サイズ分布を有する触媒は、表面積が表面積が60m2/g以上、90m2/g以上、100m2/g以上、120m2/g以上、又は270m2/g以上である。このような表面積は、60〜300m2/g、90〜280m2/g、100〜270m2/g、又は120〜250m2/gの範囲であってよい。
特定の実施態様では触媒は、造形形態、例えばペレット、円柱及び/又は押出物で存在する。触媒は、通常、平板圧潰強度が50〜500N/cm、60〜400N/cm、100〜350N/cm、200〜300N/cm、又は220〜280N/cmの範囲である。
In a particular embodiment, the catalyst having a pore size distribution with a median pore diameter in the range of 180-300 mm has a surface area of 60 m 2 / g or more, 90 m 2 / g or more, 100 m 2 / g or more, 120 m. It is 2 / g or more, or 270 m 2 / g or more. Such surface area may range from 60 to 300 m 2 / g, 90 to 280 m 2 / g, 100 to 270 m 2 / g, or 120 to 250 m 2 / g.
In certain embodiments, the catalyst is present in shaped form, such as pellets, cylinders and / or extrudates. The catalyst usually has a flat plate crushing strength in the range of 50 to 500 N / cm, 60 to 400 N / cm, 100 to 350 N / cm, 200 to 300 N / cm, or 220 to 280 N / cm.
幾つかの実施態様では触媒及び/又は触媒前駆体は、当該技術分野で公知の技術(例えばACTICAT(登録商標)法、CRI International,Inc.)を用いて(使用前に)金属硫化物を形成するため、硫化する。或いは触媒は、触媒と硫黄含有化合物を含む原油原料との接触により現場で硫化してもよい。現場での硫化は、水素の存在下にガス状硫化水素、又は有機硫黄化合物(アルキルスルフィド、ポリスルフィド、チオール、及びスルホキシド等)のような液相硫化剤を利用してもよい。現場外(ex−situ)硫化方法が等のSeamans等のUSP 5,468,372及びSeamans等のUSP 5,688,736に記載されている。 In some embodiments, the catalyst and / or catalyst precursor may form metal sulfides (prior to use) using techniques known in the art (eg, ACTICAT® method, CRI International, Inc.). To sulfidize. Alternatively, the catalyst may be sulfurized in situ by contact of the catalyst with a crude feed containing sulfur-containing compounds. In situ sulfidation may utilize gaseous hydrogen sulfide in the presence of hydrogen or liquid phase sulfiding agents such as organic sulfur compounds (such as alkyl sulfides, polysulfides, thiols, and sulfoxides). Ex-situ sulfidation methods are described in Seamans et al. USP 5,468,372 and Seamans et al. USP 5,688,736.
特定の実施態様では第一タイプの触媒(“第一触媒”)は、支持体と組合わせた第5〜10欄金属を含み、中央値細孔径が150〜250Åの範囲の細孔サイズ分布を有する。第一触媒の表面積は100m2/g以上であってよい。第一触媒の細孔容積は0.5cm3/g以上であってよい。第一触媒のγ−アルミナ含有量は0.5g以上で、第一触媒は、通常、γ−アルミナを第一触媒1g当たり0.9999g以下含有する。幾つかの実施態様では第一触媒の合計第6欄金属含有量は、触媒1g当たり0.0001〜0.1gの範囲である。第一触媒は、原油原料からNi/V/Feの一部を除去し、原油原料のTANの一因となる成分の一部を除去し、原油原料からC5アスファルテンの少なくとも一部を除去し、原油原料中の有機酸金属塩の金属の少なくとも一部を除去し、又はそれらの組合わせを除去できる。原油原料を触媒と接触させた際、他の特性(例えば硫黄含有量、VGO含有量、API比重、残留物含有量、又はそれらの組合わせ)の変化は比較的小さいかも知れない。原油原料の特性を選択的に変化させながら、他の特性は比較的小さい変化だけで済むので、原油原料を一層効率的に処理できる。幾つかの実施態様では1種以上の第一触媒は、いかなる順序で使用してもよい。 In a particular embodiment, the first type of catalyst ("first catalyst") comprises a column 5-10 metal in combination with a support and has a pore size distribution in the range of median pore size ranging from 150 to 250 mm. Have. The surface area of the first catalyst may be 100 m 2 / g or more. The pore volume of the first catalyst may be 0.5 cm 3 / g or more. The γ-alumina content of the first catalyst is 0.5 g or more, and the first catalyst usually contains γ-alumina of 0.9999 g or less per 1 g of the first catalyst. In some embodiments, the total column 6 metal content of the first catalyst ranges from 0.0001 to 0.1 g / g catalyst. First catalyst is to remove a portion from the crude feed of Ni / V / Fe, removal of a portion of the components that contribute to TAN of the crude feed, removing at least a portion of the C 5 asphaltenes from the crude feed , At least a portion of the metal of the organic acid metal salt in the crude feed can be removed, or combinations thereof. Changes in other properties (eg, sulfur content, VGO content, API specific gravity, residue content, or combinations thereof) may be relatively small when the crude feed is contacted with the catalyst. While selectively changing the properties of the crude material, other properties need only be relatively small, so that the crude material can be processed more efficiently. In some embodiments, the one or more first catalysts may be used in any order.
特定の実施態様では第二タイプの触媒(“第二触媒”)は、支持体と組合わせた第5〜10欄金属を含み、中央値細孔径が90〜180Åの範囲の細孔サイズ分布を有する。第二触媒の細孔サイズ分布では全細孔数の60%以上は、中央値細孔径の45Å以内の細孔径を有する。好適な接触条件下での原油原料と第二触媒との接触により、選択した特性(例えばTAN)は、原油原料の同じ特性に比べて大きく変化しながら、他の特性は少ししか変化しない原油生成物を製造できる。幾つかの実施態様では、接触中、水素源が存在してもよい。 In a particular embodiment, the second type of catalyst ("second catalyst") comprises a column 5-10 metal in combination with a support and has a pore size distribution in the range of median pore size in the range of 90-180 mm. Have. In the pore size distribution of the second catalyst, 60% or more of the total number of pores has a pore diameter within 45 mm of the median pore diameter. By contacting the crude feed with the second catalyst under suitable contact conditions, the selected properties (eg, TAN) vary greatly compared to the same properties of the crude feed, while other properties change only slightly. Can manufacture things. In some embodiments, a hydrogen source may be present during the contacting.
第二触媒は、原油原料のTANの一因となる成分の少なくとも一部、及び比較的高い粘度の一因となる成分の少なくとも一部を減少させると共に、原油生成物のNi/V/Feの少なくとも一部を減少できる。更に、原油原料と第二触媒との接触により、原油原料の硫黄含有量に対する硫黄含有量の変化が比較的少ない原油生成物を製造できる。例えば原油生成物の硫黄含有量は、原油原料の硫黄含有量に対し70〜130%である。また原油原料に対する原油生成物の蒸留物含有量、VGO含有量、及び残留物含有量の変化は比較的少ない。 The second catalyst reduces at least some of the components that contribute to the TAN of the crude feed and at least some of the components that contribute to the relatively high viscosity, as well as the Ni / V / Fe of the crude product. At least some can be reduced. Furthermore, a crude product with a relatively small change in the sulfur content relative to the sulfur content of the crude feed can be produced by contacting the crude feed with the second catalyst. For example, the sulfur content of the crude product is 70-130% with respect to the sulfur content of the crude feed. Moreover, the change of the distillate content, VGO content, and residue content of the crude product with respect to the crude material is relatively small.
幾つかの実施態様では原油原料のNi/V/Fe含有量は比較的少ない(例えば50重量ppm以下)が、TAN、アスファルテン含有量又は有機酸金属塩の金属含有量は比較的高い(又は多い)。TANが比較的高い(例えば0.3以上)と、原油原料は輸送及び/又は精製に受入れできない。C5アスファルテン含有量が比較的多い不利な原油は、C5アスファルテン含有量が比較的少ない他の原油よりも処理中の安定性が悪い可能性がある。原油原料と第二触媒との接触により、原油原料からTANの一因となる酸性成分及び/又はC5アスファルテンを除去できる。幾つかの実施態様では、TANの一因となる成分及び/又はC5アスファルテンの減少により、原油原料の粘度に比べて、原油原料及び/又は全生成物混合物の粘度を低下できる。特定の実施態様では第二触媒の1種以上組合わせは、ここで説明した原油原料を使用した際、原油原料及び/又は全生成物混合物の安定性を増進し、触媒寿命を延ばし、原油原料による総水素吸収量を最小化し、又はそれらの組合わせを可能にする。 In some embodiments, the crude feedstock has a relatively low Ni / V / Fe content (eg, 50 ppm by weight or less), but the TAN, asphaltene content, or metal content of the organic acid metal salt is relatively high (or high). ). If the TAN is relatively high (e.g. 0.3 or higher), the crude feed cannot be accepted for transport and / or refining. C 5 asphaltenes content is relatively large disadvantaged crude is likely poor stability during processing than relatively small other crudes C 5 asphaltenes content. By contacting the crude material with the second catalyst, acidic components and / or C 5 asphaltenes that contribute to TAN can be removed from the crude material. In some embodiments, the reduction in components and / or C 5 asphaltenes contributing to TAN, compared to the viscosity of the crude feed, can reduce the viscosity of the crude feed and / or total product mixture. In certain embodiments, the combination of one or more of the second catalysts can increase the stability of the crude feed and / or the total product mixture, increase catalyst life, and provide the crude feed when using the crude feed described herein. To minimize the total hydrogen absorption or to combine them.
幾つかの実施態様では第三タイプの触媒(“第三触媒”)は、支持体を第6欄金属と組合わせて触媒前駆体を製造して得られる。触媒前駆体は、1種以上の硫黄含有化合物の存在下、500℃未満(例えば482℃未満)の温度で比較的短時間加熱して、未焼成第三触媒を形成できる。通常、触媒前駆体は100℃以上で2時間加熱する。特定の実施態様では第三触媒は、第15欄元素を触媒1g当たり0.001〜0.03g、0.005〜0.02g、又は0.008〜0.01gの範囲の含有量で含有してよい。第三触媒は、ここで説明した原油原料の処理に使用すると、著しい活性及び安定性を示す可能性がある。幾つかの実施態様では触媒前駆体は、1種以上の硫黄化合物の存在下で500℃未満の温度に加熱する。 In some embodiments, a third type of catalyst ("third catalyst") is obtained by combining a support with a column 6 metal to produce a catalyst precursor. The catalyst precursor can be heated in the presence of one or more sulfur-containing compounds at a temperature of less than 500 ° C. (eg, less than 482 ° C.) for a relatively short time to form an unfired third catalyst. Usually, the catalyst precursor is heated at 100 ° C. or higher for 2 hours. In certain embodiments, the third catalyst contains column 15 elements in a content ranging from 0.001 to 0.03 g, 0.005 to 0.02 g, or 0.008 to 0.01 g per gram of catalyst. It's okay. The third catalyst can exhibit significant activity and stability when used in the processing of the crude feed described herein. In some embodiments, the catalyst precursor is heated to a temperature below 500 ° C. in the presence of one or more sulfur compounds.
第三触媒は、原油原料のTANの一因となる成分の少なくとも一部を減少させ、有機酸金属塩の金属の少なくとも一部を減少させ、原油生成物のNi/V/Feの少なくとも一部を減少させると共に、原油原料の粘度を低下できる。更に、原油原料と第三触媒との接触により、原油原料の硫黄含有量に対する硫黄含有量の変化が比較的少なく、かつ原油原料による総水素吸収量が最小限の原油生成物を製造できる。例えば原油生成物の硫黄含有量は、原油原料の硫黄含有量に対し70〜130%である。また第三触媒を用いて製造した原油生成物は、原油原料に対するAPI比重、蒸留物含有量、VGO含有量、及び残留物含有量の変化は比較的少ない可能性がある。原油原料に対するAPI比重、蒸留物含有量、VGO含有量、及び残留物含有量が少し変化するだけで、TAN、有機酸金属塩の金属、Ni/V/Fe含有量、及び原油生成物の粘度を低下又は減少させる能力により、原油生成物を各種の処理設備に使用することが可能になる。 The third catalyst reduces at least part of the components contributing to TAN of the crude oil feed, reduces at least part of the metal of the organic acid metal salt, and at least part of Ni / V / Fe of the crude product. And the viscosity of the crude oil feedstock can be reduced. Further, the contact between the crude feed and the third catalyst can produce a crude product in which the change in sulfur content relative to the sulfur content of the crude feed is relatively small and the total hydrogen absorption by the crude feed is minimal. For example, the sulfur content of the crude product is 70-130% with respect to the sulfur content of the crude feed. Also, the crude product produced using the third catalyst may have relatively little change in API specific gravity, distillate content, VGO content, and residue content relative to the crude feedstock. TAN, organic acid metal salt metal, Ni / V / Fe content, and crude product viscosity with only minor changes in API specific gravity, distillate content, VGO content, and residue content on crude feed The ability to reduce or reduce the oil allows the crude product to be used in various processing facilities.
幾つかの実施態様では第三触媒は、原油原料/全生成物の安定性を維持しながら、原油原料のMCR含有量の少なくとも一部を少なくできる。特定の実施態様では第三触媒は、第6欄金属を触媒1g当たり0.0001〜0.1g、0.005〜0.05g、又は0.001〜0.01gの範囲の含有量及び第10欄金属を触媒1g当たり0.0001〜0.05g、0.005〜0.03g、又は0.001〜0.01gの範囲の含有量で含有してよい。第6及び10欄金属触媒は、300〜500℃又は350〜450℃の範囲の温度及び0.1〜10MPa、1〜8MPa、又は2〜5MPaの範囲の圧力において、原油原料中のMCRの一因となる成分の少なくとも一部を減少しやすくする。 In some embodiments, the third catalyst can reduce at least a portion of the MCR content of the crude feed while maintaining the crude feed / total product stability. In certain embodiments, the third catalyst comprises column 6 metal in a content ranging from 0.0001 to 0.1 g, 0.005 to 0.05 g, or 0.001 to 0.01 g per gram of catalyst. The column metal may be contained at a content in the range of 0.0001 to 0.05 g, 0.005 to 0.03 g, or 0.001 to 0.01 g per 1 g of the catalyst. The sixth and tenth column metal catalysts are those of MCR in the crude feed at temperatures in the range of 300-500 ° C or 350-450 ° C and pressures in the range of 0.1-10 MPa, 1-8 MPa, or 2-5 MPa. Helps reduce at least some of the causative components.
特定の実施態様では第四タイプの触媒(“第四触媒”)は、θ−アルミナ支持体と組合わせた第5欄金属を含有する。第四触媒は、中央値細孔径が180Å以上の細孔サイズ分布を有する。幾つかの実施態様では第四触媒の中央値細孔径は、220Å以上、230Å以上、250Å以上、又は300Å以上であってよい。支持体は、θ−アルミナを支持体1g当たり0.1g以上、0.5g以上、0.8g以上、又は0.9g以上含有する。第四触媒は、第5欄金属を触媒1g当たり0.1g以下で、かつ0.0001g以上含有する。特定の実施態様では第5欄金属はバナジウムである。 In a particular embodiment, the fourth type of catalyst (“fourth catalyst”) contains column 5 metal in combination with a θ-alumina support. The fourth catalyst has a pore size distribution with a median pore diameter of 180 mm or more. In some embodiments, the median pore size of the fourth catalyst may be 220 mm or more, 230 mm or more, 250 mm or more, or 300 mm or more. The support contains 0.1 g or more, 0.5 g or more, 0.8 g or more, or 0.9 g or more of θ-alumina per 1 g of the support. The fourth catalyst contains 0.15 g or less of the fifth column metal per 1 g of catalyst and 0.0001 g or more. In a particular embodiment, the column 5 metal is vanadium.
幾つかの実施態様では原油原料は、第四触媒との接触に続いて、追加の触媒と接触させてよい。追加の触媒は以下の触媒:第一触媒、第二触媒、第三触媒、第五触媒、第六触媒、第七触媒、ここで説明した市販の触媒、又はそれらの組合わせの1種以上であってよい。 In some embodiments, the crude feed may be contacted with additional catalyst following contact with the fourth catalyst. The additional catalyst may be one or more of the following catalysts: a first catalyst, a second catalyst, a third catalyst, a fifth catalyst, a sixth catalyst, a seventh catalyst, a commercially available catalyst described herein, or a combination thereof. It may be.
幾つかの実施態様では、原油原料を第四触媒と300〜400℃、320〜380℃又は330〜370℃の範囲の温度で接触中、水素を発生させてもよい。このような接触で製造した原油生成物のTANは、原油原料のTANに対し90%以下、80%以下、50%以下、又は10%以下であってよい。水素発生量は、1〜50Nm3/m3、10〜40Nm3/m3、又は15〜25Nm3/m3の範囲であってよい。原油生成物のNi/V/Fe含有量は、原油原料の合計Ni/V/Fe含有量に対し、90%以下、80%以下、70%以下、50%以下、10%以下、又は1%以上であってよい。 In some embodiments, hydrogen may be generated while the crude feed is contacted with the fourth catalyst at a temperature in the range of 300-400 ° C, 320-380 ° C, or 330-370 ° C. The TAN of the crude product produced by such contact may be 90% or less, 80% or less, 50% or less, or 10% or less with respect to TAN of the crude raw material. The amount of hydrogen generation may be in the range of 1-50 Nm 3 / m 3 , 10-40 Nm 3 / m 3 , or 15-25 Nm 3 / m 3 . The crude product Ni / V / Fe content is 90% or less, 80% or less, 70% or less, 50% or less, 10% or less, or 1% of the total Ni / V / Fe content of crude oil That's all.
特定の実施態様では第五タイプの触媒(“第五触媒”)は、θ−アルミナ支持体と組合わせた第6欄金属を含有する。第五触媒は、中央値細孔径が180Å以上、220Å以上、230Å以上、250Å以上、300Å以上、又は500Å以下の細孔サイズ分布を有する。支持体はθ−アルミナを支持体1g当たり0.5g以上、0.5g以上、又は0.999g以下の含有量で含有する。幾つかの実施態様では支持体は、α−アルミナを支持体1g当たり0.1g未満の含有量で含有する。幾つかの実施態様では該触媒は、第6欄金属を触媒1g当たり0.1g以下で、かつ0.0001g以上含有する。幾つかの実施態様では第6欄金属はモリブデン及び/又はタングステンである。 In a particular embodiment, the fifth type of catalyst (“fifth catalyst”) contains column 6 metal in combination with a θ-alumina support. The fifth catalyst has a pore size distribution with a median pore diameter of 180 mm or more, 220 mm or more, 230 mm or more, 250 mm or more, 300 mm or more, or 500 mm or less. The support contains θ-alumina at a content of 0.5 g or more, 0.5 g or more, or 0.999 g or less per 1 g of the support. In some embodiments, the support contains alpha-alumina at a content of less than 0.1 g / g support. In some embodiments, the catalyst contains no more than 0.1 g and no more than 0.0001 g of column 6 metal per gram of catalyst. In some embodiments, the column 6 metal is molybdenum and / or tungsten.
特定の実施態様では、原油原料を第五触媒と310〜400℃、320〜370℃又は330〜360℃の範囲の温度で接触させた際、原油原料による総水素吸収量は比較的少なくてよい(例えば0.01〜100Nm3/m3、1〜80Nm3/m3、5〜50Nm3/m3、又は10〜30Nm3/m3)。幾つかの実施態様では原油原料による総水素吸収量は、1〜20Nm3/m3、2〜15Nm3/m3、又は3〜10Nm3/m3であってよい。原油原料と第五触媒との接触で製造された原油生成物のTANは、原油原料のTANに対し90%以下、80%以下、50%以下、10%以下であってよい。原油生成物のTANは、0.01〜0.1、0.03〜0.05、又は0.02〜0.03の範囲であってよい。 In certain embodiments, when the crude feed is contacted with the fifth catalyst at a temperature in the range of 310-400 ° C, 320-370 ° C, or 330-360 ° C, the total hydrogen absorption by the crude feed may be relatively low. (e.g. 0.01~100Nm 3 / m 3, 1~80Nm 3 / m 3, 5~50Nm 3 / m 3, or 10~30Nm 3 / m 3). In some embodiments, the total hydrogen absorption by the crude feed may be 1-20 Nm 3 / m 3 , 2-15 Nm 3 / m 3 , or 3-10 Nm 3 / m 3 . The TAN of the crude product produced by contacting the crude feed with the fifth catalyst may be 90% or less, 80% or less, 50% or less, 10% or less with respect to TAN of the crude feed. The TAN of the crude product may range from 0.01 to 0.1, 0.03 to 0.05, or 0.02 to 0.03.
特定の実施態様では、第六タイプの触媒(“第六触媒”)は、θ−アルミナ支持体と組合わせた第5欄金属及び第6欄金属を含有する。第六触媒は、中央値細孔径が180Å以上の細孔サイズ分布を有する。幾つかの実施態様では細孔サイズ分布の中央値細孔径は、220Å以上、230Å以上、250Å以上、300Å以上、又は500Å以下である。支持体は、θ−アルミナを支持体1g当たり0.1g以上、0.5g以上、0.8g以上、0.9g以上、又は0.99g以下の含有量で含有してよい。幾つかの実施態様では支持体は、第5欄金属及び第6欄金属を触媒1g当たり0.1g以下で、かつ0.0001g以上の合計含有量で含有する。幾つかの実施態様では第6欄金属対第5欄金属のモル比は、0.1〜20、1〜10、又は2〜5の範囲であってよい。特定の実施態様では第5欄金属はバナジウムであり、第6欄金属はモリブデン及び/又はタングステンである。 In certain embodiments, a sixth type of catalyst (“sixth catalyst”) contains column 5 metal and column 6 metal in combination with a θ-alumina support. The sixth catalyst has a pore size distribution with a median pore diameter of 180 mm or more. In some embodiments, the median pore size of the pore size distribution is 220 cm or more, 230 cm or more, 250 cm or more, 300 cm or more, or 500 mm or less. The support may contain θ-alumina in a content of 0.1 g or more, 0.5 g or more, 0.8 g or more, 0.9 g or more, or 0.99 g or less per gram of support. In some embodiments, the support contains Column 5 metal and Column 6 metal in a total content of 0.1 g or less per gram of catalyst and 0.0001 g or more. In some embodiments, the molar ratio of column 6 metal to column 5 metal may range from 0.1-20, 1-10, or 2-5. In a particular embodiment, the column 5 metal is vanadium and the column 6 metal is molybdenum and / or tungsten.
原油原料を第六触媒と310〜400℃、320〜370℃又は330〜360℃の範囲の温度で接触させた際、原油原料による総水素吸収量は−10〜20Nm3/m3、−7〜10Nm3/m3、又は−5〜5Nm3/m3の範囲であってよい。負の総水素吸収量は、現場で水素が発生している一指標である。原油原料と第六触媒との接触で製造された原油生成物のTANは、原油原料のTANに対し90%以下、80%以下、50%以下、10%以下、又は1%以上であってよい。原油生成物のTANは、0.01〜0.1、0.02〜0.05、又は0.03〜0.04の範囲であってよい。 When the crude material is brought into contact with the sixth catalyst at a temperature in the range of 310 to 400 ° C., 320 to 370 ° C., or 330 to 360 ° C., the total hydrogen absorption amount by the crude material is −10 to 20 Nm 3 / m 3 , −7 ~10Nm 3 / m 3, or may range from -5~5Nm 3 / m 3. Negative total hydrogen absorption is an indicator that hydrogen is generated in the field. The TAN of the crude product produced by contacting the crude feed with the sixth catalyst may be 90% or less, 80% or less, 50% or less, 10% or less, or 1% or more with respect to the TAN of the crude feed . The TAN of the crude product may range from 0.01 to 0.1, 0.02 to 0.05, or 0.03 to 0.04.
原油原料と第四触媒、第五触媒又は第六触媒との接触中、総水素吸収量が少ないと、処理中の水素の全体の必要量を低下させながら、原油原料の輸送及び/又は処理受入れが可能な原油生成物を製造できる。水素の製造及び/又は輸送は費用がかかるので、処理の際、水素の使用量が少ないと、全体の処理費用は低下する。
特定の実施態様では、第七タイプの触媒(“第七触媒”)は、第6欄金属を触媒1g当たり0.0001〜0.06gの範囲の合計含有量で含有する。第6欄金属はモリブデン及び/又はタングステンである。第七触媒は、TANが原油原料に対し90%以下の原油生成物を製造するのに有益である。
Transportation and / or processing acceptance of crude raw materials while reducing the total required amount of hydrogen during processing if the total hydrogen absorption is small during contact between the crude raw material and the fourth, fifth or sixth catalyst Can produce a crude product capable of Since the production and / or transportation of hydrogen is expensive, if the amount of hydrogen used is small during processing, the overall processing cost is reduced.
In a particular embodiment, the seventh type of catalyst (“seventh catalyst”) contains column 6 metal in a total content ranging from 0.0001 to 0.06 g / g catalyst. Column 6 The metal is molybdenum and / or tungsten. The seventh catalyst is useful for producing a crude product with a TAN of 90% or less relative to the crude feed.
第一、第二、第三、第四、第五、第六及び第七触媒の他の実施態様は、ここで説明したように作り、及び/又は使用してもよい。
本出願の触媒を選択し、操作条件を制御することにより、原油原料に対するTAN及び選択した特性は変化しながら、原油原料の他の特性は大きく変化しない原油生成物を製造できる。得られた原油生成物は、原油原料に比べて特性が向上し、したがって輸送及び/又は精製に受入れ可能となる。
Other embodiments of the first, second, third, fourth, fifth, sixth and seventh catalysts may be made and / or used as described herein.
By selecting the catalyst of the present application and controlling the operating conditions, it is possible to produce a crude product in which the TAN and selected properties for the crude feed vary, while other properties of the crude feed do not change significantly. The resulting crude product has improved properties compared to the crude feed and is therefore acceptable for transportation and / or refining.
2種以上の触媒を選択した順序で配列すると、原油原料の特性改良の順序を制御できる。例えば原油原料でのTAN、API比重、C5アスファルテンの少なくとも一部、鉄の少なくとも一部、ニッケルの少なくとも一部、及び/又はバナジウムの少なくとも一部は、原油原料中のヘテロ原子の少なくとも一部が減少する前に、低下又は減少できる。
幾つかの実施態様では複数触媒の配列及び/又は選択により、触媒の寿命及び/又は原油原料/全生成物混合物の安定性を向上できる。処理中の触媒寿命及び/又は原油原料/全生成物混合物の安定性の向上により、接触システムを3ヶ月以上、6ヶ月以上、又は1年以上、接触システム中の触媒を取替えることなく操作できる。
Arranging two or more kinds of catalysts in a selected order makes it possible to control the order of improving the characteristics of the crude oil feedstock. For example TAN in the crude feed, API gravity, at least a portion of the C 5 asphaltenes, at least a portion of the iron, at least a portion of the nickel, and / or at least a portion of the vanadium, at least a portion of the heteroatoms in the crude feed Can be reduced or reduced before it decreases.
In some embodiments, the arrangement and / or selection of multiple catalysts can improve catalyst life and / or stability of the crude feed / total product mixture. By improving the catalyst life during processing and / or the stability of the crude feed / total product mixture, the contact system can be operated for more than 3 months, more than 6 months, or more than 1 year without replacing the catalyst in the contact system.
選択した触媒を組合わせることにより、処理中、原油原料/全生成物混合物の安定性を維持しながら(例えば原油原料のP値を1.5より大きく維持する)、原油原料の他の特性を変化させる前の原油原料から、Ni/V/Feの少なくとも一部、C5アスファルテンの少なくとも一部、有機酸金属塩の金属の少なくとも一部、TANの一因となる成分の少なくとも一部、残留物の少なくとも一部、又はそれらの組合わせを低下又は減少できる。或いは原油原料と選択した触媒との接触により、C5アスファルテン、TAN及び/又はAPI比重を漸増的に低下できる。原油原料の特性を漸増的及び/又は選択的に変化させる能力により、処理中、原油原料/全生成物混合物の安定性が維持できる。 By combining selected catalysts, other properties of the crude feed can be achieved while maintaining the stability of the crude feed / total product mixture during processing (eg, maintaining the P value of the crude feed greater than 1.5). from crude feed before changing, at least a portion of the Ni / V / Fe, at least a portion of the C 5 asphaltenes, at least a portion of the metal of the organic acid metal salt, at least a portion of the components that contribute to TAN, residual At least some of the objects, or combinations thereof, can be reduced or reduced. Or by contact with a selected catalyst and crude feed, C 5 asphaltenes can incrementally decrease the TAN and / or API gravity. The ability to incrementally and / or selectively change the properties of the crude feed allows the stability of the crude feed / total product mixture to be maintained during processing.
幾つかの実施態様では第一触媒(前述)は、一連の触媒の上流に配置してよい。第一触媒のこのような配置により、原油原料/全生成物混合物の安定性が維持しながら、高分子量汚染物、金属汚染物、及び/又は有機酸金属塩の金属を除去できる。
幾つかの実施態様では第一触媒は、原油原料からの、Ni/V/Feの少なくとも一部の除去、酸性成分の除去、接触システム中の触媒の寿命を低下させる一因となる成分の除去、又はそれらの組合わせを行う。例えば原油原料/全生成物混合物からのC5アスファルテンの少なくとも一部を原油原料と比べて減少させると、下流に配置した他の触媒の閉塞が防止され、こうして、触媒の取替えなく、接触システムを操作できる時間が延びる。幾つかの実施態様では原油原料からNi/V/Feの少なくとも一部を除去すると、第一触媒の後に配置した1種以上の触媒の寿命が延びる。
In some embodiments, the first catalyst (described above) may be located upstream of the series of catalysts. Such an arrangement of the first catalyst allows removal of high molecular weight contaminants, metal contaminants, and / or metals of the organic acid metal salt while maintaining the stability of the crude feed / total product mixture.
In some embodiments, the first catalyst removes at least a portion of Ni / V / Fe from the crude feed, removal of acidic components, and removal of components that contribute to reducing the life of the catalyst in the contact system. Or a combination thereof. For example, at least a portion of the C 5 asphaltenes from the crude feed / total product mixture is reduced as compared with the crude feed, is prevented clogging of other catalysts positioned downstream, thus, not replace catalytic, contacting system The time that can be operated is extended. In some embodiments, removing at least a portion of the Ni / V / Fe from the crude feed increases the life of the one or more catalysts disposed after the first catalyst.
第二触媒及び/又は第三触媒は、第一触媒の下流に配置してよい。原油原料/全生成物混合物と第二触媒及び/又は第三触媒とを更に接触させることにより、更にTANが低下し、Ni/V/Fe含有量が減少し、硫黄含有量が減少し、酸素含有量が減少し、及び/又は有機酸金属塩の金属含有量が減少できる。 The second catalyst and / or the third catalyst may be disposed downstream of the first catalyst. By further contacting the crude feed / total product mixture with the second and / or third catalyst, the TAN is further reduced, the Ni / V / Fe content is reduced, the sulfur content is reduced, and the oxygen is reduced. The content can be reduced and / or the metal content of the organic acid metal salt can be reduced.
幾つかの実施態様では原油原料と第二触媒及び/又は第三触媒との接触により、処理中、原油原料/全生成物混合物の安定性を維持しながら、原油原料のそれぞれの特性と比べて、TANが低下し、硫黄含有量が減少し、酸素含有量が減少し、有機酸金属塩の金属含有量が減少し、アスファルテン含有量が減少し、又はそれらを組合わせた原油原料/全生成物混合物が製造できる。第二触媒は、第三触媒の上流又はその逆に、第三触媒と直列に配置してよい。 In some embodiments, contact between the crude feed and the second and / or third catalyst ensures that the stability of the crude feed / total product mixture is maintained during processing, as compared to the respective properties of the crude feed. TAN is reduced, sulfur content is reduced, oxygen content is reduced, metal content of organic acid metal salt is reduced, asphaltene content is reduced, or a combination of them, crude feed / total production Product mixtures can be produced. The second catalyst may be placed in series with the third catalyst upstream of the third catalyst or vice versa.
特定の接触帯に水素を配送する能力は、接触中の水素の使用量を減少させる傾向がある。接触中、水素を容易に発生させる触媒と、接触中、比較的少量の水素を吸収する触媒との組合わせを使用して、原油生成物の選択した特性を原油原料の同じ特性に比べて変化させることができる。例えば原油原料の選択した特性以外の他の特性だけを、選択した量で変化させながら、及び/又は原油原料/全生成物混合物の安定性を維持しながら、原油原料の選択した特性を変化させるため、第四触媒を第一触媒、第二触媒、第三触媒、第五触媒、第六触媒及び/又は第七触媒と組合わせて使用してよい。複数触媒の順序及び/又は数は、原油原料/全生成物混合物の安定性を維持しながら、総水素吸収量を最小化するように選択してよい。最小限の総水素吸収量により、原油生成物のTAN及び/又は粘度を原油原料のTAN及び/又は粘度に対し90%以下にしながら、原油原料のVGO含有量、蒸留物含有量、API比重、又はそれらの組合わせを原油原料のそれぞれの特性の20%以内に維持できる。 The ability to deliver hydrogen to a specific contact zone tends to reduce the amount of hydrogen used during the contact. Using a combination of a catalyst that easily generates hydrogen during contact and a catalyst that absorbs a relatively small amount of hydrogen during contact, the selected properties of the crude product are changed relative to the same properties of the crude feed. Can be made. For example, changing selected properties of a crude feed while changing only other properties other than the selected properties of the crude feed in selected amounts and / or maintaining the stability of the crude feed / total product mixture Therefore, the fourth catalyst may be used in combination with the first catalyst, the second catalyst, the third catalyst, the fifth catalyst, the sixth catalyst and / or the seventh catalyst. The order and / or number of multiple catalysts may be selected to minimize the total hydrogen uptake while maintaining the stability of the crude feed / total product mixture. With the minimum total hydrogen absorption, the TAN and / or viscosity of the crude product is less than 90% of the TAN and / or viscosity of the crude feed, while the VGO content, distillate content, API specific gravity of the crude feed, Or their combination can be maintained within 20% of the respective properties of the crude feed.
原油原料による総水素吸収量の減少により、原油原料の沸点分布と同様な沸点範囲分布を有すると共に、原油原料のTANに比べてTANが低下した原油生成物が製造できる。原油生成物のH/C原子比も原油原料のH/C原子比と比べて比較的小さく変化するだけかも知れない。
特定接触帯での水素の発生により、他の接触帯に水素を選択的に添加することが可能となり、及び/又は原油原料の特性を選択的に低下又は減少させることが可能となる。幾つかの実施態様では第四触媒は、ここで説明した追加触媒の上流、下流又は間に配置してよい。水素は、原油原料と第四触媒との接触中に発生させてよいし、また追加の触媒を有する接触帯に配送してよい。水素の配送は、原油原料の流れと反対流であってよい。幾つかの実施態様では水素の配送は、原油原料の流れと並流であってよい。
By reducing the total amount of hydrogen absorbed by the crude oil raw material, it is possible to produce a crude oil product having a boiling range distribution similar to that of the crude oil raw material and having a lower TAN than the crude oil TAN. The H / C atomic ratio of the crude product may also change only relatively small compared to the H / C atomic ratio of the crude feed.
The generation of hydrogen in a specific contact zone makes it possible to selectively add hydrogen to other contact zones and / or to selectively reduce or reduce the properties of crude oil feedstock. In some embodiments, the fourth catalyst may be located upstream, downstream, or between the additional catalysts described herein. Hydrogen may be generated during contact between the crude feed and the fourth catalyst or may be delivered to a contact zone having additional catalyst. The delivery of hydrogen may be countercurrent to the crude feed stream. In some embodiments, the hydrogen delivery may be co-current with the crude feed stream.
例えば積重ね構造(例えば図2B参照)では水素は、一接触帯(例えば図2Bの接触帯102)で接触中、発生させてよく、また別の接触帯(例えば図2Bの接触帯114)に原油原料の流れと反対方向で配送してよい。幾つかの実施態様では水素流は、原油原料の流れと並流であってよい。或いは、積重ね構造(例えば図3B参照)では水素は、一接触帯(例えば図3Bの接触帯102)で接触中、発生させてよい。水素源は、第一追加接触帯には原油原料の流れと反対方向で配送してよいし(例えば図3Bにおいて、水素は導管106’から接触帯114に添加)、また第二追加接触帯には原油原料の流れと並流方向で配送してよい(例えば図3Bにおいて、水素は導管106’から接触帯116に添加)。 For example, in a stacked configuration (eg, see FIG. 2B), hydrogen may be generated during contact in one contact zone (eg, contact zone 102 in FIG. 2B), and crude oil in another contact zone (eg, contact zone 114 in FIG. 2B). It may be delivered in the opposite direction of the raw material flow. In some embodiments, the hydrogen stream may be co-current with the crude feed stream. Alternatively, in a stacked structure (eg, see FIG. 3B), hydrogen may be generated during contact in one contact zone (eg, contact zone 102 in FIG. 3B). The hydrogen source may be delivered to the first additional contact zone in the opposite direction of the crude feed flow (eg, in FIG. 3B, hydrogen is added to the contact zone 114 from conduit 106 ') and to the second additional contact zone. May be delivered in a direction parallel to the crude feed stream (eg, in FIG. 3B, hydrogen is added to contact zone 116 from conduit 106 ').
幾つかの実施態様では大触媒及び第六触媒を、第四触媒は第六触媒の上流にあり、又はその逆になるように、直列で使用してよい。第四触媒と別の触媒との組合わせにより、TANは低下し、Ni/V/Fe含有量は減少し、及び/又は有機酸金属塩の金属含有量が減少し、しかも原油原料による総水素吸収量は減少するかも知れない。総水素吸収量が少ないと、原油生成物の他の特性は、原油原料の同じ特性に比べて少し変化するだけかも知れない。 In some embodiments, a large catalyst and a sixth catalyst may be used in series such that the fourth catalyst is upstream of the sixth catalyst or vice versa. By combining the fourth catalyst with another catalyst, the TAN is decreased, the Ni / V / Fe content is decreased, and / or the metal content of the organic acid metal salt is decreased. Absorption may decrease. If the total hydrogen uptake is low, other properties of the crude product may change slightly compared to the same properties of the crude feed.
幾つかの実施態様では、2種の異なる第七触媒を組合わせて使用してよい。下流の第七触媒の上流に使用した第七触媒は、第6欄金属を触媒1g当たり0.0001〜0.06gの範囲の合計含有量で含有してよい。下流の第七触媒は、第6欄金属を下流の第七触媒1g当たり、上流の第七触媒と同じか又は多い合計含有量で、或いは第6欄金属を触媒1g当たり0.02g以上含有してよい。幾つかの実施態様では上流第七触媒及び下流第七触媒の位置は、逆であってもよい。下流の第七触媒において触媒活性金属を比較的少量使用する能力は、原油生成物の他の特性を原油原料の同じ特性を少し変化させるだけかも知れない(例えばヘテロ原子の含有量、API比重、残留物含有量、VGO含有量、又はそれらの組合わせの変化は比較的少ない)。
原油原料と上流及び下流の第七触媒との接触により、 TANが、原油原料のTANに対し90%以下、80%以下、50%以下、10%以下、又は1%以上の原油生成物を製造できる。幾つかの実施態様では原油原料のTANは、上流及び下流の第七触媒との接触により漸増的に低下する可能性がある(例えば原油原料と触媒との接触により、原油原料と比べて変化した特性を有する初期原油生成物が生成し、次に初期原油生成物と追加触媒との接触により、初期原油生成物と比べて変化した特性を有する原油生成物が作られる)。TANを漸増的に低下させる能力は、処理中、原油原料/全生成物混合物の安定性を維持するのに助けとなるかも知れない。
In some embodiments, two different seventh catalysts may be used in combination. The seventh catalyst used upstream of the downstream seventh catalyst may contain column 6 metal in a total content ranging from 0.0001 to 0.06 g per gram of catalyst. The downstream seventh catalyst contains the sixth column metal in a total content equal to or higher than that of the upstream seventh catalyst per 1 g of the downstream seventh catalyst or 0.02 g or more of the sixth column metal per 1 g of the catalyst. It's okay. In some embodiments, the positions of the upstream seventh catalyst and the downstream seventh catalyst may be reversed. The ability to use relatively small amounts of catalytically active metals in the downstream seventh catalyst may only slightly alter other properties of the crude product the same properties of the crude feed (eg, heteroatom content, API specific gravity, There is relatively little change in residue content, VGO content, or combinations thereof).
TAN produces less than 90%, less than 80%, less than 50%, less than 10%, or more than 1% crude product by contacting crude oil with the seventh catalyst upstream and downstream it can. In some embodiments, the TAN of the crude feed may be progressively reduced by contact with the upstream and downstream seventh catalyst (eg, the contact between the crude feed and the catalyst has changed relative to the crude feed. An initial crude product with properties is produced, and then contact of the initial crude product with an additional catalyst produces a crude product with altered properties compared to the initial crude product). The ability to incrementally reduce TAN may help maintain the stability of the crude feed / total product mixture during processing.
幾つかの実施態様では、接触条件の制御と組合わせた、触媒の選択及び/又は複数触媒の順序は、原油原料による水素吸収量を減少させ、処理中、原油原料/全生成物混合物の安定性を維持すると共に、原油生成物の1つ以上の特性を原油原料のそれぞれの特性と比べて変化させるのに助けとなるかも知れない。原油原料/全生成物混合物の安定性は、原油原料/全生成物混合物から分離する種々の相により影響を受ける可能性がある。相分離は、例えば原油原料/全生成物混合物に原油原料及び/又は全生成物混合物が溶解しないこと、原油原料/全生成物混合物からアスファルテンが凝集すること、原油原料/全生成物混合物中で成分が沈澱すること、又はそれらの組合わせによるのかも知れない。 In some embodiments, catalyst selection and / or multi-catalyst order combined with contact condition control reduces hydrogen uptake by the crude feed and stabilizes the crude feed / total product mixture during processing. And may help to change one or more properties of the crude product as compared to the respective properties of the crude feed. The stability of the crude feed / total product mixture can be affected by various phases that separate from the crude feed / total product mixture. Phase separation can be achieved, for example, when the crude feed and / or total product mixture does not dissolve in the crude feed / total product mixture, asphaltenes aggregate from the crude feed / total product mixture, in the crude feed / total product mixture. It may be due to the components precipitating or a combination thereof.
接触中、特定の時間で原油原料及び/又は全生成物混合物の濃度が変化するかも知れない。原油原料/全生成物混合物中の全生成物の濃度が全生成物の生成により変化すると、原油原料/全生成物混合物中の原油原料の成分及び/又は全生成物の成分の溶解性が変化する傾向がある。例えば原油生成物は、処理の初期には、原油原料に可溶の成分を含有する可能性がある。原油原料の特性(例えばTAN、MCR、C5アスファルテン、P値、又はそれらの組合わせ)が変化すると、これらの成分は、原油原料/全生成物混合物への溶解性が低下しやすくなるかも知れない。幾つかの例では、原油原料及び全生成物は、2つの相を形成し、及び/又は互いに不溶となるかも知れない。溶解性の変化によって原油原料/全生成物混合物は2つ以上の相を形成するかも知れない。アスファルテンの凝集による2相の形成、原油原料及び全生成物の濃度変化、及び/又は成分の沈澱により、触媒の1種以上の寿命は低下する傾向がある。更に、処理の効率が低下するかも知れない。例えば所望の特性を有する原油生成物を製造するのに、原油原料/全生成物混合物の繰り返し処理が必要かも知れない。 During contact, the concentration of the crude feed and / or the total product mixture may change at a particular time. When the concentration of all products in the crude feed / total product mixture changes due to the formation of all products, the solubility of the crude feed components and / or the total product components in the crude feed / total product mixture changes. Tend to. For example, the crude product may contain components that are soluble in the crude feed at the beginning of processing. Properties of the crude material (e.g. TAN, MCR, C 5 asphaltenes, P value, or combinations thereof) the changes, these components may solubility in crude feed / total product mixture tends to decrease Absent. In some examples, the crude feed and the entire product may form two phases and / or become insoluble in each other. Due to changes in solubility, the crude feed / total product mixture may form more than one phase. One or more lifespan of the catalyst tends to decrease due to two-phase formation due to asphaltene agglomeration, crude feedstock and total product concentration changes, and / or component precipitation. In addition, processing efficiency may be reduced. For example, it may be necessary to repeatedly process the crude feed / total product mixture to produce a crude product having the desired properties.
処理中、原油原料/全生成物混合物のP値をモニターすると共に、処理、原油原料、及び/又は原油原料/全生成物混合物の安定性を評価してよい。通常、1.5以下のP値は、一般に原油生成物からアスファルテンが凝集を起こしたことを示す。P値が初期では1.5以上であり、接触中、このP値が増大するか、比較的安定でれば、原油原料が接触中、比較的安定であることを示す。P値で評価する原油原料/全生成物混合物の安定性は、接触条件の制御、触媒の選択、複数触媒の選択順序、又はそれらの組合わせにより制御してよい。このような接触条件の制御には、LHSV、温度、圧力、水素吸収量、原油原料流、又はそれらの組合わせが含まれる。 During processing, the P value of the crude feed / total product mixture may be monitored and the stability of the process, crude feed, and / or crude feed / total product mixture may be evaluated. A P value of 1.5 or less generally indicates that asphaltenes have aggregated from the crude product. The P value is 1.5 or more at the initial stage, and if this P value increases or is relatively stable during the contact, it indicates that the crude raw material is relatively stable during the contact. The stability of the crude feed / total product mixture evaluated by the P value may be controlled by controlling contact conditions, catalyst selection, multiple catalyst selection order, or a combination thereof. Control of such contact conditions includes LHSV, temperature, pressure, hydrogen absorption, crude feed stream, or combinations thereof.
幾つかの実施態様では接触温度は、原油原料のMCR含有量を維持しながら、C5アスファルテン及び/又は他のアスファルテンが除去されるような温度に制御する。水素の吸収及び/又は高い接触温度によりMCR含有量が減少すると、原油原料/全生成物混合物の安定性及び/又は触媒の1種以上の寿命を低下させる恐れがある2相を形成するかも知れない。ここで説明した触媒と組合わせて、接触温度及び水素吸収を制御することにより、原油原料のMCR含有量を単に比較的少なく変化させながら、C5アスファルテンを減少できる。 Contact temperature is in some embodiments, while maintaining the MCR content of the crude feed, C 5 asphaltenes and / or other asphaltenes are controlled at a temperature as removed. Decreasing the MCR content due to hydrogen absorption and / or high contact temperatures may form two phases that may reduce the stability of the crude feed / total product mixture and / or the lifetime of one or more of the catalysts. Absent. In combination with the catalyst described herein, by controlling the contacting temperature and hydrogen uptake, while simply changing relatively small MCR content of the crude feed, it can be reduced C 5 asphaltenes.
幾つかの実施態様では接触条件は、1つ以上の接触帯の温度が異なるように制御する。異なる温度で操作すると、原油原料/全生成物混合物の安定性を維持しながら、原油原料の特性を選択的に変化させることが可能である。処理の開始時、原油原料は第一接触帯に入る。第一接触温度は、第一接触帯の温度である。その他の接触温度(例えば第二温度、第三温度、第四温度等)は、第一接触帯の後に配置した接触帯の温度である。第一接触温度は、100〜420℃の範囲であってよく、また第二接触温度は、第一接触温度とは異なる20〜100℃、30〜90℃、又は40〜60℃の範囲であってよい。幾つかの実施態様では第二接触温度は、第二接触温度よりも高い。異なる接触温度にすると、原油原料のTAN及び/又はC5アスファルテン含有量に比べて、原油生成物のTAN及び/又はC5アスファルテン含有量は、第一及び第二接触温度が同じか、互いに10℃以内である場合の(あれば)TAN及び/又はC5アスファルテン含有量の低下又は減少よりも大きな程度まで低下するかも知れない。 In some embodiments, the contact conditions are controlled so that the temperature of one or more contact zones is different. Operating at different temperatures can selectively change the properties of the crude feed while maintaining the stability of the crude feed / total product mixture. At the start of processing, the crude feed enters the first contact zone. The first contact temperature is the temperature of the first contact zone. Other contact temperatures (for example, the second temperature, the third temperature, the fourth temperature, etc.) are the temperatures of the contact zone disposed after the first contact zone. The first contact temperature may be in the range of 100-420 ° C, and the second contact temperature is in the range of 20-100 ° C, 30-90 ° C, or 40-60 ° C different from the first contact temperature. You can. In some embodiments, the second contact temperature is higher than the second contact temperature. When the different contact temperatures, compared to the TAN and / or C 5 asphaltenes content of the crude feed, TAN and / or C 5 asphaltenes content of the crude product, or the first and second contact temperature is the same, 10 to each other It may decrease to a greater extent than a decrease or decrease in TAN and / or C 5 asphaltenes content (if any) when it is within ° C.
例えば第一接触帯は、第一触媒及び/又は第四触媒を含有してよいし、また第二接触帯は、ここで説明したその他の触媒を含有してよい。第一接触温度は350℃であってよく、また第二接触温度は300℃であってよい。第二接触帯で他の触媒と接触させる前に、高温で第一接触帯で原油原料と第一触媒及び/又は第四触媒とを接触させると、第一接触温度及び第二接触温度が10℃以内である場合の原油原料のTAN及び/又はC5アスファルテン含有量の低下又は減少に比べて、同じ原油原料のTAN及び/又はC5アスファルテン含有量が大幅に低下又は減少する可能性がある。 For example, the first contact zone may contain a first catalyst and / or a fourth catalyst, and the second contact zone may contain other catalysts described herein. The first contact temperature may be 350 ° C and the second contact temperature may be 300 ° C. If the crude oil raw material and the first catalyst and / or the fourth catalyst are brought into contact with each other in the first contact zone at a high temperature before contacting with another catalyst in the second contact zone, the first contact temperature and the second contact temperature are 10 ℃ compared to decrease or reduction in TAN and / or C 5 asphaltenes content of the crude feed in the case within it, TAN and / or C 5 asphaltenes content of the same crude feed may be reduced or substantially reduced .
支持体の製造、触媒の製造、及び触媒を選択的に配列したシステム、並びに制御した接触条件の非限定的例を以下に述べる。 Non-limiting examples of support production, catalyst production, and systems with selective catalyst arrangement, and controlled contact conditions are described below.
例1:触媒支持体の製造
アルミナ(Criterion Catalysts and Technologies LP(米国ミシガン州ミシガン市)576gを水585g及び氷硝酸8gと35分間、磨砕して支持体を製造した。得られた磨砕混合物を1.3Trilobe(商標)ダイプレートで押し出し、90〜125℃で乾燥し、次いで918℃で焼成して、中央値細孔径182Åの焼成支持体650gを得た。この焼成支持体をLindberg炉に入れ、炉の温度を1.5時間かけて1000〜1100℃に上げ、次いで2時間保持して、支持体を製造した。支持体は、X線回折で測定して支持体1g当たり、γ−アルミナを0.0003g、α−アルミナを0.0008g、δ−アルミナを0.0208g、及びθ−アルミナを0.9781g含有していた。支持体の表面積は110m2/g、合計細孔容積は0.821cm3/gであった。支持体は、中央値細孔径が232Åで、細孔サイズ分布での全細孔数の66.7%が中央値細孔径の85Å以内の細孔径を有する細孔サイズ分布を示した。
本例は、180Å以上の細孔サイズ分布を有すると共に、θ−アルミナを0.1g以上含有する支持体の製造法を示す。
Example 1 Preparation of Catalyst Support A support was prepared by grinding 576 g of Alumina (Criterion Catalysts and Technologies LP, Michigan, Michigan, USA) with 585 g of water and 8 g of glacial nitric acid for 35 minutes. Was extruded at 1.3 Trilobe ™ die plate, dried at 90-125 ° C. and then calcined at 918 ° C. to obtain 650 g of a calcined support with a median pore size of 182 mm. The temperature of the furnace was raised to 1000-1100 ° C. over 1.5 hours and then held for 2 hours to produce a support, which was measured by X-ray diffraction and measured γ− per gram of support. 0.0003 g of alumina, 0.0008 g of α-alumina, 0.0208 g of δ-alumina, and 0.008 of θ-alumina. The support had a surface area of 110 m 2 / g and a total pore volume of 0.821 cm 3 / g. The support had a median pore diameter of 232 mm and a total pore size distribution of A pore size distribution was shown in which 66.7% of the number of pores had a pore diameter within 85 mm of the median pore diameter.
This example shows a method for producing a support having a pore size distribution of 180 mm or more and 0.1 g or more of θ-alumina.
例2:中央値細孔径が230Å以上の細孔サイズ分布を有するバナジウム触媒の製造
以下の方法でバナジウム触媒を製造した。例1に記載の方法で製造したアルミナ支持体を、VOSO4 7.69gを脱イオン水82gと配合して作ったバナジウム含浸溶液に含浸した。溶液のpHは2.27である。
アルミナ支持体(100g)をバナジウム含浸溶液に含浸し、時々、撹拌しながら2時間熟成し、125℃で数時間乾燥し、次いで480℃で2時間焼成した。得られた触媒は、バナジウムを触媒1g当たり0.04g含有し、残部は支持体である。このバナジウム触媒は、中央値細孔径が350Åの細孔サイズ分布を有し、細孔容積は0.69cm3/g、表面積は110m2/gであった。更に、バナジウム触媒の細孔サイズ分布での全細孔数の66.7%は、中央値細孔径の70Å以内の細孔径を持っていた。
本例は、中央値細孔径が230Å以上の細孔サイズ分布を有する第5欄金属触媒の製造法を示す。
Example 2: Production of vanadium catalyst having a pore size distribution with a median pore diameter of 230 mm or more A vanadium catalyst was produced by the following method. The alumina support produced by the method described in Example 1 was impregnated with a vanadium impregnation solution made by blending 7.69 g of VOSO 4 with 82 g of deionized water. The pH of the solution is 2.27.
An alumina support (100 g) was impregnated in a vanadium impregnation solution, aged for 2 hours with occasional stirring, dried at 125 ° C. for several hours, and then calcined at 480 ° C. for 2 hours. The obtained catalyst contains 0.04 g of vanadium per 1 g of the catalyst, and the balance is the support. This vanadium catalyst had a pore size distribution with a median pore diameter of 350 mm, a pore volume of 0.69 cm 3 / g, and a surface area of 110 m 2 / g. Furthermore, 66.7% of the total number of pores in the pore size distribution of the vanadium catalyst had a pore diameter within 70 mm of the median pore diameter.
This example shows a method for producing a fifth column metal catalyst having a pore size distribution with a median pore diameter of 230 mm or more.
例3:中央値細孔径が230Å以上の細孔サイズ分布を有するモリブデン触媒の製造
以下の方法でモリブデン触媒を製造した。例1に記載の方法で製造したアルミナ支持体をモリブデン含浸溶液に含浸した。このモリブデン含浸溶液は、(NH4)2Mo2O7 4.26g、MoO3 6.38g、30%H2O2 1.12g、モノエタノールアミン(MEA)0.27g及び脱イオン水6.51gを配合して、スラリーを形成することにより作った。スラリーを65℃で固体が溶解するまで加熱した。この加熱溶液を室温まで冷却した。溶液のpHは5.36である。溶液の容積を脱イオン水で82mLに調節した。
Example 3: Production of a molybdenum catalyst having a pore size distribution with a median pore diameter of 230 mm or more A molybdenum catalyst was produced by the following method. The alumina support produced by the method described in Example 1 was impregnated with a molybdenum impregnation solution. This molybdenum impregnation solution consists of (NH 4 ) 2 Mo 2 O 7 4.26 g, MoO 3 6.38 g, 30% H 2 O 2 1.12 g, monoethanolamine (MEA) 0.27 g and deionized water 6. It was made by blending 51 g to form a slurry. The slurry was heated at 65 ° C. until the solid dissolved. The heated solution was cooled to room temperature. The pH of the solution is 5.36. The solution volume was adjusted to 82 mL with deionized water.
アルミナ支持体(100g)をモリブデン含浸溶液に含浸し、時々、撹拌しながら2時間熟成し、125℃で数時間乾燥し、次いで480℃で2時間焼成した。得られた触媒は、モリブデンを触媒1g当たり0.04g含有し、残部は支持体である。このモリブデン触媒は、中央値細孔径が250Åの細孔サイズ分布を有し、細孔容積は0.77cm3/g、表面積は116m2/gであった。更に、バナジウム触媒の細孔サイズ分布での全細孔数の67.7%は、中央値細孔径の86Å以内の細孔径を持っていた。
本例は、中央値細孔径が230Å以上の細孔サイズ分布を有する第6欄金属触媒の製造法を示す。
An alumina support (100 g) was impregnated in a molybdenum impregnation solution, aged for 2 hours with occasional stirring, dried at 125 ° C. for several hours, and then calcined at 480 ° C. for 2 hours. The resulting catalyst contains 0.04 g of molybdenum per gram of catalyst, with the balance being the support. This molybdenum catalyst had a pore size distribution with a median pore diameter of 250 mm, a pore volume of 0.77 cm 3 / g, and a surface area of 116 m 2 / g. Furthermore, 67.7% of the total number of pores in the pore size distribution of the vanadium catalyst had a pore diameter within 86 mm of the median pore diameter.
This example shows a method for producing a sixth column metal catalyst having a pore size distribution with a median pore diameter of 230 mm or more.
例4:中央値細孔径が230Å以上の細孔サイズ分布を有するモリブデン/バナジウム触媒の製造
以下の方法でモリブデン/バナジウム触媒を製造した。例1に記載の方法で製造したアルミナ支持体を、以下のようにして作ったモリブデン/バナジウム含浸溶液に含浸した。(NH4)2Mo2O7 2.14g、MoO3 3.21g、30%過酸化水素(H2O2)0.56g、モノエタノールアミン(MEA)0.14g及び脱イオン水3.28gを配合して、スラリーを形成することにより第一溶液を作った。スラリーを65℃で固体が溶解するまで加熱した。この加熱溶液を室温まで冷却した。
Example 4: Production of a molybdenum / vanadium catalyst having a pore size distribution with a median pore diameter of 230 mm or more A molybdenum / vanadium catalyst was produced by the following method. The alumina support produced by the method described in Example 1 was impregnated with a molybdenum / vanadium impregnation solution made as follows. (NH 4 ) 2 Mo 2 O 7 2.14 g, MoO 3 3.21 g, 30% hydrogen peroxide (H 2 O 2 ) 0.56 g, monoethanolamine (MEA) 0.14 g and deionized water 3.28 g Was added to form a slurry to form a first solution. The slurry was heated at 65 ° C. until the solid dissolved. The heated solution was cooled to room temperature.
VOSO4 3.57gを脱イオン水40gと配合して第二溶液を作った。第一溶液と第二溶液とを配合し、容積82mLの配合溶液となるまで十分な脱イオン水を加えて、モリブデン/バナジウム含浸溶液を作った。アルミナ支持体をモリブデン/バナジウム含浸溶液に含浸し、時々、撹拌しながら2時間熟成し、125℃で数時間乾燥し、次いで480℃で2時間焼成した。得られた触媒は、触媒1g当たりバナジウムを0.02g及びモリブデンを0.02含有し、残部は支持体である。このモリブデン/バナジウム触媒は、中央値細孔径が300Åの細孔サイズ分布を有していた。
本例は、中央値細孔径が230Å以上の細孔サイズ分布を有する第6欄金属及び第5欄金属含有触媒の製造法を示す。
A second solution was made by blending 3.57 g of VOSO 4 with 40 g of deionized water. The first solution and the second solution were blended, and sufficient deionized water was added until a 82 ml volume blended solution was made to make a molybdenum / vanadium impregnation solution. The alumina support was impregnated with a molybdenum / vanadium impregnation solution, aged for 2 hours with occasional stirring, dried at 125 ° C. for several hours, and then calcined at 480 ° C. for 2 hours. The resulting catalyst contains 0.02 g vanadium and 0.02 molybdenum per gram of catalyst, with the balance being the support. This molybdenum / vanadium catalyst had a pore size distribution with a median pore size of 300mm.
This example shows a method for producing a column 6 metal and a column 5 metal-containing catalyst having a pore size distribution with a median pore diameter of 230 mm or more.
例5:原油原料と3種の触媒との接触
中央にサーモウエルを配置した管状反応器にサーモカップルを備えて触媒床中の温度を測定した。触媒床は、反応器のサーモウエルと内壁間の空間に触媒及び炭化珪素(20−グリッド、Stanford Materials、カナダのAliso Viejo)を充填して形成した。このような炭化珪素は、ここで説明した処理条件下では触媒特性があっても、低いと考えられる。全ての触媒を等容量の炭化珪素とブレンドしてから、この混合物を反応器の接触帯部に入れた。
Example 5: Contact between crude oil feed and three catalysts A tubular reactor with a thermowell in the center was equipped with a thermocouple to measure the temperature in the catalyst bed. The catalyst bed was formed by filling the space between the reactor thermowell and the inner wall with catalyst and silicon carbide (20-grid, Stanford Materials, Aliso Viejo, Canada). Such silicon carbide is considered low even if it has catalytic properties under the processing conditions described here. After all the catalyst had been blended with an equal volume of silicon carbide, this mixture was placed in the contact zone of the reactor.
反応器への原油原料流は、反応器の塔頂から塔底までである。炭化珪素は、塔底支持体として役立たせるため、塔底に配置した。塔底触媒/炭化珪素混合物(42cm3)を、前記炭化珪素上に配置して塔底接触帯を形成した。塔底触媒は、中央値細孔径が77Åの細孔サイズ分布を有し、細孔サイズ分布での全細孔数の66.7%は、中央値細孔径の20Å以内の細孔径を持っていた。塔底触媒は、触媒1g当たりモリブデンを0.095g及びニッケルを0.025g含有し、残部はアルミナ支持体である。 The crude feed stream to the reactor is from the top to the bottom of the reactor. Silicon carbide was placed at the bottom of the tower to serve as a tower bottom support. A tower bottom catalyst / silicon carbide mixture (42 cm 3 ) was placed on the silicon carbide to form a tower bottom contact zone. The bottom catalyst has a pore size distribution with a median pore diameter of 77 mm, and 66.7% of the total pore number in the pore size distribution has a pore diameter within 20 mm of the median pore diameter. It was. The bottom catalyst contains 0.095 g of molybdenum and 0.025 g of nickel per gram of catalyst, with the balance being the alumina support.
中間部触媒/炭化珪素混合物(56cm3)を塔底接触帯上に配置して中間部接触帯を形成した。中間部触媒は、中央値細孔径が98Åの細孔サイズ分布を有し、細孔サイズ分布での全細孔数の66.7%は、中央値細孔径の24Å以内の細孔径を持っていた。中間部触媒は、触媒1g当たりニッケルを0.02g及びモリブデンを0.08g含有し、残部はアルミナ支持体である。 An intermediate catalyst / silicon carbide mixture (56 cm 3 ) was placed on the bottom contact zone to form an intermediate contact zone. The intermediate catalyst has a pore size distribution with a median pore diameter of 98 mm, and 66.7% of the total number of pores in the pore size distribution has a pore diameter within 24 mm of the median pore diameter. It was. The intermediate catalyst contains 0.02 g of nickel and 0.08 g of molybdenum per gram of catalyst, with the balance being the alumina support.
塔頂触媒/炭化珪素混合物(42cm3)を中間部接触帯上に配置して塔頂接触帯を形成した。塔頂触媒は、中央値細孔径が192Åの細孔サイズ分布を有し、触媒1g当たりモリブデンを0.04g含有し、残部はγ−アルミナ支持体である。
炭化珪素を塔頂接触帯上に配置してデッドスペースを充填すると共に、予備加熱帯として役立たせた。この触媒床を、Lindberg炉に装填した。この炉は、予備加熱帯、塔頂接触帯、中間部接触帯、塔底接触帯及び塔底支持体に相当する5つの加熱帯を有する。
A top catalyst / silicon carbide mixture (42 cm 3 ) was placed on the middle contact zone to form a top contact zone. The tower top catalyst has a pore size distribution with a median pore diameter of 192 mm, contains 0.04 g of molybdenum per gram of catalyst, and the balance is a γ-alumina support.
Silicon carbide was placed on the top contact zone to fill the dead space and serve as a preheating zone. This catalyst bed was loaded into a Lindberg furnace. This furnace has five heating zones corresponding to a preheating zone, a tower top contact zone, an intermediate zone contact zone, a tower bottom contact zone, and a tower bottom support.
これらの接触帯に、硫化水素5容量%と水素ガス95容量%とのガス状混合物を、全触媒1ml容積(炭化珪素は、触媒の容量の一部として計算しない)当たりガス状混合物1.5リットルの割合で導入して、触媒を硫化した。接触帯の温度を1時間に亘って204℃(400°F)に上げ、この温度で2時間保持した。204℃に保持後、接触帯の温度を1時間当たり10℃(50°F)の割合で316℃(600°F)に漸増的に上げた。接触帯を316℃で1時間維持し、次いで1時間に亘って370℃(700°F)に漸増的に上げ、この温度で2時間保持した。接触帯を周囲温度まで冷却した。 In these contact zones, a gaseous mixture of 5% by volume of hydrogen sulfide and 95% by volume of hydrogen gas is mixed with 1.5% of the gaseous mixture per 1 ml volume of total catalyst (silicon carbide is not calculated as part of the catalyst volume). Introduced at a rate of liters, the catalyst was sulfided. The temperature in the contact zone was raised to 204 ° C. (400 ° F.) over 1 hour and held at this temperature for 2 hours. After holding at 204 ° C, the temperature in the contact zone was gradually increased to 316 ° C (600 ° F) at a rate of 10 ° C (50 ° F) per hour. The contact zone was maintained at 316 ° C. for 1 hour, then gradually increased to 370 ° C. (700 ° F.) over 1 hour and held at this temperature for 2 hours. The contact zone was cooled to ambient temperature.
メキシコ湾のMarsプラットホームからの原油を濾過し、次いでオーブン中、93℃(200°F)で12〜24時間加熱して、図7の第1表に示す特性を有する原油原料を形成した。この原油原料を反応器の塔頂に供給して、予備加熱帯、塔頂接触帯、中間部接触帯、塔底接触帯及び塔底支持体に流した。原油原料は、水素ガスの存在下で各触媒と接触した。接触条件は次のとおりである。反応器に供給した、水素ガス対原油原料の比は328Nm3/m3(2000SCFB)、LHSVは1h−1、圧力は6.9MPa(1014.7psi)である。これら3つの接触帯を370℃(700°F)に加熱し、この温度で500時間維持した。次いで3つの接触帯の温度を次の順序:379℃(715°F)で500時間、次いで388℃(730°F)で500時間、次いで390℃(734°F)で1800時間、次いで394℃(742°F)で2400時間、加熱、維持した。 Crude oil from the Mars platform in the Gulf of Mexico was filtered and then heated in an oven at 93 ° C. (200 ° F.) for 12-24 hours to form a crude feedstock having the properties shown in Table 1 of FIG. This crude raw material was supplied to the top of the reactor and flowed to the preheating zone, the top contact zone, the middle contact zone, the bottom contact zone and the bottom support. The crude feed contacted each catalyst in the presence of hydrogen gas. The contact conditions are as follows. The ratio of hydrogen gas to crude oil feed fed to the reactor is 328 Nm 3 / m 3 (2000 SCFB), LHSV is 1 h −1 , and the pressure is 6.9 MPa (1014.7 psi). The three contact zones were heated to 370 ° C. (700 ° F.) and maintained at this temperature for 500 hours. The temperature of the three contact zones was then changed in the following order: 379 ° C. (715 ° F.) for 500 hours, then 388 ° C. (730 ° F.) for 500 hours, then 390 ° C. (734 ° F.) for 1800 hours, then 394 ° C. Heated and maintained at (742 ° F.) for 2400 hours.
全生成物(即ち、原油生成物及びガス)は触媒床を出た後、気−液相分離器に導入した。気−液分離器中で全生成物は、原油生成物及びガスに分離された。このシステムのガス投入量は質量流量制御計で測定した。このシステムを出るガスは、湿潤テストメーターで測定した。原油生成物は、その成分の重量割合(%)を測定するため、周期的に分析した。表記の結果は、測定した成分の重量割合(%)の平均である。原油生成物の特性を図7の第1表にまとめた。
第1表に示すように、原油生成物は、原油生成物1g当たり硫黄を0.0075g、残留物を0.255g、酸素を0.0007g含有していた。原油生成物中のMCR含有量対C5アスファルテン含有量の比は1.9であり、TANは0.09であった。ニッケル及びバナジウムの合計量は22.4重量ppmであった。
All products (ie crude product and gas) exited the catalyst bed and were then introduced into the gas-liquid phase separator. In the gas-liquid separator, the entire product was separated into crude product and gas. The gas input of this system was measured with a mass flow controller. The gas exiting the system was measured with a wet test meter. The crude product was analyzed periodically to determine the weight percentage of its components. The indicated result is the average of the weight ratio (%) of the measured component. The properties of the crude product are summarized in Table 1 of FIG.
As shown in Table 1, the crude product contained 0.0075 g sulfur, 0.255 g residue, and 0.0007 g oxygen per gram crude product. The ratio of MCR content vs. C 5 asphaltenes content of the crude product is 1.9, TAN was 0.09. The total amount of nickel and vanadium was 22.4 ppm by weight.
触媒の寿命は、荷重平均床温度(“WABT”)対原油原料のランレングスを測定して求めた。触媒の寿命は、触媒床の温度と相関している可能性がある。触媒寿命の低に従って、WABTは上昇するものと考えられる。図8は、本例で説明した接触帯での原油原料の改良について、WABT対時間(“t”)のグラフである。点136は、原油原料と塔頂触媒、中間部触媒及び塔底触媒との接触の運転時間(hr)に対する3つの接触帯の平均WABTを示す。運転時間の大部分に亘って接触帯のWABTは、約20℃変化したにすぎない。このように比較的安定なWABTから、触媒の触媒活性は影響を受けなかったと評価できる。通常、パイロットユニットの運転時間3000〜3500時間は、工業的操作の1年と相関する。 The life of the catalyst was determined by measuring the load average bed temperature ("WABT") versus the run length of the crude feed. The life of the catalyst may be correlated with the temperature of the catalyst bed. It is believed that WABT increases with decreasing catalyst life. FIG. 8 is a graph of WABT vs. time (“t”) for the improvement of crude feed in the contact zone described in this example. Point 136 represents the average WABT of the three contact zones versus the operating time (hr) of contact between the crude feed and the top catalyst, middle catalyst and bottom catalyst. Over most of the run time, the WABT in the contact zone has only changed by about 20 ° C. Thus, from the relatively stable WABT, it can be evaluated that the catalytic activity of the catalyst was not affected. Typically, the pilot unit's operating time of 3000-3500 hours correlates with one year of industrial operation.
本例は、制御した接触条件下で、原油原料を、中央値細孔径が180Å以上の細孔サイズ分布を有する一触媒及び中央値細孔径が90〜180Å以上の細孔サイズ分布を有し、細孔サイズ分布での全細孔数の60%は、中央値細孔径の45Å以内の細孔径である別の触媒と接触させて、原油生成物を含む全生成物を製造する例を示す。測定したP値から判るように、原油原料/全生成物混合物の安定性は維持された。原油生成物のTAN、Ni/V/Fe含有量、硫黄含有量及び酸素含有量は、それぞれ原油原料に比べて、低下又は減少し、一方、原油生成物の残留物含有量及びVGO含有量は原油原料のこれら特性の90〜110%であった。 In this example, under controlled contact conditions, the crude raw material has one catalyst having a pore size distribution with a median pore diameter of 180 mm or more and a pore size distribution with a median pore diameter of 90 to 180 mm or more, 60% of the total number of pores in the pore size distribution represents an example of producing a total product including a crude product by contacting with another catalyst having a pore size within 45 mm of the median pore size. As can be seen from the measured P values, the stability of the crude feed / total product mixture was maintained. The TAN, Ni / V / Fe content, sulfur content and oxygen content of the crude product are reduced or reduced respectively compared to the crude feed, while the residual content and VGO content of the crude product are 90-110% of these properties of the crude feed.
例6:原油原料と、中央値細孔径が90〜180Å以上の細孔サイズ分布を有する2種の触媒との接触
反応装置(接触帯の数及び内容物を除く)、触媒硫化方法、全生成物の分離方法、及び原油生成物の分析方法は、例5と同じである。各触媒を等容量の炭化珪素と混合した。
Example 6: Contact between crude oil feedstock and two types of catalysts having a pore size distribution with a median pore diameter of 90 to 180 mm or more Reactor (excluding the number of contact zones and contents), catalyst sulfidation method, total production The product separation method and the crude product analysis method are the same as in Example 5. Each catalyst was mixed with an equal volume of silicon carbide.
反応器への原油原料流は、反応器の塔頂から塔底までである。反応器の塔底から塔頂まで次のようにして充填した。炭化珪素は、塔底支持体として役立たせるため、塔底に配置した。塔底触媒/炭化珪素混合物(80cm3)を、前記炭化珪素上に配置して塔底接触帯を形成した。塔底触媒は、中央値細孔径が127Åの細孔サイズ分布を有し、細孔サイズ分布での全細孔数の66.7%は、中央値細孔径の32Å以内の細孔径を持っていた。塔底触媒は、触媒1g当たりモリブデンを0.11g及びニッケルを0.02g含有し、残部は支持体である。 The crude feed stream to the reactor is from the top to the bottom of the reactor. The reactor was charged from the bottom to the top as follows. Silicon carbide was placed at the bottom of the tower to serve as a tower bottom support. A tower bottom catalyst / silicon carbide mixture (80 cm 3 ) was placed on the silicon carbide to form a tower bottom contact zone. The bottom catalyst has a pore size distribution with a median pore diameter of 127 mm, and 66.7% of the total number of pores in the pore size distribution has a pore diameter within 32 mm of the median pore diameter. It was. The bottom catalyst contains 0.11 g of molybdenum and 0.02 g of nickel per 1 g of catalyst, and the balance is the support.
塔頂触媒/炭化珪素混合物(80cm3)を塔底接触帯上に配置して塔頂接触帯を形成した。塔頂触媒は、中央値細孔径が100Åの細孔サイズ分布を有し、細孔サイズ分布での全細孔数の66.7%は、中央値細孔径の20Å以内の細孔径を持っていた。塔頂触媒は、触媒1g当たりニッケルを0.03g及びモリブデンを0.12g含有し、残部はアルミナである。炭化珪素を塔頂接触帯上に配置してデッドスペースを充填すると共に、予備加熱帯として役立たせた。この触媒床を、Lindberg炉に装填した。この炉は、予備加熱帯、2つの接触帯、及び塔底支持体に相当する4つの加熱帯を有する。 A top catalyst / silicon carbide mixture (80 cm 3 ) was placed on the bottom contact zone to form a top contact zone. The tower top catalyst has a pore size distribution with a median pore diameter of 100 mm, and 66.7% of the total number of pores in the pore size distribution has a pore diameter within 20 mm of the median pore diameter. It was. The tower top catalyst contains 0.03 g of nickel and 0.12 g of molybdenum per 1 g of the catalyst, and the balance is alumina. Silicon carbide was placed on the top contact zone to fill the dead space and serve as a preheating zone. This catalyst bed was loaded into a Lindberg furnace. This furnace has a preheating zone, two contact zones, and four heating zones corresponding to the bottom support.
図9の第2表に示す特性を有するBS−4原油(ベネゼラ)を反応器の塔頂に供給した。この原油原料を反応器の予備加熱帯、塔頂接触帯、塔底接触帯及び塔底支持体に流した。原油原料は、水素ガスの存在下で各触媒と接触した。接触条件は次のとおりである。反応器に供給した、水素ガス対原油原料の比は160Nm3/m3(1000SCFB)、LHSVは1h−1、圧力は6.9MPa(1014.7psi)である。これら2つの接触帯を260℃(500°F)に加熱し、この温度で287時間維持した。次いで2つの接触帯の温度を次の順序:270℃(525°F)で190時間、次いで288℃(550°F)で216時間、次いで315℃(600°F)で360時間、次いで343℃(650°F)で120時間、即ち、全運転時間1173時間、加熱、維持した。 BS-4 crude oil (Venezuela) having the characteristics shown in Table 2 of FIG. 9 was fed to the top of the reactor. This crude raw material was passed through the preheating zone, the tower top contact zone, the tower bottom contact zone and the tower bottom support of the reactor. The crude feed contacted each catalyst in the presence of hydrogen gas. The contact conditions are as follows. The ratio of hydrogen gas to crude oil feed fed to the reactor is 160 Nm 3 / m 3 (1000 SCFB), LHSV is 1 h −1 , and the pressure is 6.9 MPa (1014.7 psi). These two contact zones were heated to 260 ° C. (500 ° F.) and maintained at this temperature for 287 hours. The temperature of the two contact zones is then changed in the following order: 270 ° C. (525 ° F.) 190 hours, then 288 ° C. (550 ° F.) 216 hours, then 315 ° C. (600 ° F.) 360 hours, then 343 ° C. Heated and maintained at (650 ° F.) for 120 hours, ie, a total operating time of 1173 hours.
反応器を出た全生成物は、例5と同様にして分離した。処理中、原油生成物の平均TANは0.42、平均API比重は12.5であった。原油生成物は、原油生成物1g当たり硫黄を0.0023g、酸素を0.0034g、VGOを0.441g、残留物を0.378g含有していた。
本例は、原油原料を、中央値細孔径が90〜180Åの細孔サイズ分布を有する触媒と接触させて、原油生成物を製造する例を示したが、原油生成物のTAN、Ni/V/Fe含有量、及び酸素含有量は、それぞれ原油原料に比べて、低下又は減少し、一方、原油生成物の残留物含有量及びVGO含有量は原油原料のそれぞれの特性の99%、100%であった。
All products exiting the reactor were separated as in Example 5. During processing, the crude product had an average TAN of 0.42 and an average API specific gravity of 12.5. The crude product contained 0.0023 g of sulfur, 0.0034 g of oxygen, 0.441 g of VGO and 0.378 g of residue per gram of crude product.
In this example, a crude product was produced by contacting a crude feed with a catalyst having a pore size distribution with a median pore size of 90 to 180 mm. / Fe content and oxygen content are reduced or reduced, respectively, compared to crude oil feed, while crude product residue content and VGO content are 99% and 100% of the respective properties of the crude feed Met.
例7:原油原料と2種の触媒との接触
反応装置(接触帯の数及び内容物を除く)、触媒、全生成物の分離方法、原油生成物の分析及び触媒の硫化方法は、例6と同じである。
図10の第3表に示す特性を有する原油原料(BC−10原油)を反応器の塔頂に供給した。原油原料を反応器の予備加熱帯、塔頂接触帯、塔底接触帯及び塔底支持体に流した。接触条件は次のとおりである。反応器に供給した、水素ガス対原油原料の比は80Nm3/m3(500SCFB)、LHSVは2h−1、圧力は6.9MPa(1014.7psi)である。これら2つの接触帯を漸増的に343℃(650°F)に加熱した。合計運転時間は1007時間である。
Example 7: Contact of crude raw material with two types of catalyst The reactor (excluding the number and contents of contact zones), catalyst, separation method of all products, analysis of crude product and sulfidation method of catalyst are described in Example 6. Is the same.
Crude oil feedstock (BC-10 crude oil) having the characteristics shown in Table 3 of FIG. 10 was fed to the top of the reactor. Crude oil feed was passed through the reactor preheat zone, tower top contact zone, tower bottom contact zone and tower bottom support. The contact conditions are as follows. The ratio of hydrogen gas to crude oil feed fed to the reactor is 80 Nm 3 / m 3 (500 SCFB), LHSV is 2 h −1 , and the pressure is 6.9 MPa (1014.7 psi). These two contact zones were incrementally heated to 343 ° C. (650 ° F.). Total operating time is 1007 hours.
処理中、原油生成物の平均TANは0.16、平均API比重は16.2であった。原油生成物は、カルシウムを1.9重量ppm、ナトリウムを6重量ppm、亜鉛を0.6重量ppm、カリウムを3重量ppm含有していた。また原油生成物は、原油生成物1g当たり硫黄を0.0033g、酸素を0.002g、VGOを0.376g、残留物を0.401g含有していた。原油生成物の他の特性を図10の第3表に示す。
本例は、原油原料を、中央値細孔径が90〜180Åの細孔サイズ分布を有する選択した触媒と接触させて、原油生成物を製造する例を示したが、原油生成物のTAN;カルシウム、ナトリウム、亜鉛及びカリウムの合計含有量は、それぞれ原油原料に比べて、低下又は減少し、一方、原油生成物の硫黄含有量、 VGO含有量及び残留物含有量は原油原料のそれぞれの特性の76%、94%、103%であった。
During processing, the crude product had an average TAN of 0.16 and an average API specific gravity of 16.2. The crude product contained 1.9 ppm by weight of calcium, 6 ppm by weight of sodium, 0.6 ppm by weight of zinc, and 3 ppm by weight of potassium. The crude product contained 0.0033 g of sulfur, 0.002 g of oxygen, 0.376 g of VGO and 0.401 g of residue per gram of crude product. Other properties of the crude product are shown in Table 3 of FIG.
In this example, a crude product was contacted with a selected catalyst having a pore size distribution with a median pore size of 90-180 mm to produce a crude product, but the crude product TAN; calcium The total content of sodium, zinc, and potassium is reduced or reduced, respectively, compared to the crude oil feed, while the sulfur content, VGO content and residue content of the crude product are They were 76%, 94%, and 103%.
例8〜11:各種接触条件での原油原料と4種の触媒系との接触
各反応装置(接触帯の数及び内容物を除く)、各触媒硫化方法、各全生成物の分離方法、及び各原油生成物の分析方法は、例5と同じである。特に指示しない限り、全触媒を炭化珪素2部対触媒1部の容量比で炭化珪素と混合した。各反応器中の原油原料流は、塔頂から塔底までである。炭化珪素は、塔底支持体として役立たせるため、各反応器の塔底に配置した。各反応器は、塔底接触帯及び塔頂接触帯を有する。触媒/炭化珪素混合物を各反応器の接触帯に配置した後、各反応器において、炭化珪素を塔頂接触帯上に配置してデッドスペースを充填すると共に、予備加熱帯として役立たせた。各反応器を、予備加熱帯、2つの接触帯、及び塔底支持体に相当する4つの加熱帯を有するLindberg炉に装填した。
Examples 8 to 11: Contact between crude oil feedstock and four types of catalyst systems under various contact conditions Reactors (excluding the number of contact zones and contents), respective catalyst sulfidation methods, separation methods for all products, and The analysis method for each crude product is the same as in Example 5. Unless otherwise indicated, all catalysts were mixed with silicon carbide in a volume ratio of 2 parts silicon carbide to 1 part catalyst. The crude feed stream in each reactor is from the top to the bottom. Silicon carbide was placed at the bottom of each reactor in order to serve as a bottom support. Each reactor has a bottom contact zone and a top contact zone. After the catalyst / silicon carbide mixture was placed in the contact zone of each reactor, silicon carbide was placed on the top contact zone in each reactor to fill the dead space and serve as a preheating zone. Each reactor was loaded into a Lindberg furnace having a preheating zone, two contact zones, and four heating zones corresponding to the bottom support.
例8では未焼成モリブデン/ニッケル触媒/炭化珪素混合物(48cm3)は、塔底接触帯に配置した。この触媒は、触媒1g当たりモリブデンを0.146g、ニッケルを0.047g、及び燐を0.021g含有し、残部はアルミナ支持体である。
触媒の中央値細孔径が180Åの細孔サイズ分布を有するモリブデン触媒/炭化珪素混合物(12cm3)を塔頂接触帯に配置した。モリブデン触媒は、触媒1g当たりモリブデンを合計0.04g含有し、残部は支持体1g当たりγ−アルミナを0.50g以上含有する支持体である。
In Example 8, the unfired molybdenum / nickel catalyst / silicon carbide mixture (48 cm 3 ) was placed in the bottom contact zone. This catalyst contains 0.146 g of molybdenum, 0.047 g of nickel, and 0.021 g of phosphorus per gram of catalyst, with the balance being the alumina support.
A molybdenum catalyst / silicon carbide mixture (12 cm 3 ) having a pore size distribution with a median pore size of the catalyst of 180 mm was placed in the top contact zone. The molybdenum catalyst contains a total of 0.04 g of molybdenum per 1 g of the catalyst, and the balance is a support containing 0.50 g or more of γ-alumina per 1 g of the support.
例9では未焼成モリブデン/コバルト触媒/炭化珪素混合物(48cm3)を両接触帯に配置した。未焼成モリブデン/コバルト触媒は、モリブデンを0.143g、コバルトを0.043g、燐を0.021g含有し、残部はアルミナ支持体である。
モリブデン触媒/炭化珪素混合物(12cm3)を塔頂接触帯に配置した。このモリブデン触媒は、例8の塔頂接触帯のものと同じである。
例10では例8の塔頂接触帯で述べたモリブデン触媒を炭化珪素と混合し、両接触帯に配置した(60cm3)。
In Example 9, an unfired molybdenum / cobalt catalyst / silicon carbide mixture (48 cm 3 ) was placed in both contact zones. The uncalcined molybdenum / cobalt catalyst contains 0.143 g of molybdenum, 0.043 g of cobalt and 0.021 g of phosphorus, with the balance being the alumina support.
A molybdenum catalyst / silicon carbide mixture (12 cm 3 ) was placed in the top contact zone. The molybdenum catalyst is the same as in the top contact zone of Example 8.
In Example 10, the molybdenum catalyst described in the top contact zone of Example 8 was mixed with silicon carbide and placed in both contact zones (60 cm 3 ).
例11では未焼成モリブデン/ニッケル触媒/炭化珪素混合物(48cm3)を両接触帯に配置した。未焼成モリブデン/ニッケル触媒は、触媒1g当たりモリブデンを0.09g、ニッケルを0.025g、燐を0.01g含有し、残部はアルミナ支持体である。
モリブデン触媒/炭化珪素混合物(12cm3)を塔頂接触帯に配置した。このモリブデン触媒は、例8の塔頂接触帯のものと同じである。
In Example 11, an unfired molybdenum / nickel catalyst / silicon carbide mixture (48 cm 3 ) was placed in both contact zones. The unfired molybdenum / nickel catalyst contains 0.09 g of molybdenum, 0.025 g of nickel and 0.01 g of phosphorus per gram of catalyst, with the balance being the alumina support.
A molybdenum catalyst / silicon carbide mixture (12 cm 3 ) was placed in the top contact zone. This molybdenum catalyst is the same as in the top contact zone of Example 8.
Marsプラットホーム(メキシコ湾)からの原油を濾過し、次いでオーブン中、93℃(200°F)で12〜24時間加熱して、図11の第4表に示す特性を有する例8〜11の原油原料を形成した。この原油原料をこれら例の各反応器の塔頂に供給して、予備加熱帯、塔頂接触帯、塔底接触帯及び塔底支持体に流した。原油原料は、水素ガスの存在下で各触媒と接触した。各例の接触条件は次のとおりである。反応器に供給した、接触中の水素ガス対原油原料の比は160Nm3/m3(1000SCFB)、各システムの全圧は6.9MPa(1014.7psi)、LHSVは接触の最初の200時間では2.0h−1、次いで残りの接触時間では1.0h−1に低下させた。全接触帯の温度は接触500時間では343℃(650°F)で、500時間後の全接触帯の温度は次のように制御した。接触帯の温度を354℃(670°F)に上げ、この温度で200時間保持し、次に366℃(690°F)に上げ、この温度で200時間保持し、次に371℃(700°F)に上げ、この温度で1000時間保持し、次に385℃(725°F)に上げ、この温度で200時間保持し、次に399℃(750°F)の最終温度に上げ、この温度で200時間保持した。合計接触時間は2300時間である。 Crude oil from the Mars platform (gulf of Mexico) and then heated in an oven at 93 ° C. (200 ° F.) for 12-24 hours to produce the crude oil of Examples 8-11 having the characteristics shown in Table 4 of FIG. Raw material was formed. This crude feed was fed to the top of each reactor in these examples and flowed to the preheating zone, the top contact zone, the bottom contact zone and the bottom support. The crude feed contacted each catalyst in the presence of hydrogen gas. The contact conditions for each example are as follows. The hydrogen gas to crude oil feed ratio fed to the reactor is 160 Nm 3 / m 3 (1000 SCFB), the total pressure of each system is 6.9 MPa (1014.7 psi), and the LHSV is the first 200 hours of contact. 2.0 h -1, then the rest of the contact time was reduced to 1.0 h -1. The temperature of the entire contact zone was 343 ° C. (650 ° F.) after 500 hours of contact, and the temperature of the entire contact zone after 500 hours was controlled as follows. The temperature of the contact zone is raised to 354 ° C. (670 ° F.) and held at this temperature for 200 hours, then raised to 366 ° C. (690 ° F.), held at this temperature for 200 hours, and then 371 ° C. (700 ° F.). F) and held at this temperature for 1000 hours, then raised to 385 ° C. (725 ° F.), held at this temperature for 200 hours, then raised to a final temperature of 399 ° C. (750 ° F.) For 200 hours. Total contact time is 2300 hours.
原油生成物のTAN、原油原料による水素吸収量、P値、VGO含有量、残留物含有量及び酸素含有量を測定するため、周期的に原油生成物を分析した。例8〜11で製造した原油生成物の平均特性値を図11の第5表にまとめた。 The crude product was analyzed periodically to measure the TAN of the crude product, the amount of hydrogen absorbed by the crude feed, the P value, the VGO content, the residue content and the oxygen content. The average characteristic values of the crude products produced in Examples 8 to 11 are summarized in Table 5 in FIG.
図12は、例8〜11の各触媒系についての原油生成物のP値(“P”)対運転時間のグラフである。原油原料のP値は1.5以上であった。点140、142、144、146は、それぞれ、原油原料と例8〜11の触媒系との接触により得られた原油生成物のP値を表す。例8〜10の触媒系では、2300時間、P値は1.5以上のままであった。例11では、殆どの運転時間中、P値は1.5を超えた。例11の運転終了時(2300時間)には、P値は1.4となった。各試験での原油生成物のP値から、各試験での原油原料は接触中、比較的安定なままであった(例えば原油原料は相分離しなかった)と推定できる。図12に示すように、例10のようにP値が増大した場合を除き、原油生成物のP値は各試験の大部分の間、比較的一定のままであった。 FIG. 12 is a graph of crude product P-value (“P”) versus operating time for each catalyst system of Examples 8-11. The P value of the crude oil raw material was 1.5 or more. Points 140, 142, 144, and 146 represent the P values of the crude product obtained by contacting the crude feed with the catalyst systems of Examples 8-11, respectively. In the catalyst systems of Examples 8-10, the P value remained above 1.5 for 2300 hours. In Example 11, the P value exceeded 1.5 during most of the operating time. At the end of the operation of Example 11 (2300 hours), the P value was 1.4. From the P value of the crude product in each test, it can be estimated that the crude feed in each test remained relatively stable during contact (eg, the crude feed did not phase separate). As shown in FIG. 12, the P value of the crude product remained relatively constant for most of each test, except when the P value increased as in Example 10.
図13は、水素ガスの存在下における4種の触媒系についての原油原料による総水素吸収量(“H2”)対運転時間(“t”)のグラフである。点148、150、152、154は、原油原料と、それぞれ例8〜11の各触媒系との接触により得られた総水素吸収量を表す。2300時間の運転時間に亘る原油原料による総水素吸収量は、7〜48Nm3/m3(43.8〜300SCFB)であった。図13に示すように、原油原料による総水素吸収量は、各試験中、比較的安定であった。 FIG. 13 is a graph of total hydrogen uptake (“H 2 ”) by crude feed versus operating time (“t”) for four catalyst systems in the presence of hydrogen gas. Points 148, 150, 152, 154 represent the total hydrogen absorption obtained by contacting the crude feed with each catalyst system of Examples 8-11, respectively. The total amount of hydrogen absorbed by the crude feed over 2300 hours of operation was 7 to 48 Nm 3 / m 3 (43.8 to 300 SCFB). As shown in FIG. 13, the total amount of hydrogen absorbed by the crude material was relatively stable during each test.
図14は、例8〜11の各触媒系についての、原油生成物の残留物含有量(“R”)(重量%として表す)対運転時間(“t”)のグラフである。4つの各試験において、原油生成物の残留物含有量は、原油原料の残留物含有量に対し88〜90%であった。点156、158、160、162は、原油原料と、それぞれ例8〜11の各触媒系との接触により得られた原油生成物の残留物含有量を表す。図14に示すように、各試験の大部分の間、原油生成物の残留物含有量は比較的安定したままであった。 FIG. 14 is a graph of crude product residue content (“R”) (expressed as weight percent) versus operating time (“t”) for each of the catalyst systems of Examples 8-11. In each of the four tests, the crude product residue content was 88-90% of the crude feedstock residue content. Points 156, 158, 160, 162 represent the residual content of the crude product obtained by contacting the crude feed with each catalyst system of Examples 8-11, respectively. As shown in FIG. 14, the crude product residue content remained relatively stable during most of each test.
図15は、例8〜11の各触媒系についての、原油生成物のAPI比重の変化(“ΔAPI”)対運転時間(“t”)のグラフである。点164、166、168、170は、原油原料と、それぞれ例8〜11の各触媒系との接触により得られた原油生成物のAPI比重を表す。4つの各試験において、各原油生成物の粘度は、58.3〜72.7cStの範囲であった。各原油生成物のAPI比重は、1.5〜4.1度、増大した。この増大したAPI比重は、21.7〜22.95の範囲の原油生成物のAPI比重に相当する。この範囲のAPI比重は、原油原料のAPI比重に対し110〜117%である。 FIG. 15 is a graph of crude product API specific gravity change (“ΔAPI”) versus operating time (“t”) for each of the catalyst systems of Examples 8-11. Points 164, 166, 168, 170 represent the API specific gravity of the crude product obtained by contacting the crude feed with each catalyst system of Examples 8-11, respectively. In each of the four tests, the viscosity of each crude product ranged from 58.3 to 72.7 cSt. The API specific gravity of each crude product increased by 1.5-4.1 degrees. This increased API gravity corresponds to the API gravity of the crude product in the range of 21.7-22.95. The API specific gravity in this range is 110 to 117% with respect to the API specific gravity of the crude raw material.
図16は、例8〜11の各触媒系についての、原油生成物の酸素含有量(“O2”)(重量%として表す)対運転時間(“t”)のグラフである。点172、174、176、178は、原油原料と、それぞれ例8〜11の各触媒系との接触により得られた原油生成物の酸素含有量を表す。各試験中、各原油生成物の酸素含有量は、原油生成物1g当たり0.0014〜0.0015gの範囲であった。図16に示すように、原油生成物の酸素含有量は、200時間の接触時間後、比較的安定したままであった。このように原油生成物の酸素含有量が比較的一定であることは、接触中、選択した有機酸素化合物が減少したことを示す。これらの例では、TANも低下したので、カルボキシル含有有機酸素化合物の少なくとも一部はカルボキシル非含有非含有有機酸素化合物に比べて選択的に減少したものと推定できる。 FIG. 16 is a graph of crude product oxygen content (“O 2 ”) (expressed as weight percent) versus operating time (“t”) for each of the catalyst systems of Examples 8-11. Points 172, 174, 176, 178 represent the oxygen content of the crude product obtained by contacting the crude feed with each catalyst system of Examples 8-11, respectively. During each test, the oxygen content of each crude product ranged from 0.0014 to 0.0015 g / g crude product. As shown in FIG. 16, the crude product oxygen content remained relatively stable after a contact time of 200 hours. Thus, the relatively constant oxygen content of the crude product indicates that the selected organic oxygen compound has decreased during contact. In these examples, since TAN also decreased, it can be estimated that at least a part of the carboxyl-containing organic oxygen compound was selectively reduced as compared with the non-carboxyl-containing non-containing organic oxygen compound.
例11では、371℃(700°F)、圧力6.9MPa(1014.7psi)、水素対原油原料比160Nm3/m3(1000SCFB)の反応条件において、原油原料のMCR含有量は、原油原料の重量基準で17.5重量%減少した。温度を399℃(750°F)とした他は、同じ圧力及び水素対原油原料比では、原油原料のMCR含有量は、原油原料の重量基準で25.4重量%減少した。
例9では、371℃(700°F)、圧力6.9MPa(1014.7psi)、水素対原油原料比160Nm3/m3(1000SCFB)の反応条件において、原油原料のMCR含有量は、原油原料の重量基準で17.5重量%減少した。温度を399℃(750°F)とした他は、同じ圧力及び水素対原油原料比では、原油原料のMCR含有量は、原油原料の重量基準で19重量%減少した。
In Example 11, under the reaction conditions of 371 ° C. (700 ° F.), pressure 6.9 MPa (1014.7 psi), hydrogen to crude feed ratio 160 Nm 3 / m 3 (1000 SCFB), the crude feed MCR content is 17.5% by weight based on the weight of At the same pressure and hydrogen to crude feed ratio except that the temperature was 399 ° C. (750 ° F.), the MCR content of the crude feed decreased by 25.4% by weight based on the weight of the crude feed.
In Example 9, under the reaction conditions of 371 ° C. (700 ° F.), pressure 6.9 MPa (1014.7 psi), hydrogen to crude feed ratio 160 Nm 3 / m 3 (1000 SCFB), the crude feed MCR content is 17.5% by weight based on the weight of At the same pressure and hydrogen to crude feed ratio, except that the temperature was 399 ° C. (750 ° F.), the MCR content of the crude feed decreased by 19% by weight based on the weight of the crude feed.
このように原油原料のMCR含有量の減少量が増大したことは、未焼成第6欄及び10欄金属触媒が未焼成第6欄及び9欄金属触媒よりも高温ではMCR含有量を減少しやくすることを示す。
これらの例は、TANが比較的高い(TAN0.8)原油原料と1種以上の触媒との接触により、原油原料/全生成物混合物の安定性を維持しながら、比較的少ない総水素吸収量で原油生成物が製造されることを示す。原油生成物の選択した特性は、原油原料の同じ特性の70%以下であり、一方、原油生成物の選択した特性は、原油原料の同じ特性の20〜30%以内であった。
The increase in the decrease in the MCR content of the crude raw material in this way is that the unburned column 6 and column 10 metal catalyst tends to decrease the MCR content at higher temperatures than the unfired column 6 and column 9 metal catalyst. Indicates to do.
These examples show relatively low total hydrogen uptake while maintaining the stability of the crude feed / total product mixture by contacting the crude feed with a relatively high TAN (TAN 0.8) with one or more catalysts. Indicates that a crude product will be produced. The selected properties of the crude product were less than 70% of the same properties of the crude feed, while the selected properties of the crude product were within 20-30% of the same properties of the crude feed.
詳しくは、第4表に示すように、各々、原油原料による総水素吸収量が44Nm3/m3(275SCFB)以下の原油生成物が製造された。これら生成物は、原油原料に対し、3を超えるP値を維持しながら、平均TANは原油原料の4%以下であり、平均合計Ni/V含有量は原油原料の合計Ni/V含有量の61%以下であった。各原油生成物の平均残留物含有量は、原油原料の残留物含有量の88〜90%であった。各原油生成物の平均VGO含有量は、原油原料のVGO含有量の115〜117%であった。各原油生成物の平均API比重は、原油原料のAPI比重の110〜117%であり、一方、各原油生成物の粘度は、原油原料の粘度の45%以下であった。 Specifically, as shown in Table 4, crude products having a total hydrogen absorption amount of 44 Nm 3 / m 3 (275 SCFB) or less were produced. These products maintain a P value of greater than 3 relative to the crude feed, while the average TAN is less than 4% of the crude feed and the average total Ni / V content is that of the crude Ni feed. It was 61% or less. The average residue content of each crude product was 88-90% of the crude feed residue content. The average VGO content of each crude product was 115-117% of the VGO content of the crude feed. The average API specific gravity of each crude product was 110-117% of the API specific gravity of the crude feed, while the viscosity of each crude product was 45% or less of the crude feed viscosity.
例12〜14:最小限の水素消費での原油原料と、中央値細孔径が180Å以上の細孔サイズ分布を有する触媒との接触
例12〜14において、各反応装置(接触帯の数及び内容物を除く)、各触媒硫化方法、各全生成物の分離方法、及び各原油生成物の分析方法は、例5と同じである。全触媒を等容量の炭化珪素と混合した。各反応器中の原油原料流は、塔頂から塔底までである。炭化珪素は、塔底支持体として役立たせるため、各反応器の塔底に配置した。各反応器は1つの接触帯を有する。触媒/炭化珪素混合物を各反応器の接触帯に配置した後、各反応器において、炭化珪素を塔頂接触帯上に配置してデッドスペースを充填すると共に、予備加熱帯として役立たせた。各反応器を、予備加熱帯、接触帯、及び塔底支持体に相当する3つの加熱帯を有するLindberg炉に装填した。原油原料は、水素ガスの存在下で各触媒と接触させた。
Examples 12-14: Contact of crude oil feedstock with minimal hydrogen consumption with catalyst having a pore size distribution with a median pore diameter of 180 mm or more In Examples 12-14, each reactor (number and content of contact zones The catalyst sulfurization method, the separation method of each total product, and the analysis method of each crude product are the same as in Example 5. All catalysts were mixed with an equal volume of silicon carbide. The crude feed stream in each reactor is from the top to the bottom. Silicon carbide was placed at the bottom of each reactor in order to serve as a bottom support. Each reactor has one contact zone. After the catalyst / silicon carbide mixture was placed in the contact zone of each reactor, silicon carbide was placed on the top contact zone in each reactor to fill the dead space and serve as a preheating zone. Each reactor was loaded into a Lindberg furnace having three heating zones corresponding to a preheating zone, a contact zone, and a bottom support. The crude feed was contacted with each catalyst in the presence of hydrogen gas.
触媒/炭化珪素混合物(40cm3)を炭化珪素上に配置して接触帯を形成した。例12では触媒は、例2で製造したバナジウム触媒である。例13では触媒は、例3で製造したモリブデン触媒である。例14では触媒は、例4で製造したモリブデン/バナジウム触媒である。
例12〜14の接触条件は次のとおりである。反応器に供給した、水素対原油原料の比は160Nm3/m3(1000SCFB)、LHSVは1h−1、圧力は6.9MPa(1014.7psi)である。接触帯を所定時間に亘って漸増的に343℃(650°F)に加熱し、この温度で120時間、合計運転時間で360時間維持した。
A catalyst / silicon carbide mixture (40 cm 3 ) was placed on the silicon carbide to form a contact zone. In Example 12, the catalyst is the vanadium catalyst prepared in Example 2. In Example 13, the catalyst is the molybdenum catalyst prepared in Example 3. In Example 14, the catalyst is the molybdenum / vanadium catalyst prepared in Example 4.
The contact conditions of Examples 12 to 14 are as follows. The hydrogen to crude feed ratio fed to the reactor is 160 Nm 3 / m 3 (1000 SCFB), LHSV is 1 h −1 , and the pressure is 6.9 MPa (1014.7 psi). The contact zone was gradually heated to 343 ° C. (650 ° F.) over a period of time and maintained at this temperature for 120 hours and a total operating time of 360 hours.
反応器を出た全生成物は、例5と同様にして分離した。接触中の総水素吸収量を各触媒系について測定した。例12では総水素吸収量は−10.7Nm3/m3(−65SCFB)であり、原油生成物のTANは6.75であった。例13では総水素吸収量は2.2〜3.0Nm3/m3(13.9〜18.7SCFB)の範囲であり、原油生成物のTANは0.3〜0.5の範囲であった。例14では原油原料とモリブデン/バナジウム触媒との接触中、総水素吸収量は−0.05Nm3/m3〜0.6Nm3/m3(−0.36SCFB〜4.0SCFB)の範囲であり、原油生成物のTANは0.2〜0.5の範囲であった。 All products exiting the reactor were separated as in Example 5. The total hydrogen absorption during contact was measured for each catalyst system. In Example 12, the total hydrogen absorption was −10.7 Nm 3 / m 3 (−65 SCFB), and the TAN of the crude product was 6.75. In Example 13, the total hydrogen absorption was in the range of 2.2 to 3.0 Nm 3 / m 3 (13.9 to 18.7 SCFB), and the TAN of the crude product was in the range of 0.3 to 0.5. It was. In Example 14, the total hydrogen absorption is in the range of −0.05 Nm 3 / m 3 to 0.6 Nm 3 / m 3 (−0.36 SCFB to 4.0 SCFB) during the contact between the crude feed and the molybdenum / vanadium catalyst. The TAN of the crude product ranged from 0.2 to 0.5.
接触中の総水素吸収値から、原油原料とバナジウム触媒との接触中、10.7Nm3/m3(65SCFB)の割合で水素が発生するものと見積った。接触中の水素の発生により、この処理には、不利な原油の特性を改良するため、従来、使用されている水素量よりも少量の水素が使用できる。接触中、少量の水素で済むので、原油の処理費用を低くしやすい。
更に、原油原料とモリブデン/バナジウム触媒との接触により、個別のモリブデン触媒で製造される原油生成物のTANよりも低いTANの原油生成物が製造された。
From the total hydrogen absorption value during the contact, it was estimated that hydrogen was generated at a rate of 10.7 Nm 3 / m 3 (65SCFB) during the contact between the crude material and the vanadium catalyst. Due to the generation of hydrogen during contact, this process can use less hydrogen than is conventionally used to improve adverse crude oil properties. Since a small amount of hydrogen is required during contact, it is easy to reduce the cost of processing crude oil.
Furthermore, contact of the crude feed with the molybdenum / vanadium catalyst produced a crude product with a TAN lower than that of the crude product produced with the individual molybdenum catalyst.
例15〜18:原油原料と、バナジウム触媒及び追加の触媒との接触
各反応装置(接触帯の数及び内容物を除く)、各触媒硫化方法、各全生成物の分離方法、及び各原油生成物の分析方法は、例5と同じである。特に指示しない限り、全触媒を炭化珪素2部対触媒1部の容量比で炭化珪素と混合した。各反応器中の原油原料流は、塔頂から塔底までである。炭化珪素は、塔底支持体として役立たせるため、各反応器の塔底に配置した。各反応器は、塔底接触帯及び塔頂接触帯を有する。触媒/炭化珪素混合物を各反応器の接触帯に配置した後、各反応器において、炭化珪素を塔頂接触帯上に配置してデッドスペースを充填すると共に、予備加熱帯として役立たせた。各反応器を、予備加熱帯、2つの接触帯、及び塔底支持体に相当する4つの加熱帯を有するLindberg炉に装填した。
Examples 15 to 18: Contact of crude raw material with vanadium catalyst and additional catalyst Reactors (excluding the number and contents of contact zones), catalyst sulfidation methods, separation methods of all products, and production of crude oils The method for analyzing the product is the same as in Example 5. Unless otherwise indicated, all catalysts were mixed with silicon carbide in a volume ratio of 2 parts silicon carbide to 1 part catalyst. The crude feed stream in each reactor is from the top to the bottom. Silicon carbide was placed at the bottom of each reactor in order to serve as a bottom support. Each reactor has a bottom contact zone and a top contact zone. After the catalyst / silicon carbide mixture was placed in the contact zone of each reactor, silicon carbide was placed on the top contact zone in each reactor to fill the dead space and serve as a preheating zone. Each reactor was loaded into a Lindberg furnace having a preheating zone, two contact zones, and four heating zones corresponding to the bottom support.
各例では、例2と同様にしてバナジウム触媒を製造し、追加の触媒と併用した。
例15では、追加触媒/炭化珪素混合物(45cm3)を塔底接触帯に配置した。この追加触媒は、例3と同様にして製造したモリブデン触媒である。塔頂接触帯には、バナジウム触媒/炭化珪素混合物(15cm3)を配置した。
例16では、追加触媒/炭化珪素混合物(30cm3)を塔底接触帯に配置した。この追加触媒は、例3と同様にして製造したモリブデン触媒である。塔頂接触帯には、バナジウム触媒/炭化珪素混合物(30cm3)を配置した。
In each example, a vanadium catalyst was prepared as in Example 2 and used in combination with an additional catalyst.
In Example 15, an additional catalyst / silicon carbide mixture (45 cm 3 ) was placed in the bottom contact zone. This additional catalyst is a molybdenum catalyst prepared as in Example 3. A vanadium catalyst / silicon carbide mixture (15 cm 3 ) was placed in the top contact zone.
In Example 16, an additional catalyst / silicon carbide mixture (30 cm 3 ) was placed in the bottom contact zone. This additional catalyst is a molybdenum catalyst prepared as in Example 3. A vanadium catalyst / silicon carbide mixture (30 cm 3 ) was disposed in the top contact zone.
例17では、追加触媒/炭化珪素混合物(30cm3)を塔底接触帯に配置した。この追加触媒は、例4と同様にして製造したモリブデン/バナジウム触媒である。塔頂接触帯には、バナジウム触媒/炭化珪素混合物(30cm3)を配置した。
例18では、パイレックス(登録商標)(Glass Works Corporation,米国ニューヨーク)ビーズ(30cm3)を各接触帯に配置した。
In Example 17, an additional catalyst / silicon carbide mixture (30 cm 3 ) was placed in the bottom contact zone. This additional catalyst is a molybdenum / vanadium catalyst prepared as in Example 4. A vanadium catalyst / silicon carbide mixture (30 cm 3 ) was disposed in the top contact zone.
In Example 18, Pyrex (Glass Works Corporation, New York, USA) beads (30 cm 3 ) were placed in each contact zone.
例15〜18では、図17の第5表にまとめた特性を有する原油(ブラジルのSantos Basin)を反応器の塔頂に供給した。原油原料は、予備加熱帯、塔頂接触帯、塔底接触帯及び塔底支持体に流れた。原油原料は、水素ガスの存在下で各触媒と接触した。各例の接触条件は次のとおりである。反応器に供給した、水素ガス対原油原料の比は、最初の86時間では160Nm3/m3(1000SCFB)、残りの時間では80Nm3/m3(500SCFB)であり、LHSVは1h−1、圧力は6.9MPa(1014.7psi)である。これら接触帯を343℃(650°F)に所定時間かけて漸増的に加熱し、この温度で合計運転時間1400時間維持した。 In Examples 15-18, crude oil (Santo Basin, Brazil) having the characteristics summarized in Table 5 of FIG. 17 was fed to the top of the reactor. Crude oil feed flowed to the preheating zone, tower top contact zone, tower bottom contact zone and tower bottom support. The crude feed contacted each catalyst in the presence of hydrogen gas. The contact conditions for each example are as follows. Was fed to the reactor, the ratio of hydrogen gas to crude feed is in the first 86 hours 160Nm 3 / m 3 (1000SCFB) , 80Nm 3 / m 3 for the remaining time (500SCFB), LHSV is 1h -1, The pressure is 6.9 MPa (1014.7 psi). These contact zones were gradually heated to 343 ° C. (650 ° F.) over a predetermined time and maintained at this temperature for a total operating time of 1400 hours.
これらの例は、水素源の存在下での原油原料と、中央値細孔径が250〜300Åの範囲の細孔サイズ分布を有する追加触媒を組合わせた、中央値細孔径が350Åの細孔サイズ分布を有する第5欄金属触媒との接触により、選択した特性は、原油原料の同じ特性に比べて大きく変化しながら、他の特性は原油原料の同じ特性に比べて少ししか変化しない原油生成物が製造されることを示す。更に、接触中、原油原料による水素吸収は比較的少ないことが観察された。 These examples show a pore size with a median pore size of 350 liters, which combines a crude feed in the presence of a hydrogen source with an additional catalyst having a pore size distribution with a median pore size in the range of 250-300 liters. Crude product in which the selected properties vary greatly compared to the same properties of the crude feed, while other properties vary only slightly compared to the same properties of the crude feed due to contact with the column 5 metal catalyst having a distribution Indicates that is manufactured. Further, during contact, it was observed that hydrogen absorption by the crude feed was relatively low.
詳しくは、図17の第5表に示すように、例15〜17では原油生成物のTANは、原油原料のTANの15%以下であった。例15〜17で製造した原油生成物の合計Ni/V/Fe含有量は、各々、原油原料の合計Ni/V/Fe含有量の44%以下であり、酸素含有量は原油原料の同じ特性に比べて50%以下であり、また粘度は同じく75%以下であった。更に、例15〜17で製造した原油生成物のAPI比重は、原油原料のAPI比重の100〜103%であった。 Specifically, as shown in Table 5 in FIG. 17, in Examples 15 to 17, the TAN of the crude product was 15% or less of the TAN of the crude raw material. The total Ni / V / Fe content of the crude products produced in Examples 15-17 are each 44% or less of the total Ni / V / Fe content of the crude feed, and the oxygen content is the same property of the crude feed The viscosity was 50% or less, and the viscosity was also 75% or less. Furthermore, the API specific gravity of the crude product produced in Examples 15 to 17 was 100 to 103% of the API specific gravity of the crude raw material.
これに対し、非接触条件下で製造した原油生成物(例18)の粘度及びAPI比重は、原油原料の粘度に比べて増大し、原油原料のAPI比重に比べて低下した。粘度の増大及びAPI比重の低下から、原油原料のコークス生成及び/又は重合が始まったものと推定できる。 In contrast, the viscosity and API specific gravity of the crude product produced under non-contact conditions (Example 18) increased compared to the viscosity of the crude feed and decreased compared to the API specific gravity of the crude feed. From the increase in viscosity and the decrease in API specific gravity, it can be presumed that coke generation and / or polymerization of the crude raw material has started.
例19:種々のLHSVでの原油原料の接触
接触システム及び触媒は、例6のものと同じである。原油原料の特性を図18の第6表に示す。接触条件は次のとおりである。反応器に供給した、水素ガス対原油原料の比は160Nm3/m3(1000SCFB)、圧力は6.9MPa(1014.7psi)、接触帯の温度は合計運転時間中、371℃(700°F)である。例19では接触中のLHSVは、所定時間に亘って1h−1から12h−1まで上げ、12h−1で48時間維持した後、20.7h−1まで上げ、このLHSVで96時間維持した。
例19では、LHSVが12h−1及び20.7h−1で運転時間中のTAN、粘度、密度、VGO含有量、残留物含有量、ヘテロ原子含有量、及び有機酸金属塩中の金属の含有量を測定するため、原油生成物を分析した。これら原油生成物の特性の平均値を図18の第6表に示す。
Example 19: Contacting crude feed with different LHSV The contact system and catalyst are the same as in Example 6. The characteristics of the crude oil raw material are shown in Table 6 of FIG. The contact conditions are as follows. The hydrogen gas to crude feed ratio fed to the reactor was 160 Nm 3 / m 3 (1000 SCFB), the pressure was 6.9 MPa (1014.7 psi), and the temperature in the contact zone was 371 ° C. (700 ° F.) during the total operating time. ). LHSV during contacting in example 19, increased from 1h -1 for a predetermined time to 12h -1, it was maintained at 12h -1 48 hours, raised to 20.7H -1, and maintained at this LHSV 96 h.
In Example 19, TAN, viscosity in LHSV is 12h -1 and the operating time 20.7H -1, density, VGO content, residue content, heteroatoms content, and content of metals in metal salts of organic acids The crude product was analyzed to determine the amount. The average values of the characteristics of these crude products are shown in Table 6 of FIG.
図18の第6表に示すように、例19の原油生成物のTAN及び粘度は原油原料のTAN及び粘度に比べて低下し、一方、原油生成物のAPI比重は、原油原料のAPI比重の104〜110%であった。MCR含有量対C5アスファルテン含有量の重量比は、1.5以上であった。MCR含有量及びC5アスファルテン含有量の合計は、原油原料のMCR含有量及びC5アスファルテン含有量の合計に比べて減少した。MCR含有量対C5アスファルテン含有量の重量比並びにMCR含有量及びC5アスファルテン含有量の合計量の減少から、コークスを生成しやすい成分よりもむしろアスファルテンが減少しているものと推定できる。また原油生成物のカリウム、ナトリウム、亜鉛及びカルシウムの含有量は、原油原料の同じ金属の含有量の60%以下であった。原油生成物の硫黄含有量は、原油原料の硫黄含有量の80〜90%であった。 As shown in Table 6 of FIG. 18, the TAN and viscosity of the crude product of Example 19 are reduced compared to the TAN and viscosity of the crude feed, while the API specific gravity of the crude feed is the API specific gravity of the crude feed. 104-110%. The weight ratio of MCR content vs. C 5 asphaltenes content was at least 1.5. Total MCR content and C 5 asphaltenes content was reduced relative to the sum of the MCR content and C 5 asphaltenes content of the crude feed. From the reduction in the total amount of the MCR content vs. C 5 weight ratio of asphaltenes content and MCR content and C 5 asphaltenes content can presumed to be reduced asphaltenes rather than generated easily ingredients coke. The content of potassium, sodium, zinc and calcium in the crude product was 60% or less of the same metal content in the crude raw material. The sulfur content of the crude product was 80-90% of the sulfur content of the crude feed.
例6及び例19は、同様な特性を有する原油生成物を製造するのに、接触中、LHSVが1h−1のLHSVでの処理に比べて、10h−1を超えるように接触条件を制御できることを示す。10h−1を超えるLHSV(時間当たり液体の空間速度)で原油原料の一特性を選択的に変化させる能力により、市販の容器に比べて小さい容器で、この接触法が行なえる。容器の小型化により、大きさの制約がある製造用地(例えば沖合び設備)で、不利な原油の処理が行なえるかも知れない。 Examples 6 and 19, for producing a crude product having similar characteristics, during the contacting, LHSV is compared to treatment with LHSV of 1h -1, it can be controlled contacting conditions to exceed 10h -1 Indicates. The ability to selectively change one property of the crude feed at LHSV (liquid space velocity per hour) greater than 10 h −1 allows this contact method to be performed in smaller containers than commercially available containers. Due to the smaller size of the container, it may be possible to process unfavorable crude oil on production sites with limited size (eg offshore facilities).
例20:種々の接触温度での原油原料の接触
接触システム及び触媒は例6のものと同じである。図19の第7表に示す特性を有する原油原料を反応器の塔頂に加え、水素の存在下で2つの接触帯中の2種の触媒と接触させ、原油生成物を製造した。2つの接触帯は、異なる温度で操作した。
Example 20: Contacting crude feed at various contact temperatures The contact system and catalyst are the same as in Example 6. A crude product having the characteristics shown in Table 7 of FIG. 19 was added to the top of the reactor and contacted with the two catalysts in the two contact zones in the presence of hydrogen to produce a crude product. The two contact zones were operated at different temperatures.
塔頂接触帯での接触条件は次のとおりである。LHSVは1h−1、塔底接触帯の温度は260℃(500°F)、水素対原油原料の比は160Nm3/m3(1000SCFB)、圧力は6.9MPa(1014.7psi)である。
塔底接触帯での接触条件は次のとおりである。LHSVは1h−1、塔底接触帯の温度は315℃(600°F)、水素対原油原料の比は160Nm3/m3(1000SCFB)、圧力は6.9MPa(1014.7psi)である。
塔底接触帯を出た原油生成物は気−液相分離器に導入した。気−液相分離器で全生成物は原油生成物及びガスに分離された。TAN及びC5アスファルテン含有量を測定するため、周期的に原油生成物を分析した。
The contact conditions in the tower top contact zone are as follows. The LHSV is 1 h −1 , the temperature in the bottom contact zone is 260 ° C. (500 ° F.), the ratio of hydrogen to crude oil feed is 160 Nm 3 / m 3 (1000 SCFB), and the pressure is 6.9 MPa (1014.7 psi).
The contact conditions in the tower bottom contact zone are as follows. The LHSV is 1 h −1 , the temperature in the bottom contact zone is 315 ° C. (600 ° F.), the ratio of hydrogen to crude oil feed is 160 Nm 3 / m 3 (1000 SCFB), and the pressure is 6.9 MPa (1014.7 psi).
The crude product exiting the bottom contact zone was introduced into a gas-liquid phase separator. In the gas-liquid phase separator, the entire product was separated into crude product and gas. To measure the TAN and C 5 asphaltenes content, periodically analyzing the crude product.
運転中に得られた原油生成物の平均特性値を図19の第7表に示す。原油原料のTANは9.3、C5アスファルテン含有量は原油原料1g当たり0.055gであった。原油生成物の平均TANは0.7、C5アスファルテン含有量は原油生成物1g当たり0.039gであった。原油生成物のC5アスファルテン含有量は、原油生成物のC5アスファルテン含有量の71%以下であった。 The average characteristic values of the crude product obtained during operation are shown in Table 7 of FIG. TAN of the crude feed is 9.3, C 5 asphaltenes content was 0.055g per crude feed 1g. Average TAN of the crude product 0.7, C 5 asphaltenes content was 0.039g per 1g of crude product. C 5 asphaltenes content of the crude product was less than 71% of C 5 asphaltenes content of the crude product.
原油生成物中のカリウム及びナトリウムの合計含有量は、原油原料中の同じ金属の合計含有量の53%以下であった。原油生成物のTANは、原油原料のTANの10%以下であった。接触中、P値は1.5以上に維持された。
例6及び20に示したとおり、第二接触帯(この場合は塔底接触帯)温度よりも50℃低い第一接触帯(この場合は塔頂接触帯)温度では、原油原料中のC5アスファルテン含有量に比べて、原油生成物中のC5アスファルテン含有量の減少を増進する傾向がある。
The total potassium and sodium content in the crude product was 53% or less of the total content of the same metals in the crude feed. The TAN of the crude product was 10% or less of the TAN of the crude feed. During contact, the P value was maintained above 1.5.
As shown in Examples 6 and 20, the second contacting zone in (this bottom contacting zone If) 50 ° C. lower first contacting zone than the temperature (top contacting zone in this case) temperature, C 5 in the crude feed compared to asphaltenes content, it tends to enhance the reduction of C 5 asphaltenes content in the crude product.
更に、有機酸金属塩中の金属含有量の減少は、制御した温度差を用いることにより向上した。各例ともP値の測定から、原油原料/全生成物混合物の安定性が比較的一定であったが、例20で得られた原油生成物の合計カリウム及びナトリウム含有量は、例6で得られた原油生成物の合計カリウム及びナトリウム含有量に比べて減少した。 Furthermore, the reduction of the metal content in the organic acid metal salt was improved by using a controlled temperature difference. In each case, the stability of the crude feed / total product mixture was relatively constant from the P value measurement, but the total potassium and sodium content of the crude product obtained in Example 20 was obtained in Example 6. Reduced compared to the total potassium and sodium content of the crude product obtained.
低温の第一接触帯を用いると、柔軟性及び/又は粘着性の物性を有する重合体及び/又は化合物(例えば、ゴム及び/又はタール)を形成しやすい高分子量化合物(例えばC5アスファルテン及び/又は有機酸金属塩)を除去できる。こうして、これら化合物が触媒を閉塞し被覆する前に、低温で、これら化合物が除去できるので、第一接触帯の後に配置した高温操作用の触媒寿命を向上できる。 When the low temperature first contact zone is used, a high molecular weight compound (for example, C 5 asphaltene and / or a compound and / or a compound (for example, rubber and / or tar)) having a flexible and / or adhesive property is easily formed. Or an organic acid metal salt). In this way, since these compounds can be removed at a low temperature before they clog and coat the catalyst, the life of the catalyst for high temperature operation placed after the first contact zone can be improved.
例21:原油原料と触媒とのスラリー状接触
幾つかの実施態様では塊状金属触媒及び/又は本願の触媒(原油原料100g当たり触媒0.0001〜5g又は0.02〜4g)は、原油原料とスラリー状にして、以下の条件で所定時間で反応させてよい。温度は85〜425℃(185〜797°F)の範囲、圧力は0.5〜10MPaの範囲、水素源対原油原料比は16〜1600Nm3/m3である。原油生成物を形成するのに十分な時間反応させた後、フィルター及び/又は遠心器のような分離装置を用いて原油生成物を分離する。原油生成物は、原油原料と比べてTAN、鉄、ニッケル及び/又はバナジウム含有量及びC5アスファルテン含有量が変化又は減少できる。
Example 21: Slurry contact between crude feed and catalyst In some embodiments, a bulk metal catalyst and / or a catalyst of the present application (0.0001-5 g or 0.02-4 g catalyst per 100 g crude feed) is You may make it into a slurry form and make it react in predetermined time on the following conditions. The temperature is in the range of 85-425 ° C. (185-797 ° F.), the pressure is in the range of 0.5-10 MPa, and the hydrogen source to crude oil feed ratio is 16-1600 Nm 3 / m 3 . After reacting for a time sufficient to form a crude product, the crude product is separated using a separation device such as a filter and / or centrifuge. Crude product, TAN compared to crude feed, iron, nickel and / or vanadium content and C 5 asphaltenes content may change or decreased.
本発明の各種局面の更なる改変及び代替実施態様は、当業者ならば、以上の説明から明らかであろう。したがって、以上の説明は単に例示として解釈すべきであり、当業者に本発明を実施する一般的方法を教示することを目的とする。ここで明示し、説明した本発明の形態は実施態様の例とみなすものと解釈すべきである。要素及び材料は、ここで例証し、説明したものと取替えでき、部品及び方法は入れ替えでき、また本発明の特定の特徴は、独立に利用できることは、いずれも本発明の説明の利益を得た後、当業者ならば明かでなろう。ここで説明した要素は、特許請求の範囲に記載した本発明の範囲を逸脱しない限り、変化させてよい。 Further modifications and alternative embodiments of the various aspects of the invention will be apparent to those skilled in the art from the foregoing description. Accordingly, the foregoing description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. The forms of the invention specified and described herein are to be taken as examples of embodiments. The elements and materials may be interchanged with those illustrated and described herein, parts and methods may be interchanged, and certain features of the invention may be used independently, both of which benefit from the description of the invention. Later, it will be apparent to those skilled in the art. The elements described herein may be varied without departing from the scope of the invention as set forth in the claims.
100 接触システム
102 接触帯
104 原油原料導管
106 水素源及び/又は担体ガス導管
106’ 原油原料導管
108 分離帯
110 全生成物導管
112 原油生成物導管
114 接触帯
116 接触帯
118 原油原料流導管
120 分離帯
122 不利な原油の導管
126 原油原料導管
128 原油生成物導管
130 配合帯
134 ブレンド生成物導管
点136 平均WABT
点140 例8での原油生成物のP値
点142 例9での原油生成物のP値
点144 例10での原油生成物のP値
点146 例11での原油生成物のP値
点148 例8での総水素吸収量
点150 例9での総水素吸収量
点152 例10での総水素吸収量
点154 例11での総水素吸収量
点156 例8での原油生成物の残留物含有量
点158 例9での原油生成物の残留物含有量
点160 例10での原油生成物の残留物含有量
点162 例11での原油生成物の残留物含有量
点164 例8での原油生成物のAPI比重
点166 例9での原油生成物のAPI比重
点168 例10での原油生成物のAPI比重
点170 例11での原油生成物のAPI比重
点172 例8での原油生成物の酸素含有量
点174 例9での原油生成物の酸素含有量
点176 例10での原油生成物の酸素含有量
点178 例11での原油生成物の酸素含有量
100 Contact system 102 Contact zone 104 Crude feed conduit 106 Hydrogen source and / or carrier gas conduit 106 'Crude feed conduit 108 Separation zone 110 Total product conduit 112 Crude product conduit 114 Contact zone 116 Contact zone 118 Crude feed stream conduit 120 Separation Zone 122 Unfavorable crude oil conduit 126 Crude feed conduit 128 Crude product conduit 130 Blend zone 134 Blend product conduit point 136 Average WABT
Point 140 Crude Product P Value Point 142 in Example 8 Crude Product P Value Point 144 in Example 9 Crude Product P Value Point 146 in Example 10 Crude Product P Value Point 148 in Example 11 Total Hydrogen Absorption Point 150 in Example 8 Total Hydrogen Absorption Point 152 in Example 9 Total Hydrogen Absorption Point 154 in Example 10 Total Hydrogen Absorption Point 156 in Example 11 Crude Product Residue in Example 8 Content point 158 Crude product residue content point 160 in Example 9 Crude product residue content point 162 in Example 10 Crude product residue content point 164 in Example 11 Crude Product API Ratio Priority 166 Crude Product API Ratio Priority in Example 9 168 Crude Product API Ratio Priority in Example 10 170 Crude Product API Ratio Priority in Example 11 172 Crude Oil Production in Example 8 Product Oxygen Content Point 174 Crude Product Oxygen Content Point in Example 9 176 Example Crude product oxygen content point at 178 Crude product oxygen content at Example 11
Claims (28)
原油生成物のMCR含有量が原油原料のMCR含有量に対し90%以下となるように、接触条件を制御する工程、
を含む原油生成物の製造方法。 A crude material having an MCR content (measured by ASTM method D4530) of 0.001 g or more per gram of crude material, at least one of the catalysts has a median pore diameter in the range of 70 to 180 mm, and in the pore size distribution In contact with one or more catalysts showing a pore size distribution (measured by ASTM method D4282) in which 60% or more of the total number of pores has a pore diameter within 45 mm of the median pore diameter, 25 ° C., 0.101 MPa A step of producing a total product including a condensable crude product in said step, and a step of controlling contact conditions such that the MCR content of the crude product is 90% or less of the MCR content of the crude feed.
A method for producing a crude product comprising:
原油生成物のTANが原油原料のTANに対し90%以下となるように選択的に全酸価(TAN)を低下させるように、かつ原油生成物の酸素含有量が原油原料の酸素含有量に対し90%以下となるように有機酸素含有化合物の含有量を低下させるように、接触条件を制御する工程、
を含む原油生成物の製造方法。 A crude feedstock having a total acid number (TAN) (measured by ASTM method D664) of 0.3 or more and an oxygen content (measured by ASTM method E385) of 0.0001 g or more per gram of crude feedstock in the presence of a hydrogen source Contacting with one or more catalysts to produce a total product comprising a crude product that is a liquid mixture at 25 ° C. and 0.101 MPa, wherein at least one of the catalysts has a median pore size The process having a pore size distribution (measured by ASTM method D4282) of 90 mm or more, and the total acid number (TAN) selectively so that the TAN of the crude product is 90% or less of the TAN of the crude feed Controlling the contact conditions so as to reduce the content of the organic oxygen-containing compound so that the oxygen content of the crude product is 90% or less of the oxygen content of the crude feed.
A method for producing a crude product comprising:
原油生成物の酸素含有量が原油原料の酸素含有量に対し90%以下で原油生成物の硫黄含有量が原油原料の硫黄含有量に対し70〜130%となるように、接触条件を制御する工程、
を含む原油生成物の製造方法。 At least one type of catalyst having a crude oil feedstock having an oxygen content (measured by ASTM method E385) of 0.0001 g or more per gram of crude feedstock and a sulfur content (measured by ASTM method D4294) of 0.0001 g or more of gram of crude feedstock Is brought into contact with one or more catalysts containing one or more metals in column 6 of the periodic table, one or more compounds of one or more metals in column 6 of the periodic table, or mixtures thereof, at 25 ° C. Manufacturing the entire product including the crude product which is a liquid mixture at 0.101 MPa, and the crude product oxygen content is less than 90% of the crude oil oxygen content and the sulfur content of the crude product A step of controlling the contact conditions so that the amount of the sulfur is 70 to 130% with respect to the sulfur content of the crude oil raw material,
A method for producing a crude product comprising:
28. A method according to claim 26 or 27, wherein the treatment step comprises a hydrotreatment step.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US53150603P | 2003-12-19 | 2003-12-19 | |
US61889204P | 2004-10-14 | 2004-10-14 | |
PCT/US2004/042653 WO2005063935A2 (en) | 2003-12-19 | 2004-12-16 | Systems, methods, and catalysts for producing a crude product |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007514849A true JP2007514849A (en) | 2007-06-07 |
JP2007514849A5 JP2007514849A5 (en) | 2008-01-31 |
Family
ID=34713792
Family Applications (26)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006545453A Pending JP2007514838A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545528A Pending JP2007515523A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545472A Expired - Fee Related JP5306598B2 (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545522A Pending JP2007514845A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545420A Pending JP2007514830A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545389A Pending JP2007514826A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545473A Expired - Fee Related JP5107580B2 (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545444A Pending JP2007514835A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545421A Pending JP2007518847A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545524A Pending JP2007514847A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545449A Pending JP2007514837A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545425A Pending JP2007514831A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545455A Expired - Fee Related JP4891090B2 (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545529A Pending JP2007514850A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545520A Expired - Fee Related JP5179059B2 (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545470A Pending JP2007514840A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545390A Pending JP2007514827A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545526A Pending JP2007514849A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545474A Pending JP2007514843A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545381A Pending JP2007514821A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545445A Pending JP2007514836A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545450A Pending JP2007517931A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545471A Pending JP2007514841A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545384A Pending JP2007514824A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545464A Pending JP2007522269A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545369A Pending JP2007514820A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
Family Applications Before (17)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006545453A Pending JP2007514838A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545528A Pending JP2007515523A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545472A Expired - Fee Related JP5306598B2 (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545522A Pending JP2007514845A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545420A Pending JP2007514830A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545389A Pending JP2007514826A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545473A Expired - Fee Related JP5107580B2 (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545444A Pending JP2007514835A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545421A Pending JP2007518847A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545524A Pending JP2007514847A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545449A Pending JP2007514837A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545425A Pending JP2007514831A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545455A Expired - Fee Related JP4891090B2 (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545529A Pending JP2007514850A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545520A Expired - Fee Related JP5179059B2 (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545470A Pending JP2007514840A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545390A Pending JP2007514827A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
Family Applications After (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006545474A Pending JP2007514843A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545381A Pending JP2007514821A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545445A Pending JP2007514836A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545450A Pending JP2007517931A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545471A Pending JP2007514841A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545384A Pending JP2007514824A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545464A Pending JP2007522269A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
JP2006545369A Pending JP2007514820A (en) | 2003-12-19 | 2004-12-16 | System, method and catalyst for producing crude product |
Country Status (11)
Country | Link |
---|---|
EP (26) | EP1702036A2 (en) |
JP (26) | JP2007514838A (en) |
KR (7) | KR20060130113A (en) |
AU (15) | AU2004303869A1 (en) |
BR (26) | BRPI0405795A (en) |
CA (26) | CA2548914C (en) |
MX (4) | MXPA06006788A (en) |
NL (23) | NL1027751C2 (en) |
SG (3) | SG138599A1 (en) |
TW (14) | TWI452127B (en) |
WO (26) | WO2005063924A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008536003A (en) * | 2005-04-11 | 2008-09-04 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | Method and catalyst for producing crude product with low MCR content |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BRPI0405795A (en) * | 2003-12-19 | 2005-10-04 | Shell Int Research | Methods of Producing a Transportable Fuel and Crude Oil Product, Heating Fuel, Lubricants or Chemicals, and Crude Oil Product |
US7648625B2 (en) | 2003-12-19 | 2010-01-19 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
WO2006110546A2 (en) * | 2005-04-11 | 2006-10-19 | Shell Internationale Research Maatschappij B.V. | Systems, methods, and catalysts for producing a crude product |
CN101405371B (en) * | 2006-04-04 | 2012-07-18 | 国际壳牌研究有限公司 | Method for reducing total acid number (TAN) of liquid hydrocarbon raw material |
US20080087575A1 (en) * | 2006-10-06 | 2008-04-17 | Bhan Opinder K | Systems and methods for producing a crude product and compositions thereof |
KR20100105611A (en) * | 2007-11-28 | 2010-09-29 | 사우디 아라비안 오일 컴퍼니 | Process to upgrade highly waxy crude oil by hot pressurized water |
BRPI0704443B1 (en) | 2007-11-30 | 2018-09-11 | Petroleo Brasileiro S/A Petrobras | system and process for separating spent catalyst suspensions and hydrocarbons formed in a multi-reaction upstream fluid catalytic cracking unit |
US7862708B2 (en) | 2007-12-13 | 2011-01-04 | Exxonmobil Research And Engineering Company | Process for the desulfurization of heavy oils and bitumens |
KR100931036B1 (en) * | 2008-03-18 | 2009-12-10 | 한국화학연구원 | Catalyst for Hydrocracking of Crude Oil and Hydrocracking Method Using the Same |
EP2321046A4 (en) * | 2008-04-10 | 2013-12-18 | Shell Int Research | Catalyst systems and methods for converting a crude feed with such catalyst systems |
US8114806B2 (en) * | 2008-04-10 | 2012-02-14 | Shell Oil Company | Catalysts having selected pore size distributions, method of making such catalysts, methods of producing a crude product, products obtained from such methods, and uses of products obtained |
US9238780B2 (en) | 2012-02-17 | 2016-01-19 | Reliance Industries Limited | Solvent extraction process for removal of naphthenic acids and calcium from low asphaltic crude oil |
JP2013057075A (en) * | 2012-11-19 | 2013-03-28 | Shell Internatl Research Maatschappij Bv | Lowering process of total acid number (tan) of liquid hydrocarbon quality feedstock |
US12025435B2 (en) | 2017-02-12 | 2024-07-02 | Magēmã Technology LLC | Multi-stage device and process for production of a low sulfur heavy marine fuel oil |
US10604709B2 (en) | 2017-02-12 | 2020-03-31 | Magēmā Technology LLC | Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials |
US20180230389A1 (en) | 2017-02-12 | 2018-08-16 | Magēmā Technology, LLC | Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil |
US11788017B2 (en) | 2017-02-12 | 2023-10-17 | Magëmã Technology LLC | Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil |
US12071592B2 (en) | 2017-02-12 | 2024-08-27 | Magēmā Technology LLC | Multi-stage process and device utilizing structured catalyst beds and reactive distillation for the production of a low sulfur heavy marine fuel oil |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3876532A (en) * | 1973-02-27 | 1975-04-08 | Gulf Research Development Co | Method for reducing the total acid number of a middle distillate oil |
JPS63119852A (en) * | 1986-07-28 | 1988-05-24 | シエブロン リサ−チ カンパニ− | Classified catalyst system and hydrogenating demetalizing method from hydrocarbon supply raw material using said catalyst system |
JPH0248485B2 (en) * | 1980-04-01 | 1990-10-25 | Grace W R & Co | |
WO1996006899A1 (en) * | 1994-08-29 | 1996-03-07 | Den Norske Stats Oljeselskap A.S | A process for removing essentially naphthenic acids from a hydrocarbon oil |
US5928501A (en) * | 1998-02-03 | 1999-07-27 | Texaco Inc. | Process for upgrading a hydrocarbon oil |
JP2000005609A (en) * | 1998-06-26 | 2000-01-11 | Idemitsu Kosan Co Ltd | Method for regeneration of hydrotreating catalyst |
JP2003181292A (en) * | 2002-12-25 | 2003-07-02 | Chevron Research & Technology Co | Highly active catalyst for treating residual oil |
Family Cites Families (112)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US587636A (en) * | 1897-08-03 | Blacking-brush and dauber | ||
US2850435A (en) * | 1956-02-06 | 1958-09-02 | Pure Oil Co | Method of removing high molecular weight naphthenic acids from hydrocarbon oils |
US2921023A (en) * | 1957-05-14 | 1960-01-12 | Pure Oil Co | Removal of naphthenic acids by hydrogenation with a molybdenum oxidesilica alumina catalyst |
US3025231A (en) * | 1959-06-03 | 1962-03-13 | Texaco Inc | Catalytic hydrogenation of heavy oils such as shale oil |
NL275200A (en) | 1961-07-31 | |||
GB1115122A (en) * | 1965-08-23 | 1968-05-29 | Universal Oil Prod Co | Hydrotreatment of alkyl aromatic hydrocarbons |
US3488716A (en) | 1967-10-03 | 1970-01-06 | Exxon Research Engineering Co | Process for the removal of naphthenic acids from petroleum distillate fractions |
US3547585A (en) * | 1968-11-26 | 1970-12-15 | Universal Oil Prod Co | Combination of a hydrocarbon conversion process with a waste water treating process |
US3576737A (en) * | 1969-03-25 | 1971-04-27 | Chevron Res | Vanadium removal from hydrocarbons |
GB1232173A (en) * | 1969-11-18 | 1971-05-19 | ||
US3696027A (en) * | 1970-01-12 | 1972-10-03 | Chevron Res | Multi-stage desulfurization |
GB1364238A (en) * | 1970-08-04 | 1974-08-21 | Topsoe H F A | Process for the hydrodesulphurisation of heavy hydrocarbon oils |
US3712861A (en) * | 1970-10-19 | 1973-01-23 | Mobil Oil Corp | Upgrading a hydrocarbon utilizing a catalyst of metal sulfides dispersed in alumina |
US3730876A (en) * | 1970-12-18 | 1973-05-01 | A Sequeira | Production of naphthenic oils |
US3766054A (en) * | 1970-12-23 | 1973-10-16 | Mobil Oil Corp | Demetalation of hydrocarbon charge stocks |
US3684688A (en) * | 1971-01-21 | 1972-08-15 | Chevron Res | Heavy oil conversion |
US3948759A (en) | 1973-03-28 | 1976-04-06 | Exxon Research And Engineering Company | Visbreaking a heavy hydrocarbon feedstock in a regenerable molten medium in the presence of hydrogen |
US3902991A (en) * | 1973-04-27 | 1975-09-02 | Chevron Res | Hydrodesulfurization process for the production of low-sulfur hydrocarbon mixture |
US3960712A (en) * | 1973-04-30 | 1976-06-01 | Universal Oil Products Company | Hydrodesulfurization of asphaltene-containing black oil with a gamma-alumina composite catalyst of specified particle density |
IN142203B (en) * | 1973-04-30 | 1977-06-11 | Uop Inc | |
US3846288A (en) * | 1973-07-05 | 1974-11-05 | Gulf Research Development Co | Acid number reduction of hydrocarbon fractions using a solid catalyst and methanol |
US3891541A (en) * | 1973-08-29 | 1975-06-24 | Mobil Oil Corp | Process for demetalizing and desulfurizing residual oil with hydrogen and alumina-supported catalyst |
US3876523A (en) * | 1973-08-29 | 1975-04-08 | Mobil Oil Corp | Catalyst for residua demetalation and desulfurization |
US3931052A (en) * | 1973-08-29 | 1976-01-06 | Mobil Oil Corporation | Alumina-supported catalyst for residua demetalation and desulfurization |
US3920538A (en) | 1973-11-30 | 1975-11-18 | Shell Oil Co | Demetallation with nickel-vanadium on silica in a hydrocarbon conversion process |
JPS51122105A (en) * | 1975-04-18 | 1976-10-26 | Toa Nenryo Kogyo Kk | Process for hydrofining of hydrocarbon oil |
US4062757A (en) * | 1975-07-18 | 1977-12-13 | Gulf Research & Development Company | Residue thermal cracking process in a packed bed reactor |
US4196102A (en) * | 1975-12-09 | 1980-04-01 | Chiyoda Chemical Engineering & Construction Co., Ltd. | Catalysts for demetallization treatment of _hydrocarbons supported on sepiolite |
US4048060A (en) * | 1975-12-29 | 1977-09-13 | Exxon Research And Engineering Company | Two-stage hydrodesulfurization of oil utilizing a narrow pore size distribution catalyst |
US4067799A (en) * | 1976-07-02 | 1978-01-10 | Exxon Research And Engineering Company | Hydroconversion process |
US4127470A (en) * | 1977-08-01 | 1978-11-28 | Exxon Research & Engineering Company | Hydroconversion with group IA, IIA metal compounds |
US4225421A (en) * | 1979-03-13 | 1980-09-30 | Standard Oil Company (Indiana) | Process for hydrotreating heavy hydrocarbons |
US4446244A (en) * | 1979-09-26 | 1984-05-01 | Chevron Research Company | Hydrocarbons hydroprocessing with imogolite catalyst |
US4358361A (en) * | 1979-10-09 | 1982-11-09 | Mobil Oil Corporation | Demetalation and desulfurization of oil |
JPS595011B2 (en) * | 1979-11-27 | 1984-02-02 | 千代田化工建設株式会社 | Catalyst for hydrotreating heavy hydrocarbon oil and its production method |
US4306964A (en) * | 1980-09-16 | 1981-12-22 | Mobil Oil Corporation | Multi-stage process for demetalation and desulfurization of petroleum oils |
US4411824A (en) * | 1981-05-12 | 1983-10-25 | Chevron Research Company | Method of making a catalyst suitable for hydrometalation of hydrocarbonaceous feedstocks |
AU547464B2 (en) * | 1981-06-17 | 1985-10-24 | Amoco Corporation | Catalyst for hydrotreating hydrocarbon feed |
US4456699A (en) * | 1981-06-17 | 1984-06-26 | Standard Oil Company (Indiana) | Catalyst and support, and their methods of preparation |
US4549957A (en) * | 1981-06-17 | 1985-10-29 | Amoco Corporation | Hydrotreating catalyst and process |
US4447314A (en) * | 1982-05-05 | 1984-05-08 | Mobil Oil Corporation | Demetalation, desulfurization, and decarbonization of petroleum oils by hydrotreatment in a dual bed system prior to cracking |
FR2528721B1 (en) * | 1982-06-17 | 1986-02-28 | Pro Catalyse Ste Fse Prod Cata | SUPPORTED CATALYST HAVING INCREASED RESISTANCE TO POISONS AND ITS USE IN PARTICULAR FOR THE HYDROTREATMENT OF OIL FRACTIONS CONTAINING METALS |
US4405441A (en) * | 1982-09-30 | 1983-09-20 | Shell Oil Company | Process for the preparation of hydrocarbon oil distillates |
US4886594A (en) * | 1982-12-06 | 1989-12-12 | Amoco Corporation | Hydrotreating catalyst and process |
JPS59150537A (en) * | 1982-12-06 | 1984-08-28 | アモコ コーポレーション | Hydrotreating catalyst and hydrotreating of hydrocarbon |
US4450068A (en) | 1982-12-20 | 1984-05-22 | Phillips Petroleum Company | Demetallization of hydrocarbon containing feed streams |
JPS59132945A (en) * | 1983-01-21 | 1984-07-31 | Shokubai Kasei Kogyo Kk | Hydro-demetalation catalyst and use thereof |
US4592827A (en) * | 1983-01-28 | 1986-06-03 | Intevep, S.A. | Hydroconversion of heavy crudes with high metal and asphaltene content in the presence of soluble metallic compounds and water |
US4525472A (en) * | 1983-02-23 | 1985-06-25 | Intevep, S.A. | Process for catalyst preparation for the hydrodemetallization of heavy crudes and residues |
JPS6065092A (en) * | 1983-09-21 | 1985-04-13 | Res Assoc Petroleum Alternat Dev<Rapad> | Removal of metal from oil sand oil and residual oil |
US4587012A (en) * | 1983-10-31 | 1986-05-06 | Chevron Research Company | Process for upgrading hydrocarbonaceous feedstocks |
US4520128A (en) * | 1983-12-19 | 1985-05-28 | Intevep, S.A. | Catalyst having high metal retention capacity and good stability for use in the demetallization of heavy crudes and method of preparation of same |
US4588709A (en) * | 1983-12-19 | 1986-05-13 | Intevep, S.A. | Catalyst for removing sulfur and metal contaminants from heavy crudes and residues |
US4572778A (en) * | 1984-01-19 | 1986-02-25 | Union Oil Company Of California | Hydroprocessing with a large pore catalyst |
US4844792A (en) * | 1984-08-07 | 1989-07-04 | Union Oil Company Of California | Hydroprocessing with a specific pore sized catalyst containing non-hydrolyzable halogen |
NL8402997A (en) * | 1984-10-01 | 1986-05-01 | Unilever Nv | CATALYST MATERIAL. |
GB2167430B (en) * | 1984-11-22 | 1988-11-30 | Intevep Sa | Process for hydroconversion and upgrading of heavy crudes of high metal and asphaltene content |
US4600503A (en) * | 1984-12-28 | 1986-07-15 | Mobil Oil Corporation | Process for hydrotreating residual petroleum oil |
US4729826A (en) * | 1986-02-28 | 1988-03-08 | Union Oil Company Of California | Temperature controlled catalytic demetallization of hydrocarbons |
US4738884A (en) * | 1986-03-03 | 1988-04-19 | Owens-Corning Fiberglas Corporation | Asphalt adhesives superimposed on asphalt-based roofing sheet |
US4670134A (en) * | 1986-05-02 | 1987-06-02 | Phillips Petroleum Company | Catalytic hydrofining of oil |
JP2631712B2 (en) * | 1988-08-18 | 1997-07-16 | コスモ石油株式会社 | Catalyst composition for hydrotreating heavy hydrocarbon oil and hydrotreating method using the same |
US4992157A (en) * | 1988-08-29 | 1991-02-12 | Uop | Process for improving the color and color stability of hydrocarbon fraction |
JP2609301B2 (en) * | 1988-08-31 | 1997-05-14 | 工業技術院長 | Method for producing hydrotreating catalyst |
EP0367021B1 (en) * | 1988-10-19 | 1993-12-29 | Research Association For Petroleum Alternatives Development | Process for hydrogenation of heavy oil |
US5124027A (en) * | 1989-07-18 | 1992-06-23 | Amoco Corporation | Multi-stage process for deasphalting resid, removing catalyst fines from decanted oil and apparatus therefor |
US4992163A (en) * | 1989-12-13 | 1991-02-12 | Exxon Research And Engineering Company | Cat cracking feed preparation |
US4988434A (en) | 1989-12-13 | 1991-01-29 | Exxon Research And Engineering Company | Removal of metallic contaminants from a hydrocarbonaceous liquid |
JPH03292395A (en) * | 1989-12-28 | 1991-12-24 | Chevron Res & Technol Co | Removal of calcium from hydrocarbon supply material |
US5053117A (en) * | 1990-07-25 | 1991-10-01 | Mobil Oil Corporation | Catalytic dewaxing |
US5851381A (en) | 1990-12-07 | 1998-12-22 | Idemitsu Kosan Co., Ltd. | Method of refining crude oil |
US5200060A (en) * | 1991-04-26 | 1993-04-06 | Amoco Corporation | Hydrotreating process using carbides and nitrides of group VIB metals |
US5215954A (en) | 1991-07-30 | 1993-06-01 | Cri International, Inc. | Method of presulfurizing a hydrotreating, hydrocracking or tail gas treating catalyst |
US5210061A (en) * | 1991-09-24 | 1993-05-11 | Union Oil Company Of California | Resid hydroprocessing catalyst |
US5215955A (en) * | 1991-10-02 | 1993-06-01 | Chevron Research And Technology Company | Resid catalyst with high metals capacity |
JP2966985B2 (en) * | 1991-10-09 | 1999-10-25 | 出光興産株式会社 | Catalytic hydrotreating method for heavy hydrocarbon oil |
US5399259A (en) * | 1992-04-20 | 1995-03-21 | Texaco Inc. | Hydroconversion process employing catalyst with specified pore size distribution |
EP0569092A1 (en) * | 1992-05-05 | 1993-11-10 | Shell Internationale Researchmaatschappij B.V. | Hydrotreating process |
US5322617A (en) * | 1992-08-07 | 1994-06-21 | Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Energy, Mines And Resources | Upgrading oil emulsions with carbon monoxide or synthesis gas |
JPH0753968A (en) * | 1993-08-09 | 1995-02-28 | Idemitsu Kosan Co Ltd | Hydrotreatment of heavy hydrocarbon oil |
US5928601A (en) * | 1994-02-28 | 1999-07-27 | Honda Giken Kogyo Kabushiki Kaisha | Method for producing silicon nitride reaction sintered body |
JP3504984B2 (en) * | 1994-09-19 | 2004-03-08 | 日本ケッチェン株式会社 | Hydrodesulfurization demetallization catalyst for heavy hydrocarbon oil |
US5635056A (en) * | 1995-05-02 | 1997-06-03 | Exxon Research And Engineering Company | Continuous in-situ process for upgrading heavy oil using aqueous base |
US5807469A (en) * | 1995-09-27 | 1998-09-15 | Intel Corporation | Flexible continuous cathode contact circuit for electrolytic plating of C4, tab microbumps, and ultra large scale interconnects |
JP3315314B2 (en) | 1996-05-30 | 2002-08-19 | 矢崎総業株式会社 | Low insertion force connector |
JPH1060456A (en) * | 1996-08-15 | 1998-03-03 | Catalysts & Chem Ind Co Ltd | Hydrogenation treatment of heavy oil and device for hydrogenation treatment |
FR2758278B1 (en) * | 1997-01-15 | 1999-02-19 | Inst Francais Du Petrole | CATALYST COMPRISING A MIXED SULFIDE AND USE IN HYDRO-REFINING AND HYDROCONVERSION OF HYDROCARBONS |
US5744025A (en) | 1997-02-28 | 1998-04-28 | Shell Oil Company | Process for hydrotreating metal-contaminated hydrocarbonaceous feedstock |
US6162350A (en) * | 1997-07-15 | 2000-12-19 | Exxon Research And Engineering Company | Hydroprocessing using bulk Group VIII/Group VIB catalysts (HEN-9901) |
US5914030A (en) | 1997-08-29 | 1999-06-22 | Exxon Research And Engineering. Co. | Process for reducing total acid number of crude oil |
US5897769A (en) * | 1997-08-29 | 1999-04-27 | Exxon Research And Engineering Co. | Process for selectively removing lower molecular weight naphthenic acids from acidic crudes |
US5871636A (en) | 1997-08-29 | 1999-02-16 | Exxon Research And Engineering Company | Catalytic reduction of acidity of crude oils in the absence of hydrogen |
CN1105769C (en) * | 1997-08-29 | 2003-04-16 | 埃克森研究工程公司 | Process for reducing total acid mumber of crude oil |
US5910242A (en) * | 1997-08-29 | 1999-06-08 | Exxon Research And Engineering Company | Process for reduction of total acid number in crude oil |
US5928502A (en) | 1997-08-29 | 1999-07-27 | Exxon Research And Engineering Co. | Process for reducing total acid number of crude oil |
US6096192A (en) | 1998-07-14 | 2000-08-01 | Exxon Research And Engineering Co. | Producing pipelinable bitumen |
US6258258B1 (en) * | 1998-10-06 | 2001-07-10 | Exxon Research And Engineering Company | Process for treatment of petroleum acids with ammonia |
FR2787041B1 (en) * | 1998-12-10 | 2001-01-19 | Inst Francais Du Petrole | HYDROCARBON CHARGE HYDROTREATMENT CATALYST IN A FIXED BED REACTOR |
FR2787040B1 (en) * | 1998-12-10 | 2001-01-19 | Inst Francais Du Petrole | HYDROTREATMENT OF HYDROCARBON CHARGES IN A BOILING BED REACTOR |
US6218333B1 (en) | 1999-02-15 | 2001-04-17 | Shell Oil Company | Preparation of a hydrotreating catalyst |
US6554994B1 (en) * | 1999-04-13 | 2003-04-29 | Chevron U.S.A. Inc. | Upflow reactor system with layered catalyst bed for hydrotreating heavy feedstocks |
JP3824464B2 (en) * | 1999-04-28 | 2006-09-20 | 財団法人石油産業活性化センター | Method for hydrocracking heavy oils |
FR2792851B1 (en) * | 1999-04-29 | 2002-04-05 | Inst Francais Du Petrole | LOW-DISPERSE NOBLE METAL-BASED CATALYST AND USE THEREOF FOR THE CONVERSION OF HYDROCARBON CHARGES |
JP2003171671A (en) * | 2000-06-08 | 2003-06-20 | Japan Energy Corp | Method for hydrogenation refining of heavy oil |
US20020056664A1 (en) * | 2000-09-07 | 2002-05-16 | Julie Chabot | Extension of catalyst cycle length in residuum desulfurization processes |
US6547957B1 (en) * | 2000-10-17 | 2003-04-15 | Texaco, Inc. | Process for upgrading a hydrocarbon oil |
AU2002210909A1 (en) * | 2000-10-24 | 2002-05-06 | Jgc Corpopation | Refined oil and process for producing the same |
US20020112987A1 (en) * | 2000-12-15 | 2002-08-22 | Zhiguo Hou | Slurry hydroprocessing for heavy oil upgrading using supported slurry catalysts |
US6759364B2 (en) | 2001-12-17 | 2004-07-06 | Shell Oil Company | Arsenic removal catalyst and method for making same |
GB0209222D0 (en) | 2002-04-23 | 2002-06-05 | Bp Oil Int | Purification process |
BRPI0405795A (en) * | 2003-12-19 | 2005-10-04 | Shell Int Research | Methods of Producing a Transportable Fuel and Crude Oil Product, Heating Fuel, Lubricants or Chemicals, and Crude Oil Product |
US10535462B2 (en) | 2007-04-05 | 2020-01-14 | Hans Wennerstrom | Flat winding / equal coupling common mode inductor apparatus and method of use thereof |
-
2004
- 2004-12-15 BR BR0405795-3A patent/BRPI0405795A/en not_active Application Discontinuation
- 2004-12-15 BR BRPI0405843-7A patent/BRPI0405843B1/en not_active IP Right Cessation
- 2004-12-15 NL NL1027751A patent/NL1027751C2/en not_active IP Right Cessation
- 2004-12-15 BR BR0405572-1A patent/BRPI0405572A/en not_active Application Discontinuation
- 2004-12-15 BR BRPI0405568-3A patent/BRPI0405568B1/en not_active IP Right Cessation
- 2004-12-15 NL NL1027765A patent/NL1027765C2/en not_active IP Right Cessation
- 2004-12-15 BR BRPI0405567-5A patent/BRPI0405567B1/en not_active IP Right Cessation
- 2004-12-15 NL NL1027759A patent/NL1027759C2/en not_active IP Right Cessation
- 2004-12-15 NL NL1027772A patent/NL1027772C2/en not_active IP Right Cessation
- 2004-12-15 BR BR0405565-9A patent/BRPI0405565A/en not_active IP Right Cessation
- 2004-12-15 NL NL1027760A patent/NL1027760C2/en not_active IP Right Cessation
- 2004-12-15 BR BRPI0405578-0A patent/BRPI0405578B1/en not_active IP Right Cessation
- 2004-12-15 BR BRPI0405720-1A patent/BRPI0405720B1/en not_active IP Right Cessation
- 2004-12-15 NL NL1027764A patent/NL1027764C2/en not_active IP Right Cessation
- 2004-12-15 BR BRPI0405738-4A patent/BRPI0405738B1/en not_active IP Right Cessation
- 2004-12-15 NL NL1027768A patent/NL1027768C2/en not_active IP Right Cessation
- 2004-12-15 NL NL1027755A patent/NL1027755C2/en not_active IP Right Cessation
- 2004-12-15 NL NL1027767A patent/NL1027767C2/en not_active IP Right Cessation
- 2004-12-15 NL NL1027766A patent/NL1027766C2/en not_active IP Right Cessation
- 2004-12-15 NL NL1027761A patent/NL1027761C2/en not_active IP Right Cessation
- 2004-12-15 BR BRPI0405535-7A patent/BRPI0405535B1/en not_active IP Right Cessation
- 2004-12-15 BR BRPI0405577-2A patent/BRPI0405577B1/en not_active IP Right Cessation
- 2004-12-15 BR BR0405588-8A patent/BRPI0405588A/en not_active Application Discontinuation
- 2004-12-15 BR BR0405586-1A patent/BRPI0405586A/en not_active IP Right Cessation
- 2004-12-15 BR BRPI0405564-0A patent/BRPI0405564B1/en not_active IP Right Cessation
- 2004-12-15 NL NL1027754A patent/NL1027754C2/en not_active IP Right Cessation
- 2004-12-15 NL NL1027762A patent/NL1027762C2/en not_active IP Right Cessation
- 2004-12-15 BR BR0405584-5A patent/BRPI0405584A/en not_active Application Discontinuation
- 2004-12-15 BR BR0405722-8A patent/BRPI0405722A/en not_active IP Right Cessation
- 2004-12-15 NL NL1027757A patent/NL1027757C2/en not_active IP Right Cessation
- 2004-12-15 BR BR0405566-7A patent/BRPI0405566A/en not_active IP Right Cessation
- 2004-12-15 BR BR0405576-4A patent/BRPI0405576A/en not_active IP Right Cessation
- 2004-12-15 BR BRPI0405589-6A patent/BRPI0405589B1/en not_active IP Right Cessation
- 2004-12-15 NL NL1027753A patent/NL1027753C2/en not_active IP Right Cessation
- 2004-12-15 NL NL1027771A patent/NL1027771C2/en not_active IP Right Cessation
- 2004-12-15 NL NL1027763A patent/NL1027763C2/en not_active IP Right Cessation
- 2004-12-15 NL NL1027756A patent/NL1027756C2/en not_active IP Right Cessation
- 2004-12-15 NL NL1027752A patent/NL1027752C2/en not_active IP Right Cessation
- 2004-12-15 BR BR0405579-9A patent/BRPI0405579A/en not_active IP Right Cessation
- 2004-12-15 BR BRPI0405570-5A patent/BRPI0405570B1/en not_active IP Right Cessation
- 2004-12-15 BR BR0405587-0A patent/BRPI0405587A/en not_active Application Discontinuation
- 2004-12-15 NL NL1027769A patent/NL1027769C2/en not_active IP Right Cessation
- 2004-12-15 BR BRPI0405537-3A patent/BRPI0405537B1/en not_active IP Right Cessation
- 2004-12-15 NL NL1027750A patent/NL1027750C2/en not_active IP Right Cessation
- 2004-12-15 BR BRPI0405582-9A patent/BRPI0405582B1/en not_active IP Right Cessation
- 2004-12-15 NL NL1027758A patent/NL1027758C2/en not_active IP Right Cessation
- 2004-12-15 NL NL1027770A patent/NL1027770C2/en not_active IP Right Cessation
- 2004-12-15 BR BRPI0405739-2A patent/BRPI0405739B1/en not_active IP Right Cessation
- 2004-12-15 BR BR0405571-3A patent/BRPI0405571A/en not_active Application Discontinuation
- 2004-12-16 JP JP2006545453A patent/JP2007514838A/en active Pending
- 2004-12-16 TW TW093139053A patent/TWI452127B/en not_active IP Right Cessation
- 2004-12-16 AU AU2004303869A patent/AU2004303869A1/en not_active Abandoned
- 2004-12-16 CA CA2548914A patent/CA2548914C/en not_active Expired - Fee Related
- 2004-12-16 JP JP2006545528A patent/JP2007515523A/en active Pending
- 2004-12-16 KR KR1020067014548A patent/KR20060130113A/en not_active Application Discontinuation
- 2004-12-16 EP EP04814792A patent/EP1702036A2/en not_active Withdrawn
- 2004-12-16 CA CA2549410A patent/CA2549410C/en not_active Expired - Fee Related
- 2004-12-16 EP EP04814413A patent/EP1704211A2/en not_active Withdrawn
- 2004-12-16 TW TW093139059A patent/TW200535225A/en unknown
- 2004-12-16 CA CA2549886A patent/CA2549886C/en not_active Expired - Fee Related
- 2004-12-16 CA CA2549875A patent/CA2549875C/en not_active Expired - Fee Related
- 2004-12-16 TW TW093139063A patent/TW200535226A/en unknown
- 2004-12-16 CA CA2549430A patent/CA2549430C/en not_active Expired - Fee Related
- 2004-12-16 JP JP2006545472A patent/JP5306598B2/en not_active Expired - Fee Related
- 2004-12-16 JP JP2006545522A patent/JP2007514845A/en active Pending
- 2004-12-16 CA CA2549535A patent/CA2549535C/en not_active Expired - Fee Related
- 2004-12-16 CA CA002549887A patent/CA2549887A1/en not_active Abandoned
- 2004-12-16 WO PCT/US2004/042241 patent/WO2005063924A2/en active Application Filing
- 2004-12-16 EP EP04814334A patent/EP1704206A2/en not_active Withdrawn
- 2004-12-16 MX MXPA06006788A patent/MXPA06006788A/en unknown
- 2004-12-16 EP EP04814796A patent/EP1702043A2/en not_active Withdrawn
- 2004-12-16 EP EP04814591A patent/EP1711583A2/en not_active Withdrawn
- 2004-12-16 KR KR1020067014556A patent/KR20060130118A/en not_active Application Discontinuation
- 2004-12-16 AU AU2004309349A patent/AU2004309349B2/en not_active Ceased
- 2004-12-16 WO PCT/US2004/042332 patent/WO2005061668A2/en active Application Filing
- 2004-12-16 CA CA002562759A patent/CA2562759A1/en not_active Abandoned
- 2004-12-16 WO PCT/US2004/042651 patent/WO2005063934A2/en active Application Filing
- 2004-12-16 JP JP2006545420A patent/JP2007514830A/en active Pending
- 2004-12-16 TW TW093139049A patent/TW200535221A/en unknown
- 2004-12-16 EP EP04814797A patent/EP1702044A2/en not_active Ceased
- 2004-12-16 WO PCT/US2004/042137 patent/WO2005066306A2/en active Application Filing
- 2004-12-16 JP JP2006545389A patent/JP2007514826A/en active Pending
- 2004-12-16 WO PCT/US2004/042343 patent/WO2005063927A2/en active Application Filing
- 2004-12-16 EP EP04814488A patent/EP1713886A2/en not_active Withdrawn
- 2004-12-16 KR KR1020067014555A patent/KR101229770B1/en not_active IP Right Cessation
- 2004-12-16 EP EP04814292A patent/EP1702030A2/en not_active Ceased
- 2004-12-16 WO PCT/US2004/042647 patent/WO2005061678A2/en active Application Filing
- 2004-12-16 MX MXPA06006794A patent/MXPA06006794A/en unknown
- 2004-12-16 JP JP2006545473A patent/JP5107580B2/en not_active Expired - Fee Related
- 2004-12-16 WO PCT/US2004/042426 patent/WO2005061669A2/en active Application Filing
- 2004-12-16 AU AU2004312367A patent/AU2004312367A1/en not_active Abandoned
- 2004-12-16 TW TW093139055A patent/TWI440707B/en not_active IP Right Cessation
- 2004-12-16 SG SG200717847-8A patent/SG138599A1/en unknown
- 2004-12-16 EP EP04814412A patent/EP1702055A2/en not_active Withdrawn
- 2004-12-16 JP JP2006545444A patent/JP2007514835A/en active Pending
- 2004-12-16 WO PCT/US2004/042310 patent/WO2005061667A2/en active Application Filing
- 2004-12-16 CA CA2551096A patent/CA2551096C/en not_active Expired - Fee Related
- 2004-12-16 CA CA2549088A patent/CA2549088C/en not_active Expired - Fee Related
- 2004-12-16 TW TW093139064A patent/TW200535227A/en unknown
- 2004-12-16 SG SG200809503-6A patent/SG149055A1/en unknown
- 2004-12-16 MX MXPA06006806A patent/MXPA06006806A/en unknown
- 2004-12-16 JP JP2006545421A patent/JP2007518847A/en active Pending
- 2004-12-16 EP EP04814562A patent/EP1702022A2/en not_active Withdrawn
- 2004-12-16 CA CA2549258A patent/CA2549258C/en not_active Expired - Fee Related
- 2004-12-16 EP EP04820781A patent/EP1702037A2/en not_active Withdrawn
- 2004-12-16 JP JP2006545524A patent/JP2007514847A/en active Pending
- 2004-12-16 AU AU2004309335A patent/AU2004309335B2/en not_active Ceased
- 2004-12-16 AU AU2004309330A patent/AU2004309330C1/en not_active Ceased
- 2004-12-16 JP JP2006545449A patent/JP2007514837A/en active Pending
- 2004-12-16 JP JP2006545425A patent/JP2007514831A/en active Pending
- 2004-12-16 TW TW093139061A patent/TW200532010A/en unknown
- 2004-12-16 JP JP2006545455A patent/JP4891090B2/en not_active Expired - Fee Related
- 2004-12-16 TW TW093139065A patent/TW200535228A/en unknown
- 2004-12-16 WO PCT/US2004/042333 patent/WO2005063925A2/en active Application Filing
- 2004-12-16 EP EP04814794A patent/EP1702042A2/en not_active Withdrawn
- 2004-12-16 WO PCT/US2004/042429 patent/WO2005061670A2/en active Application Filing
- 2004-12-16 CA CA002547360A patent/CA2547360A1/en not_active Abandoned
- 2004-12-16 WO PCT/US2004/042399 patent/WO2005063929A2/en active Search and Examination
- 2004-12-16 JP JP2006545529A patent/JP2007514850A/en active Pending
- 2004-12-16 WO PCT/US2004/042088 patent/WO2005066301A2/en active Application Filing
- 2004-12-16 EP EP04814585A patent/EP1702047A2/en not_active Ceased
- 2004-12-16 WO PCT/US2004/042640 patent/WO2005063933A2/en active Application Filing
- 2004-12-16 AU AU2004309334A patent/AU2004309334A1/en not_active Abandoned
- 2004-12-16 CA CA002549246A patent/CA2549246A1/en not_active Abandoned
- 2004-12-16 CA CA2549251A patent/CA2549251C/en not_active Expired - Fee Related
- 2004-12-16 WO PCT/US2004/042225 patent/WO2005066311A2/en active Search and Examination
- 2004-12-16 WO PCT/US2004/042655 patent/WO2005063937A2/en active Application Filing
- 2004-12-16 WO PCT/US2004/042430 patent/WO2005063939A2/en active Search and Examination
- 2004-12-16 TW TW093139062A patent/TW200530387A/en unknown
- 2004-12-16 CA CA2551091A patent/CA2551091C/en not_active Expired - Fee Related
- 2004-12-16 JP JP2006545520A patent/JP5179059B2/en not_active Expired - Fee Related
- 2004-12-16 KR KR1020067014549A patent/KR20060130114A/en not_active Application Discontinuation
- 2004-12-16 EP EP04814588A patent/EP1711582A2/en not_active Withdrawn
- 2004-12-16 CA CA2552466A patent/CA2552466C/en not_active Expired - Fee Related
- 2004-12-16 EP EP04814514A patent/EP1713887A2/en not_active Ceased
- 2004-12-16 SG SG200809467-4A patent/SG149049A1/en unknown
- 2004-12-16 CA CA2549566A patent/CA2549566C/en not_active Expired - Fee Related
- 2004-12-16 EP EP04814589A patent/EP1702035A2/en not_active Ceased
- 2004-12-16 EP EP04814783A patent/EP1709141A2/en not_active Withdrawn
- 2004-12-16 JP JP2006545470A patent/JP2007514840A/en active Pending
- 2004-12-16 WO PCT/US2004/042427 patent/WO2005063930A2/en active Application Filing
- 2004-12-16 JP JP2006545390A patent/JP2007514827A/en active Pending
- 2004-12-16 AU AU2004312379A patent/AU2004312379A1/en not_active Abandoned
- 2004-12-16 JP JP2006545526A patent/JP2007514849A/en active Pending
- 2004-12-16 WO PCT/US2004/042121 patent/WO2005066303A2/en active Application Filing
- 2004-12-16 CA CA2551101A patent/CA2551101C/en not_active Expired - Fee Related
- 2004-12-16 WO PCT/US2004/042125 patent/WO2005065189A2/en active Application Filing
- 2004-12-16 TW TW093139067A patent/TW200530388A/en unknown
- 2004-12-16 AU AU2004303870A patent/AU2004303870A1/en not_active Abandoned
- 2004-12-16 CA CA002549411A patent/CA2549411A1/en not_active Abandoned
- 2004-12-16 CA CA2552461A patent/CA2552461C/en not_active Expired - Fee Related
- 2004-12-16 CA CA2549255A patent/CA2549255C/en not_active Expired - Fee Related
- 2004-12-16 WO PCT/US2004/042656 patent/WO2005063938A2/en active Application Filing
- 2004-12-16 EP EP04814428A patent/EP1702032A2/en not_active Withdrawn
- 2004-12-16 JP JP2006545474A patent/JP2007514843A/en active Pending
- 2004-12-16 CA CA002551098A patent/CA2551098A1/en not_active Abandoned
- 2004-12-16 JP JP2006545381A patent/JP2007514821A/en active Pending
- 2004-12-16 JP JP2006545445A patent/JP2007514836A/en active Pending
- 2004-12-16 EP EP04814324A patent/EP1702031A2/en not_active Withdrawn
- 2004-12-16 MX MXPA06006795A patent/MXPA06006795A/en active IP Right Grant
- 2004-12-16 EP EP04814509A patent/EP1702040A2/en not_active Withdrawn
- 2004-12-16 KR KR1020067014561A patent/KR20070032625A/en not_active Application Discontinuation
- 2004-12-16 JP JP2006545450A patent/JP2007517931A/en active Pending
- 2004-12-16 CA CA2549427A patent/CA2549427C/en not_active Expired - Fee Related
- 2004-12-16 JP JP2006545471A patent/JP2007514841A/en active Pending
- 2004-12-16 AU AU2004311743A patent/AU2004311743B2/en not_active Expired - Fee Related
- 2004-12-16 WO PCT/US2004/042139 patent/WO2005066307A2/en active Application Filing
- 2004-12-16 AU AU2004312380A patent/AU2004312380A1/en not_active Abandoned
- 2004-12-16 TW TW093139056A patent/TW200533737A/en unknown
- 2004-12-16 CA CA2549873A patent/CA2549873C/en not_active Expired - Fee Related
- 2004-12-16 JP JP2006545384A patent/JP2007514824A/en active Pending
- 2004-12-16 AU AU2004303874A patent/AU2004303874B2/en not_active Ceased
- 2004-12-16 AU AU2004312365A patent/AU2004312365A1/en not_active Abandoned
- 2004-12-16 KR KR1020067014558A patent/KR20060130119A/en not_active Application Discontinuation
- 2004-12-16 EP EP04814320A patent/EP1704204A2/en not_active Withdrawn
- 2004-12-16 TW TW093139066A patent/TW200602481A/en unknown
- 2004-12-16 CA CA2652088A patent/CA2652088C/en not_active Expired - Fee Related
- 2004-12-16 EP EP04814519A patent/EP1704208A2/en not_active Withdrawn
- 2004-12-16 WO PCT/US2004/042653 patent/WO2005063935A2/en active Search and Examination
- 2004-12-16 AU AU2004309354A patent/AU2004309354B2/en not_active Ceased
- 2004-12-16 EP EP04814508A patent/EP1702033A2/en not_active Ceased
- 2004-12-16 EP EP04817041A patent/EP1704205A2/en not_active Withdrawn
- 2004-12-16 TW TW093139054A patent/TW200535223A/en unknown
- 2004-12-16 WO PCT/US2004/042309 patent/WO2005061666A2/en active Application Filing
- 2004-12-16 AU AU2004303873A patent/AU2004303873A1/en not_active Abandoned
- 2004-12-16 JP JP2006545464A patent/JP2007522269A/en active Pending
- 2004-12-16 WO PCT/US2004/042224 patent/WO2005066310A2/en active Application Filing
- 2004-12-16 WO PCT/US2004/042432 patent/WO2005063931A2/en active Application Filing
- 2004-12-16 CA CA2551105A patent/CA2551105C/en not_active Expired - Fee Related
- 2004-12-16 EP EP04814586A patent/EP1702034A2/en not_active Ceased
- 2004-12-16 EP EP04814336A patent/EP1702039A2/en not_active Withdrawn
- 2004-12-16 JP JP2006545369A patent/JP2007514820A/en active Pending
- 2004-12-16 KR KR1020067014545A patent/KR20060130110A/en not_active Application Discontinuation
- 2004-12-16 WO PCT/US2004/042338 patent/WO2005063926A2/en active Application Filing
- 2004-12-16 TW TW093139051A patent/TW200530386A/en unknown
-
2009
- 2009-06-09 AU AU2009202290A patent/AU2009202290B2/en not_active Ceased
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3876532A (en) * | 1973-02-27 | 1975-04-08 | Gulf Research Development Co | Method for reducing the total acid number of a middle distillate oil |
JPH0248485B2 (en) * | 1980-04-01 | 1990-10-25 | Grace W R & Co | |
JPS63119852A (en) * | 1986-07-28 | 1988-05-24 | シエブロン リサ−チ カンパニ− | Classified catalyst system and hydrogenating demetalizing method from hydrocarbon supply raw material using said catalyst system |
WO1996006899A1 (en) * | 1994-08-29 | 1996-03-07 | Den Norske Stats Oljeselskap A.S | A process for removing essentially naphthenic acids from a hydrocarbon oil |
US5928501A (en) * | 1998-02-03 | 1999-07-27 | Texaco Inc. | Process for upgrading a hydrocarbon oil |
JP2000005609A (en) * | 1998-06-26 | 2000-01-11 | Idemitsu Kosan Co Ltd | Method for regeneration of hydrotreating catalyst |
JP2003181292A (en) * | 2002-12-25 | 2003-07-02 | Chevron Research & Technology Co | Highly active catalyst for treating residual oil |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008536003A (en) * | 2005-04-11 | 2008-09-04 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | Method and catalyst for producing crude product with low MCR content |
JP2013067808A (en) * | 2005-04-11 | 2013-04-18 | Shell Internatl Research Maatschappij Bv | Method and catalyst for producing crude product having reduced mcr content |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7807046B2 (en) | Systems, methods, and catalysts for producing a crude product | |
US8137536B2 (en) | Method for producing a crude product | |
JP4891090B2 (en) | System, method and catalyst for producing crude product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071204 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071204 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100226 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100803 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100825 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101005 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110322 |