JP2005255995A - Preparation process of petroleum fraction - Google Patents

Preparation process of petroleum fraction Download PDF

Info

Publication number
JP2005255995A
JP2005255995A JP2005034924A JP2005034924A JP2005255995A JP 2005255995 A JP2005255995 A JP 2005255995A JP 2005034924 A JP2005034924 A JP 2005034924A JP 2005034924 A JP2005034924 A JP 2005034924A JP 2005255995 A JP2005255995 A JP 2005255995A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
oil
molybdenum
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005034924A
Other languages
Japanese (ja)
Other versions
JP4576257B2 (en
Inventor
Kazuaki Hayasaka
和章 早坂
Suguru Iki
英 壱岐
Shinya Takahashi
信也 高橋
Yuichi Tanaka
祐一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2005034924A priority Critical patent/JP4576257B2/en
Publication of JP2005255995A publication Critical patent/JP2005255995A/en
Application granted granted Critical
Publication of JP4576257B2 publication Critical patent/JP4576257B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a preparation process of petroleum fractions, wherein the amount of sulfur in diesel oil fractions can be greatly reduced compared to the conventional level while the facilities and operation conditions for the conventional diesel oil desulfurization apparatus are maintained. <P>SOLUTION: The preparation process of the petroleum fractions comprises a first step of obtaining the primary generated oil containing nitrogens in an amount of 60% or less to a nitrogen content in a raw oil by adjusting reaction conditions in the presence of the primary catalyst containing a carrier having mainly an alumina and an active metal selected from a nickel-molybdenum, a nickel-tungsten, and a nickel-cobalt-molybdenum, supported on the carrier, to hydrotreat the raw oil containing mainly the diesel oil fractions, and a second step of obtaining the secondary generated oil by adjusting reaction conditions in the presence of the secondary catalyst containing a carrier having mainly an alumina, and a cobalt molybdenum, an active metal supported on the carrier, to hydrotreat the primary generated oil. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、石油留分の製造方法に関するものであり、より詳細には軽油留分を主成分として含有する原料油を水素化脱硫する石油留分の製造方法に関するものである。   The present invention relates to a method for producing a petroleum fraction, and more particularly to a method for producing a petroleum fraction in which a feedstock containing a light oil fraction as a main component is hydrodesulfurized.

近年、大気汚染などを含む環境問題に対する意識が高まりつつある。例えば、軽油を燃料として用いるディーゼル車からの排気ガスには、硫黄酸化物(SOx)及び窒素酸化物(NOx)といった化学物質の他に、パティキュレートと呼ばれる微細粒子が含まれており、これらの人体への影響が懸念されている。かかる観点から、ディーゼル車からの排気ガスを清浄化する要求がますます厳しくなっている。そこで、上記排気ガスからパティキュレートを除去するために、自動車エンジンの後段にDPFなどのパティキュレートフィルター、若しくはパティキュレートの燃焼除去機能を有する装置の装着が提案されており、これらの装置のディーゼル車への適用が検討されている。また、排気ガス中のNOx除去方法としては、NOx還元除去触媒を用いる方法などが開発されつつある。   In recent years, awareness of environmental issues including air pollution is increasing. For example, exhaust gas from diesel vehicles using light oil as fuel contains fine particles called particulates in addition to chemical substances such as sulfur oxide (SOx) and nitrogen oxide (NOx). There are concerns about the impact on the human body. From such a point of view, the demand for purifying exhaust gas from a diesel vehicle has become increasingly severe. Therefore, in order to remove particulates from the exhaust gas, it has been proposed to install a particulate filter such as DPF or a device having a function of removing particulates after the automobile engine. Application to is being considered. Further, as a method for removing NOx in exhaust gas, a method using a NOx reduction and removal catalyst is being developed.

しかしながら、軽油中の硫黄分の燃焼により発生するSOxなどの影響により、上述のパティキュレートを除去する装置はその性能を十分に発揮できなくなり、上述の触媒はそのNOx還元除去活性が低下してしまう。特に、ディーゼルエンジンを備えた長距離輸送用トラックは、通常のガソリン車と比較して走行距離が長く、上述の装置性能の低下及び触媒活性の低下が顕著となる。そこで、かかる装置性能の低下及び触媒活性の低下を十分に抑制するために、ディーゼル車排気ガス中のSOxを十分に除去する必要がある。   However, due to the influence of SOx or the like generated by the combustion of sulfur content in light oil, the above-mentioned device for removing particulates cannot sufficiently exhibit its performance, and the above-mentioned catalyst has a reduced NOx reduction and removal activity. . In particular, a long-distance transportation truck equipped with a diesel engine has a longer mileage than a normal gasoline vehicle, and the above-described reduction in device performance and reduction in catalyst activity are significant. Therefore, in order to sufficiently suppress such a decrease in apparatus performance and a decrease in catalyst activity, it is necessary to sufficiently remove SOx in diesel vehicle exhaust gas.

ディーゼル車排気ガス中のSOxを除去する手段については種々提案されているが、それらのなかで、SOxの発生源となる軽油中の硫黄分(硫黄化合物)を低減させる方法が最も有効な手段の一つとして考えられている。原油の蒸留又は重油分解反応直後の軽油(未精製の軽油)留分には通常1〜3質量%の硫黄分が含有されており、この硫黄分を低減する方法の一つとして、水素化脱硫触媒を用いる方法が挙げられる。   Various methods for removing SOx in diesel vehicle exhaust gas have been proposed. Among them, a method for reducing the sulfur content (sulfur compounds) in light oil that is the source of SOx is the most effective means. It is considered as one. Gas oil (unrefined gas oil) fraction immediately after crude oil distillation or heavy oil cracking reaction usually contains 1 to 3% by mass of sulfur, and hydrodesulfurization is one of the methods for reducing this sulfur content. A method using a catalyst may be mentioned.

未精製の軽油留分中に含有される硫黄分(硫黄化合物)の大部分は、チオフェン、ベンゾチオフェン及びジベンゾチオフェン並びにこれらの誘導体であることが知られている。これらのうち、4,6−ジメチルジベンゾチオフェンに代表される複数のメチル基を置換基として有するジベンゾチオフェン化合物は、その他の硫黄化合物と比較して、特に水素化脱硫の反応性に乏しい。そのため、その他の硫黄化合物と比較して、未精製の軽油留分中の硫黄化合物をより低減させる必要が生じた際に、該軽油留分中にジベンゾチオフェン化合物が多く含有されていると、硫黄化合物を所望のとおりに低減させることが困難となる可能性がある。したがって、かかる硫黄化合物をより多く除去するためには、触媒及び触媒システムに従来以上の工夫が必要であると考えられる。   It is known that most of the sulfur content (sulfur compounds) contained in the crude gas oil fraction is thiophene, benzothiophene and dibenzothiophene and their derivatives. Among these, dibenzothiophene compounds having a plurality of methyl groups represented by 4,6-dimethyldibenzothiophene as substituents are particularly poor in hydrodesulfurization reactivity compared to other sulfur compounds. Therefore, when it is necessary to further reduce the sulfur compound in the unrefined gas oil fraction as compared with other sulfur compounds, if the gas oil fraction contains a large amount of dibenzothiophene compound, sulfur It may be difficult to reduce the compound as desired. Therefore, in order to remove more of such sulfur compounds, it is considered that the catalyst and the catalyst system need to be further devised.

軽油留分の水素化脱硫に用いられる触媒として、一般的には、アルミナなどの多孔質担体上に6族金属及び8族金属を組み合わせた活性金属を担持した触媒が使用される。代表的な活性金属の組み合わせとしては、コバルト−モリブデン、ニッケル−モリブデン若しくはニッケル−タングステンが挙げられる。軽油留分の水素化脱硫に用いる活性金属については、これまでに、触媒の反応特性及び脱硫の程度を考慮しつつ種々の検討及び提案がなされてきた。それらのなかには、金属を単独で用いるのみでなく、複数種の金属を組み合わせて用いる方法についての提案もなされている。   As a catalyst used for hydrodesulfurization of a light oil fraction, a catalyst in which an active metal obtained by combining a group 6 metal and a group 8 metal on a porous carrier such as alumina is generally used. Exemplary active metal combinations include cobalt-molybdenum, nickel-molybdenum, or nickel-tungsten. Various studies and proposals have been made regarding active metals used for hydrodesulfurization of gas oil fractions, taking into consideration the reaction characteristics of the catalyst and the degree of desulfurization. Among them, not only a metal is used alone, but also a method for using a combination of plural kinds of metals has been proposed.

例えば特許文献1には、軽油留分をマイルドな条件下に深度脱硫する方法の提供を意図して、軽油留分をニッケルとモリブデンを担持した触媒の存在下に水素化脱硫し、次いでコバルトとモリブデンを担持した触媒の存在下に水素化脱硫するか、あるいは先にコバルトとモリブデンを担持した触媒の存在下に水素化脱硫し、次いでニッケルとモリブデンを担持した触媒の存在下に水素化脱硫する軽油の深度脱硫方法が開示されている。
特開平4−183786号公報
For example, Patent Document 1 intends to provide a method for deep desulfurization of a light oil fraction under mild conditions, and hydrodesulfurizes the light oil fraction in the presence of a catalyst supporting nickel and molybdenum, followed by cobalt and Hydrodesulfurization in the presence of a catalyst supporting molybdenum, or hydrodesulfurization first in the presence of a catalyst supporting cobalt and molybdenum, and then hydrodesulfurization in the presence of a catalyst supporting nickel and molybdenum A method for deep desulfurization of light oil is disclosed.
Japanese Patent Laid-Open No. 4-183786

しかしながら、本発明者らは、上記特許文献1に開示されたものを始めとする従来の軽油留分の水素化脱硫方法について詳細に検討を行ったところ、このような従来の軽油留分の水素化脱硫方法は、用いられる触媒がどのような反応雰囲気下で、優れた水素化脱硫活性を示すかについて一切言及されていないことが判明した。特に特許文献1には、軽油留分中の硫黄分を10質量ppm以下まで低減するような水素化脱硫に関して記載されていないことが明らかになった。また、特許文献1に開示されている実施例は回分式反応装置を用いた結果であり、実際の軽油脱硫装置に採用されている流通式反応装置に適用できるものであるか不明である。   However, the present inventors have examined in detail a conventional hydrodesulfurization method for gas oil fractions such as those disclosed in Patent Document 1 above. It has been found that the hydrodesulfurization method makes no mention of under what reaction atmosphere the catalyst used exhibits excellent hydrodesulfurization activity. In particular, it has become clear that Patent Document 1 does not describe hydrodesulfurization that reduces the sulfur content in the gas oil fraction to 10 ppm by mass or less. Moreover, the Example currently disclosed by patent document 1 is a result using a batch-type reaction apparatus, and it is unknown whether it can apply to the flow-type reaction apparatus employ | adopted as an actual light oil desulfurization apparatus.

また、今後、軽油中の硫黄化合物含有量を低減させる規制が一層厳しくなると予想される。例えば、軽油留分中の硫黄分を10質量ppm以下とする必要が生じた場合、そのような低硫黄軽油を製造するためには、水素圧力をより高くする等の運転条件及び/又は反応塔容積をより大きくする等の設備条件などの調整が不可欠となると考えられる。しかしながら、現状の設備では上述の運転条件及び設備条件を満足することが困難となるため、設備を改造したり、新たに設備を設ける必要が生じると推定される。さらには、たとえ現状の設備で軽油中の硫黄分を10質量ppm以下とすることが可能であっても、運転コストが大幅に上昇したり、スループット(処理量)が大幅に減少したりするものと考えられる。   In the future, it is expected that regulations for reducing the sulfur compound content in light oil will become stricter. For example, when the sulfur content in the gas oil fraction needs to be 10 ppm by mass or less, in order to produce such a low sulfur gas oil, the operating conditions and / or the reaction tower such as increasing the hydrogen pressure are used. Adjustment of equipment conditions, such as increasing the volume, is considered essential. However, since it is difficult to satisfy the above-described operating conditions and equipment conditions with the current equipment, it is estimated that the equipment needs to be remodeled or newly installed. Furthermore, even if the sulfur content in light oil can be reduced to 10 ppm by mass or less with the current equipment, the operating cost will increase significantly, and the throughput (throughput) will decrease significantly. it is conceivable that.

このため、現状の軽油脱硫装置からの設備の改造等を最小限にとどめ、しかも現状の運転条件になるべく近い条件で、軽油留分中の硫黄分を更に低減させるためには、適切な触媒システムの構築が必要になると本発明者らは考えている。   Therefore, in order to minimize the modification of equipment from the current diesel oil desulfurization equipment, and to further reduce the sulfur content in the diesel oil fraction under conditions as close as possible to the current operating conditions, an appropriate catalyst system The present inventors believe that it is necessary to construct

本発明は上記事情にかんがみてなされたものであり、従来の軽油脱硫装置の設備及び運転条件を維持し、しかも軽油留分中の硫黄分含有量を従来よりも十分に低減できる石油留分の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and maintains the equipment and operating conditions of a conventional gas oil desulfurization apparatus, and further can reduce the sulfur content in the gas oil fraction more sufficiently than in the past. An object is to provide a manufacturing method.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、未精製の軽油留分中に含有される窒素化合物が、特定の活性金属の水素化脱硫活性に影響を与え、しかも別の特定の活性金属がその窒素化合物を除去するのに有効であることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that the nitrogen compounds contained in the unrefined gas oil fraction affect the hydrodesulfurization activity of specific active metals. Has been found to be effective in removing the nitrogen compounds, and the present invention has been completed.

すなわち、本発明の石油留分の製造方法は、アルミナを主成分とする担体と、その担体上に担持された、ニッケル−モリブデン、ニッケル−タングステン及びニッケル−コバルト−モリブデンからなる群より選ばれる1種以上の活性金属とを備えた第1触媒の存在下、反応圧力、LHSV、反応温度及び水素/油比を含む第1反応条件を調整して、軽油留分を主成分として含有する原料油を水素化処理することにより、原料油中の窒素含有量に対して60%以下の窒素を含有する第1生成油を得る第1工程と、アルミナを主成分とする担体と、その担体上に担持された活性金属であるコバルト−モリブデンとを備えた第2触媒の存在下、反応圧力、LHSV、反応温度及び水素/油比を含む第2反応条件を調整して第1生成油を水素化処理することにより第2生成油を得る第2工程とを含むことを特徴とする。   That is, the method for producing a petroleum fraction of the present invention is selected from the group consisting of a carrier mainly composed of alumina and nickel-molybdenum, nickel-tungsten and nickel-cobalt-molybdenum supported on the carrier. A feedstock containing a light oil fraction as a main component by adjusting the first reaction conditions including reaction pressure, LHSV, reaction temperature and hydrogen / oil ratio in the presence of a first catalyst comprising at least one active metal. A first step of obtaining a first product oil containing 60% or less of nitrogen with respect to the nitrogen content in the feedstock, a carrier mainly composed of alumina, and on the carrier Hydrogenation of the first product oil in the presence of a second catalyst comprising a supported active metal, cobalt-molybdenum, by adjusting second reaction conditions including reaction pressure, LHSV, reaction temperature and hydrogen / oil ratio. Process Characterized in that it comprises a second step of obtaining a second product oil by.

本発明の石油留分の製造方法が、上述の目的を達成する要因は詳細には明らかにされていないが、本発明者らはその要因を以下のように考えている。ただし、要因はこれらに限定されない。   Although the factor by which the method for producing a petroleum fraction of the present invention achieves the above-mentioned object has not been clarified in detail, the present inventors consider the factor as follows. However, the factors are not limited to these.

石油留分である軽油留分を主成分として含有する原料油(以下、「軽油原料油」という。)中に含まれる硫黄化合物のうち、除去(脱硫)が困難である難脱硫成分としては、アルキル置換基を有するジベンゾチオフェン化合物(以下、「アルキル置換ジベンゾチオフェン化合物」という。)が挙げられる。このアルキル置換ジベンゾチオフェン化合物からの脱硫経路には、(1)直接硫黄原子を引き抜く経路(以後、経路(1))と、(2)ジベンゾチオフェンの部位に存在する芳香環を水素化した後に脱硫する(以後、経路(2))と、の二つの主な反応経路が存在すると考えられている。   Among the sulfur compounds contained in the feedstock containing the gas oil fraction as the main component (hereinafter referred to as “light oil feedstock”) as the main component, as the difficult desulfurization component that is difficult to remove (desulfurization), And dibenzothiophene compounds having an alkyl substituent (hereinafter referred to as “alkyl-substituted dibenzothiophene compounds”). The desulfurization route from this alkyl-substituted dibenzothiophene compound includes (1) a route for directly extracting a sulfur atom (hereinafter referred to as route (1)) and (2) desulfurization after hydrogenation of the aromatic ring present at the dibenzothiophene site. It is considered that there are two main reaction pathways (hereinafter referred to as pathway (2)).

これら難脱硫性の硫黄化合物以外の、比較的容易に脱硫反応が進行する成分を脱硫(経路(1))処理すると、得られる軽油中の硫黄分を0.05質量%以下程度にすることは可能である。しかしながら、軽油中の硫黄分を、例えば10質量ppm以下まで低減する場合、容易に脱硫可能な硫黄化合物からの脱硫のみでは目標とする硫黄分の含有量を達成できず、上述の難脱硫成分からの脱硫が必要となると推測される。   When components other than these difficult desulfurization sulfur compounds that undergo a desulfurization reaction relatively easily are desulfurized (path (1)), the sulfur content in the resulting light oil is reduced to about 0.05% by mass or less. Is possible. However, when the sulfur content in light oil is reduced to, for example, 10 ppm by mass or less, the target sulfur content cannot be achieved only by desulfurization from a sulfur compound that can be easily desulfurized. It is presumed that desulfurization of is necessary.

難脱硫成分であるアルキル置換ジベンゾチオフェン化合物からの脱硫処理を行う場合、その芳香環を水素化して立体障害を取り除いた上で脱硫反応を進行させる方法(経路(2))が有効な方法の一つである。本発明者らは、この経路(2)の脱硫反応を効率よくかつ確実に進行させるためには、ニッケル−モリブデン、ニッケル−タングステン及びニッケル−コバルト−モリブデンからなる群より選ばれる1種以上の活性金属を備える触媒(以下、「ニッケル−モリブデン触媒等」という。)を用いるとよいと考えている。これらのニッケル−モリブデン触媒等は水素化活性が高いために、経路(2)による水素化脱硫反応や、同じく水素化を経由して反応が進行する水素化脱窒素反応に有効であると推定される。   When desulfurization treatment is performed from an alkyl-substituted dibenzothiophene compound that is a difficult desulfurization component, a method in which the desulfurization reaction proceeds after removing the steric hindrance by hydrogenating the aromatic ring (route (2)) is an effective method. One. In order to allow the desulfurization reaction of this route (2) to proceed efficiently and reliably, the present inventors have at least one activity selected from the group consisting of nickel-molybdenum, nickel-tungsten and nickel-cobalt-molybdenum. We believe that it is better to use a catalyst comprising a metal (hereinafter referred to as “nickel-molybdenum catalyst or the like”). Since these nickel-molybdenum catalysts and the like have high hydrogenation activity, it is presumed that they are effective for hydrodesulfurization reaction through the route (2) and hydrodenitrogenation reaction that proceeds similarly via hydrogenation. The

しかしながら、ニッケル−モリブデン触媒等は、水素化脱硫反応の進行に伴って生成する硫化水素により比較的容易に被毒し、その結果、水素化脱硫反応及び水素化脱窒素反応について、その触媒活性が経時的に低下する性質を有すると考えられる。   However, nickel-molybdenum catalysts and the like are relatively easily poisoned by hydrogen sulfide generated as the hydrodesulfurization reaction proceeds. As a result, the catalytic activity of hydrodesulfurization reaction and hydrodenitrogenation reaction is low. It is considered to have a property of decreasing over time.

一方、コバルト−モリブデンを活性金属として備えた触媒(以下、「コバルト−モリブデン触媒」という。)上では、主に上記経路(1)の脱硫反応がより選択的に進行すると推測される。このコバルト−モリブデン触媒は有機窒素化合物による被毒の影響を受けやすいと考えられる。しかしながら、コバルト−モリブデン触媒は硫化水素に対する耐性が高く、ニッケル−モリブデン触媒等と比較して、水素消費量を抑制できる特長がある。   On the other hand, on the catalyst having cobalt-molybdenum as an active metal (hereinafter referred to as “cobalt-molybdenum catalyst”), it is presumed that the desulfurization reaction of the route (1) mainly proceeds more selectively. This cobalt-molybdenum catalyst is considered to be susceptible to poisoning by organic nitrogen compounds. However, the cobalt-molybdenum catalyst has high resistance to hydrogen sulfide, and has a feature that hydrogen consumption can be suppressed as compared with a nickel-molybdenum catalyst or the like.

本発明者らは、様々な条件下にて軽油の水素化脱硫活性について鋭意研究した結果、反応塔内の軽油原料油の入口側にニッケル−モリブデン触媒等を充填し、その後段にコバルト−モリブデン触媒を充填することにより、それぞれの触媒を単独で使用した場合、あるいは充填する順番を逆にした場合と比較して、同様の反応条件において、生成油(第2生成油)中の硫黄分の濃度を十分に低減可能(例えば、10質量ppm以下)となることを見出した。その機構は以下のとおりと考えられる。   As a result of diligent research on hydrodesulfurization activity of light oil under various conditions, the present inventors filled a nickel-molybdenum catalyst or the like on the inlet side of the light oil feedstock in the reaction tower, and cobalt-molybdenum in the subsequent stage. By filling the catalyst, the sulfur content in the product oil (second product oil) can be obtained under the same reaction conditions as compared with the case where each catalyst is used alone or when the order of filling is reversed. It has been found that the concentration can be sufficiently reduced (for example, 10 ppm by mass or less). The mechanism is considered as follows.

すなわち、上記触媒を上述のように充填し、まず、第1反応工程において、第1触媒であるニッケル−モリブデン触媒等に軽油原料油を接触させることにより、その軽油原料油の水素化脱硫反応(経路(2))及び水素化脱窒素反応をより選択的に進行させる。この際、第1生成油中の窒素含有量を原料油の中の窒素含有量に対して60%以下となるように反応条件を調整することにより、第1生成油中に含有される有機窒素化合物を十分に低減させることができるので、その後段に充填したコバルト−モリブデン触媒への該有機窒素化合物による被毒の影響を軽減することができると推測される。また、ニッケル−モリブデン触媒等は、水素化脱硫により生成する硫化水素が比較的少ない反応塔の原料油入口側に充填されているため、被毒による反応活性の低下を十分に抑制することができる。   That is, the catalyst is charged as described above. First, in the first reaction step, the diesel oil feedstock is brought into contact with a nickel-molybdenum catalyst or the like as the first catalyst, thereby hydrodesulfurizing the diesel oil feedstock ( Route (2)) and the hydrodenitrogenation reaction proceed more selectively. At this time, the organic nitrogen contained in the first product oil is adjusted by adjusting the reaction conditions so that the nitrogen content in the first product oil is 60% or less with respect to the nitrogen content in the raw material oil. Since the compound can be sufficiently reduced, it is presumed that the influence of poisoning by the organic nitrogen compound on the cobalt-molybdenum catalyst charged in the subsequent stage can be reduced. In addition, since the nickel-molybdenum catalyst and the like are filled in the raw material oil inlet side of the reaction tower with relatively little hydrogen sulfide generated by hydrodesulfurization, it is possible to sufficiently suppress a decrease in reaction activity due to poisoning. .

次いで、第2反応工程において、第2触媒であるコバルト−モリブデン触媒に第1生成油を接触させることにより、第1生成油の脱硫反応のうち経路(1)の反応が選択的に進行すると推定される。この際、反応塔の出口側に充填されたコバルト−モリブデン触媒は硫化水素に対する耐性が高いため、硫化水素と接触してもコバルト−モリブデン触媒の反応活性は十分に高く維持されると推測される。   Next, in the second reaction step, it is estimated that the reaction of the route (1) proceeds selectively in the desulfurization reaction of the first product oil by bringing the first product oil into contact with the cobalt-molybdenum catalyst that is the second catalyst. Is done. At this time, since the cobalt-molybdenum catalyst packed at the outlet side of the reaction tower has high resistance to hydrogen sulfide, it is assumed that the reaction activity of the cobalt-molybdenum catalyst is maintained sufficiently high even when contacted with hydrogen sulfide. .

すなわち、反応塔入口側では、水素化脱硫反応が比較的初期段階にあるので、硫化水素濃度が比較的低く、有機窒素化合物濃度が比較的高くなっている。一方、反応塔の出口に向かうにつれて、生成油中の硫化水素濃度が高くなると共に有機窒素化合物濃度は低くなると考えられる。   That is, on the inlet side of the reaction tower, the hydrodesulfurization reaction is in a relatively early stage, so the hydrogen sulfide concentration is relatively low and the organic nitrogen compound concentration is relatively high. On the other hand, it is considered that the concentration of hydrogen sulfide in the product oil increases and the concentration of organic nitrogen compound decreases as it goes to the outlet of the reaction tower.

また、本発明者らは、有機窒素化合物によるコバルト−モリブデン触媒への被毒の影響は、上述の経路(1)の脱硫反応に対する方が、経路(2)の脱硫反応に対するよりも大きく、しかも、その影響はニッケル−モリブデン触媒よりも甚大であることを見出した。このことからも、ニッケル−モリブデン触媒等を反応塔の入口側に充填し、コバルト−モリブデン触媒をその後段に充填すると、コバルト−モリブデン触媒における経路(1)の脱硫反応に与える窒素被毒の影響を軽減することとなり、経路(1)の脱硫反応の活性低下を十分に抑制するだけでなく、それぞれの触媒を単独で使用する場合よりも高い脱硫活性が得られると考えられる。さらに水素を消費しない経路(1)の脱硫反応の活性低下を抑制することにより、水素消費量の増加を抑制できると推定される。   Further, the present inventors have found that the influence of poisoning on the cobalt-molybdenum catalyst by the organic nitrogen compound is greater for the desulfurization reaction of the above-mentioned route (1) than for the desulfurization reaction of the route (2). It was found that the effect was greater than that of the nickel-molybdenum catalyst. Also from this fact, when nickel-molybdenum catalyst or the like is charged on the inlet side of the reaction tower and cobalt-molybdenum catalyst is charged in the subsequent stage, the influence of nitrogen poisoning on the desulfurization reaction of the route (1) in the cobalt-molybdenum catalyst. It is considered that not only the activity reduction of the desulfurization reaction of the route (1) is sufficiently suppressed, but also a higher desulfurization activity can be obtained than when each catalyst is used alone. Furthermore, it is presumed that an increase in hydrogen consumption can be suppressed by suppressing a decrease in the activity of the desulfurization reaction in the route (1) that does not consume hydrogen.

したがって、本発明の石油留分の製造方法により得られた第2生成油である軽油留分は、その硫黄分(硫黄化合物)含有量を10質量ppm以下とすることが可能である。   Therefore, the light oil fraction that is the second produced oil obtained by the method for producing a petroleum fraction of the present invention can have a sulfur content (sulfur compound) content of 10 ppm by mass or less.

また、第1生成油中の窒素含有量(窒素含有割合)が100質量ppm以下となるように、第1反応条件を調整することにより、一層効果的かつ確実に軽油原料油中の硫黄分を低減させることができるので好ましい。   In addition, by adjusting the first reaction conditions so that the nitrogen content (nitrogen content ratio) in the first product oil is 100 ppm by mass or less, the sulfur content in the light oil feedstock can be more effectively and reliably reduced. Since it can reduce, it is preferable.

本発明の石油留分の製造方法においては、反応塔入口側、すなわちニッケル−モリブデン触媒等の上で発生する硫化水素は上述したように低減されているので、第2工程より前に、第1工程を経て得られる気液を分離しなくても、第2工程における脱硫反応の活性は十分に抑制される傾向にある。こうすることにより、気液を分離する際に発生するエネルギー損失を抑制でき、運転コストの低減に繋がる傾向にある。   In the method for producing a petroleum fraction according to the present invention, hydrogen sulfide generated on the reaction tower inlet side, that is, on the nickel-molybdenum catalyst or the like is reduced as described above. Even if the gas-liquid obtained through the steps is not separated, the activity of the desulfurization reaction in the second step tends to be sufficiently suppressed. By carrying out like this, the energy loss which generate | occur | produces when isolate | separating a gas-liquid can be suppressed, and it exists in the tendency which leads to the reduction of operating cost.

また、第1触媒であるニッケル−モリブデン触媒等が充填される第1空間容積と、第2触媒であるコバルト−モリブデン触媒が充填される第2空間容積との比が、5:95〜60:40であると好ましい。こうすることにより、LHSVを適正範囲内に調整することが容易となるので、脱硫反応を一層有効に進行させることができる。   The ratio of the first space volume filled with the nickel-molybdenum catalyst as the first catalyst and the second space volume filled with the cobalt-molybdenum catalyst as the second catalyst is 5:95 to 60: 40 is preferable. By doing so, it becomes easy to adjust the LHSV within an appropriate range, and therefore, the desulfurization reaction can proceed more effectively.

本発明の石油留分の製造方法において、第1触媒の脱硫活性k及び第2触媒の脱硫活性kが、下記式(1);
0.875<(k/k)<1.15 …(1)
の条件を満たすように、第1反応条件及び/又は第2反応条件を調整すると好ましい。ここで、「脱硫活性」とは、脱硫反応速度のこといい、脱硫反応の反応速度式(アレニウス式)を用いて、通常の手法用いて反応条件から算出することができる。(k/k)をこの数値範囲内に調整することにより、更に脱硫活性を向上させることができ、軽油留分中の硫黄分含有量を従来よりも十分に低減可能となる。
The method of manufacturing a petroleum fraction of the present invention, the desulfurization activity k 2 of desulfurization activity k 1 and the second catalyst of the first catalyst is a compound represented by the following formula (1);
0.875 <(k 1 / k 2 ) <1.15 (1)
It is preferable to adjust the first reaction condition and / or the second reaction condition so as to satisfy the above condition. Here, “desulfurization activity” refers to the desulfurization reaction rate, and can be calculated from the reaction conditions using a usual method using the desulfurization reaction rate equation (Arrhenius equation). By adjusting (k 1 / k 2 ) within this numerical range, the desulfurization activity can be further improved, and the sulfur content in the gas oil fraction can be sufficiently reduced as compared with the conventional case.

また、第1触媒に備えられた担体及び第2触媒に備えられた担体がそれぞれ、60質量%以上のアルミナを含む多孔質の担体であると好ましい。これにより、触媒活性の低下を一段と抑制できる傾向にある。さらに、水素化脱窒素活性を一層向上させる観点から、第1触媒に備えられた担体として酸性質を有する担体を用いると好ましい。   Moreover, it is preferable that the support | carrier with which the 1st catalyst was equipped, and the support | carrier with which the 2nd catalyst was equipped are the porous support | carriers which respectively contain 60 mass% or more of alumina. Thereby, it exists in the tendency which can suppress the fall of catalyst activity further. Furthermore, from the viewpoint of further improving hydrodenitrogenation activity, it is preferable to use a carrier having acid properties as the carrier provided in the first catalyst.

本発明の石油留分の製造方法において、第1反応条件及び第2反応条件がそれぞれ、反応圧力2〜10MPa、LHSV0.1〜2.0h−1、反応温度300〜410℃及び水素/油比100〜500NL/Lの範囲内で調整されると好ましい。この数値範囲内で核反応条件を調整することにより、原料油の組成が変化した場合であっても、より容易に所望の硫黄分を含有する軽油を得ることができる。 In the method for producing a petroleum fraction of the present invention, the first reaction condition and the second reaction condition are a reaction pressure of 2 to 10 MPa, LHSV 0.1 to 2.0 h −1 , a reaction temperature of 300 to 410 ° C., and a hydrogen / oil ratio, respectively. It is preferable to adjust within the range of 100 to 500 NL / L. By adjusting the nuclear reaction conditions within this numerical range, even when the composition of the raw material oil is changed, a light oil containing a desired sulfur content can be obtained more easily.

本発明の石油留分の製造方法において、活性金属がニッケル−コバルト−モリブデンであると、生成油中の硫黄分と水素消費量とをバランスよく低減することができ、所望の品質を備える軽油が得られると共に、その軽油の製造工程におけるエネルギー消費を一層抑制することが可能となるから好ましい。また、水素消費量を低減することにより、水素製造装置における水素の生産量を低減できるので、その装置において水素の生成に伴い副次的に発生する二酸化炭素量も低減可能となる。   In the method for producing a petroleum fraction of the present invention, when the active metal is nickel-cobalt-molybdenum, the sulfur content in the product oil and the hydrogen consumption can be reduced in a balanced manner, and a light oil having a desired quality is obtained. It is preferable because it can be obtained and energy consumption in the light oil production process can be further suppressed. Moreover, since the amount of hydrogen produced in the hydrogen production apparatus can be reduced by reducing the amount of hydrogen consumed, the amount of carbon dioxide generated as a result of the production of hydrogen in the apparatus can also be reduced.

本発明によれば、従来の軽油脱硫装置の設備及び運転条件を維持し、しかも軽油留分中の硫黄分含有量を従来よりも十分に低減できる石油留分の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the petroleum fraction which can maintain the equipment and operating conditions of the conventional light oil desulfurization apparatus, and can fully reduce the sulfur content in a light oil fraction more than before can be provided. .

以下、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

本実施形態の石油留分の製造方法は、アルミナを主成分とする担体と、その担体上に担持された、ニッケル−モリブデン、ニッケル−タングステン及びニッケル−コバルト−モリブデンからなる群より選ばれる1種以上の活性金属とを備えた第1触媒の存在下、反応圧力、LHSV(液空間速度)、反応温度及び水素/油比を含む第1反応条件を調整して、軽油留分を主成分として含有する原料油を水素化処理することにより、その原料油中の窒素含有量に対して60%以下の窒素を含有する第1生成油を得る第1工程と、アルミナを主成分とする担体と、その担体上に担持された活性金属であるコバルト−モリブデンとを備えた第2触媒の存在下、反応圧力、LHSV、反応温度及び水素/油比を含む第2反応条件を調整して、第1生成油を水素化処理することにより第2生成油を得る第2工程とを含むものである。   The method for producing a petroleum fraction of the present embodiment is a kind selected from the group consisting of a carrier mainly composed of alumina and nickel-molybdenum, nickel-tungsten and nickel-cobalt-molybdenum supported on the carrier. In the presence of the first catalyst comprising the above active metal, the first reaction conditions including reaction pressure, LHSV (liquid space velocity), reaction temperature and hydrogen / oil ratio are adjusted, and the light oil fraction is the main component. A first step of obtaining a first product oil containing 60% or less of nitrogen with respect to a nitrogen content in the raw material oil by hydrotreating the raw material oil to be contained; a carrier mainly composed of alumina; In the presence of a second catalyst comprising cobalt-molybdenum, an active metal supported on the support, the second reaction conditions including reaction pressure, LHSV, reaction temperature, and hydrogen / oil ratio are adjusted, 1 production oil It is intended to include a second step of obtaining a second product oil by hydrotreating.

ここで「LHSV(liquid hourly spacevelocity;液空間速度)」とは、触媒が充填されている触媒層の容量当たりの、標準状態(25℃、101.325kPa)における原料油の体積流量のことをいい、単位「h−1」は時間(hour)の逆数を示す。また、水素/油比に通常用いられる単位である「NL/L」中、水素容量の単位である「NL」は、正規状態(0℃、101325Pa)における水素容量(L)を示す。さらに、反応温度は、触媒層の平均温度を示す。 Here, “LHSV (liquid hourly spacevelocity)” refers to the volumetric flow rate of the raw material oil in the standard state (25 ° C., 101.325 kPa) per volume of the catalyst layer filled with the catalyst. The unit “h −1 ” indicates the reciprocal of time (hour). In addition, among “NL / L” which is a unit usually used for the hydrogen / oil ratio, “NL” which is a unit of hydrogen capacity indicates a hydrogen capacity (L) in a normal state (0 ° C., 101325 Pa). Furthermore, reaction temperature shows the average temperature of a catalyst layer.

(原料油)
本実施形態において用いる原料油は軽油留分を主成分として含有するものである。ここで「軽油留分」とは、石油精製における常圧蒸留装置から得られる220〜380℃の沸点範囲を有する直留軽油留分、並びに、流動接触分解装置、残油直接脱硫装置、減圧軽油脱硫装置、熱分解装置及び減圧軽油水素化分解装置から得られる上述と同様の沸点範囲を有する分解軽油留分からなる群より選ばれる1種以上の軽油留分をいう。原料油に含まれる軽油留分以外の石油留分としては、灯油留分などが挙げられる。なお、軽油留分以外の灯油留分などの混合割合は、触媒被毒を防止する観点から、原料油全量に対して80質量%以下であると好ましい。
(Raw oil)
The feedstock oil used in the present embodiment contains a light oil fraction as a main component. Here, the “light oil fraction” means a straight-run gas oil fraction having a boiling range of 220 to 380 ° C. obtained from an atmospheric distillation apparatus in petroleum refining, a fluid catalytic cracking apparatus, a residual oil direct desulfurization apparatus, and a vacuum gas oil. It means one or more diesel oil fractions selected from the group consisting of cracked gas oil fractions having the same boiling point range as described above, obtained from desulfurization equipment, thermal cracking equipment and vacuum gas oil hydrocracking equipment. Examples of the petroleum fraction other than the light oil fraction contained in the feedstock oil include a kerosene fraction. In addition, the mixing ratio of kerosene fractions other than the light oil fraction is preferably 80% by mass or less with respect to the total amount of the raw material oil from the viewpoint of preventing catalyst poisoning.

(第1工程)
本実施形態の石油留分の製造方法に係る第1工程において、上述した原料油(軽油原料油)は、アルミナを主成分とする担体と、その担体上に担持された、ニッケル−モリブデン、ニッケル−タングステン及びニッケル−コバルト−モリブデンからなる群より選ばれる1種以上の活性金属とを備えた第1触媒が充填されている反応塔に供給される。
(First step)
In the first step according to the method for producing a petroleum fraction of the present embodiment, the above-described feedstock (light oil feedstock) includes a carrier mainly composed of alumina, and nickel-molybdenum and nickel supported on the carrier. -It is supplied to a reaction tower packed with a first catalyst comprising one or more active metals selected from the group consisting of tungsten and nickel-cobalt-molybdenum.

第1触媒の担体に含有されるアルミナ(酸化アルミニウム)は、γ−アルミナであると好ましい。γ−アルミナは、アルミニウム塩とアルミン酸塩を中和又は加水分解する方法、あるいはアルミニウムアマルガム、アルミニウムアルコレートを加水分解する方法などの公知の方法を用いて、アルミナ中間体を経由して製造される。また、上述の方法以外にも、市販のアルミナ中間体やベーマイトパウダーを使用してもよい。   The alumina (aluminum oxide) contained in the first catalyst support is preferably γ-alumina. γ-alumina is produced via an alumina intermediate using a known method such as a method of neutralizing or hydrolyzing an aluminum salt and aluminate, or a method of hydrolyzing aluminum amalgam or aluminum alcoholate. The In addition to the above-described method, a commercially available alumina intermediate or boehmite powder may be used.

上述の担体中のアルミナの含有割合は、60質量%以上であると好ましい。担体中のアルミナの含有割合が60質量%未満であると、担体の有する酸性質が極端に増加するなど所望のものとは異なり、コーク生成により触媒活性が低下する傾向にある。また、第1触媒の水素化脱窒素性能を更に向上させる観点から、第1触媒に用いられる担体は適度な酸性質であると好ましい。かかる酸性質の担体を得るには、担体中のアルミナの含有割合を90質量%以上とし、それ以外の元素(成分)としてSi、Ti、Zr、Mg、Ca及びBから選ばれる少なくとも1種類を、担体の全量に対して、酸化物換算で1〜10質量%の範囲で含有していることが好ましい。これらの元素は、酸化物換算で1.2〜9質量%の範囲で含有されるとより好ましく、1.5〜8質量%含有されると更に好ましい。上述の元素の中では、Si、Ti又はZrがより好ましく、Si又はTiが特に好ましい。また、これらの元素は2種以上を組み合わせてもよく、その場合は、Si及びTiを組み合わせることが好ましい。   The content ratio of alumina in the carrier is preferably 60% by mass or more. When the content ratio of alumina in the support is less than 60% by mass, the catalyst activity tends to decrease due to coke formation, unlike the desired one such as an extremely increased acid property of the support. Further, from the viewpoint of further improving the hydrodenitrogenation performance of the first catalyst, it is preferable that the carrier used for the first catalyst has an appropriate acid property. In order to obtain a carrier having such an acid property, the content ratio of alumina in the carrier is 90% by mass or more, and at least one element selected from Si, Ti, Zr, Mg, Ca and B is used as the other element (component). It is preferable to contain in the range of 1-10 mass% in terms of oxide with respect to the total amount of the carrier. These elements are more preferably contained in the range of 1.2 to 9% by mass in terms of oxides, and more preferably 1.5 to 8% by mass. Of the above elements, Si, Ti, or Zr is more preferable, and Si or Ti is particularly preferable. Moreover, these elements may combine 2 or more types, In that case, it is preferable to combine Si and Ti.

上記元素による効果発現の機構は解明されていないが、上記元素がアルミナと複合的な酸化物状態を形成し、そのモル比で担持した活性金属と相乗的に炭素−硫黄結合の開裂を促進しているものと考えられる。本発明者らは、このことに起因して脱硫活性の向上が見られると、現在のところ推定している。   Although the mechanism of the effect manifestation by the above elements has not been elucidated, the above elements form a complex oxide state with alumina, and promote the cleavage of the carbon-sulfur bond synergistically with the active metal supported at the molar ratio. It is thought that. The present inventors currently estimate that the desulfurization activity is improved due to this.

上述の元素が酸化物換算で1質量%より少ないと、脱硫活性が低下する傾向にあり、10質量%を超えると担体の酸性質が過度に強くなるため、原料油の分解等の望ましくない副反応が起こる傾向にある。また、アルミナの含有量が上記範囲内にある場合は、より少ない第1触媒量で、第1生成油中の窒素含有量を軽油原料油中の窒素含有量に対して60%以下とすることができる。第1触媒の量をより少なくすることにより、第2触媒であるコバルト−モリブデンを活性金属とする触媒(コバルト−モリブデン触媒)を、反応塔内に一層多く充填できるため、水素消費量を過度に増やすことなく反応塔全体としての脱硫能を一段と向上させることができる。   If the above elements are less than 1% by mass in terms of oxides, the desulfurization activity tends to decrease, and if it exceeds 10% by mass, the acid properties of the carrier become excessively strong. Reactions tend to occur. Moreover, when the content of alumina is within the above range, the nitrogen content in the first product oil should be 60% or less with respect to the nitrogen content in the light oil feedstock with a smaller first catalyst amount. Can do. By reducing the amount of the first catalyst, a catalyst having a second catalyst, cobalt-molybdenum as an active metal (cobalt-molybdenum catalyst), can be charged more in the reaction tower, so that the hydrogen consumption is excessively increased. The desulfurization ability of the entire reaction tower can be further improved without increasing the number.

第1触媒の平均細孔径は3〜10nmであると好ましく、5〜9nmであるとより好ましい。平均細孔径が3nmより小さいと反応すべき分子の細孔内拡散が十分でなくなる傾向にあり、平均細孔径が10nmを越えると、第1触媒の表面積が減少し、触媒活性の低下に繋がる傾向にある。また第1触媒の細孔容積は0.3mL/g以上であると好ましい。細孔容積が0.3mL/gより小さいと、第1触媒に活性金属を含浸させ難くなり、所望の第1触媒を得ることが困難になる傾向にある。さらに、第1触媒の比表面積は200m/g以上であると好ましい。第1触媒の比表面積が200m/gを下回ると、活性金属の担持面積が低下し、触媒活性の低下に繋がる傾向にある。これら触媒の細孔容積及び比表面積は、窒素吸着によるBET法と呼ばれる方法により測定、算出可能である。 The average pore diameter of the first catalyst is preferably 3 to 10 nm, and more preferably 5 to 9 nm. If the average pore diameter is smaller than 3 nm, the diffusion of molecules to be reacted tends to be insufficient, and if the average pore diameter exceeds 10 nm, the surface area of the first catalyst is decreased, leading to a decrease in catalytic activity. It is in. The pore volume of the first catalyst is preferably 0.3 mL / g or more. When the pore volume is smaller than 0.3 mL / g, it becomes difficult to impregnate the first catalyst with the active metal, and it tends to be difficult to obtain the desired first catalyst. Furthermore, the specific surface area of the first catalyst is preferably 200 m 2 / g or more. When the specific surface area of the first catalyst is less than 200 m 2 / g, the active metal supporting area decreases, which tends to decrease the catalytic activity. The pore volume and specific surface area of these catalysts can be measured and calculated by a method called the BET method based on nitrogen adsorption.

第1触媒に活性金属であるニッケル−モリブデン等を担持する方法としては、通常の脱硫触媒の製造に用いられる方法を採用できる。コバルト源としては硝酸コバルト、塩化コバルト若しくは酢酸コバルトなどの有機若しくは無機コバルト塩を用いることができる。ニッケル源としては硝酸ニッケル、塩化ニッケル若しくは酢酸ニッケルなどの有機若しくは無機コバルト塩を用いることができる。モリブデン源としては、モリブデン酸アンモニウム若しくは酸化モリブデンなど、タングステン源としてはタングステン酸アンモニウムなどを用いることができる。また、それぞれの金属について、ここに列記した以外の有機塩あるいは無機塩を用いてもよい。さらに、活性金属を含む含浸液に有機化合物を共存させてもよい。また、これらの活性金属に加えて、第1触媒にリンが担持されてもよい。   As a method for supporting nickel-molybdenum, which is an active metal, on the first catalyst, a method used for producing a normal desulfurization catalyst can be employed. As the cobalt source, an organic or inorganic cobalt salt such as cobalt nitrate, cobalt chloride or cobalt acetate can be used. As the nickel source, an organic or inorganic cobalt salt such as nickel nitrate, nickel chloride or nickel acetate can be used. As the molybdenum source, ammonium molybdate or molybdenum oxide can be used, and as the tungsten source, ammonium tungstate can be used. For each metal, organic salts or inorganic salts other than those listed here may be used. Furthermore, an organic compound may coexist in the impregnation liquid containing the active metal. In addition to these active metals, phosphorus may be supported on the first catalyst.

一方、上述のSi、Ti、Zr、Mg、Ca及びBから選ばれる元素の酸化物といったアルミナ以外の任意の担体構成成分についての担体調製方法についても、通常の担体調製方法であればよく、特に限定されない。例えば、アルミナを調合するいずれかの段階において、これらの元素の酸化物、水酸化物、硝酸塩、硫酸塩又はその他の塩化合物を、固体又は溶液の状態で添加する方法などが挙げられる。あるいは、アルミナのみを初めに焼成した後、上述の塩化合物を溶液の状態で含浸担持してもよいが、アルミナを焼成する前のいずれかの段階で上述の塩化合物を添加することが好ましい。   On the other hand, the carrier preparation method for any carrier component other than alumina such as an oxide of an element selected from Si, Ti, Zr, Mg, Ca and B described above may be a normal carrier preparation method. It is not limited. For example, a method of adding oxides, hydroxides, nitrates, sulfates or other salt compounds of these elements in a solid or solution state at any stage of preparing alumina. Alternatively, the above-described salt compound may be impregnated and supported in a solution state after first firing only alumina, but it is preferable to add the above-described salt compound at any stage before firing the alumina.

本実施形態の第1触媒における活性金属の担持量は特に限定されず、通常の脱硫触媒におけるものと同程度の担持量を採用することができる。ただし活性金属の担持量が極端に少ない場合、触媒活性が十分ではなくなる傾向にあり、極端に多い場合は、該触媒の製造時若しくは使用時において活性金属の凝集が起こり、所望通りの触媒活性を得難くなる傾向にある。したがって、通常、第1触媒がニッケル−モリブデン触媒又はニッケル−タングステン触媒である場合、第1触媒の全体量に対して、ニッケルの担持量は2〜8質量%であると好ましく、第1触媒がニッケル−コバルト−モリブデン触媒である場合、第1触媒の全体量に対して、ニッケルの担持量は0.1〜8質量%、コバルトの担持量は2〜8質量%であると好ましい。   The supported amount of active metal in the first catalyst of the present embodiment is not particularly limited, and a supported amount comparable to that in a normal desulfurization catalyst can be employed. However, when the amount of active metal supported is extremely small, the catalytic activity tends to be insufficient. When the amount is extremely large, aggregation of the active metal occurs during the production or use of the catalyst, and the desired catalytic activity is obtained. It tends to be difficult to obtain. Therefore, usually, when the first catalyst is a nickel-molybdenum catalyst or a nickel-tungsten catalyst, the supported amount of nickel is preferably 2 to 8% by mass with respect to the total amount of the first catalyst. In the case of a nickel-cobalt-molybdenum catalyst, the supported amount of nickel is preferably 0.1 to 8% by mass and the supported amount of cobalt is 2 to 8% by mass with respect to the total amount of the first catalyst.

本実施形態における第1触媒は、実際の軽油の水素化脱硫に用いる前に、一般的な水素化脱硫触媒と同様の方法により予備硫化されてもよい。この予備硫化は、例えば、直留軽油を単独で、若しくは直留軽油に硫化剤を添加したものを用いて、水素加圧条件下、200℃以上の加熱処理を所定の手順に従って行うことができる。予備硫化処理を経た第1触媒は、その触媒上の活性金属が硫化された状態となり、所望の触媒活性(脱硫活性)を発揮することが可能となる。上記硫化剤としては、ジメチルジサルファイド、ポリサルファイドなどの硫黄化合物が用いられる。予め硫化処理を施された触媒や、含硫黄、含酸素若しくは含窒素有機溶剤による活性化処理を施された触媒を使用することもできる。   The first catalyst in the present embodiment may be presulfided by the same method as a general hydrodesulfurization catalyst before being used for actual hydrodesulfurization of light oil. This preliminary sulfidation can be performed, for example, using straight-run gas oil alone or by adding a sulfurizing agent to straight-run gas oil under a hydrogen pressurization condition at 200 ° C. or higher according to a predetermined procedure. . The first catalyst that has undergone the preliminary sulfidation treatment is in a state in which the active metal on the catalyst is sulfided, and can exhibit a desired catalytic activity (desulfurization activity). As the sulfurizing agent, sulfur compounds such as dimethyl disulfide and polysulfide are used. It is also possible to use a catalyst that has been subjected to a sulfurization treatment or a catalyst that has been subjected to an activation treatment with a sulfur-containing, oxygen-containing or nitrogen-containing organic solvent.

第1工程においては、軽油原料油を上述した第1触媒上で水素化処理することにより第1生成油を得る。その際、反応圧力、LHSV、反応温度及び水素/油比を含む第1反応条件を、第1生成油中の窒素含有量が、軽油原料油中の窒素含有量に対して60%以下となるように調整する(以下、軽油原料油中の窒素含有量に対する第1生成油中の窒素含有量の割合を「窒素残留率」という。)。   In the first step, a gas oil feedstock is hydrotreated on the first catalyst described above to obtain a first product oil. At that time, under the first reaction conditions including reaction pressure, LHSV, reaction temperature and hydrogen / oil ratio, the nitrogen content in the first product oil is 60% or less with respect to the nitrogen content in the light oil feedstock. (Hereinafter, the ratio of the nitrogen content in the first produced oil to the nitrogen content in the light oil feedstock is referred to as “nitrogen residual ratio”).

窒素残留率が60%以下となることにより、第2触媒への窒素化合物による被毒も十分に軽減できるので、結果として得られる第2生成油中の硫黄分を十分に低減することが可能となる。そのような観点から、第1生成油中の窒素含有量は、100質量ppm以下であると好ましく、50質量ppm以下であるとより好ましく、40質量ppm以下であると更に好ましく、30質量ppm以下であると特に好ましい。   When the nitrogen residual ratio is 60% or less, the poisoning of the second catalyst by the nitrogen compound can be sufficiently reduced, so that the sulfur content in the resulting second product oil can be sufficiently reduced. Become. From such a viewpoint, the nitrogen content in the first product oil is preferably 100 ppm by mass or less, more preferably 50 ppm by mass or less, still more preferably 40 ppm by mass or less, and 30 ppm by mass or less. Is particularly preferred.

窒素残留率が60%以下となるように第1反応条件を調整するには、まず、反応塔への第1触媒の充填量(充填空間容積)を、例えば、以下の手順により算出、決定した後、その量の第1触媒を実機の反応塔に充填する。ここでは、ニッケル−モリブデンを活性金属として担持した触媒(ニッケル−モリブデン触媒)について説明するが、他の活性金属を担持して第1触媒を得た場合でも同様に算出することができる。   In order to adjust the first reaction conditions so that the nitrogen residual rate is 60% or less, first, the amount of packed first catalyst (packing space volume) into the reaction tower was calculated and determined by the following procedure, for example. After that, the amount of the first catalyst is charged into the actual reaction tower. Here, a catalyst (nickel-molybdenum catalyst) carrying nickel-molybdenum as an active metal will be described, but the same calculation can be made even when a first catalyst is obtained by carrying other active metals.

例えば、硫黄分1.3質量%、窒素分(窒素化合物)200質量ppmの直留軽油の水素化脱窒素反応を、所定量のニッケル−モリブデン触媒の存在下、水素分圧4.9MPa、水素/油比200NL/L、LHSV(液空間速度)1.0〜2.0h−1、反応温度340〜370℃の第1反応条件で行う。ここで、この水素化脱窒素反応は、下記式(2);
k=A×exp(−E/RT) …(2)
で表されるアレニウス式に従うことができるものとする。なお、式(2)中、kは速度定数、Aは頻度因子、Eは活性化エネルギー、Rは気体定数、及びTは反応温度を示す。
For example, a hydrodenitrogenation reaction of straight run gas oil having a sulfur content of 1.3% by mass and a nitrogen content (nitrogen compound) of 200 ppm by mass in the presence of a predetermined amount of nickel-molybdenum catalyst, hydrogen partial pressure of 4.9 MPa, hydrogen / Oil ratio 200 NL / L, LHSV (liquid hourly space velocity) 1.0 to 2.0 h −1 , reaction temperature 340 to 370 ° C. Here, this hydrodenitrogenation reaction is represented by the following formula (2);
k = A × exp (−E / RT) (2)
It is possible to follow the Arrhenius equation expressed by In the formula (2), k is a rate constant, A is a frequency factor, E is an activation energy, R is a gas constant, and T is a reaction temperature.

より詳細には、上述の数値範囲内で第1反応条件を種々変化させつつ、上記軽油原料油の水素化処理を行う。そして、得られる第1生成油中の窒素含有量を測定し、水素化脱窒素反応における速度定数及び活性化エネルギーを算出する。算出された速度定数及び活性化エネルギーをアレニウス式に代入し、窒素残留率が60%以下となるように液速度を求めることにより、この液速度に対応するようなニッケル−モリブデン触媒の充填空間容積を算出することができる。   More specifically, the gas oil feedstock is hydrotreated while the first reaction conditions are variously changed within the above numerical range. Then, the nitrogen content in the obtained first product oil is measured, and the rate constant and the activation energy in the hydrodenitrogenation reaction are calculated. By substituting the calculated rate constant and activation energy into the Arrhenius equation, and determining the liquid speed so that the nitrogen residual ratio is 60% or less, the filling space volume of the nickel-molybdenum catalyst corresponding to this liquid speed Can be calculated.

石油留分の製造方法において、窒素残留率が60%以下となるように第1反応条件を調整する方法としては、軽油原料油及び第1生成油を採取し、それぞれの窒素含有量及び第1生成油中の窒素含有量を測定し、その測定結果に基づいて窒素残留率を算出し、第1反応条件を調製する方法などがある。この際、上述のようにして算出された水素化脱窒素反応の反応次数及び活性化エネルギー及びアレニウス式を用いることもでき、それにより、第1触媒の劣化程度などを把握することも可能となる。なお、窒素含有量又は窒素分は、例えば、JIS−K−2541に規定されている硫黄分試験法、JIS−K−2609に規定されている窒素分試験法などに基づいて測定することができる。   In the method for producing petroleum fractions, the first reaction condition is adjusted so that the nitrogen residual ratio is 60% or less. The gas oil feedstock and the first produced oil are collected, and the nitrogen content and the first There is a method of measuring the nitrogen content in the produced oil, calculating the nitrogen residual rate based on the measurement result, and preparing the first reaction condition. At this time, the reaction order and activation energy of the hydrodenitrogenation calculated as described above and the Arrhenius equation can also be used, whereby the degree of deterioration of the first catalyst can be grasped. . The nitrogen content or nitrogen content can be measured based on, for example, a sulfur content test method defined in JIS-K-2541, a nitrogen content test method defined in JIS-K-2609, or the like. .

第1工程における第1反応条件は、反応温度300〜410℃、水素分圧2〜10MPa、LHSV0.1〜2h−1、水素/油比100〜500NL/Lであると好ましく、反応温度300℃〜390℃、水素分圧3〜8MPa、LHSV0.3〜1.8h−1、水素/油比150〜300NL/Lであるとより好ましい。第1反応条件は、かかる数値範囲内で、個別の装置や原料油に応じて調整、設定することができる。水素化脱硫反応をより進行させるためには、水素分圧をより高くし、LHSVをより低くすればよいが、かかる第1反応条件の調整により運転コストが上昇する傾向にあるので、これらのことを考慮して、第1反応条件を調整、設定するとよい。 The first reaction conditions in the first step are preferably a reaction temperature of 300 to 410 ° C., a hydrogen partial pressure of 2 to 10 MPa, an LHSV of 0.1 to 2 h −1 , a hydrogen / oil ratio of 100 to 500 NL / L, and a reaction temperature of 300 ° C. It is more preferable that it is ˜390 ° C., hydrogen partial pressure 3 to 8 MPa, LHSV 0.3 to 1.8 h −1 , and hydrogen / oil ratio 150 to 300 NL / L. The first reaction conditions can be adjusted and set in accordance with individual apparatuses and feedstocks within such numerical ranges. In order to further advance the hydrodesulfurization reaction, it is only necessary to increase the hydrogen partial pressure and lower the LHSV. However, these adjustments of the first reaction condition tend to increase the operating cost. The first reaction condition may be adjusted and set in consideration of the above.

また、第1触媒としてニッケル−モリブデン触媒等を用いる場合、第1触媒と軽油原料油(第1生成油)との接触時間が長くなると、水素化脱窒素反応は進行するものの、ニッケル−モリブデン触媒等自体が硫化水素による被毒の影響を比較的強く受けるため、触媒寿命が短くなる傾向にある。しかも、水素消費量が増加するため、運転コストが上昇する傾向にある。そのため、触媒寿命及び運転コストをも考慮して、第1反応条件を調整、設定するとよい。   When a nickel-molybdenum catalyst or the like is used as the first catalyst, the hydrodenitrogenation reaction proceeds when the contact time between the first catalyst and the light oil feedstock (first product oil) increases, but the nickel-molybdenum catalyst. Etc. themselves are relatively strongly affected by poisoning by hydrogen sulfide, so that the catalyst life tends to be shortened. Moreover, since the amount of hydrogen consumption increases, the operating cost tends to increase. Therefore, the first reaction condition may be adjusted and set in consideration of the catalyst life and the operating cost.

(第2工程)
本実施形態の第2工程において、上述の第1工程により得られた第1生成油は、アルミナを主成分とする担体と、担体上に担持された活性金属であるコバルト−モリブデンとを備えた第2触媒が充填されている反応塔に供給される。
(Second step)
In the second step of the present embodiment, the first product oil obtained by the first step described above includes a support mainly composed of alumina, and cobalt-molybdenum that is an active metal supported on the support. The second catalyst is supplied to the reaction tower.

第2触媒の平均細孔径、細孔容積及び比表面積は、上記第1触媒と同様の観点から、第1触媒と同様の数値範囲内にあると好ましい。また、第2触媒に用いる担体、活性金属の担持方法及びその担持量についても、上述の第1触媒と同様であると好ましく、予備硫化した後に、本実施形態の石油留分の製造方法に用いてもよい。さらに、第2工程における第2反応条件は、上述の第1反応条件と同様の観点から、第1反応条件と同様の数値範囲内であると好ましい。   The average pore diameter, pore volume and specific surface area of the second catalyst are preferably in the same numerical range as the first catalyst from the same viewpoint as the first catalyst. Further, the support used for the second catalyst, the method for supporting the active metal and the amount supported thereof are preferably the same as those for the first catalyst described above, and after the preliminary sulfidation, the method is used for the method for producing the petroleum fraction of the present embodiment. May be. Furthermore, the second reaction condition in the second step is preferably within the same numerical range as the first reaction condition from the same viewpoint as the first reaction condition described above.

本実施形態の第2工程を経て得られた第2生成油中には、第1工程及び第2工程により副生した軽油より軽質である石油留分などが含まれるので、これらを精留塔などにより分留、除去し、軽油留分が回収される。   The second product oil obtained through the second step of the present embodiment includes a petroleum fraction that is lighter than the gas oil produced as a by-product in the first step and the second step. A light oil fraction is recovered by fractionation and removal.

本実施形態の石油留分の製造方法において、上述した第1工程における水素化処理及び第2工程における水素化処理は、別の反応塔内で行われてもよく、一つの反応塔内で行われてもよい。また、運転管理の容易さの観点及び触媒劣化の防止の観点から、反応塔内に複数の触媒床(触媒層)を設け、各触媒床の間に水素ガスを導入するクエンチゾーンを設けると好ましい。これにより、反応熱の除去及び消費された水素の補充が可能となる。   In the method for producing a petroleum fraction of the present embodiment, the hydrogenation treatment in the first step and the hydrogenation treatment in the second step described above may be performed in separate reaction towers, or performed in one reaction tower. It may be broken. Further, from the viewpoint of ease of operation management and prevention of catalyst deterioration, it is preferable to provide a plurality of catalyst beds (catalyst layers) in the reaction tower and provide a quench zone for introducing hydrogen gas between the catalyst beds. This makes it possible to remove reaction heat and replenish consumed hydrogen.

本実施形態で用いられる脱硫装置の反応塔は、トリクルフロー形式であってもよく、アップフロー形式であってもよいが、一般的にはトリクルフロー形式が採用される。   The reaction tower of the desulfurization apparatus used in the present embodiment may be a trickle flow format or an upflow format, but a trickle flow format is generally adopted.

本実施形態に用いられる脱硫装置には、第1生成油とガス成分とを分離する高圧又は低圧の気液分離装置を反応塔の後段に設置される。本実施形態においては、第2触媒に供給される第1生成油及びガス成分中の硫化水素含有量が比較的少ないため、第1触媒が充填される反応塔(触媒床)と第2触媒が充填される反応塔(触媒床)との間に、上述の気液分離装置を設けなくても、第2触媒の劣化等の不具合が抑制される傾向にある。   In the desulfurization apparatus used in the present embodiment, a high-pressure or low-pressure gas-liquid separation apparatus that separates the first product oil and the gas component is installed at the rear stage of the reaction tower. In the present embodiment, since the hydrogen sulfide content in the first product oil and gas component supplied to the second catalyst is relatively small, the reaction tower (catalyst bed) and the second catalyst filled with the first catalyst Even if the gas-liquid separation device described above is not provided between the packed reaction tower (catalyst bed), defects such as deterioration of the second catalyst tend to be suppressed.

本実施形態で用いられる第一触媒及び第二触媒の反応塔への充填量(充填空間容積)は特に限定されるものではないが、第1触媒が充填される第1空間容積と、第2触媒が充填される第2空間容積との比が、5:95〜60:40であると好ましい。これにより、第1工程及び第2工程を合わせた触媒の単位容量当たりの液空間速度が0.1h−1〜3h−1となり、脱硫反応を一層有効に進行させることが可能となる傾向にある。第1空間容積が上記比よりも低いと、第2触媒が窒素で被毒されてしまう傾向にあり、上記比よりも高いと、第1触媒自体が硫化水素に被毒されてしまう傾向にある。そのような観点から、第1空間容積と第2空間容積との比が、10:90〜40:60であるとより好ましく、10:90〜30:70であると更に好ましい。ここで、「充填空間容積」、又は「空間容積」とは、反応塔内の触媒が充填される領域に相当する容積のことをいい、反応塔内径、反応塔内に充填された触媒の高さなどから算出される。 The amount (packing space volume) of the first catalyst and the second catalyst used in this embodiment in the reaction tower is not particularly limited, but the first space volume filled with the first catalyst, The ratio with the second space volume filled with the catalyst is preferably 5:95 to 60:40. As a result, the liquid space velocity per unit volume of the catalyst obtained by combining the first step and the second step becomes 0.1 h −1 to 3 h −1 , and the desulfurization reaction tends to proceed more effectively. . When the first space volume is lower than the above ratio, the second catalyst tends to be poisoned with nitrogen. When the first space volume is higher than the above ratio, the first catalyst itself tends to be poisoned with hydrogen sulfide. . From such a viewpoint, the ratio of the first space volume to the second space volume is more preferably 10:90 to 40:60, and still more preferably 10:90 to 30:70. Here, “packing space volume” or “space volume” refers to a volume corresponding to a region filled with the catalyst in the reaction column, and the inner diameter of the reaction column, the height of the catalyst packed in the reaction column. Calculated from the above.

また、第1触媒単独の脱硫活性をk、第2触媒単独の脱硫活性をkとした場合、下記式(1);
0.875<(k/k)<1.15 …(1)
の条件が満足されるように、第1反応条件及び/又は第2反応条件が調整されると好ましい。k及びkの脱硫活性は、具体的には脱硫反応速度を示し、脱硫反応の反応速度式(アレニウス式)を用いて、通常の手法用いて反応条件から算出することができる。(k/k)が0.875以下である場合は、所望の脱硫活性が得られない傾向にあり、(k/k)が1.15以上である場合も、所望の脱硫活性が得られない傾向にある。
Further, when the desulfurization activity of the first catalyst alone is k 1 and the desulfurization activity of the second catalyst alone is k 2 , the following formula (1);
0.875 <(k 1 / k 2 ) <1.15 (1)
It is preferable that the first reaction condition and / or the second reaction condition is adjusted so that the above condition is satisfied. The desulfurization activity of k 1 and k 2 specifically indicates the desulfurization reaction rate, and can be calculated from the reaction conditions using a usual method using the reaction rate equation (Arrhenius equation) of the desulfurization reaction. When (k 1 / k 2 ) is 0.875 or less, the desired desulfurization activity tends not to be obtained, and when (k 1 / k 2 ) is 1.15 or more, the desired desulfurization activity is also obtained. Tend not to be obtained.

上述した本実施形態の石油留分の製造方法において、第1反応条件及び第2反応条件の調整により、第2生成油に含有される硫黄分を50質量ppm以下とすることができ、10質量ppm以下とすることもできる。なお第2生成油等の中の硫黄分(硫黄化合物)の含有量は、例えば、JIS−K−2541「硫黄分試験法」又はASTM−D5453に記載の方法に準拠して測定することができる。   In the method for producing a petroleum fraction of the present embodiment described above, the sulfur content contained in the second product oil can be reduced to 50 mass ppm or less by adjusting the first reaction condition and the second reaction condition. It can also be made into ppm or less. In addition, content of the sulfur content (sulfur compound) in 2nd production | generation oil etc. can be measured based on the method as described in JIS-K-2541 "sulfur content test method" or ASTM-D5453, for example. .

以上、本発明に係る石油留分の製造方法の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。   As mentioned above, although preferred embodiment of the manufacturing method of the petroleum fraction which concerns on this invention was described, this invention is not limited to the said embodiment.

例えば、本発明に係る石油留分の製造方法の別の実施形態において、第1触媒と第2触媒とが別の反応塔内に充填されている場合、上述した気液分離設備をそれらの反応塔の間に設けてもよい。これにより、第2触媒に供給される硫化水素を一層少なくすることができるので、触媒寿命が延びる傾向にある。   For example, in another embodiment of the method for producing petroleum fractions according to the present invention, when the first catalyst and the second catalyst are packed in separate reaction towers, the above-described gas-liquid separation equipment is used for the reaction. You may provide between towers. Thereby, since hydrogen sulfide supplied to the second catalyst can be further reduced, the catalyst life tends to be extended.

以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

(実施例1)
内径25mmの反応管1に第1触媒として触媒A(ニッケル−モリブデン触媒)を25mL、反応管2に第2触媒として触媒B(コバルト−モリブデン触媒)を75mL積層して充填した。これらの反応管1、2を直列に連結し、ジメチルジサルファイドを硫黄分として3質量%含有する直留軽油を用いて、触媒層平均温度320℃、水素分圧5MPa、LHSV1h−1、水素/油比200NL/Lの条件下で、触媒の予備硫化を12時間行った。予備硫化が終了した後、中東系の直留軽油GO1(10%留出点285℃、90%留出点350℃、硫黄分1.31質量%、窒素分150質量ppm)を水素分圧5MPa、第1触媒及び第2触媒(反応管1、2)を併せたLHSV1h−1、水素/油比200NL/Lの反応条件の下、反応管1、2内に供給して水素化処理を行った。なお、反応管1、2の触媒層の平均温度が360℃となるように、反応管ヒーターを調整した。次いで、直流軽油の供給開始後14日目において、反応管1出口の第1生成油の性状を分析、測定したところ、硫黄分は510質量ppm、窒素分は31質量ppm(すなわち窒素残留率20.7%)であった。反応管2出口の第2生成油中の硫黄分は8.1質量ppmであり、このときの化学水素消費量は336scf/bblであった。ここで、「化学水素消費量」とは、触媒上での水素化脱硫反応若しくは水素化脱窒素反応などの反応により消費された水素量のことをいい、水分中に溶解した水素などは除かれる。この「化学水素消費量」は、通常、反応管(触媒層)に供給される水素量と反応管から出てくる水素量との差分から算出される。上記触媒A、B及び後述する触媒Cの物性を表1に示す。
(Example 1)
25 mL of catalyst A (nickel-molybdenum catalyst) as a first catalyst was stacked in a reaction tube 1 having an inner diameter of 25 mm, and 75 mL of catalyst B (cobalt-molybdenum catalyst) as a second catalyst was stacked and filled in a reaction tube 2. These reaction tubes 1 and 2 are connected in series, and using straight-run gas oil containing 3% by mass of dimethyl disulfide as a sulfur content, the catalyst layer average temperature is 320 ° C., the hydrogen partial pressure is 5 MPa, LHSV1h −1 , hydrogen / The catalyst was presulfided for 12 hours under an oil ratio of 200 NL / L. After the preliminary sulfidation was completed, a Middle East straight gas oil GO1 (10% distillation point 285 ° C., 90% distillation point 350 ° C., sulfur content 1.31 mass%, nitrogen content 150 mass ppm) was subjected to a hydrogen partial pressure of 5 MPa. , LHSV1h -1 combined with the first catalyst and the second catalyst (reaction tubes 1 and 2), and supplied to the reaction tubes 1 and 2 under the reaction conditions of hydrogen / oil ratio of 200 NL / L to perform hydrogenation treatment It was. The reaction tube heater was adjusted so that the average temperature of the catalyst layers of the reaction tubes 1 and 2 was 360 ° C. Next, on the 14th day after the start of the supply of direct current diesel oil, the properties of the first product oil at the outlet of the reaction tube 1 were analyzed and measured. As a result, the sulfur content was 510 ppm by mass and the nitrogen content was 31 ppm by mass (that is, the nitrogen residual rate was 20 0.7%). The sulfur content in the second product oil at the outlet of the reaction tube 2 was 8.1 mass ppm, and the chemical hydrogen consumption at this time was 336 scf / bbl. Here, “chemical hydrogen consumption” refers to the amount of hydrogen consumed by a reaction such as hydrodesulfurization reaction or hydrodenitrogenation reaction on a catalyst, excluding hydrogen dissolved in moisture. . This “chemical hydrogen consumption” is usually calculated from the difference between the amount of hydrogen supplied to the reaction tube (catalyst layer) and the amount of hydrogen coming out of the reaction tube. Table 1 shows the physical properties of the catalysts A and B and the catalyst C described later.

Figure 2005255995
Figure 2005255995

なお、上述のリンを含む担持金属の含有割合は、いずれも金属酸化物(CoO、NiO、MoO、P)換算で表したものであり、残部が担体のγ−アルミナとなる。また表1中、「無機酸化物」とは、酸化ケイ素(SiO;シリカ)、酸化チタン(TiO;チタニア)、酸化マグネシウム(MgO;マグネシア)、酸化ジルコニウム(ZrO;ジルコニア)、五酸化二リン(P)、酸化カルシウム(CaO;カルシア)及び三酸化二ホウ素(B)より選ばれる少なくとも1種の酸化物を示す。 In addition, all the content rates of the above-mentioned supported metals including phosphorus are expressed in terms of metal oxides (CoO, NiO, MoO 3 , P 2 O 5 ), and the balance is γ-alumina of the support. In Table 1, “inorganic oxide” means silicon oxide (SiO 2 ; silica), titanium oxide (TiO 2 ; titania), magnesium oxide (MgO; magnesia), zirconium oxide (ZrO 2 ; zirconia), pentoxide. It shows at least one oxide selected from diphosphorus (P 2 O 5 ), calcium oxide (CaO; calcia) and diboron trioxide (B 2 O 3 ).

(実施例2)
内径25mmの反応管1に第1触媒として上述の触媒Aを12.5mL、反応管2に第2触媒として上述の触媒Bを87.5mL積層して充填した。これらの反応管1、2を直列に連結し、実施例1と同様にして触媒の予備硫化を12時間行った。予備硫化が終了した後、上述の中東系の直留軽油GO1を水素分圧5MPa、第1触媒及び第2触媒を併せたLHSV1h−1、水素/油比200NL/Lの反応条件の下、反応管1、2内に供給して水素化処理を行った。なお、反応管1、2の触媒層の平均温度が360℃となるように、反応管ヒーターを調整した。次いで、直流軽油の供給開始後14日目において、反応管1出口の第1生成油の性状を分析、測定したところ、硫黄分は1884質量ppm、窒素分は59質量ppm(すなわち窒素残留率39.3%)であった。反応管2出口の第2生成油中の硫黄分は9.4質量ppmであり、このときの化学水素消費量は315scf/bblであった。
(Example 2)
The reaction tube 1 having an inner diameter of 25 mm was filled with 12.5 mL of the catalyst A described above as a first catalyst and 87.5 mL of the catalyst B described above as a second catalyst in the reaction tube 2. These reaction tubes 1 and 2 were connected in series, and the catalyst was presulfided for 12 hours in the same manner as in Example 1. After the preliminary sulfidation is completed, the Middle East straight-run gas oil GO1 is reacted under a reaction condition of a partial pressure of hydrogen of 5 MPa, LHSV1h −1 combined with the first catalyst and the second catalyst, and a hydrogen / oil ratio of 200 NL / L. Hydrogenation was carried out by feeding into the pipes 1 and 2. The reaction tube heater was adjusted so that the average temperature of the catalyst layers of the reaction tubes 1 and 2 was 360 ° C. Next, on the 14th day after the start of the supply of the direct current diesel oil, the properties of the first product oil at the outlet of the reaction tube 1 were analyzed and measured. .3%). The sulfur content in the second product oil at the outlet of the reaction tube 2 was 9.4 ppm by mass, and the chemical hydrogen consumption at this time was 315 scf / bbl.

(実施例3)
内径25mmの反応管1に第1触媒として上述の触媒Aを75mL、反応管2に第2触媒として上述の触媒Bを25mL積層して充填した。これらの反応管1、2を直列に連結し、実施例1と同様にして触媒の予備硫化を12時間行った。予備硫化が終了した後、上述の中東系の直留軽油GO1を水素分圧5MPa、第1触媒及び第2触媒を併せたLHSV1h−1、水素/油比200NL/Lの反応条件の下、反応管1、2内に供給して水素化処理を行った。なお、反応管1、2の触媒層の平均温度が360℃となるように、反応管ヒーターを調整した。次いで、直流軽油の供給開始後14日目において、反応管1出口の第1生成油の性状を分析、測定したところ、硫黄分は29.7質量ppm、窒素分は7.1質量ppm(すなわち窒素残留率4.7%)であった。反応管2出口の第2生成油中の硫黄分は10.0質量ppmであり、このときの化学水素消費量は378scf/bblであった。
(Example 3)
The reaction tube 1 having an inner diameter of 25 mm was filled with 75 mL of the catalyst A as a first catalyst and 25 mL of the catalyst B as a second catalyst in the reaction tube 2. These reaction tubes 1 and 2 were connected in series, and the catalyst was presulfided for 12 hours in the same manner as in Example 1. After the preliminary sulfidation is completed, the Middle East straight-run gas oil GO1 is reacted under a reaction condition of a partial pressure of hydrogen of 5 MPa, LHSV1h −1 combined with the first catalyst and the second catalyst, and a hydrogen / oil ratio of 200 NL / L. Hydrogenation was carried out by feeding into the pipes 1 and 2. The reaction tube heater was adjusted so that the average temperature of the catalyst layers of the reaction tubes 1 and 2 was 360 ° C. Next, on the 14th day after the start of the supply of DC light oil, the properties of the first product oil at the outlet of the reaction tube 1 were analyzed and measured. As a result, the sulfur content was 29.7 mass ppm and the nitrogen content was 7.1 mass ppm (that is, The nitrogen residual ratio was 4.7%. The sulfur content in the second product oil at the outlet of the reaction tube 2 was 10.0 mass ppm, and the chemical hydrogen consumption at this time was 378 scf / bbl.

(実施例4)
内径25mmの反応管1に第1触媒として上述の触媒C(ニッケル−コバルト−モリブデン触媒)を25mL、反応管2に第2触媒として上述の触媒Bを75mL積層して充填した。これらの反応管1、2を直列に連結し、実施例1と同様にして触媒の予備硫化を12時間行った。予備硫化が終了した後、上述の中東系の直留軽油GO1を水素分圧5MPa、第1触媒及び第2触媒を併せたLHSV1h−1、水素/油比200NL/Lの反応条件の下、反応管1、2内に供給して水素化処理を行った。なお、反応管1、2の触媒層の平均温度が360℃となるように、反応管ヒーターを調整した。次いで、直流軽油の供給開始後14日目において、反応管1出口の第1生成油の性状を分析、測定したところ、硫黄分は530.0質量ppm、窒素分は40.0質量ppm(すなわち窒素残留率26.7%)であった。反応管2出口の第2生成油中の硫黄分は8.6質量ppmであり、このときの化学水素消費量は306scf/bblであった。
Example 4
The reaction tube 1 having an inner diameter of 25 mm was filled with 25 mL of the above-mentioned catalyst C (nickel-cobalt-molybdenum catalyst) as the first catalyst and 75 mL of the above-mentioned catalyst B as the second catalyst in the reaction tube 2. These reaction tubes 1 and 2 were connected in series, and the catalyst was presulfided for 12 hours in the same manner as in Example 1. After the preliminary sulfidation is completed, the Middle East straight-run gas oil GO1 is reacted under a reaction condition of a partial pressure of hydrogen of 5 MPa, LHSV1h −1 combined with the first catalyst and the second catalyst, and a hydrogen / oil ratio of 200 NL / L. Hydrogenation was carried out by feeding into the pipes 1 and 2. The reaction tube heater was adjusted so that the average temperature of the catalyst layers of the reaction tubes 1 and 2 was 360 ° C. Next, on the 14th day after the start of the supply of direct current diesel oil, the properties of the first product oil at the outlet of the reaction tube 1 were analyzed and measured. As a result, the sulfur content was 530.0 mass ppm and the nitrogen content was 40.0 mass ppm (that is, The nitrogen residual rate was 26.7%). The sulfur content in the second product oil at the outlet of the reaction tube 2 was 8.6 mass ppm, and the chemical hydrogen consumption at this time was 306 scf / bbl.

(実施例5)
内径25mmの反応管1に第1触媒として上述の触媒Aを25mL、反応管2に第2触媒として上述の触媒Bを75mL積層して充填した。これらの反応管1、2を直列に連結し、実施例1と同様にして触媒の予備硫化を12時間行った。予備硫化が終了した後、中東系の直留軽油GO2(10%留出点301℃、90%留出点355℃、硫黄分1.35質量%、窒素分210質量ppm)を水素分圧5MPa、第1触媒及び第2触媒(反応管1、2)を併せたLHSV0.7h−1、水素/油比200NL/Lの反応条件の下、反応管1、2内に供給して水素化処理を行った。なお、反応管1、2の触媒層の平均温度が360℃となるように、反応管ヒーターを調整した。次いで、直流軽油の供給開始後14日目において、反応管1出口の第1生成油の性状を分析、測定したところ、硫黄分は510質量ppm、窒素分は63質量ppm(すなわち窒素残留率30.0%)であった。反応管2出口の第2生成油中の硫黄分は9.3質量ppmであり、このときの化学水素消費量は368scf/bblであった。
(Example 5)
The reaction tube 1 having an inner diameter of 25 mm was filled with 25 mL of the catalyst A as a first catalyst and 75 mL of the catalyst B as a second catalyst in the reaction tube 2. These reaction tubes 1 and 2 were connected in series, and the catalyst was presulfided for 12 hours in the same manner as in Example 1. After the preliminary sulfidation was completed, a Middle Eastern straight oil gas GO2 (10% distillation point 301 ° C., 90% distillation point 355 ° C., sulfur content 1.35 mass%, nitrogen content 210 mass ppm) was subjected to a hydrogen partial pressure of 5 MPa. The hydrogenation treatment is performed by supplying the reaction mixture into the reaction tubes 1 and 2 under the reaction conditions of LHSV 0.7h −1 including the first catalyst and the second catalyst (reaction tubes 1 and 2) and the hydrogen / oil ratio of 200 NL / L Went. The reaction tube heater was adjusted so that the average temperature of the catalyst layers of the reaction tubes 1 and 2 was 360 ° C. Next, on the 14th day after the start of the supply of DC light oil, the properties of the first product oil at the outlet of the reaction tube 1 were analyzed and measured. As a result, the sulfur content was 510 ppm by mass and the nitrogen content was 63 ppm by mass (that is, the nitrogen residual rate was 30 0.0%). The sulfur content in the second product oil at the outlet of the reaction tube 2 was 9.3 ppm by mass, and the chemical hydrogen consumption at this time was 368 scf / bbl.

(実施例6)
内径25mmの反応管1に第1触媒として上述の触媒Cを25mL、反応管2に第2触媒として上述の触媒Bを75mL積層して充填した。これらの反応管1、2を直列に連結し、実施例1と同様にして触媒の予備硫化を12時間行った。予備硫化が終了した後、上述の中東系の直留軽油GO2を水素分圧5MPa、第1触媒及び第2触媒(反応管1、2)を併せたLHSV0.7h−1、水素/油比200NL/Lの反応条件の下、反応管1、2内に供給して水素化処理を行った。なお、反応管1、2の触媒層の平均温度が360℃となるように、反応管ヒーターを調整した。次いで、直流軽油の供給開始後14日目において、反応管1出口の第1生成油の性状を分析、測定したところ、硫黄分は530質量ppm、窒素分は75質量ppm(すなわち窒素残留率35.7%)であった。反応管2出口の第2生成油中の硫黄分は9.5質量ppmであり、このときの化学水素消費量は339scf/bblであった。
(Example 6)
The reaction tube 1 having an inner diameter of 25 mm was filled with 25 mL of the above-mentioned catalyst C as the first catalyst and 75 mL of the above-mentioned catalyst B as the second catalyst in the reaction tube 2. These reaction tubes 1 and 2 were connected in series, and the catalyst was presulfided for 12 hours in the same manner as in Example 1. After the preliminary sulfidation is completed, the above-mentioned Middle Eastern straight-run gas oil GO2 is combined with a partial pressure of hydrogen of 5 MPa, LHSV 0.7h −1 in which the first catalyst and the second catalyst (reaction tubes 1 and 2) are combined, and a hydrogen / oil ratio of 200 NL. Under the reaction conditions of / L, hydrogenation was performed by supplying the reaction tubes 1 and 2 into the reaction tubes 1 and 2. The reaction tube heater was adjusted so that the average temperature of the catalyst layers of the reaction tubes 1 and 2 was 360 ° C. Next, on the 14th day after the start of the supply of direct current diesel oil, the properties of the first product oil at the outlet of the reaction tube 1 were analyzed and measured. As a result, the sulfur content was 530 mass ppm and the nitrogen content was 75 mass ppm (that is, the nitrogen residual ratio was 35 0.7%). The sulfur content in the second product oil at the outlet of the reaction tube 2 was 9.5 ppm by mass, and the chemical hydrogen consumption at this time was 339 scf / bbl.

(比較例1)
内径25mmの反応管1、2にそれぞれ上述の触媒Aを50mLずつ積層して充填した。これらの反応管1、2を直列に連結し、実施例1と同様にして触媒の予備硫化を12時間行った。予備硫化が終了した後、上述の中東系の直留軽油GO1を水素分圧5MPa、反応管1、2を併せたLHSV1h−1、水素/油比200NL/Lの反応条件の下、反応管1、2内に供給して水素化処理を行った。なお、反応管1、2の触媒層の平均温度が360℃となるように、反応管ヒーターを調整した。次いで、直流軽油の供給開始後14日目において、反応管1出口の第1生成油の性状を分析、測定したところ、硫黄分は80.1質量ppm、窒素分は4.5質量ppm(すなわち窒素残留率3.0%)であった。反応管2出口の第2生成油中の硫黄分は11.9質量ppmであり、このときの化学水素消費量は403scf/bblであった。
(Comparative Example 1)
50 mL of the above catalyst A was stacked and filled in each of reaction tubes 1 and 2 having an inner diameter of 25 mm. These reaction tubes 1 and 2 were connected in series, and the catalyst was presulfided for 12 hours in the same manner as in Example 1. After the preliminary sulfidation is completed, the reaction tube 1 under the reaction conditions of the above-described Middle Eastern straight-run gas oil GO1 with a partial pressure of hydrogen of 5 MPa, LHSV1h -1 combined with the reaction tubes 1 and 2 and a hydrogen / oil ratio of 200 NL / L. No. 2 was supplied for hydrogenation treatment. The reaction tube heater was adjusted so that the average temperature of the catalyst layers of the reaction tubes 1 and 2 was 360 ° C. Next, on the 14th day after the start of the supply of direct current diesel oil, the properties of the first product oil at the outlet of the reaction tube 1 were analyzed and measured. As a result, the sulfur content was 80.1 mass ppm and the nitrogen content was 4.5 mass ppm (ie The nitrogen residual rate was 3.0%. The sulfur content in the second product oil at the outlet of the reaction tube 2 was 11.9 mass ppm, and the chemical hydrogen consumption at this time was 403 scf / bbl.

(比較例2)
内径25mmの反応管1、2にそれぞれ上述の触媒Bを50mLずつ積層して充填した。これらの反応管1、2を直列に連結し、実施例1と同様にして触媒の予備硫化を12時間行った。予備硫化が終了した後、上述の中東系の直留軽油GO1を水素分圧5MPa、反応管1、2を併せたLHSV1h−1、水素/油比200NL/Lの反応条件の下、反応管1、2内に供給して水素化処理を行った。なお、反応管1、2の触媒層の平均温度が360℃となるように、反応管ヒーターを調整した。次いで、直流軽油の供給開始後14日目において、反応管1出口の第1生成油の性状を分析、測定したところ、硫黄分は94.0質量ppm、窒素分は15.0質量ppm(すなわち窒素残留率10.0%)であった。反応管2出口の第2生成油中の硫黄分は13.8質量ppmであり、このときの化学水素消費量は328scf/bblであった。
(Comparative Example 2)
50 mL of the above-mentioned catalyst B was stacked and filled in each of reaction tubes 1 and 2 having an inner diameter of 25 mm. These reaction tubes 1 and 2 were connected in series, and the catalyst was presulfided for 12 hours in the same manner as in Example 1. After the preliminary sulfidation is completed, the reaction tube 1 under the reaction conditions of the above-described Middle Eastern straight-run gas oil GO1 with a partial pressure of hydrogen of 5 MPa, LHSV1h -1 combined with the reaction tubes 1 and 2 and a hydrogen / oil ratio of 200 NL / L. No. 2 was supplied for hydrogenation treatment. The reaction tube heater was adjusted so that the average temperature of the catalyst layers of the reaction tubes 1 and 2 was 360 ° C. Next, on the 14th day after the start of the supply of direct current diesel oil, the properties of the first product oil at the outlet of the reaction tube 1 were analyzed and measured. As a result, the sulfur content was 94.0 ppm by mass and the nitrogen content was 15.0 ppm by mass (ie The nitrogen residual ratio was 10.0%. The sulfur content in the second product oil at the outlet of the reaction tube 2 was 13.8 mass ppm, and the chemical hydrogen consumption at this time was 328 scf / bbl.

(比較例3)
内径25mmの反応管1に上述の触媒Bを、反応官2に上述の触媒Aをそれぞれ50mLずつ積層して充填した。これらの反応管1、2を直列に連結し、実施例1と同様にして触媒の予備硫化を12時間行った。予備硫化が終了した後、上述の中東系の直留軽油GO1を水素分圧5MPa、反応管1、2を併せたLHSV1h−1、水素/油比200NL/Lの反応条件の下、反応管1、2内に供給して水素化処理を行った。なお、反応管1、2の触媒層の平均温度が360℃となるように、反応管ヒーターを調整した。次いで、直流軽油の供給開始後14日目において、反応管1出口の第1生成油の性状を分析、測定したところ、硫黄分は94.0質量ppm、窒素分は15.0質量ppm(すなわち窒素残留率10.0%)であった。反応管2出口の第2生成油中の硫黄分は10.6質量ppmであり、このときの化学水素消費量は360scf/bblであった。
(Comparative Example 3)
The above-mentioned catalyst B was stacked in a reaction tube 1 having an inner diameter of 25 mm, and 50 mL of the above-mentioned catalyst A was stacked and filled in a reactor 2. These reaction tubes 1 and 2 were connected in series, and the catalyst was presulfided for 12 hours in the same manner as in Example 1. After the preliminary sulfidation is completed, the reaction tube 1 under the reaction conditions of the above-described Middle Eastern straight-run gas oil GO1 with a partial pressure of hydrogen of 5 MPa, LHSV1h -1 combined with the reaction tubes 1 and 2 and a hydrogen / oil ratio of 200 NL / L. No. 2 was supplied for hydrogenation treatment. The reaction tube heater was adjusted so that the average temperature of the catalyst layers of the reaction tubes 1 and 2 was 360 ° C. Next, on the 14th day after the start of the supply of direct current diesel oil, the properties of the first product oil at the outlet of the reaction tube 1 were analyzed and measured. As a result, the sulfur content was 94.0 ppm by mass and the nitrogen content was 15.0 ppm by mass (ie The nitrogen residual ratio was 10.0%. The sulfur content in the second product oil at the outlet of the reaction tube 2 was 10.6 mass ppm, and the chemical hydrogen consumption at this time was 360 scf / bbl.

(比較例4)
内径25mmの反応管1に第1触媒として上述の触媒Bを25mL、反応管2に第2触媒として上述の触媒Bを75mL積層して充填した。これらの反応管1、2を直列に連結し、実施例1と同様にして触媒の予備硫化を12時間行った。予備硫化が終了した後、上述の中東系の直留軽油GO2を水素分圧5MPa、第1触媒及び第2触媒(反応管1、2)を併せたLHSV0.7h−1、水素/油比200NL/Lの反応条件の下、反応管1、2内に供給して水素化処理を行った。なお、反応管1、2の触媒層の平均温度が360℃となるように、反応管ヒーターを調整した。次いで、直流軽油の供給開始後14日目において、反応管1出口の第1生成油の性状を分析、測定したところ、硫黄分は94質量ppm、窒素分は94質量ppm(すなわち窒素残留率44.8%)であった。反応管2出口の第2生成油中の硫黄分は13.8質量ppmであり、このときの化学水素消費量は341scf/bblであった。
(Comparative Example 4)
The reaction tube 1 having an inner diameter of 25 mm was filled with 25 mL of the above-mentioned catalyst B as the first catalyst and 75 mL of the above-mentioned catalyst B as the second catalyst in the reaction tube 2. These reaction tubes 1 and 2 were connected in series, and the catalyst was presulfided for 12 hours in the same manner as in Example 1. After the preliminary sulfidation is completed, the above-mentioned Middle Eastern straight-run gas oil GO2 is combined with a partial pressure of hydrogen of 5 MPa, LHSV 0.7h −1 in which the first catalyst and the second catalyst (reaction tubes 1 and 2) are combined, and a hydrogen / oil ratio of 200 NL. Under the reaction conditions of / L, hydrogenation was performed by supplying the reaction tubes 1 and 2 into the reaction tubes 1 and 2. The reaction tube heater was adjusted so that the average temperature of the catalyst layers of the reaction tubes 1 and 2 was 360 ° C. Next, on the 14th day after the start of the supply of the direct current diesel oil, the properties of the first product oil at the outlet of the reaction tube 1 were analyzed and measured. 8%). The sulfur content in the second product oil at the outlet of the reaction tube 2 was 13.8 mass ppm, and the chemical hydrogen consumption at this time was 341 scf / bbl.

以上の結果を表2にまとめる。

Figure 2005255995


The above results are summarized in Table 2.
Figure 2005255995


Claims (9)

アルミナを主成分とする担体と、前記担体上に担持された、ニッケル−モリブデン、ニッケル−タングステン及びニッケル−コバルト−モリブデンからなる群より選ばれる1種以上の活性金属と、を備えた第1触媒の存在下、反応圧力、LHSV、反応温度及び水素/油比を含む第1反応条件を調整して、軽油留分を主成分として含有する原料油を水素化処理することにより、前記原料油中の窒素含有量に対して60%以下の窒素を含有する第1生成油を得る第1工程と、
アルミナを主成分とする担体と、前記担体上に担持された活性金属であるコバルト−モリブデンと、を備えた第2触媒の存在下、反応圧力、LHSV、反応温度及び水素/油比を含む第2反応条件を調整して、前記第1生成油を水素化処理することにより第2生成油を得る第2工程と、
を含むことを特徴とする石油留分の製造方法。
A first catalyst comprising: a support mainly composed of alumina; and one or more active metals selected from the group consisting of nickel-molybdenum, nickel-tungsten, and nickel-cobalt-molybdenum supported on the support. In the raw material oil by adjusting the first reaction conditions including reaction pressure, LHSV, reaction temperature and hydrogen / oil ratio in the presence of A first step of obtaining a first product oil containing 60% or less of nitrogen with respect to the nitrogen content of
In the presence of a second catalyst comprising a support mainly composed of alumina and cobalt-molybdenum, which is an active metal supported on the support, a reaction pressure, an LHSV, a reaction temperature, and a hydrogen / oil ratio are included. A second step of adjusting the reaction conditions and obtaining a second product oil by hydrotreating the first product oil;
A method for producing an oil fraction, comprising:
前記第1生成油中の窒素含有量が100質量ppm以下となるように、前記第1反応条件を調整することを特徴とする請求項1記載の石油留分の製造方法。   The method for producing a petroleum fraction according to claim 1, wherein the first reaction conditions are adjusted so that the nitrogen content in the first product oil is 100 mass ppm or less. 前記第2工程より前に、前記第1工程を経て得られる気液を分離しないことを特徴とする請求項1又は2に記載の石油留分の製造方法。   The method for producing a petroleum fraction according to claim 1 or 2, wherein the gas-liquid obtained through the first step is not separated before the second step. 前記第1触媒が充填される第1空間容積と、前記第2触媒が充填される第2空間容積と、の比が、5:95〜60:40であることを特徴とする請求項1〜3のいずれか一項に記載の石油留分の製造方法。   The ratio between the first space volume filled with the first catalyst and the second space volume filled with the second catalyst is 5:95 to 60:40. 4. The method for producing an oil fraction according to any one of 3 above. 前記第1触媒の脱硫活性k及び前記第2触媒の脱硫活性kが、下記式(1);
0.875<(k/k)<1.15 …(1)
の条件を満たすように、前記第1反応条件及び/又は前記第2反応条件を調整することを特徴とする請求項1〜4のいずれか一項に記載の石油留分の製造方法。
The desulfurization activity k 1 and desulfurization activity k 2 of the second catalyst of the first catalyst is a compound represented by the following formula (1);
0.875 <(k 1 / k 2 ) <1.15 (1)
The method for producing a petroleum fraction according to any one of claims 1 to 4, wherein the first reaction condition and / or the second reaction condition is adjusted so as to satisfy the following condition.
前記第1触媒に備えられた前記担体及び前記第2触媒に備えられた前記担体がそれぞれ、60質量%以上のアルミナを含む多孔質の担体であることを特徴とする請求項1〜5のいずれか一項に記載の石油留分の製造方法。   The said support | carrier with which the said 1st catalyst was equipped, and the said support | carrier with which the said 2nd catalyst was equipped respectively are the porous support | carriers which contain 60 mass% or more of aluminas, Any one of Claims 1-5 characterized by the above-mentioned. A method for producing an oil fraction according to claim 1. 前記第1触媒に備えられた前記担体として、酸性質を有する担体を用いることを特徴とする請求項1〜6のいずれか一項に記載の石油留分の製造方法。   The method for producing a petroleum fraction according to any one of claims 1 to 6, wherein a carrier having an acid property is used as the carrier provided in the first catalyst. 前記第1反応条件及び前記第2反応条件がそれぞれ、反応圧力2〜10MPa、LHSV0.1〜2.0h−1、反応温度300〜410℃及び水素/油比100〜500NL/Lの範囲内で調整されることを特徴とする請求項1〜7のいずれか一項に記載の石油留分の製造方法。 The first reaction condition and the second reaction condition are within the ranges of reaction pressure 2 to 10 MPa, LHSV 0.1 to 2.0 h −1 , reaction temperature 300 to 410 ° C., and hydrogen / oil ratio 100 to 500 NL / L, respectively. It adjusts, The manufacturing method of the petroleum fraction as described in any one of Claims 1-7 characterized by the above-mentioned. 前記活性金属がニッケル−コバルト−モリブデンであることを特徴とする請求項1〜8のいずれか一項に記載の石油留分の製造方法。

The method for producing a petroleum fraction according to any one of claims 1 to 8, wherein the active metal is nickel-cobalt-molybdenum.

JP2005034924A 2004-02-10 2005-02-10 Production method of oil fraction Expired - Fee Related JP4576257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005034924A JP4576257B2 (en) 2004-02-10 2005-02-10 Production method of oil fraction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004034154 2004-02-10
JP2005034924A JP4576257B2 (en) 2004-02-10 2005-02-10 Production method of oil fraction

Publications (2)

Publication Number Publication Date
JP2005255995A true JP2005255995A (en) 2005-09-22
JP4576257B2 JP4576257B2 (en) 2010-11-04

Family

ID=35082035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005034924A Expired - Fee Related JP4576257B2 (en) 2004-02-10 2005-02-10 Production method of oil fraction

Country Status (1)

Country Link
JP (1) JP4576257B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254275A (en) * 2006-02-24 2007-10-04 Cosmo Oil Co Ltd Desulfurizing agent for hydrocarbon
JP2010222458A (en) * 2009-03-23 2010-10-07 Jx Nippon Oil & Energy Corp Hydrorefining method for hydrocarbon oil
JP2013209528A (en) * 2012-03-30 2013-10-10 Jx Nippon Oil & Energy Corp Hydrogenation purification method for heavy residual oil
JP2013212448A (en) * 2012-03-30 2013-10-17 Idemitsu Kosan Co Ltd Hydrodenitrogenation catalyst, production method of hydrodenitrogenation catalyst and manufacturing method of light oil base material
JP2015105377A (en) * 2013-11-28 2015-06-08 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Process for hydrotreatment of diesel employing concatenation of catalysts

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04183786A (en) * 1990-11-19 1992-06-30 Nikko Kyodo Co Ltd Deep desulfurization of light oil
JPH04288397A (en) * 1990-10-31 1992-10-13 Shell Internatl Res Maatschappij Bv Hydrogenated denitrification process
JPH0576758A (en) * 1991-06-25 1993-03-30 Tonen Corp Catalyst for hydrogenation treatment
JPH0578670A (en) * 1991-07-19 1993-03-30 Nippon Oil Co Ltd Production of low-sulfur light oil for diesel engine
JPH07155603A (en) * 1993-12-09 1995-06-20 Sumitomo Metal Mining Co Ltd Hydrodesulfurizing/hydrodenitrifying catalyst and production thereof
JPH10118495A (en) * 1996-10-22 1998-05-12 Catalysts & Chem Ind Co Ltd Titania-alumina carrier, its manufacturing method and hydrogenating catalyst using this carrier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04288397A (en) * 1990-10-31 1992-10-13 Shell Internatl Res Maatschappij Bv Hydrogenated denitrification process
JPH04183786A (en) * 1990-11-19 1992-06-30 Nikko Kyodo Co Ltd Deep desulfurization of light oil
JPH0576758A (en) * 1991-06-25 1993-03-30 Tonen Corp Catalyst for hydrogenation treatment
JPH0578670A (en) * 1991-07-19 1993-03-30 Nippon Oil Co Ltd Production of low-sulfur light oil for diesel engine
JPH07155603A (en) * 1993-12-09 1995-06-20 Sumitomo Metal Mining Co Ltd Hydrodesulfurizing/hydrodenitrifying catalyst and production thereof
JPH10118495A (en) * 1996-10-22 1998-05-12 Catalysts & Chem Ind Co Ltd Titania-alumina carrier, its manufacturing method and hydrogenating catalyst using this carrier

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254275A (en) * 2006-02-24 2007-10-04 Cosmo Oil Co Ltd Desulfurizing agent for hydrocarbon
JP2010222458A (en) * 2009-03-23 2010-10-07 Jx Nippon Oil & Energy Corp Hydrorefining method for hydrocarbon oil
JP2013209528A (en) * 2012-03-30 2013-10-10 Jx Nippon Oil & Energy Corp Hydrogenation purification method for heavy residual oil
JP2013212448A (en) * 2012-03-30 2013-10-17 Idemitsu Kosan Co Ltd Hydrodenitrogenation catalyst, production method of hydrodenitrogenation catalyst and manufacturing method of light oil base material
JP2015105377A (en) * 2013-11-28 2015-06-08 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Process for hydrotreatment of diesel employing concatenation of catalysts

Also Published As

Publication number Publication date
JP4576257B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
US20060249429A1 (en) Hydrodesulfurization Catalyst for Petroleum Hydrocarbons and Process for Hydrodesulfurization Using the Same
US20070175797A1 (en) Hydrodesulfurization Catalyst for Petroleum Hydrocarbons and Process for Hydrodesulfurization Using the Same
AU2001249836B2 (en) Staged hydrotreating method for naphtha desulfurization
AU2001249836A1 (en) Staged hydrotreating method for naphtha desulfurization
JP4576257B2 (en) Production method of oil fraction
WO2003085068A1 (en) Selective hydrodesulfurization of naphtha streams
JP5013658B2 (en) Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbon oil
JP2005314657A (en) Method for hydrotreating heavy hydrocarbon oil
JP4576334B2 (en) Hydrotreating process for diesel oil fraction
JP5123635B2 (en) Method for producing gasoline base material and gasoline
JP4969754B2 (en) Hydrodesulfurization method for gas oil fraction and reactor for hydrodesulfurization
EP1682636B1 (en) Nitrogen removal from olefinic naphtha feedstreams to improve hydrodesulfurization versus olefin saturation selectivity
JP4658491B2 (en) Production method of environment-friendly diesel oil
JP4436608B2 (en) Hydrodesulfurization method for diesel oil fraction
JP4680520B2 (en) Low sulfur gas oil production method and environmentally friendly gas oil
US20220267686A1 (en) Method for producing gasoline with low sulphur and mercaptan content
US20220325191A1 (en) Method for producing a petrol with low sulfur and mercaptans content
JP4854075B2 (en) Method for producing ultra-low sulfur gas oil base and ultra-low sulfur gas oil composition comprising the ultra-low sulfur gas oil base
JP2008266420A (en) Method for hydrogenating gas oil
JP4217336B2 (en) Fuel oil desulfurization method and fuel oil desulfurization system
JP2000073072A (en) Production of high cetane number, low sulfur diesel gas oil
JP4249632B2 (en) Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbons
JP2006035052A (en) Catalyst for hydro-desulfurizing petroleum hydrocarbon and hydro-desulfurizing method
JP4630014B2 (en) Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbons
JP4766940B2 (en) Method for producing hydrocarbon oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100713

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

R150 Certificate of patent or registration of utility model

Ref document number: 4576257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees