JP2013057075A - Lowering process of total acid number (tan) of liquid hydrocarbon quality feedstock - Google Patents

Lowering process of total acid number (tan) of liquid hydrocarbon quality feedstock Download PDF

Info

Publication number
JP2013057075A
JP2013057075A JP2012253528A JP2012253528A JP2013057075A JP 2013057075 A JP2013057075 A JP 2013057075A JP 2012253528 A JP2012253528 A JP 2012253528A JP 2012253528 A JP2012253528 A JP 2012253528A JP 2013057075 A JP2013057075 A JP 2013057075A
Authority
JP
Japan
Prior art keywords
tan
feedstock
oxide
total acid
acid number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012253528A
Other languages
Japanese (ja)
Inventor
Carolus Matthias Anna Maria Mesters
マリア・アナ・マティアス・カロラス・メステルス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Priority to JP2012253528A priority Critical patent/JP2013057075A/en
Publication of JP2013057075A publication Critical patent/JP2013057075A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To selectively lower the total acid number of feedstocks such as a crude oil by hydrogenation.SOLUTION: A lowering process of a total acid number (TAN) of a liquid hydrocarbon quality feedstock is characterized as follows. The liquid hydrocarbon quality feedstock is made to contact with a catalyst that includes a metal oxide of the column third or fourth group of the Periodic Table of Elements or that of a lanthanide oxide, but does not essentially include a metal or a compound thereof of the fifth to tenth group under the existence of a hydrogen-containing gas at the temperature range of 200-400°C and at high pressure, whereby a liquid hydrocarbon quality product having a low total acid number is obtained.

Description

発明の分野
本発明は、液体炭化水素質供給原料、特に原油の全酸価 (TAN)の低下方法に関する。
The present invention relates to a method for reducing the total acid number (TAN) of liquid hydrocarbonaceous feedstocks, particularly crude oil.

発明の背景
多量の酸を含有する原油、その他の液体炭化水素質流は精製困難である。特に原油製油所の蒸留ユニットでは多量の酸が腐食の問題を引き起こす。液体炭化水素質供給原料から水素化処理、即ち、硫黄及び窒素のような他のヘテロ原子を除去する水素化処理法により酸が除去されることが知られている。しかし、水素化処理は、製油所において蒸留ユニットの下流で行われる方法である。
Background of the Invention Crude oil and other liquid hydrocarbonaceous streams containing large amounts of acid are difficult to refine. Especially in crude oil refinery distillation units, large amounts of acid cause corrosion problems. It is known that acids are removed from liquid hydrocarbonaceous feedstocks by hydrotreating, that is, hydrotreating methods that remove other heteroatoms such as sulfur and nitrogen. However, hydrotreating is a method that takes place downstream of the distillation unit in a refinery.

原油中の酸分で生じる腐食の問題を回避するため、一般には異なる原油流をブレンドして許容量の酸を含む原油を得ている。   In order to avoid the corrosion problems caused by the acid content in crude oil, different crude oil streams are generally blended to obtain crude oil containing an acceptable amount of acid.

原油又は他の炭化水素質液体の酸含有量は、一般にこのような液体の全酸価(TAN)として表現されている。 TANは、ASTM D664に記載の方法に従って酸を中和するのに必要な、液体1g当たりのKOHmgを表す。   The acid content of crude oil or other hydrocarbonaceous liquids is generally expressed as the total acid number (TAN) of such liquids. TAN represents KOH mg / g liquid required to neutralize the acid according to the method described in ASTM D664.

当該技術分野では、硫黄含有化合物、窒素含有化合物及び不飽和炭化水素を最小限転化させて、製油所で使用される原油のような液体炭化水素質流のTANを低下できる方法が必要である。このような方法により、許容可能な製油所供給原料は、最小の水素消費により得られる。   There is a need in the art for a method that can minimally convert sulfur-containing compounds, nitrogen-containing compounds, and unsaturated hydrocarbons to reduce the TAN of liquid hydrocarbonaceous streams such as crude oil used in refineries. By such a method, an acceptable refinery feedstock is obtained with minimal hydrogen consumption.

発明の概要
水素化脱硫、水素化脱窒素及び水素化分解のような通常、水素化転化反応に使用される水素化成分を本質的に含まない触媒、即ち、周期表第5〜10欄のいずれか1種の金属の化合物は、液体炭化水素質流、特に原油中の酸を選択的に水素化するのに使用できることが見出された。
SUMMARY OF THE INVENTION Catalysts that are essentially free of hydrocomponents typically used in hydroconversion reactions, such as hydrodesulfurization, hydrodenitrogenation, and hydrocracking, ie, any of columns 5-10 of the periodic table It has been found that one metal compound can be used to selectively hydrogenate liquid hydrocarbonaceous streams, particularly acids in crude oil.

したがって、本発明は、液体炭化水素質供給原料を水素含有ガスの存在下、200〜400℃の範囲の温度及び高圧で、元素の周期表第3又は4欄の金属の酸化物又はランタニドの酸化物を含むが、第5〜10欄の金属又はその化合物を本質的に含まない触媒と接触させて、全酸価(TAN)の低い液体炭化水素質生成物を得ることを特徴とする液体炭化水素質供給原料の全酸価の低下方法を提供する。   Accordingly, the present invention oxidizes a liquid hydrocarbonaceous feedstock in the presence of a hydrogen-containing gas at a temperature in the range of 200-400 ° C. and a high pressure, the oxide or lanthanide metal oxide in the third or fourth column of the periodic table of elements. A liquid hydrocarbonaceous product having a low total acid number (TAN) by contacting with a catalyst containing a product, but essentially free of a metal in columns 5 to 10 or a compound thereof. A method for reducing the total acid number of a hydrogenous feedstock is provided.

本発明の利点は、水素化により供給原料の全酸価を低下させながら、水素化脱硫、水素化脱窒素及び不飽和炭化水素の飽和等の他の水素化反応を最小化することである。   An advantage of the present invention is that other hydrogenation reactions such as hydrodesulfurization, hydrodenitrogenation and saturation of unsaturated hydrocarbons are minimized while reducing the total acid number of the feedstock by hydrogenation.

発明の詳細な説明
本発明方法では液体炭化水素質供給原料は水素含有ガスの存在下、200〜400℃の範囲の温度及び高圧で、元素の周期表第3又は4欄の金属の酸化物又はランタニドの酸化物を含むが、第5〜10欄の金属又はその化合物を本質的に含まない触媒と接触させる。
DETAILED DESCRIPTION OF THE INVENTION In the process of the present invention, the liquid hydrocarbonaceous feedstock is a metal oxide in the third or fourth column of the periodic table of elements at a temperature and pressure in the range of 200-400 ° C. in the presence of a hydrogen-containing gas. The catalyst is contacted with a catalyst comprising an oxide of lanthanide, but essentially free of the metals in columns 5-10 or compounds thereof.

供給原料は、カルボン酸、即ち、有機酸を含むいかなる液体炭化水素質流であってもよい。本方法は、特にナフテン酸を含有する供給原料に特に好適である。供給原料は、好ましくは原油、ナフサ又はガス油のような蒸留物流、原油の常圧蒸留残留フラクション、又はTAN製品規格に適合しない炭化水素質蒸留生成物、例えば暖房用油を含む供給原料に特に好適である。本発明方法は原油の全酸価低下に特に好適である。   The feed may be any liquid hydrocarbonaceous stream containing carboxylic acid, i.e. organic acid. The process is particularly suitable for feedstocks containing naphthenic acid. The feedstock is preferably a feedstock comprising preferably a distillation stream such as crude oil, naphtha or gas oil, an atmospheric distillation residual fraction of crude oil, or a hydrocarbonaceous distillation product that does not conform to TAN product standards, such as heating oil. Is preferred. The method of the present invention is particularly suitable for reducing the total acid value of crude oil.

水素含有ガスは、水素又は合成ガスが好ましい。水素含有ガスとして合成ガスを使用することは、水素含有ガスが入手できない状況下、例えば沖合いの石油プラットホームのような遠隔地では特に有利である。   The hydrogen-containing gas is preferably hydrogen or synthesis gas. The use of synthesis gas as the hydrogen-containing gas is particularly advantageous in remote locations such as offshore oil platforms in situations where hydrogen-containing gas is not available.

供給原料触媒と接触させる温度及び圧力は、カルボン酸の水素化が起こるような温度、即ち、200℃以上である。この温度はカルボン酸の熱分解が起こる温度よりも低い、即ち、400℃未満である。この温度は、好ましくは250〜390℃、更に好ましくは300〜380℃の範囲である。   The temperature and pressure for contact with the feedstock catalyst is such that carboxylic acid hydrogenation occurs, ie 200 ° C. or higher. This temperature is lower than the temperature at which thermal decomposition of the carboxylic acid occurs, i.e. below 400 ° C. This temperature is preferably in the range of 250 to 390 ° C, more preferably 300 to 380 ° C.

本方法は、高圧、即ち、大気圧より高い圧力で行われる。この圧力は、好ましくは2〜200バールゲージ圧、更に好ましくは10〜150バールゲージ圧、なお更に好ましくは25〜120バールゲージ圧の範囲である。   The method is performed at high pressure, i.e. higher than atmospheric pressure. This pressure is preferably in the range of 2 to 200 bar gauge pressure, more preferably 10 to 150 bar gauge pressure, even more preferably 25 to 120 bar gauge pressure.

触媒は元素の周期表(最近のIUPACの通知による)第3又は4欄の金属の酸化物又はランタニドの酸化物を含有する。金属酸化物は、これら金属の2種以上の混合酸化物であってもよい。触媒は、前記周期表の第5〜10欄の金属又はそれらの化合物を本質的に含まない。ここで、この特定化合物を本質的に含まないとは、第3又は4欄の酸化物又はランタニドの酸化物の鉱石精錬において、意図しない汚染物、又は残り物として存在する可能性がある最小限の量、通常はppmの範囲又はそれ以下の量を除き、これら化合物を含有しない触媒を云う。   The catalyst contains a metal oxide or a lanthanide oxide in the third or fourth column of the periodic table of elements (according to recent IUPAC notice). The metal oxide may be a mixed oxide of two or more of these metals. The catalyst is essentially free of metals or compounds thereof in columns 5-10 of the periodic table. Here, this specific compound is essentially free of the minimum possible contamination or residue that may be present in the ore refining of the oxide of column 3 or column 4 or the oxide of lanthanide. Except in amounts, usually in the ppm range or lower, refers to catalysts that do not contain these compounds.

触媒は、好ましくは第4欄金属の酸化物又はランタニドの酸化物を含有する。好ましい第4族金属の酸化物は酸化チタン及び酸化ジルコニウムであり、好ましいランタニドの酸化物はセリアである。更に好ましい触媒は、酸化チタン及び/又は酸化ジルコニウム、なお更に好ましくは酸化ジルコニウムよりなる。   The catalyst preferably contains column 4 metal oxides or lanthanide oxides. Preferred Group 4 metal oxides are titanium oxide and zirconium oxide, and preferred lanthanide oxide is ceria. Further preferred catalysts consist of titanium oxide and / or zirconium oxide, even more preferably zirconium oxide.

触媒は、当該技術分野で公知のいかなる製造法によっても製造できる。好ましくは触媒は、比表面積が少なくとも10m/g、更に好ましくは少なくとも30m/gとなるように製造される。
本発明方法に使用される供給原料の全酸価は、供給原料1当たり0.2mgKOH以上、好ましくは0.5mgKOH以上、なお更に好ましくは1.0mgKOH以上である。
ここで全酸価とはASTM D664で測定して供給原料1g当たりのKOH量(mg)のことである。
The catalyst can be produced by any production method known in the art. Preferably the catalyst is produced with a specific surface area of at least 10 m 2 / g, more preferably at least 30 m 2 / g.
The total acid number of the feed used in the process of the present invention is 0.2 mg KOH or more, preferably 0.5 mg KOH or more, and even more preferably 1.0 mg KOH or more per feed.
Here, the total acid value is the amount of KOH (mg) per gram of feedstock as measured by ASTM D664.

液体炭化水素質生成物のTANは、供給原料1g当たり、好ましくは0.2mgKOH以下、更に好ましくは0.1mgKOH以下、なお更に好ましくは0.5mgKOH以下である。
全酸価の低い液体炭化水素質生成物のTANは、供給原料のTANに対し、好ましくは50%以下、更に好ましくは30%以下となるような程度に低下される。
The TAN of the liquid hydrocarbonaceous product is preferably 0.2 mgKOH or less, more preferably 0.1 mgKOH or less, and even more preferably 0.5 mgKOH or less per gram of feedstock.
The TAN of the liquid hydrocarbonaceous product having a low total acid value is lowered to such an extent that it is preferably 50% or less, more preferably 30% or less, relative to the TAN of the feedstock.

水素化方法
微細流反応器中で原油を水素含有ガス又は窒素の存在下、固体不活性物質(0.1mmの炭化珪素粒子)又は以下に述べる触媒(炭化珪素粒子で希釈した触媒粒子)の一つと少なくとも100時間接触させた。各種の原油を使用した。実験1〜8及び13〜16では、西アフリカ原油(原油1)を使用し、実験9〜12では中東の原油(原油2)を使用した。両原油の仕様を第1表に示す。各実験の正確な条件を第2表に示す。
Hydrogenation method Crude oil in a micro-flow reactor in the presence of hydrogen-containing gas or nitrogen, solid inert material (0.1 mm silicon carbide particles) or one of the catalysts described below (catalyst particles diluted with silicon carbide particles) For at least 100 hours. Various crude oils were used. Experiments 1-8 and 13-16 used West African crude oil (crude oil 1), and Experiments 9-12 used Middle East crude oil (crude oil 2). The specifications for both crude oils are shown in Table 1. The exact conditions for each experiment are shown in Table 2.

各実験の液体流出物の全酸価(TAN)をASTM D664で測定した。蒸気相流出物中の硫化水素濃度をガスクロマトグラフィーで測定した。液体流出物のTAN及び蒸気相流出物中の硫化水素濃度も第2表に示した。   The total acid number (TAN) of the liquid effluent of each experiment was measured by ASTM D664. The concentration of hydrogen sulfide in the vapor phase effluent was measured by gas chromatography. The TAN of the liquid effluent and the hydrogen sulfide concentration in the vapor phase effluent are also shown in Table 2.

実験3、4、6、7、9、10、12及び14〜16は、本発明による実験である。実験1、2、5、8、11及び13は比較実験である。   Experiments 3, 4, 6, 7, 9, 10, 12, and 14-16 are experiments according to the present invention. Experiments 1, 2, 5, 8, 11, and 13 are comparative experiments.

触媒
水素化実験で以下の触媒を使用した。
チタニア触媒1
チタニア触媒(更にチタニア1と云う)を次のようにして製造した。チタニア粉末(P25、デグサから;燃焼減量:540℃で4.4重量%)3192g量を混合摩砕混練機(シンプソン)中で蓚酸2水和物100gと混合した。4分間混合摩砕後、脱イオン水981g及びポリエチレングリコール100gを加え、更に12分間混合摩砕を続けた。次いで、メチルセルロース100gを加え、更に20分間混合摩砕を続けた。こうして形成された混合物を押出しにより直径1.7mmの三葉状ダイプレートを通して造形した。この三葉体を120℃で2時間乾燥後、500℃で2時間焼成した。
Catalysts The following catalysts were used in the hydrogenation experiments.
Titania catalyst 1
A titania catalyst (further referred to as titania 1) was produced as follows. An amount of 3192 g of titania powder (from P25, Degussa; loss on combustion: 4.4 wt% at 540 ° C.) was mixed with 100 g of oxalic acid dihydrate in a mixing mill kneader (Simpson). After 4 minutes of mixing and milling, 981 g of deionized water and 100 g of polyethylene glycol were added and mixing and milling was continued for another 12 minutes. Next, 100 g of methylcellulose was added and mixing and grinding continued for another 20 minutes. The mixture thus formed was shaped by extrusion through a trilobal die plate having a diameter of 1.7 mm. The trilobal body was dried at 120 ° C. for 2 hours and then calcined at 500 ° C. for 2 hours.

得られたチタニア三葉体の表面積は窒素吸着法(BET法)で測定して52m/g、細孔容積は水銀侵入法で測定して0.31 ml/gであった。 The surface area of the obtained titania trilobule was 52 m 2 / g as measured by the nitrogen adsorption method (BET method), and the pore volume was 0.31 ml / g as measured by the mercury intrusion method.

チタニア触媒2
チタニア触媒(更にチタニア2と云う)として市販のX096(CRI Catalyst Campanyから)チタニア粒子を使用した。このチタニア粒子の表面積は窒素吸着法(BET法)で測定して120m/g、細孔容積は水銀侵入法で測定して0.32ml/gであった。
Titania catalyst 2
Commercially available X096 (from CRI Catalyst Company) titania particles were used as the titania catalyst (also referred to as titania 2). The surface area of the titania particles was 120 m 2 / g as measured by the nitrogen adsorption method (BET method), and the pore volume was 0.32 ml / g as measured by the mercury intrusion method.

ジルコニア触媒
次のようにしてジルコニア触媒を製造した。ジルコニア粉末(RC100、Daiichiから;燃焼減量:540℃で5.3重量%)264g量を混練機(Werner&Pfeider Sigma混練機タイプLUK0.75)中でポリビニルアルコールの5重量%脱イオン水溶液90gと混合した。7分間混練後、カチオン性ポリアクリルアミド(Superflock,Cytecから)を加え、20分間混練後、脱イオン水8gを加えた。この混合物を更に22分間混練した。こうして形成された混合物を押出しにより直径1.7mmの三葉体に造形した。押出物を120℃で2時間乾燥後、550℃で2時間焼成した。
Zirconia Catalyst A zirconia catalyst was produced as follows. An amount of 264 g of zirconia powder (from RC100, Daiichi; loss on combustion: 5.3 wt% at 540 ° C.) was mixed with 90 g of a 5 wt% deionized aqueous solution of polyvinyl alcohol in a kneader (Werner & Pfeider Sigma kneader type LUK0.75). . After kneading for 7 minutes, cationic polyacrylamide (from Superfloc, Cytec) was added, and after kneading for 20 minutes, 8 g of deionized water was added. This mixture was kneaded for an additional 22 minutes. The mixture thus formed was shaped into a trilobal body having a diameter of 1.7 mm by extrusion. The extrudate was dried at 120 ° C. for 2 hours and then calcined at 550 ° C. for 2 hours.

得られたジルコニア三葉体の表面積は窒素吸着法(BET法)で測定して54m/g、細孔容積は水銀侵入法で測定して0.35ml/gであった。 The surface area of the obtained zirconia trilobal body was 54 m 2 / g as measured by the nitrogen adsorption method (BET method), and the pore volume was 0.35 ml / g as measured by the mercury intrusion method.

アルミナ担持NiMo
アルミナ上に Ni及び Moを担持して従来の水素化脱硫触媒(Criterion Catalyst Companyから)の市販品CRITERION RM?5030を使用した。
Alumina-supported NiMo
A commercially available CRITERION RM-5030, a conventional hydrodesulfurization catalyst (from Criterion Catalyst Company), carrying Ni and Mo on alumina was used.

a)WHV:重量の時間当たり速度、即ち、油kg/触媒kg/時間。実験1、2では触媒は存在せず、比較可能なWHVは規定できなかった(油重量の時間当たり速度は、実験1、2では1.1kg/kg SiC/時間であった)。
b)ガス速度:油1kg当たり標準リットルガス
e)TAN:油1kg当たりKOHmg
d)測定せず:液体流出物は硫化水素臭がなかった。
e)測定せず:液体流出物は硫化水素臭があった。
f)合成ガス組成:水素33.2容量%、CO20.7容量%、残部窒素
a) WHV: speed per hour of weight, ie kg oil / kg catalyst / hour. In Experiments 1 and 2, there was no catalyst and a comparable WHV could not be defined (the rate of oil weight per hour was 1.1 kg / kg SiC / hour in Experiments 1 and 2).
b) Gas velocity: standard liter gas per kg oil e) TAN: KOHmg per kg oil
d) Not measured: The liquid effluent had no hydrogen sulfide odor.
e) Not measured: The liquid effluent had a hydrogen sulfide odor.
f) Syngas composition: hydrogen 33.2 vol%, CO20.7 vol%, balance nitrogen

Claims (10)

液体炭化水素質供給原料を水素含有ガスの存在下、200〜400℃の範囲の温度及び高圧で、元素の周期表第3又は4欄の金属の酸化物又はランタニドの酸化物を含むが、第5〜10欄の金属又はその化合物を本質的に含まない触媒と接触させて、全酸価(TAN)の低い液体炭化水素質生成物を得ることを特徴とする液体炭化水素質供給原料の全酸価の低下方法。   The liquid hydrocarbonaceous feedstock contains a metal oxide or a lanthanide oxide in the third or fourth column of the periodic table of elements at a temperature and pressure in the range of 200-400 ° C. in the presence of a hydrogen-containing gas, All of the liquid hydrocarbonaceous feedstock, characterized in that a liquid hydrocarbonaceous product having a low total acid number (TAN) is obtained by contacting with a catalyst essentially free of metals in columns 5-10 or a compound thereof. Method for reducing acid value. 前記酸化物が第4欄金属の酸化物又はランタニドの酸化物、好ましくは酸化チタン又は酸化ジルコニウム、更に好ましくは酸化ジルコニウムである請求項1に記載の方法。   The process according to claim 1, wherein the oxide is a column 4 metal oxide or a lanthanide oxide, preferably titanium oxide or zirconium oxide, more preferably zirconium oxide. 前記触媒が酸化チタン及び/又は酸化ジルコニウムを必須成分とする請求項3に記載の方法。   The method according to claim 3, wherein the catalyst contains titanium oxide and / or zirconium oxide as an essential component. 前記圧力が2〜200バールゲージ圧、好ましくは10〜150 バールゲージ圧、更に好ましくは25〜120 バールゲージ圧の範囲である請求項1〜3のいずれか1項に記載の方法。   The method according to any one of claims 1 to 3, wherein the pressure is in the range of 2 to 200 bar gauge pressure, preferably 10 to 150 bar gauge pressure, more preferably 25 to 120 bar gauge pressure. 前記温度が250〜390℃、好ましくは300〜380℃の範囲である請求項1〜4のいずれか1項に記載の方法。   The method according to any one of claims 1 to 4, wherein the temperature is in the range of 250 to 390 ° C, preferably 300 to 380 ° C. 前記水素含有ガスが合成ガス又は水素である請求項1〜5のいずれか1項に記載の方法。   The method according to claim 1, wherein the hydrogen-containing gas is synthesis gas or hydrogen. 前記供給原料のTANが、供給原料1g当たり、0.2mgKOH以上、好ましくは0.5mgKOH以上、更に好ましくは1.0mgKOH以上である請求項1〜6のいずれか1項に記載の方法。   The method according to any one of claims 1 to 6, wherein the TAN of the feedstock is 0.2 mgKOH or more, preferably 0.5 mgKOH or more, more preferably 1.0 mgKOH or more per 1 g of feedstock. 前記液体炭化水素質生成物のTANが、供給原料1g当たり、0.2mgKOH以下、好ましくは0.1mgKOH以下、更に好ましくは0.05mgKOH以下である請求項1〜7のいずれか1項に記載の方法。   The TAN of the liquid hydrocarbonaceous product is 0.2 mgKOH or less, preferably 0.1 mgKOH or less, more preferably 0.05 mgKOH or less, per gram of feedstock. Method. 前記低い全酸価を有する液体炭化水素質生成物のTANが、原油生成物の TANに対し50%以下、好ましくは30%以下である請求項1〜8のいずれか1項に記載の方法。   9. A process as claimed in any one of the preceding claims, wherein the TAN of the liquid hydrocarbonaceous product having a low total acid number is 50% or less, preferably 30% or less, relative to the TAN of the crude product. 前記液体炭化水素質供給原料が原油である請求項1〜9のいずれか1項に記載の方法。   The method according to any one of claims 1 to 9, wherein the liquid hydrocarbonaceous feedstock is crude oil.
JP2012253528A 2012-11-19 2012-11-19 Lowering process of total acid number (tan) of liquid hydrocarbon quality feedstock Pending JP2013057075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012253528A JP2013057075A (en) 2012-11-19 2012-11-19 Lowering process of total acid number (tan) of liquid hydrocarbon quality feedstock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012253528A JP2013057075A (en) 2012-11-19 2012-11-19 Lowering process of total acid number (tan) of liquid hydrocarbon quality feedstock

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009503427A Division JP5399234B2 (en) 2006-04-04 2006-04-04 Method for reducing total acid number (TAN) of liquid hydrocarbonaceous feedstock

Publications (1)

Publication Number Publication Date
JP2013057075A true JP2013057075A (en) 2013-03-28

Family

ID=48133188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012253528A Pending JP2013057075A (en) 2012-11-19 2012-11-19 Lowering process of total acid number (tan) of liquid hydrocarbon quality feedstock

Country Status (1)

Country Link
JP (1) JP2013057075A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005066306A2 (en) * 2003-12-19 2005-07-21 Shell Internationale Research Maatschappij B.V. Systems, methods, and catalysts for producing a crude product
WO2006014486A1 (en) * 2004-07-07 2006-02-09 California Institute Of Technology Process to upgrade oil using metal oxides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005066306A2 (en) * 2003-12-19 2005-07-21 Shell Internationale Research Maatschappij B.V. Systems, methods, and catalysts for producing a crude product
WO2006014486A1 (en) * 2004-07-07 2006-02-09 California Institute Of Technology Process to upgrade oil using metal oxides

Similar Documents

Publication Publication Date Title
KR102404295B1 (en) Systems and methods for upgrading heavy oil
RU2624024C2 (en) Catalyst carrier and catalysts, obtained on its basis
JP4875907B2 (en) Hydrocracking process with recycle involving adsorption of polyaromatic compounds from the recirculated portion on a silica-alumina based adsorbent with controlled macropore content
WO2018212984A1 (en) Zeolites, the production thereof, and their uses for upgrading heavy oils
JP2011143408A5 (en)
CA2508630C (en) Hydro processing of hydrocarbon using a mixture of catalysts
EP3733288A1 (en) Hydrogenation reaction catalyst and preparation method therefor
JP2020521016A (en) How to convert heavy oil to petrochemicals
TWI415930B (en) A process for reducing the total acid number (tan) of a liquid hydrocarbonaceous feedstock
CN110892041A (en) System and method for processing heavy oil
TWI646186B (en) Process for hydrogenation of a hydrocarbon feedstock comprising aromatic compounds
JP2002363575A (en) Method for two step hydrogenating heavy hydrocarbon oil
JP2002363576A (en) Method for two step hydrogenating heavy hydrocarbon oil
RU2592286C2 (en) Method for production of olefins and gasoline with low benzene content
JP5399234B2 (en) Method for reducing total acid number (TAN) of liquid hydrocarbonaceous feedstock
KR20080108338A (en) A process for reducing the total acid number (tan) of a liquid hydrocarbonaceous feedstock
JP2005255995A (en) Preparation process of petroleum fraction
JP2013057075A (en) Lowering process of total acid number (tan) of liquid hydrocarbon quality feedstock
CN112125993B (en) Method for liquid-phase hydrofining of polyvinyl ether
JP3978064B2 (en) Two-stage hydroprocessing method for heavy hydrocarbon oil
CN113462431B (en) Method for producing diesel oil and jet fuel
JP5794936B2 (en) Process for hydrorefining cracked gasoline
JP6009196B2 (en) Manufacturing method of base oil for lubricating oil
BRPI0621540B1 (en) Process for reducing the total acid number (tan) of a liquid hydrocarbon feedstock
KR20240142541A (en) Integrated hydrogenation and hydrocracking with continuous hydrogenation catalyst regeneration

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140714