JP4680520B2 - Low sulfur gas oil production method and environmentally friendly gas oil - Google Patents

Low sulfur gas oil production method and environmentally friendly gas oil Download PDF

Info

Publication number
JP4680520B2
JP4680520B2 JP2004051718A JP2004051718A JP4680520B2 JP 4680520 B2 JP4680520 B2 JP 4680520B2 JP 2004051718 A JP2004051718 A JP 2004051718A JP 2004051718 A JP2004051718 A JP 2004051718A JP 4680520 B2 JP4680520 B2 JP 4680520B2
Authority
JP
Japan
Prior art keywords
oil
mass
hydrogen
hydrotreating catalyst
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004051718A
Other languages
Japanese (ja)
Other versions
JP2005238113A (en
Inventor
好喜 岩田
泰博 荒木
勝昭 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2004051718A priority Critical patent/JP4680520B2/en
Publication of JP2005238113A publication Critical patent/JP2005238113A/en
Application granted granted Critical
Publication of JP4680520B2 publication Critical patent/JP4680520B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、低硫黄軽油の製造方法に関し、特に、硫黄分を10質量ppm以下に低減した低硫黄軽油の製造方法に関する。 The present invention relates to a method for producing a low sulfur gas oil, and more particularly to a method for producing a low sulfur gas oil having a sulfur content reduced to 10 mass ppm or less.

近年、大気環境改善のために、軽油の品質規制値が世界的に厳しくなる傾向にある。特に軽油中の硫黄分は、排ガス対策として期待されている酸化触媒、窒素酸化物(NOx)還元触媒、連続再生式ディーゼル排気微粒子除去フィルター等の後処理装置の耐久性に影響を及ぼす懸念があるため、軽油の低硫黄化が要請されている。軽油中の硫黄分をさらに低減して50ppm以下、特には10ppm以下にすることにより、硫酸塩の生成を抑え、窒素酸化物還元触媒の劣化を抑制することや後処理触媒上での粒子状物質生成を低減することで二酸化窒素及び粒子状物質の排出を抑制することが期待できる。   In recent years, the quality regulation value of light oil tends to be stricter worldwide in order to improve the air environment. In particular, the sulfur content in light oil may affect the durability of post-treatment devices such as oxidation catalysts, nitrogen oxide (NOx) reduction catalysts, and continuously regenerating diesel exhaust particulate removal filters that are expected as countermeasures for exhaust gases. For this reason, there is a demand for low sulfur in diesel oil. By further reducing the sulfur content in the gas oil to 50 ppm or less, particularly 10 ppm or less, the production of sulfate is suppressed, the deterioration of the nitrogen oxide reduction catalyst is suppressed, and the particulate matter on the post-treatment catalyst It can be expected to suppress the emission of nitrogen dioxide and particulate matter by reducing the production.

このような状況下で、軽油中の硫黄分を大幅に除去する超深度脱硫技術の開発が重要視されつつある。軽油中の硫黄分の低減化技術として、通常、水素化脱硫の運転条件、例えば、反応温度、液空間速度等を苛酷にすることが考えられる。しかし、反応温度を上げると、触媒上に炭素質が析出して触媒の活性が急速に低下し、また液空間速度を下げると、脱硫能は向上するものの、精製処理能力が低下するため設備の規模を拡張する必要が生じる。従って、運転条件を苛酷にしないで、軽油の超深度脱硫を達成するために有効な方法の1つは、優れた脱硫活性を有する触媒を開発することであり、様々な触媒や触媒製造方法が提案されている(特許文献1〜2)。特に、特許文献2は、触媒の活性点を充分に確保するために、触媒中に含まれる二硫化モリブデン結晶の平均積層数が2.5〜5になるように触媒を調製している。しかしながら、特許文献2には本願発明に規定するような硫化モリブデン結晶のアスペクト比は開示されておらず、しかも特許文献2に記載の二硫化モリブデン結晶のアスペクト比は本願発明の範囲外であると考えられる。
再表2000−62924号公報 特開2003−299960号公報
Under such circumstances, development of an ultra-deep desulfurization technology that significantly removes sulfur content in light oil is being emphasized. As a technique for reducing the sulfur content in light oil, it is usually considered that the operating conditions of hydrodesulfurization, for example, the reaction temperature, the liquid space velocity, etc., are severe. However, when the reaction temperature is raised, carbonaceous matter is deposited on the catalyst and the activity of the catalyst is rapidly reduced.When the liquid space velocity is lowered, the desulfurization ability is improved, but the purification treatment capacity is lowered. There is a need to scale. Therefore, one of the effective methods for achieving ultra-deep desulfurization of light oil without severe operating conditions is to develop a catalyst having excellent desulfurization activity. It has been proposed (Patent Documents 1 and 2). In particular, Patent Document 2 prepares a catalyst so that the average number of layers of molybdenum disulfide crystals contained in the catalyst is 2.5 to 5 in order to sufficiently secure the active point of the catalyst. However, Patent Document 2 does not disclose the aspect ratio of the molybdenum sulfide crystal as defined in the present invention, and the aspect ratio of the molybdenum disulfide crystal described in Patent Document 2 is outside the scope of the present invention. Conceivable.
Table 2000-62924 JP 2003-299960 A

軽油留分を水素化処理すると、ジベンゾチオフェン(DBT)の4位または6位にアルキル置換基を有する4−メチルジベンゾチオフェン(4−MDBT)、4,6−ジメチルジベンゾチオフェン(4,6−DMDBT)のように、硫黄原子に対する立体障害をもつ硫黄化合物が選択的に残留し、難脱硫性硫黄化合物として知られている(非特許文献1)。また、軽油留分中に共存する有機窒素化合物や、水素化処理によって副生する硫化水素やアンモニアが、軽油留分中に含まれる硫黄化合物の脱硫反応を阻害することも知られている(非特許文献1)。
T.Kabe,A.Ishihara,W.Quin,“Hydrodesulfurizationand Hydrodenitrogenation”,Kodansha(1999)
When the gas oil fraction is hydrotreated, 4-methyldibenzothiophene (4-MDBT), 4,6-dimethyldibenzothiophene (4,6-DMDBT) having an alkyl substituent at the 4-position or 6-position of dibenzothiophene (DBT). ), A sulfur compound having a steric hindrance to a sulfur atom selectively remains, and is known as a non-desulfurizable sulfur compound (Non-patent Document 1). It is also known that organic nitrogen compounds coexisting in the gas oil fraction, hydrogen sulfide and ammonia by-produced by the hydrogenation treatment inhibit the desulfurization reaction of sulfur compounds contained in the gas oil fraction (non- Patent Document 1).
T.A. Kabe, A .; Ishihara, W .; Quin, “Hydrodesulfurization and Hydrodentrogen”, Kodansha (1999)

このような軽油留分の水素化処理の特徴を考慮して、単に優れた脱硫活性を有する触媒を開発するだけでなく、軽油超深度脱硫を効率的に行うプロセスとして、(1)前段触媒層と後段触媒層に異なる複数の触媒を組合せて用いる方法(特許文献3)、(2)前段触媒層と後段触媒層の間に気液分離機構を備え、前段触媒層での反応生成物中に含まれている脱硫反応阻害物質の硫化水素やアンモニアを気液分離によって除去し、後段触媒層に供給される硫化水素やアンモニアの濃度を低減して後段触媒層での脱硫反応を行う方法(特許文献4〜6)などが考案されている。このような改良されたプロセスを適用する場合の前段触媒層に用いられる触媒は、単に脱硫活性に優れることだけでなく、後段触媒層での脱硫反応が有利に進行するよう、脱窒素活性に優れることも必要である。
再表2002−10314号公報 再表2000−42130号公報 国際公開特許2002−31088号公報 再表2001−74973号公報
Considering the characteristics of hydrotreatment of such a gas oil fraction, not only the development of a catalyst having an excellent desulfurization activity but also a process for efficiently performing ultra-deep desulfurization of gas oil, (1) a pre-stage catalyst layer And a method using a plurality of different catalysts in combination with the latter catalyst layer (Patent Document 3), (2) a gas-liquid separation mechanism is provided between the former catalyst layer and the latter catalyst layer, and the reaction product in the former catalyst layer is included in the reaction product A method for removing desulfurization reaction inhibiting substances such as hydrogen sulfide and ammonia by gas-liquid separation and reducing the concentration of hydrogen sulfide and ammonia supplied to the latter catalyst layer to perform the desulfurization reaction in the latter catalyst layer (patent Documents 4-6) have been devised. The catalyst used in the upstream catalyst layer in the case of applying such an improved process is not only excellent in desulfurization activity but also excellent in denitrification activity so that the desulfurization reaction in the downstream catalyst layer proceeds advantageously. It is also necessary.
No. 2002-10314 No. 2000-42130 International Publication No. 2002-31088 No. 2001-74973

石油留分、とりわけ軽油中の硫黄分を低減することが求められている。しかし、従来の技術では低硫黄化の実現には限界があり、生産性の低い運転条件、特に低硫黄分の原油を選択するなどの必要があった。本発明は、上記課題を解決するもので、本発明の目的は、特殊な原油を用いることなく、また、生産性の高い運転条件で水素化処理することで高度な脱硫が可能な低硫黄軽油の製造方法を提供することにある。 There is a need to reduce the sulfur content in petroleum fractions, especially light oil. However, in the conventional technology, there is a limit to realizing low sulfur, and it has been necessary to select operation conditions with low productivity, particularly crude oil with low sulfur content. The present invention solves the above-mentioned problems, and the object of the present invention is to provide a low- sulfur gas oil that can be highly desulfurized by hydrotreating without using special crude oil and under highly productive operating conditions. It is in providing the manufacturing method of.

本発明者は、コバルト、ニッケルおよびモリブデンを特定の組成で含有する水素化処理触媒前駆体を硫化処理することで高い脱硫活性と脱窒素活性を同時に兼ね備えている水素化処理触媒を得ることに成功した。そして、本発明者はこのような高い脱硫活性と脱窒素活性を同時に兼ね備えている水素化処理触媒が、特定のアスペクト比を有するモリブデン硫化物結晶の存在に起因することを見出し、本発明を完成するに至った。   The present inventor succeeded in obtaining a hydrotreating catalyst having both high desulfurization activity and denitrification activity by sulfiding a hydrotreating catalyst precursor containing cobalt, nickel and molybdenum in a specific composition. did. The present inventors have found that such a hydrotreating catalyst having both high desulfurization activity and denitrogenation activity is due to the presence of molybdenum sulfide crystals having a specific aspect ratio, thereby completing the present invention. It came to do.

すなわち、本発明の第1の参考態様に従えば、無機多孔質酸化物担体にモリブデンを10〜25質量%、コバルトおよびニッケルを合計で2〜8質量%、リンを0.5〜2.0質量%担持してなり、炭素の含有量が1質量%未満で、且つコバルトとニッケルの合計含有量に対するコバルトの含有量が60モル%以上である水素化処理触媒前駆体を硫化処理することによって形成される水素化処理触媒であって、モリブデン硫化物結晶を含み、且つ該モリブデン硫化物結晶のアスペクト比が3〜4.5であることを特徴とする水素化処理触媒が提供される。 That is, according to the first reference embodiment of the present invention, the inorganic porous oxide support is 10 to 25% by mass of molybdenum, 2 to 8% by mass in total of cobalt and nickel, and 0.5 to 2.0% of phosphorus. By sulfiding a hydrotreating catalyst precursor that is supported by mass%, the carbon content is less than 1 mass%, and the cobalt content is 60 mol% or more with respect to the total content of cobalt and nickel. There is provided a hydrotreating catalyst formed, comprising a molybdenum sulfide crystal, wherein the molybdenum sulfide crystal has an aspect ratio of 3 to 4.5.

本発明の第2の参考態様に従えば、上記水素化処理触媒を、水素の存在下で炭化水素油と接触させることを特徴とする炭化水素油の水素化処理方法が提供される。 According to a second reference aspect of the present invention, there is provided a hydrotreating method for hydrocarbon oil, characterized in that the hydrotreating catalyst is brought into contact with a hydrocarbon oil in the presence of hydrogen.

本発明の態様に従えば、0.5質量%以上の硫黄分を含む軽油留分を原料油とする硫黄分10質量ppm以下の低硫黄軽油の製造方法であって、無機多孔質酸化物担体にモリブデンを10〜25質量%、コバルトおよびニッケルを合計で2〜8質量%、リンを0.5〜2.0質量%担持してなり、炭素の含有量が1質量%未満で、且つコバルトとニッケルの合計含有量に対するコバルトの含有量が65〜90モル%である水素化処理触媒前駆体を硫化処理することによって形成される水素化処理触媒を水素の存在下で原料油と接触させる水素化処理によって粗精製を行う第1の工程と、第1の工程で得られる反応混合物の気液分離を行う第2の工程と、タングステン、ニッケル及びエチレンジアミン四酢酸を含有する水素化処理触媒前駆体を硫化処理した水素化処理触媒を水素の存在下で第2の工程で得られた粗精製油と接触させる水素化処理を行う第3の工程とを含むことを特徴とする低硫黄軽油の製造方法が提供される。本発明ではこの製造方法で得られた軽油もまた提供される。 According to state-like of the present invention, there is provided a method for producing a sulfur content of 10 ppm by mass of low-sulfur diesel fuel which the gas oil fraction containing a sulfur content above 0.5 wt% as a raw material oil, inorganic porous oxide The carrier is supported by 10 to 25% by mass of molybdenum, 2 to 8% by mass of cobalt and nickel, 0.5 to 2.0% by mass of phosphorus, and the carbon content is less than 1% by mass; A hydrotreating catalyst formed by sulfiding a hydrotreating catalyst precursor having a cobalt content of 65 to 90 mol% with respect to the total content of cobalt and nickel is brought into contact with the feedstock in the presence of hydrogen. A first step of performing crude purification by hydrotreating, a second step of performing gas-liquid separation of the reaction mixture obtained in the first step, and a hydrotreating catalyst precursor containing tungsten, nickel and ethylenediaminetetraacetic acid Body And a third step of hydrotreating the hydrotreated catalyst subjected to sulfurization treatment with the crude refined oil obtained in the second step in the presence of hydrogen. Is provided. In this invention, the light oil obtained by this manufacturing method is also provided.

さらに、本発明に従えば、密度が0.795g/cm以上、硫黄分が5質量ppm以下、1環芳香族分が5〜18容量%、多環芳香族分が2容量%以下であり、且つ単位体積あたりの真発熱量が34500J/cm以上である環境対応軽油が提供される。本発明によれば、環境対応軽油中の硫黄分は1質量ppm以下になり得る。 Furthermore, according to the present invention, the density is 0.795 g / cm 3 or more, the sulfur content is 5 ppm by mass or less, the monocyclic aromatic content is 5 to 18% by volume, and the polycyclic aromatic content is 2% by volume or less. In addition, an environmentally friendly light oil having a true calorific value per unit volume of 34500 J / cm 3 or more is provided. According to the present invention, the sulfur content in the environmentally friendly light oil can be 1 mass ppm or less.

本発明は、硫黄分が10質量ppm以下の低硫黄軽油を効率よく製造する方法を提供する。本明細書に開示される触媒及びその触媒を用いた水素化処理方法によれば、低硫黄軽油をマイルドな条件で製造し、また効率良く増産することができる。また、本発明では、硫黄分が5質量ppm以下、さらには1質量ppm以下と極めて低く、かつ従来市販されている軽油と同等の単位体積あたりの真発熱量を確保した環境対応軽油を提供することができる。 The present invention provides a method for sulfur content efficiently producing 10 ppm by mass or less of low-sulfur diesel fuel. According to the catalyst and the hydrotreating method using the catalyst disclosed in the present specification , low-sulfur gas oil can be produced under mild conditions, and production can be efficiently increased. In addition, the present invention provides an environmentally-friendly light oil that has a sulfur content that is extremely low at 5 ppm by mass or less, and even 1 ppm by mass or less, and that secures a true calorific value per unit volume equivalent to that of conventionally marketed diesel oil. be able to.

〔水素化処理触媒前駆体〕
素化処理触媒の製造に用いる水素化処理触媒前駆体は、水素化活性金属として、モリブデンを10〜25質量%、コバルトおよびニッケルを合計で2〜8質量%、リンを0.5〜2.0質量%含有し、炭素の含有量が1質量%未満で、かつコバルトとニッケルの合計含有量に対するコバルトの含有量が60モル%以上である。コバルトとニッケルの合計含有量に対するコバルトの含有量は、好ましくは65〜90モル%である。コバルトとニッケルの合計含有量に対するコバルトの含有量が高すぎると水素化処理触媒の脱窒素活性が低下し、コバルトの含有量が低すぎると水素化処理触媒の脱硫活性が低下する。また、炭素の含有量は、モリブデン硫化物結晶のアスペクト比が所定の範囲より小さくなることを避けるという理由から好ましくは0.5質量%未満、特には0.1質量%未満である。他の成分として、ホウ素、フッ素のうちいずれかあるいはこれらの元素を組合せて用いてもよく、その合計含有量は元素換算で1〜10質量%、特には2〜6質量%とすることが好ましい。
[Hydroprocessing catalyst precursor]
Hydroprocessing catalyst precursor used in the production of water hydrogenation treatment catalyst as hydrogenation active metals, molybdenum 10 to 25 wt%, 2-8 wt% cobalt, and nickel in total phosphorus 0.5-2 0.0 mass%, the carbon content is less than 1 mass%, and the cobalt content is 60 mol% or more with respect to the total content of cobalt and nickel. The content of cobalt with respect to the total content of cobalt and nickel is preferably 65 to 90 mol%. If the cobalt content relative to the total content of cobalt and nickel is too high, the denitrification activity of the hydrotreating catalyst will decrease, and if the cobalt content is too low, the desulfurization activity of the hydrotreating catalyst will decrease. Further, the carbon content is preferably less than 0.5% by mass, particularly less than 0.1% by mass, because the aspect ratio of the molybdenum sulfide crystal is prevented from becoming smaller than a predetermined range. As other components, any of boron and fluorine or a combination of these elements may be used, and the total content thereof is preferably 1 to 10% by mass, particularly 2 to 6% by mass in terms of elements. .

素化処理触媒の製造に用いる水素化処理触媒前駆体は、好ましくは、比表面積が100〜450m/g、特には150〜300m/g、細孔容積が0.1〜2cm/gであり、特には0.3〜1.5cm/g、中央細孔径が3〜20nm、特には4〜10nmの範囲にあるものが好ましい。また、この水素化処理触媒前駆体の形状は、球状、円柱状、三葉型または四葉型等の形状からなるものが好ましい。特に、柱状の形状が好ましく、その断面寸法は、0.1mm〜10mmを用いることができるが、0.7〜3mmが好ましい。 Hydroprocessing catalyst precursor used in the production of water hydrogenation treatment catalyst preferably have a specific surface area of 100~450m 2 / g, especially 150 to 300 m 2 / g, a pore volume of 0.1~2cm 3 / g, in particular, 0.3 to 1.5 cm 3 / g, and the median pore diameter is preferably 3 to 20 nm, particularly 4 to 10 nm. Further, the hydrotreating catalyst precursor preferably has a spherical shape, a cylindrical shape, a trilobal type, or a four-leaf type. In particular, a columnar shape is preferable, and a cross-sectional dimension of 0.1 mm to 10 mm can be used, but 0.7 to 3 mm is preferable.

素化処理触媒の製造に用いる水素化処理触媒前駆体に用いられる無機多孔質酸化物担体としては、周期律表第2、第4、第13、および第14族の元素の酸化物を用いることができる(周期律表はIUPAC、1990年勧告のものによる)。このうちでも、シリカ、アルミナ、マグネシア、ジルコニア、ボリア、カルシア等が好適であり、これらは単独或いは2種類以上を組み合わせて使用すると良い。特には、アルミナ(γ、δ、η、χ等の各結晶構造を有するもの)、シリカ-アルミナ、シリカ、アルミナ-マグネシア、シリカ-マグネシア、アルミナ-シリカ-マグネシアが好ましい。 As the inorganic porous oxide carrier used for hydroprocessing catalyst precursor used in the production of water hydrogenation treatment catalyst, periodic table 2, 4, and 13, and oxides of Group 14 elements used (Periodic table according to IUPAC, 1990 recommendation). Among these, silica, alumina, magnesia, zirconia, boria, calcia and the like are preferable, and these may be used alone or in combination of two or more. In particular, alumina (having each crystal structure such as γ, δ, η, and χ), silica-alumina, silica, alumina-magnesia, silica-magnesia, and alumina-silica-magnesia are preferable.

素化処理触媒の製造に用いる水素化処理触媒前駆体は、上記無機多孔質酸化物担体に金属成分等を担持して製造することが好ましい。無機多孔質酸化物担体の製造方法は特に限定しないが、共沈法や混練法等により無機含水酸化物を製造し、これを成形した後、乾燥・焼成を行う方法が好適に用いられる。 Hydroprocessing catalyst precursor used in the production of water hydrogenation treatment catalyst is preferably prepared by supporting the metal component or the like to the inorganic porous oxide carrier. Method for producing a non-machine porous oxide support is not particularly limited, and production of inorganic hydrous oxide by a coprecipitation method or a kneading method or the like, after forming this, a method of performing drying and baking is preferably used.

金属成分等の担持方法は特に限定しないが、通常用いられるスプレー含浸、浸漬法等が好適であり、無機多孔質酸化物担体の吸水率に相当する溶液を含浸させるポアフィリング法が特に好ましい。金属の担持状態を制御するために、有機化合物または有機塩類等を金属担持液に共存させることも好適に用いられる。金属成分等を含む溶液を含浸したのち、50〜180℃、好ましくは80〜150℃の温度範囲で、10分〜24時間乾燥する。金属成分等をより多く担持するために、乾燥と担持とを繰り返して行ってもよい。所望の金属成分等を担持した後、乾燥して得られる乾燥物を焼成処理することによって水素化処理触媒前駆体が製造される。この焼成処理は、好ましくは400〜600℃、特には450〜580℃の温度範囲で行われ、焼成温度までの昇温時間は10〜240分、焼成温度での保持時間は1〜240分が好適である。   The method for supporting the metal component or the like is not particularly limited, but a commonly used spray impregnation method, dipping method, or the like is preferable, and a pore filling method in which a solution corresponding to the water absorption rate of the inorganic porous oxide carrier is impregnated is particularly preferable. In order to control the metal loading state, it is also preferable to use an organic compound or an organic salt in the metal loading liquid. After impregnating a solution containing a metal component or the like, it is dried at a temperature of 50 to 180 ° C., preferably 80 to 150 ° C., for 10 minutes to 24 hours. In order to carry more metal components and the like, drying and loading may be repeated. After supporting a desired metal component and the like, a hydrotreated catalyst precursor is produced by firing a dried product obtained by drying. This calcination treatment is preferably performed at a temperature range of 400 to 600 ° C., particularly 450 to 580 ° C., the temperature rising time to the calcination temperature is 10 to 240 minutes, and the holding time at the calcination temperature is 1 to 240 minutes. Is preferred.

〔水素化処理触媒前駆体の硫化処理〕
本発明に用いる水素化処理触媒は、上述の水素化処理触媒前駆体を硫化処理することによって製造され、水素化処理触媒としての活性点を発現する。通常、硫化処理は、水素化処理触媒前駆体を、水素化処理に用いる反応装置内に充填した後に行われる。この硫化処理は、硫化剤を水素化処理触媒前駆体に通じながら徐々に昇温して行うが、最終的な硫化処理温度は450℃以下、好ましくは100〜400℃である。常圧あるいはそれ以上の水素分圧の水素雰囲気下、硫化剤として硫黄化合物を含む石油蒸留物、それに硫黄含有化合物を添加したもの、あるいは硫化水素を用いて行う。石油蒸留物に硫黄含有化合物を添加して用いる場合の硫黄含有化合物は、硫化処理条件下で分解して硫化水素に転化し得るものであれば特に限定はないが、好ましくは、チオール類、二硫化炭素、チオフェン類、ジメチルスルフィド、ジメチルジスルフィドおよび種々のポリスルフィド類である。水素化処理触媒前駆体を反応装置に充填した後、硫化処理を開始する前に、水素化処理触媒前駆体に付着した水分を除去するための乾燥処理を行ってもよい。この乾燥処理は、水素または不活性ガスの雰囲気下で、常圧あるいはそれ以上の圧力でガスを流通させ、常温〜220℃、好ましくは200℃以下で行う。
[Sulfurization treatment of hydrotreating catalyst precursor]
The hydrotreating catalyst used in the present invention is produced by subjecting the above-mentioned hydrotreating catalyst precursor to a sulfiding treatment, and exhibits an active site as a hydrotreating catalyst. Usually, the sulfiding treatment is performed after filling the hydrotreating catalyst precursor into the reactor used for the hydrotreating. This sulfiding treatment is carried out by gradually raising the temperature of the sulfiding agent through the hydrotreating catalyst precursor, and the final sulfiding treatment temperature is 450 ° C. or lower, preferably 100 to 400 ° C. The reaction is carried out using a petroleum distillate containing a sulfur compound as a sulfiding agent, a sulfur-containing compound added thereto, or hydrogen sulfide under a hydrogen atmosphere at normal pressure or higher hydrogen partial pressure. The sulfur-containing compound in the case of adding a sulfur-containing compound to petroleum distillate is not particularly limited as long as it can be decomposed and converted into hydrogen sulfide under the sulfidizing treatment conditions. Carbon sulfide, thiophenes, dimethyl sulfide, dimethyl disulfide and various polysulfides. After filling the hydrotreating catalyst precursor into the reaction apparatus and before starting the sulfiding treatment, a drying process for removing water adhering to the hydrotreating catalyst precursor may be performed. This drying treatment is carried out at normal temperature to 220 ° C., preferably 200 ° C. or lower, under a hydrogen or inert gas atmosphere, with the gas flowing at normal pressure or higher.

触媒に硫化剤を通じ昇温していくと、ある温度において硫化剤中の硫黄原子が触媒中に取り込まれるようになり、硫化が始まる。この硫化が始まる温度のことをここでは硫化開始温度と呼ぶ。この硫化開始温度が低いほど、高い脱硫活性を示す。硫化開始温度は、好ましくは190℃以下、さらには185℃以下、特には180℃以下である。なお、硫化処理によっても前述の水素化処理前駆体中の水素化活性金属の担持量は殆ど変化しない。   As the temperature of the catalyst is raised through the sulfiding agent, sulfur atoms in the sulfiding agent are taken into the catalyst at a certain temperature, and sulfiding begins. The temperature at which this sulfidation begins is referred to herein as the sulfidation start temperature. A lower desulfurization start temperature indicates higher desulfurization activity. The sulfidation start temperature is preferably 190 ° C. or lower, more preferably 185 ° C. or lower, particularly 180 ° C. or lower. Note that the amount of the hydrogenation active metal supported in the above-described hydrotreatment precursor is hardly changed even by the sulfidation treatment.

〔水素化処理触媒の形態〕
本発明者は、前述の水素化処理触媒前駆体に担持される水素化活性金属の成分及び量を、前述のような特定範囲に制御することによって、硫化処理後に、脱硫活性と脱窒素活性の両方を極めて高いレベルで備えた水素化処理触媒を得ることに成功した。本発明者がそのような高脱硫/脱窒素活性水素化処理触媒の性状及び構造を検査したところ、以下に説明するように、硫化処理により形成されるモリブデン硫化物の形態が特異的であることを見出した。水素化処理触媒に含まれるモリブデンは硫化処理によって六角形が層状に積み重なった構造となり、モリブデン硫化物結晶を形成することが知られている。層に平行な面はバーサル面、層に垂直な面はエッジ面と呼ばれている。本発明者によると、透過型電子顕微鏡写真によって求めた硫化モリブデン結晶のバーサル面の長さ(層の長さ)の平均をLa(nm)、エッジ面の長さ(層の高さ)の平均をLb(nm)としたときに、これらの比La/Lb(アスペクト比)が3〜4.5という限定された範囲にある場合に、脱硫活性と脱窒素活性が同時に極めて良好になることが分った。これは以下のように考えられる。
[Form of hydrotreating catalyst]
The present inventor controls the desulfurization activity and the denitrogenation activity after the sulfidation treatment by controlling the component and amount of the hydrogenation active metal supported on the hydrotreating catalyst precursor to the specific range as described above. We succeeded in obtaining a hydrotreating catalyst with both at very high levels. As a result of inspection of the properties and structure of such a high desulfurization / denitrogenation active hydrotreating catalyst by the present inventor, the form of molybdenum sulfide formed by sulfiding treatment is unique as described below. I found. It is known that molybdenum contained in the hydrotreating catalyst has a structure in which hexagons are stacked in layers by sulfidation, and forms molybdenum sulfide crystals. The plane parallel to the layer is called the Versal plane, and the plane perpendicular to the layer is called the edge plane. According to the present inventor, the average of the length (layer length) of the versal surface of the molybdenum sulfide crystal determined from the transmission electron micrograph is La (nm), and the average of the length of the edge surface (layer height). When Lb (nm) is a ratio La / Lb (aspect ratio) in a limited range of 3 to 4.5, desulfurization activity and denitrification activity may be extremely good at the same time. I understand. This is considered as follows.

水素化処理反応に対して活性を持つ活性点は、エッジ面のみに存在することが知られており(前述の非特許文献1)、エッジ面にある活性点のうち、一番上の層にある活性点をリムサイト、それ以外の層にある活性点をエッジサイトとすると、エッジサイトでは炭化水素の二重結合やベンゼン環等に対する水素化活性がなく硫黄化合物を直接脱硫する反応のみが進行すると考えられているのに対して、リムサイトでは水素化やベンゼン環の水素化を伴った脱硫反応が起こると考えられている(M.Daage,R.Chianelli,Journal of Catalysis,149巻,414頁(1994年))。一方、脱窒素反応は水素化活性が高いほど進行することが分っている(H.Topsoe,B.S.Clausen,F.E.Massoth,“HYDROTREATING CATALYSIS”,Springer(1996年))。本発明に用いる触媒では、リムサイトに対するエッジサイトが特定のバランスを保っているために、高脱窒素活性と高脱硫活性が同時に実現していると考えられる。さらに、本発明者は、このような良好な2種の活性をもたらすアスペクト比は、前述の水素化活性金属の成分、特に、ニッケルとコバルトの共存及びその組成に由来するものであると考えている。 It is known that an active point having an activity with respect to a hydrotreating reaction exists only on the edge surface (Non-Patent Document 1 described above), and the active point on the edge surface is in the uppermost layer. If an active site is a rim site and an active site in another layer is an edge site, there is no hydrogenation activity for hydrocarbon double bonds or benzene rings at the edge site, and only a reaction that directly desulfurizes sulfur compounds proceeds. On the other hand, it is considered that desulfurization reaction involving hydrogenation or hydrogenation of the benzene ring occurs at the rim site (M. Daage, R. Chianelli, Journal of Catalysis, 149, 414). Page (1994)). On the other hand, it is known that the denitrification reaction proceeds as the hydrogenation activity increases (H. Topsoe, BS Clausen, FE Massoth, “HYDROTREATING CATALYSIS”, Springer (1996)). In the catalyst used in the present invention , the edge site relative to the rim site maintains a specific balance. Therefore, it is considered that high denitrification activity and high desulfurization activity are realized at the same time. Furthermore, the present inventor considers that such an aspect ratio that provides two types of activities is derived from the above-described components of the hydrogenation active metal, particularly the coexistence and composition of nickel and cobalt. Yes.

アスペクト比を透過型電子顕微鏡写真によって求める際、Lbは、層間を0.615nmとし、平均の層数から1を引いた値を乗じて計算した。アスペクト比が小さいほどバーサル面に対するエッジ面の面積は大きくなると考えられる。本発明に用いる水素化処理触媒におけるアスペクト比は3〜4.5であり、好ましくは3〜4である。また、硫化モリブデンの結晶は、圧の水素共存下では、反応中に凝集してしまうため層の長さをあまり短くしすぎることは有効ではないが、層の長さが長すぎてもリムサイト、エッジサイトの数が減少するので好ましくない。化後の水素化処理触媒における硫化モリブデン結晶の層の長さは、好ましくは3.5〜6nm、特には3.5〜5nmであることが好ましいことが分った。 When the aspect ratio was obtained from a transmission electron micrograph, Lb was calculated by multiplying the average number of layers by subtracting 1 from 0.615 nm. The smaller the aspect ratio, the larger the area of the edge surface relative to the Versal surface. The aspect ratio of the hydrotreating catalyst used in the present invention is 3 to 4.5, preferably 3 to 4. Further, the rim crystal molybdenum sulfide, the hydrogen presence of high pressure, but is not effective to too much shorten the length of the layer for tend to aggregate during the reaction, even if too long a length of the layer This is not preferable because the number of sites and edge sites is reduced. The length of the layer of molybdenum sulfide crystals in hydrotreating catalyst after vulcanization of preferably 3.5~6Nm, particularly it has been found that it is preferable that 3.5~5Nm.

〔炭化水素油の水素化処理方法〕
本発明で提供される水素化処理触媒は、水素の存在下、炭化水素油と接触させることで、各種の炭化水素油の水素化処理を行うことができる。反応装置は、バッチ式、流通式、固定床式、流動床式等の反応形式に特に制限はないが、固定床流通式反応装置に充填された水素化処理触媒に水素と原料油とを連続的に供給して接触させる形式が好ましい。水素化処理の好ましい反応条件は、反応温度が100〜500℃、特には200〜450℃、水素圧力が0.1〜30MPa、特には2〜20MPa、水素/油供給比が50〜2000NL/L、特には100〜1000NL/L、液空間速度(LHSV)が0.05〜20h−1、特には0.1〜10h−1である。
[Hydrocarbon hydrotreating method]
The hydrotreating catalyst provided by the present invention can perform hydrotreating of various hydrocarbon oils by contacting with the hydrocarbon oil in the presence of hydrogen. There are no particular restrictions on the reaction system such as batch type, flow type, fixed bed type, fluidized bed type, etc., but hydrogen and feedstock are continuously added to the hydrotreating catalyst packed in the fixed bed flow type reactor. The type of supplying and contacting is preferable. Preferred reaction conditions for the hydrotreating are: reaction temperature of 100 to 500 ° C., particularly 200 to 450 ° C., hydrogen pressure of 0.1 to 30 MPa, particularly 2 to 20 MPa, hydrogen / oil supply ratio of 50 to 2000 NL / L. In particular, it is 100 to 1000 NL / L, and the liquid space velocity (LHSV) is 0.05 to 20 h −1 , particularly 0.1 to 10 h −1 .

〔炭化水素油〕
本発明に用いる水素化処理方法の原料油となる炭化水素油は、バナジウム分とニッケル分の合計が5質量ppm以下の炭化水素油であれば、特に制限はなく、原油、原油を常圧蒸留または減圧蒸留して得られるLPG留分、ナフサ留分、灯油留分、軽油留分、減圧軽油留分、常圧残油、減圧残油等の石油留分、それら石油留分を熱分解、接触分解、水素化精製、脱レキ、溶剤脱ろう、フルフラール等による溶剤抽出等の処理を行った各種石油留分、フィーシャー・トロプシュ合成油(FT合成油)、オレフィン重合物、石炭液化油、プラスチック分解油、オイルサンドやオイルシェールの分解油等が好ましく用いられる。バナジウム分とニッケル分の合計が5質量ppmを超える炭化水素油を水素の存在下で本発明に用いる水素化処理触媒と接触させると、バナジウム分とニッケル分が触媒上に堆積して触媒を著しく失活させるので好ましくない。
[Hydrocarbon oil]
The hydrocarbon oil used as the feedstock for the hydrotreating method used in the present invention is not particularly limited as long as it is a hydrocarbon oil having a total content of vanadium and nickel of 5 mass ppm or less, and crude oil and crude oil are distilled at atmospheric pressure. Or petroleum fractions such as LPG fraction, naphtha fraction, kerosene fraction, gas oil fraction, vacuum gas oil fraction, atmospheric residue, and vacuum residue obtained by distillation under reduced pressure, and pyrolysis of these petroleum fractions, Various petroleum fractions, such as catalytic cracking, hydrorefining, deleking, solvent dewaxing, solvent extraction with furfural, Fischer-Tropsch synthetic oil (FT synthetic oil), olefin polymer, coal liquefied oil, Plastic decomposition oil, oil sand or oil shale decomposition oil, etc. are preferably used. When a hydrocarbon oil having a total vanadium content and nickel content exceeding 5 ppm by mass is contacted with the hydrotreating catalyst used in the present invention in the presence of hydrogen, the vanadium content and the nickel content are deposited on the catalyst, and the catalyst is remarkably formed. Since it deactivates, it is not preferable.

〔軽油留分〕
本発明に用いる水素化処理触媒は特に軽油留分の脱硫、脱窒素に対しその効果を発揮する。本発明の低硫黄軽油の製造方法における原料炭化水素油となる軽油留分は、好ましくは、硫黄分が1質量%以上である軽油留分であり、通常、硫黄分が1〜5質量%、特には1〜3質量%であり、窒素分が50質量ppm以上、特には80〜500質量ppmであり、密度(15℃)が0.75g/cm以上、特には0.80〜0.92g/cmである。原料炭化水素油となる軽油留分としては、直留軽油留分を用いることが好ましく、直留軽油留分単独でもよいが、熱分解油や接触分解油を直留軽油留分に混合した混合軽油留分でもよい。この直留軽油留分は、原油を常圧蒸留して得られ、おおよそ10容量%留出温度が200〜290℃、50容量%留出温度が260〜320℃、90%容量留出温度が300〜370℃である。熱分解油とは、重質油留分に熱を加えて、ラジカル反応を主体にした反応により得られる軽質留分油で、例えば、ディレードコーキング法、ビスブレーキング法あるいはフルードコーキング法等により得られる留分をいう。これらの留分は得られる全留分を熱分解油として用いてもよいが、留出温度が150〜520℃の範囲内にある留分を用いることが好適である。接触分解油とは、中間留分や重質留分、特には減圧軽油留分や常圧蒸留残油等をゼオライト系触媒と接触分解する際に得られる留分、特に高オクタン価ガソリン製造を目的とした流動接触分解装置において副生する分解軽油留分である。この留分は、一般に、沸点が相対的に低い軽質接触分解油と沸点が相対的に高い重質接触分解油とが別々に採取されている。本発明においては、これらの留分のいずれをも用いることができるが、前者の軽質接触分解油、いわゆるライトサイクルオイル(LCO)を用いることが好ましい。このLCOは、一般に、10容量%留出温度が220〜250℃、50容量%留出温度が260〜290℃、90容量%留出温度が310〜355℃の範囲内にある。また、重質接触分解油、いわゆるヘビーサイクルオイル(HCO)は、10容量%留出温度が280〜340℃、50容量%留出温度が390〜420℃、90容量%留出温度が450℃以上にある。
[Light oil fraction]
The hydrotreating catalyst used in the present invention exhibits its effect particularly on desulfurization and denitrogenation of light oil fractions. The gas oil fraction to be the raw material hydrocarbon oil in the method for producing low sulfur gas oil of the present invention is preferably a gas oil fraction having a sulfur content of 1% by mass or more, usually having a sulfur content of 1 to 5% by mass, In particular, it is 1 to 3% by mass, the nitrogen content is 50 ppm by mass or more, particularly 80 to 500 ppm by mass, and the density (15 ° C.) is 0.75 g / cm 3 or more, particularly 0.80 to 0.0. 92 g / cm 3 . As the light oil fraction used as the raw material hydrocarbon oil, it is preferable to use a straight-run gas oil fraction, or a straight-run light oil fraction alone may be used, but a mixture obtained by mixing pyrolyzed oil or catalytic cracked oil into the straight-run light oil fraction. A light oil fraction may be used. This straight-run gas oil fraction is obtained by atmospheric distillation of crude oil, and approximately 10% by volume distillation temperature is 200 to 290 ° C., 50% by volume distillation temperature is 260 to 320 ° C., and 90% volume distillation temperature is 300-370 ° C. Pyrolysis oil is a light fraction oil obtained by applying heat to a heavy oil fraction and mainly using a radical reaction. For example, it can be obtained by the delayed coking method, visbreaking method or fluid coking method. Refers to the fraction to be made. Although these fractions may use the whole fraction obtained as a pyrolysis oil, it is suitable to use the fraction whose distillation temperature exists in the range of 150-520 degreeC. Catalytic cracked oil is a fraction obtained when catalytically cracking middle distillate and heavy distillate, especially vacuum gas oil distillate, atmospheric distillation residue, etc. with zeolitic catalyst, especially for the production of high octane gasoline This is a cracked gas oil fraction by-produced in the fluidized catalytic cracker. In general, a light catalytic cracked oil having a relatively low boiling point and a heavy catalytic cracked oil having a relatively high boiling point are separately collected from this fraction. In the present invention, any of these fractions can be used, but it is preferable to use the former light catalytic cracking oil, so-called light cycle oil (LCO). The LCO generally has a 10 vol% distillation temperature of 220 to 250 ° C, a 50 vol% distillation temperature of 260 to 290 ° C, and a 90 vol% distillation temperature of 310 to 355 ° C. In addition, heavy catalytic cracking oil, so-called heavy cycle oil (HCO), has a 10 vol% distillation temperature of 280 to 340 ° C, a 50 vol% distillation temperature of 390 to 420 ° C, and a 90 vol% distillation temperature of 450 ° C or higher. It is in.

〔軽油留分の水素化処理方法および低硫黄軽油の製造方法〕
上述した水素化処理触媒を軽油留分の脱硫に用いる場合、単独で上述の軽油留分の脱硫に用いてもよいが、他の水素化処理触媒と組合せて用いてもよい。上述した水素化処理触媒は、4−MDBTや4,6−DMDBTのような立体障害をもつ難脱硫性硫黄化合物の脱硫には必ずしも適していないが、立体障害の少ない硫黄化合物の脱硫を短い接触時間で効果的に行うと同時に高い脱窒素活性を有するので、上述した水素化処理触媒を前段触媒とし、立体障害をもつ硫黄化合物の脱硫に適した他の水素化処理触媒を後段触媒として組合せて用いることが好ましい。
[Method for hydrotreating gas oil fraction and method for producing low sulfur gas oil]
When the above-described hydrotreating catalyst is used for desulfurization of a light oil fraction, it may be used alone for desulfurization of the above-described light oil fraction, or may be used in combination with another hydrotreating catalyst. The above-mentioned hydrotreating catalyst is not necessarily suitable for desulfurization of sterically hindered sulfur-free sulfur compounds such as 4-MDBT and 4,6-DMDBT, but desulfurization of sulfur compounds with less steric hindrance is a short contact. Since it has high denitrification activity at the same time as effective, it can be combined with the above-mentioned hydrotreating catalyst as the pre-stage catalyst and another hydrotreating catalyst suitable for desulfurization of sterically hindered sulfur compounds as the post-stage catalyst. It is preferable to use it.

〔気液分離工程を含む低硫黄軽油の製造方法〕
本発明において特に好ましい低硫黄軽油の製造方法は、0.5質量%以上の硫黄分を含む軽油留分を原料油とする硫黄分10質量ppm以下の低硫黄軽油の製造方法であって、本発明の水素化処理触媒を水素の存在下で原料油と接触させる水素化処理によって粗精製を行う第1の工程、第1の工程で得られる反応混合物の気液分離を行う第2の工程、モリブデンまたはタングステンを含み、かつニッケルを含む水素化処理触媒を水素の存在下で第2の工程で得られた粗精製油と接触させる水素化処理を行う第3の工程を含む。原料油を水素化処理すると、脱硫反応や脱窒素反応が進行し、硫化水素やアンモニアが生成するが、硫化水素やアンモニアは水素化処理触媒を被毒し、脱硫反応を阻害する性質がある。そこで、第1の工程で得られる反応混合物を第2の工程で気液分離して硫化水素やアンモニアを除去し、得られた粗精製油を第3の工程でさらに水素化処理することで、効率よく脱硫を進行させることができ、よりマイルドな条件で低硫黄軽油を製造することや、低硫黄軽油を効率良く増産することが可能になり、好ましい。
[Method for producing low sulfur gas oil including gas-liquid separation step]
A particularly preferred method for producing a low sulfur gas oil in the present invention is a method for producing a low sulfur gas oil having a sulfur content of 10 mass ppm or less using a gas oil fraction containing a sulfur content of 0.5 mass% or more as a feedstock, A first step of performing crude purification by hydrotreating the hydrotreating catalyst of the invention in contact with a feedstock in the presence of hydrogen; a second step of performing gas-liquid separation of the reaction mixture obtained in the first step; A third step is performed in which hydroprocessing catalyst containing molybdenum or tungsten and containing nickel is contacted with the crude oil obtained in the second step in the presence of hydrogen. When raw material oil is hydrotreated, desulfurization reaction and denitrogenation reaction proceed to produce hydrogen sulfide and ammonia. However, hydrogen sulfide and ammonia poison the hydrotreating catalyst and inhibit the desulfurization reaction. Therefore, the reaction mixture obtained in the first step is gas-liquid separated in the second step to remove hydrogen sulfide and ammonia, and the obtained crude refined oil is further hydrotreated in the third step. It is preferable because desulfurization can proceed efficiently and low sulfur gas oil can be produced under milder conditions, and production of low sulfur gas oil can be increased efficiently.

第1の工程と第3の工程は異なる反応器を用いて行ってもよいし、第1の工程と第3の工程とを同一の反応器内で行ってもよい。第1の工程と第3の工程を異なる反応器を用いて行う場合にあっては、第1の工程のための反応器と第3の工程のための反応器の間に、第1の工程のための反応器から得られる反応混合物の気液分離を行う気液分離装置と、気液分離装置から得られる粗精製油を水素とともに第3の工程のための反応器に供給する装置を備えた一連の装置を用いて水素化処理を行うことが好ましい。気液分離装置としては、高圧分離槽、ストリッパー、フラッシャー、蒸留塔等の公知の分離装置を用いることが好ましく、2つ以上の分離装置を組合せて用いてもよい。例えば、高圧分離槽での気液分離で得られた粗精製油をさらにストリッパーを用いて気液分離すると硫化水素やアンモニアを、効果的に除去できるので、特に好ましい。ストリッパーによるストリッピング処理のために供給するガス流としては、水素、不活性ガスまたはスチームが好ましい。一方、第1の工程と第3の工程とを同一の反応器内で行う場合にあっては、前述の特許文献4〜5で開示されている装置や方法を用いることが好ましい。第1の工程から第2の工程に単位時間あたりに供給される硫化水素量、アンモニア量に対する第3の工程に単位時間あたりに供給される硫化水素量、アンモニア量の比率を、本発明では、各々、硫化水素の残存率、アンモニアの残存率と呼ぶが、これらの残存率は、好ましくは0〜50%である。これら残存率が50%より高いと、気液分離による第3の工程での反応阻害低減効果が小さくなり好ましくない。これらの残存率は低いほど第3の工程での反応阻害低減効果が高いが、残存率を0%に近づけると低硫黄軽油の製造におけるエネルギー消費量が増加し、経済性を損ねるので、これらの残存率は、より好ましくは1〜40%、特には3〜20%とすることが好ましい。   The first step and the third step may be performed using different reactors, or the first step and the third step may be performed in the same reactor. In the case where the first step and the third step are performed using different reactors, the first step is provided between the reactor for the first step and the reactor for the third step. Gas-liquid separation device for performing gas-liquid separation of the reaction mixture obtained from the reactor for the gas, and a device for supplying the crude refined oil obtained from the gas-liquid separation device to the reactor for the third step together with hydrogen The hydrogenation treatment is preferably performed using a series of apparatuses. As the gas-liquid separator, a known separator such as a high-pressure separator, a stripper, a flasher, or a distillation tower is preferably used, and two or more separators may be used in combination. For example, it is particularly preferable to carry out gas-liquid separation of crude refined oil obtained by gas-liquid separation in a high-pressure separation tank using a stripper because hydrogen sulfide and ammonia can be effectively removed. The gas stream supplied for the stripping process by the stripper is preferably hydrogen, an inert gas or steam. On the other hand, when the first step and the third step are performed in the same reactor, it is preferable to use the apparatuses and methods disclosed in Patent Documents 4 to 5 described above. In the present invention, the ratio of the amount of hydrogen sulfide supplied per unit time to the second step from the first step, the amount of hydrogen sulfide supplied per unit time to the third step relative to the amount of ammonia, and the amount of ammonia in the present invention, The residual ratio of hydrogen sulfide and the residual ratio of ammonia are referred to as the residual ratio, and these residual ratios are preferably 0 to 50%. If the residual ratio is higher than 50%, the effect of reducing reaction inhibition in the third step by gas-liquid separation is reduced, which is not preferable. The lower these residual ratios, the higher the reaction inhibition reduction effect in the third step. However, when the residual ratio is brought close to 0%, the energy consumption in the production of low sulfur gas oil increases and the economic efficiency is impaired. The residual ratio is more preferably 1 to 40%, and particularly preferably 3 to 20%.

本発明の低硫黄軽油の製造方法において第3の工程に用いる水素化処理触媒は、通常、水素化処理触媒前駆体を硫化処理することによって製造され、硫化処理は第1の工程に用いる水素化処理触媒を製造する場合と同様の方法が好ましい。第3の工程に用いる水素化処理触媒を硫化処理する前の段階の水素化処理触媒前駆体は、モリブデンまたはタングステンを含み、かつニッケルを含む多孔質体であれば、第1の工程に用いる水素化処理触媒前駆体と同一のものでもよいが、異なる水素化処理触媒前駆体を用いてもよく、コバルトを含んでいてもよい。公知のニッケル−モリブデン系水素化処理触媒前駆体、ニッケル−コバルト−モリブデン系水素化処理触媒前駆体、ニッケル−タングステン系水素化処理触媒前駆体が特に好ましく用いられる。水素化処理触媒前駆体の組成は、好ましくは、モリブデンとタングステンの合計の含有量が5〜50質量%、コバルトとニッケルの合計の含有量が1〜15質量%である。また、リン、ホウ素、フッ素などの元素を含むものであってよい。さらに、エチレンジアミン四酢酸(EDTA)、trans−1,2−シクロヘキサンジアミン−N,N,N’,N’−四酢酸、ニトリロ三酢酸、クエン酸等、キレート性の有機化合物を含ませた水素化処理触媒前駆体も好ましく用いられる。これらのキレート性の有機化合物は、コバルトまたはニッケルと錯体を形成した形態で水素化処理触媒前駆体に含まれていると一層好ましい。本発明の低硫黄軽油の製造方法に用いる水素化処理触媒前駆体は、好ましくは、メソポアの中央細孔直径が、4〜20nmであり、さらに好ましくは4〜15nmである。さらに、好ましくは、比表面積が、30〜800m/gであり、一層好ましくは50〜600m/gである。本発明の低硫黄軽油の製造方法に用いる水素化処理触媒前駆体は、粉体ではなく、成形体であることが好ましい。成形体の形状や成形方法に特に制限はないが、球状や柱状の形状が好ましい。球状の場合は、直径が0.5〜20mmであることが好ましい。柱状の場合の断面形状は、特に制限はないが、円型、三つ葉型、四つ葉型が好ましい断面形状として挙げられる。柱状の場合の成形体の寸法は、断面積が0.25〜400mm、長さ0.5〜20mm程度であることが好ましい。水素化処理触媒前駆体の製造方法に特に制限はないが、多孔質無機酸化物担体に上述の活性金属元素やリン等の添加元素、EDTA等の有機化合物を含ませて製造することが好ましい。多孔質無機酸化物としては、アルミナ、シリカ、チタニア、マグネシア、ジルコニア等の酸化物、シリカ−アルミナ、シリカ−チタニア、シリカ−ジルコニア、シリカ−マグネシア、シリカ−アルミナ−チタニア、シリカ−アルミナ−ジルコニア等の複合酸化物、Y型ゼオライト、安定化Y型ゼオライト、βゼオライト、モルデナイト型ゼオライトまたはMCM−22等のゼオライトから選ばれる1種または2種以上からなるものが好ましい。 The hydrotreating catalyst used in the third step in the method for producing low-sulfur gas oil of the present invention is usually produced by sulfiding a hydrotreating catalyst precursor, and the sulphiding treatment is a hydrogenation used in the first step . A method similar to that for producing the treated catalyst is preferred. If the hydrotreating catalyst precursor in the stage before the sulfiding treatment of the hydrotreating catalyst used in the third step is a porous body containing molybdenum or tungsten and nickel, the hydrogen used in the first step The same hydrotreating catalyst precursor may be used, but a different hydrotreating catalyst precursor may be used and cobalt may be included. Known nickel-molybdenum-based hydrotreating catalyst precursors, nickel-cobalt-molybdenum-based hydrotreating catalyst precursors, and nickel-tungsten-based hydrotreating catalyst precursors are particularly preferably used. The composition of the hydrotreating catalyst precursor preferably has a total content of molybdenum and tungsten of 5 to 50% by mass and a total content of cobalt and nickel of 1 to 15% by mass. Further, it may contain an element such as phosphorus, boron or fluorine. Further, hydrogenation containing a chelating organic compound such as ethylenediaminetetraacetic acid (EDTA), trans-1,2-cyclohexanediamine-N, N, N ′, N′-tetraacetic acid, nitrilotriacetic acid, citric acid, etc. A treatment catalyst precursor is also preferably used. These chelating organic compounds are more preferably contained in the hydrotreating catalyst precursor in the form of a complex with cobalt or nickel. The hydrotreating catalyst precursor used in the method for producing low-sulfur gas oil of the present invention preferably has a mesopore central pore diameter of 4 to 20 nm, more preferably 4 to 15 nm. Furthermore, preferably, a specific surface area is 30-800 m < 2 > / g, More preferably, it is 50-600 m < 2 > / g. The hydrotreating catalyst precursor used in the method for producing low sulfur gas oil of the present invention is preferably not a powder but a molded body. Although there is no restriction | limiting in particular in the shape of a molded object, and a shaping | molding method, A spherical shape or a columnar shape is preferable. In the case of a spherical shape, the diameter is preferably 0.5 to 20 mm. The cross-sectional shape in the case of a columnar shape is not particularly limited, but a circular shape, a three-leaf shape, and a four-leaf shape are preferable cross-sectional shapes. The dimensions of the molded body in the case of a columnar shape are preferably about 0.25 to 400 mm 2 in cross-sectional area and about 0.5 to 20 mm in length. Although there is no restriction | limiting in particular in the manufacturing method of a hydroprocessing catalyst precursor, It is preferable to include the above-mentioned active metal element, additional elements, such as phosphorus, and organic compounds, such as EDTA, in a porous inorganic oxide support | carrier. Examples of porous inorganic oxides include oxides such as alumina, silica, titania, magnesia, zirconia, silica-alumina, silica-titania, silica-zirconia, silica-magnesia, silica-alumina-titania, silica-alumina-zirconia, etc. Of these, a composite oxide, Y-type zeolite, stabilized Y-type zeolite, β-zeolite, mordenite-type zeolite, or one or more selected from zeolites such as MCM-22 is preferable.

本発明の低硫黄軽油の製造方法においては、第1の工程と第3の工程とを同一の反応器内で行うか、第1の工程と第3の工程を異なる反応器を用いて行うかによらず、水素化処理触媒や反応条件について、以下のように選択することが好ましい。   In the method for producing low sulfur gas oil according to the present invention, whether the first step and the third step are performed in the same reactor, or whether the first step and the third step are performed using different reactors. Regardless, the hydrotreating catalyst and reaction conditions are preferably selected as follows.

第1の工程と第3の工程に用いられる水素化処理触媒の総量に対する第1の工程に用いられる水素化処理触媒の割合は、好ましくは20〜80容量%、特には30〜70容量%である。この割合が20容量%未満では、難脱硫性硫黄化合物以外の硫黄化合物が第3の工程に供給され、第3の工程に用いられる水素化処理触媒が十分な脱硫性能を発揮できないため、好ましくなく、80容量%を超えると、硫化水素やアンモニアの共存濃度を低減された脱硫反応に有利な反応ゾーンが減少するので好ましくない。   The ratio of the hydroprocessing catalyst used in the first step to the total amount of the hydroprocessing catalyst used in the first step and the third step is preferably 20 to 80% by volume, particularly 30 to 70% by volume. is there. If this ratio is less than 20% by volume, sulfur compounds other than the hard-to-desulfurize sulfur compound are supplied to the third step, and the hydrotreating catalyst used in the third step cannot exhibit sufficient desulfurization performance. If it exceeds 80% by volume, the reaction zone advantageous for the desulfurization reaction in which the coexisting concentration of hydrogen sulfide and ammonia is reduced is not preferable.

第1の工程と第3の工程に異なる水素化処理触媒を用いる場合にあっては、水素化処理触媒中に含まれるコバルトとニッケルの含有量合計に占めるニッケルの比率について、第1の工程に用いられる水素化処理触媒よりも大きいものを第3の工程に用いることが好ましい。軽油留分を水素化処理すると、難脱硫性硫黄化合物が選択的に残留することになるが、難脱硫性硫黄化合物の脱硫には、DBT骨格中の硫黄原子を直接脱硫する反応ルート(直接脱硫ルート)よりも、DBT骨格内のベンゼン環を水素化して置換基による立体障害を緩和した後に脱硫する反応ルート(水素化脱硫ルート)を取りやすい水素化処理触媒を用いた方が有利であることが知られており、コバルト−モリブデン系水素化処理触媒とニッケル−モリブデン系水素化処理触媒とを比較すると、後者の方が水素化脱硫ルートを取りやすいことが知られている(礒田隆聡,馬筱良,持田勲,石油学会誌,37巻,368−375頁(1994年)参照)。水素化処理触媒中に含まれるコバルトとニッケルの含有量合計に占めるニッケルの比率について、第1の工程に用いられる水素化処理触媒よりも大きいものを第3の工程に用いることより、難脱硫性硫黄化合物の脱硫が一層促進され好ましい。   In the case where different hydrotreating catalysts are used in the first step and the third step, the ratio of nickel in the total content of cobalt and nickel contained in the hydrotreating catalyst is determined in the first step. It is preferable to use a catalyst larger than the hydrotreating catalyst used in the third step. When the gas oil fraction is hydrotreated, the hard-to-desulfurize sulfur compound will remain selectively. However, for the desulfurization of the hard-to-desulfurize sulfur compound, a reaction route for directly desulfurizing sulfur atoms in the DBT skeleton (direct desulfurization). It is more advantageous to use a hydrotreating catalyst that can easily take a reaction route (hydrodesulfurization route) that desulfurizes after hydrogenating the benzene ring in the DBT skeleton to alleviate steric hindrance due to substituents. When the cobalt-molybdenum-based hydrotreating catalyst is compared with the nickel-molybdenum-based hydrotreating catalyst, it is known that the latter is more likely to take a hydrodesulfurization route (Takashi Hamada, Ryo Mabuchi, Isao Mochida, Journal of Petroleum Society, 37, 368-375 (1994)). The ratio of nickel in the total content of cobalt and nickel contained in the hydrotreating catalyst is larger than that of the hydrotreating catalyst used in the first step, so that it is difficult to desulfurize. Desulfurization of sulfur compounds is further promoted and preferable.

第1の工程と第3の工程に用いる水素化処理触媒は、各々、単一の水素化処理触媒でもよいし、2種類以上の触媒を組合せて積層充填してもよい。2種類以上の触媒を組合せて積層充填して用いる場合にあっては、水素化処理触媒中に含まれるコバルトとニッケルの含有量合計に占めるニッケルの比率がより小さいものをより原料油または粗精製油が供給される反応器入口に近い側に、コバルトとニッケルの含有量合計に占めるニッケルの比率がより大きいものをより反応器出口に近い側に配置することが好ましい。   Each of the hydrotreating catalysts used in the first step and the third step may be a single hydrotreating catalyst, or two or more types of catalysts may be combined and stacked. When two or more types of catalysts are combined and used in a stacked manner, a raw material oil or a crude refined one having a smaller proportion of nickel in the total content of cobalt and nickel contained in the hydrotreating catalyst It is preferable to arrange | position the thing with a larger ratio of the nickel which occupies for the total content of cobalt and nickel in the side near the reactor inlet to which oil is supplied, in the side nearer to the reactor outlet.

第1の工程および第3の工程の反応温度は、280〜450℃の範囲から選ばれ、好ましくは300〜420℃の範囲から選ばれる。第1の工程および第3の工程の水素圧力は、好ましくは3〜10MPaの範囲から選ばれ、好ましくは4〜9MPaの範囲から選ばれる。第1の工程と第3の工程の反応温度は必ずしも同じにする必要はなく、各々の工程に対して上記範囲から独立に選択してよい。第1の工程の全圧は、第3の工程の全圧よりも高いことが好ましく、第3の工程の全圧に比べ、0.01〜1MPa程度高くすることが特に好ましい。第3の工程の全圧と同じまたはより低いと、流体の流れが円滑でなくなり好ましくない。第1の工程および第3の工程に用いられる水素化処理触媒の総容量に対する原料油の容量基準での供給量比である総合液空間速度は、好ましくは0.1〜5h−1、特には0.3〜3h−1である。また、第1の工程および第3の工程における水素/オイル比は、各々、好ましくは100〜2000NL/L、特には100〜1000NL/Lである。固定床流通式反応装置で水素化処理を行う場合、第1の工程および第3の工程に用いられる水素化処理触媒は、各々、単一触媒床に充填してもよいし、2つ以上の触媒床に分割して充填してもよい。2つ以上の触媒床に分割して水素化処理触媒を充填する場合においては、触媒床間にクエンチ水素を供給することが好ましい。触媒床間にクエンチ水素を供給する場合にあっては、反応器入口に原料油または粗精製油とともに供給する水素とクエンチ水素の合計量と原料油または粗精製油の供給量の比が、100〜2000NL/L、特には100〜1000NL/Lとすることが好ましい。 The reaction temperature in the first step and the third step is selected from the range of 280 to 450 ° C, preferably from the range of 300 to 420 ° C. The hydrogen pressure in the first step and the third step is preferably selected from the range of 3 to 10 MPa, and preferably selected from the range of 4 to 9 MPa. The reaction temperatures of the first step and the third step are not necessarily the same, and may be selected independently from the above range for each step. The total pressure in the first step is preferably higher than the total pressure in the third step, and is particularly preferably about 0.01 to 1 MPa higher than the total pressure in the third step. If the total pressure is the same as or lower than the total pressure in the third step, the fluid flow becomes unsatisfactory. The total liquid space velocity, which is the ratio of the feed amount on the volume basis of the feedstock to the total volume of the hydrotreating catalyst used in the first step and the third step, is preferably 0.1 to 5 h −1 , in particular 0.3 to 3h- 1 . Further, the hydrogen / oil ratio in the first step and the third step is preferably 100 to 2000 NL / L, particularly 100 to 1000 NL / L, respectively. When hydrotreating in a fixed bed flow type reactor, each of the hydrotreating catalysts used in the first step and the third step may be packed in a single catalyst bed, or two or more The catalyst bed may be divided and filled. When the hydrotreatment catalyst is divided into two or more catalyst beds and charged with the hydrotreating catalyst, it is preferable to supply quench hydrogen between the catalyst beds. When quench hydrogen is supplied between the catalyst beds, the ratio of the total amount of hydrogen and quench hydrogen supplied together with the raw oil or the crude refined oil to the reactor inlet and the feed amount of the raw oil or the crude refined oil is 100. It is preferable to set it to -2000NL / L, especially 100-1000NL / L.

本発明の低硫黄軽油の製造方法においては、第3の工程に供給される粗精製油中に含まれるアルキル置換基のないDBTが、硫黄分として、好ましくは10質量ppm以下、さらには5質量ppm以下、特には1質量ppm以下であることが好ましい。DBTが極めて低濃度になるまで脱硫されていると、難脱硫性硫黄化合物が粗精製油中に選択的に残留することになり、第3の工程の反応条件下で難脱硫性硫黄化合物が効率よく脱硫されるので好ましい。また、第3の工程に供給される粗精製油中に含まれる硫黄分が、好ましくは2000質量ppm以下、さらには1000質量ppm以下、特には50〜500質量ppmであることが好ましい。通常、このような硫黄分レベルにまで脱硫された粗精製油中には難脱硫性硫黄化合物が選択的に残留することになり、第3の工程の反応条件下で難脱硫性硫黄化合物が効率よく脱硫されるので好ましい。   In the method for producing low-sulfur gas oil of the present invention, DBT without an alkyl substituent contained in the crude refined oil supplied to the third step is preferably 10 ppm by mass or less, more preferably 5 masses as the sulfur content. It is preferably at most ppm, particularly at most 1 ppm by mass. If DBT is desulfurized to a very low concentration, the hardly-desulfurizable sulfur compound will remain selectively in the crude refined oil, and the difficult-to-desulfurize sulfur compound will become efficient under the reaction conditions of the third step. It is preferable because it is well desulfurized. Moreover, it is preferable that the sulfur content contained in the roughly refined oil supplied to the third step is preferably 2000 mass ppm or less, more preferably 1000 mass ppm or less, and particularly preferably 50 to 500 mass ppm. Usually, in the crude refined oil desulfurized to such a sulfur level, the hardly-desulfurizable sulfur compound remains selectively, and the hardly-desulfurizable sulfur compound is efficiently used under the reaction conditions of the third step. It is preferable because it is well desulfurized.

第2の工程における液相の温度は特に制限はないが、30〜450℃、さらには200〜420℃の範囲から選択することが好ましく、第1の工程の出口反応温度と同じかまたは100℃以内の範囲でより低い温度であることが特に好ましい。第2の工程の液相の温度が低過ぎると、第3の工程に供給する粗精製油や水素を加熱するために必要なエネルギーが大きくなり、好ましくない。第2の工程でストリッピング処理を行う場合にストリッパーに供給される水素、不活性ガスまたはスチームの温度に特に制限はないが、常温より高い温度であることが好ましく、100℃〜第1の工程の出口反応温度の範囲であることが特に好ましい。第2の工程でストリッピング処理を行う場合にストリッパーに供給される水素、不活性ガスまたはスチームの流量は、第1の工程に供給される水素の流量に対して0.01〜2倍、さらには0.1〜1倍の範囲から選択することが好ましい。   The temperature of the liquid phase in the second step is not particularly limited, but is preferably selected from the range of 30 to 450 ° C., more preferably 200 to 420 ° C., which is the same as the outlet reaction temperature of the first step or 100 ° C. It is particularly preferred that the temperature is lower within the range of. If the temperature of the liquid phase in the second step is too low, the energy required for heating the crude refined oil or hydrogen supplied to the third step increases, which is not preferable. There is no particular limitation on the temperature of hydrogen, inert gas or steam supplied to the stripper when the stripping treatment is performed in the second step, but the temperature is preferably higher than room temperature, and is preferably from 100 ° C. to the first step. It is particularly preferable that the reaction temperature be within the range. When performing the stripping process in the second step, the flow rate of hydrogen, inert gas or steam supplied to the stripper is 0.01 to 2 times the flow rate of hydrogen supplied to the first step, and Is preferably selected from a range of 0.1 to 1 times.

以下、本発明を実施例により詳しく説明するが、この実施例は本発明を限定するものではない。
[参考例1]
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this Example does not limit this invention.
[Reference Example 1]

担体として、γ-アルミナを主成分とする断面形状が三つ葉型で呼び寸法1/20インチのペレット状のものを用いた。窒素吸着法で測定した比表面積は259m/g、細孔容積は0.64cm/g、中央細孔直径7.8nmであった。 As the support, a pellet having a cross-sectional shape of γ-alumina as a main component and a nominal size of 1/20 inch was used. The specific surface area measured by the nitrogen adsorption method was 259 m 2 / g, the pore volume was 0.64 cm 3 / g, and the median pore diameter was 7.8 nm.

イオン交換水50gに、三酸化モリブデン31.8g(太陽鉱工(株)製)、45.6%炭酸コバルト10.7g(関西触媒化学(株)製)、45.0%炭酸ニッケル3.6g(日本化学産業(株)製)、85%リン酸4.9gを加え、80℃で撹拌しながら溶解した。さらに、60℃まで自然放冷したのち、クエン酸24g(関東化学(株)製)を加え、撹拌しながら溶解し、40℃まで自然放冷したのち、35%過酸化水素8g(関東化学(株)製)を加え、撹拌しながら室温まで放冷して担持液を調製した。この担持液を担体120gにポアフィリング法で含浸させた。含浸物を130℃で一晩乾燥後、通気式ロータリーキルンで空気中550℃、30分間焼成して水素化処理触媒前駆体1を調製した。   50 g of ion-exchanged water, 31.8 g of molybdenum trioxide (manufactured by Taiyo Mining Co., Ltd.), 10.7 g of 45.6% cobalt carbonate (manufactured by Kansai Kagaku Kagaku Co., Ltd.), 3.6 g of 45.0% nickel carbonate (Nippon Chemical Industry Co., Ltd.) and 4.9 g of 85% phosphoric acid were added and dissolved at 80 ° C. with stirring. Furthermore, after naturally cooling to 60 ° C., 24 g of citric acid (manufactured by Kanto Chemical Co., Inc.) was added, dissolved while stirring, and naturally cooled to 40 ° C., and then 8 g of 35% hydrogen peroxide (Kanto Chemical ( Co., Ltd.) was added and allowed to cool to room temperature with stirring to prepare a support liquid. 120 g of this support liquid was impregnated with a pore filling method. The impregnated material was dried at 130 ° C. overnight and then calcined in air at 550 ° C. for 30 minutes in a ventilated rotary kiln to prepare a hydrotreating catalyst precursor 1.

[比較例1]
イオン交換水50gに、三酸化モリブデン31.8g(太陽鉱工(株)製)、45.6%炭酸コバルト7.2g(関西触媒化学(株)製)、45.0%炭酸ニッケル7.3g(日本化学産業(株)製)、85%リン酸4.9gを加え、80℃で撹拌しながら溶解し、さらに、60℃まで自然放冷したのち、クエン酸24g(関東化学(株)製)を加え、撹拌しながら溶解した。40℃まで自然放冷したのち、35%過酸化水素8g(関東化学(株)製)を加え、撹拌しながら室温まで放冷して担持液を調製した。この担持液を参考例1で用いた担体120gにポアフィリング法で含浸させた。含浸物を130℃で一晩乾燥後、通気式ロータリーキルンで空気中、500℃で、30分間焼成して水素化処理触媒前駆体2を調製した。
[Comparative Example 1]
50 g of ion-exchanged water, 31.8 g of molybdenum trioxide (manufactured by Taiyo Mining Co., Ltd.), 7.2 g of 45.6% cobalt carbonate (manufactured by Kansai Catalysts Chemical Co., Ltd.), 7.3 g of 45.0% nickel carbonate (Nippon Chemical Industry Co., Ltd.), 4.9 g of 85% phosphoric acid was added, dissolved with stirring at 80 ° C., and allowed to cool naturally to 60 ° C., then 24 g of citric acid (manufactured by Kanto Chemical Co., Ltd.) ) And dissolved with stirring. After naturally cooling to 40 ° C., 8 g of 35% hydrogen peroxide (manufactured by Kanto Chemical Co., Inc.) was added, and the mixture was allowed to cool to room temperature with stirring to prepare a support liquid. 120 g of the carrier used in Reference Example 1 was impregnated with this supporting liquid by a pore filling method. The impregnated product was dried at 130 ° C. overnight and then calcined in the air at 500 ° C. for 30 minutes with a ventilated rotary kiln to prepare the hydrotreating catalyst precursor 2.

[比較例2]
イオン交換水50gに、三酸化モリブデン31.3g(太陽鉱工(株)製)、45.6%炭酸コバルト10.6g(関西触媒化学(株)製)、85%リン酸4.8gを加え、80℃で撹拌しながら溶解し、さらに、60℃まで自然放冷したのち、クエン酸24g(関東化学(株)製)を加え、撹拌しながら溶解した。40℃まで自然放冷したのち、35%過酸化水素8g(関東化学(株)製)を加え、撹拌しながら室温まで放冷して担持液を調製した。この担持液を参考例1で用いた担体にポアフィリング法で含浸させた。含浸物を130℃で一晩乾燥後、通気式ロータリーキルンで空気中550℃、30分間焼成して水素化処理触媒前駆体3を調製した。
[Comparative Example 2]
To 50 g of ion-exchanged water, 31.3 g of molybdenum trioxide (manufactured by Taiyo Mining Co., Ltd.), 10.6 g of 45.6% cobalt carbonate (manufactured by Kansai Catalysts Chemical Co., Ltd.), and 4.8 g of 85% phosphoric acid are added. Then, the mixture was dissolved at 80 ° C. with stirring, and further allowed to cool to 60 ° C., and then 24 g of citric acid (manufactured by Kanto Chemical Co., Inc.) was added and dissolved with stirring. After naturally cooling to 40 ° C., 8 g of 35% hydrogen peroxide (manufactured by Kanto Chemical Co., Inc.) was added, and the mixture was allowed to cool to room temperature with stirring to prepare a support liquid. The carrier used in Reference Example 1 was impregnated with this support liquid by a pore filling method. The impregnated product was dried at 130 ° C. overnight, and then calcined in the air at 550 ° C. for 30 minutes in a ventilated rotary kiln to prepare a hydrotreating catalyst precursor 3.

[比較例3]
担体としては、γ-アルミナを主成分とする断面形状が三つ葉型で呼び寸法1/20インチのペレット状のものを用いた。窒素吸着法で測定した比表面積は293m/g、細孔容積は0.64cm/g、中央細孔直径は7.6nmである。
[Comparative Example 3]
As the carrier, a pellet having a cross-sectional shape mainly composed of γ-alumina and having a three-leaf type and a nominal size of 1/20 inch was used. The specific surface area measured by the nitrogen adsorption method is 293 m 2 / g, the pore volume is 0.64 cm 3 / g, and the central pore diameter is 7.6 nm.

イオン交換水50gに、三酸化モリブデン24.9g(太陽鉱工(株)製)、45.6%炭酸コバルト10.4g(関西触媒化学(株)製)、85%りん酸11.8gを加え、80℃で撹拌しながら溶解し、さらに、60℃まで自然放冷したのち、クエン酸24g(関東化学(株)製)を加え、撹拌しながら溶解し、室温まで放冷して担持液を調製した。この担持液を担体120gにポアフィリング法で含浸させた。含浸物を130℃で一晩乾燥後、通気式ロータリーキルンで空気中550℃、30分間焼成して水素化処理触媒前駆体4を調製した。   To 50 g of ion-exchanged water, 24.9 g of molybdenum trioxide (manufactured by Taiyo Mining Co., Ltd.), 10.4 g of 45.6% cobalt carbonate (manufactured by Kansai Catalysts Chemical Co., Ltd.), and 11.8 g of 85% phosphoric acid are added. After dissolving at 80 ° C. with stirring and further naturally cooling to 60 ° C., 24 g of citric acid (manufactured by Kanto Chemical Co., Inc.) was added, dissolved with stirring, allowed to cool to room temperature, Prepared. 120 g of this support liquid was impregnated with a pore filling method. The impregnated material was dried at 130 ° C. overnight, and then calcined in the air at 550 ° C. for 30 minutes in a ventilated rotary kiln to prepare a hydrotreating catalyst precursor 4.

これら水素化処理触媒前駆体1〜4について、窒素吸着法で測定した比表面積、細孔容積、中央細孔直径の分析結果および組成分析結果を表1に示す。   Table 1 shows the analysis results and composition analysis results of the specific surface area, pore volume, and median pore diameter of these hydrotreating catalyst precursors 1 to 4 measured by the nitrogen adsorption method.

〔水素化処理触媒前駆体および水素化処理触媒の分析〕
水素化処理触媒前駆体1〜4を、硫化水素/水素気流中、一定速度で昇温し、硫化水素および水素の消費量を調べた(TPS分析)。このTPS測定(大倉理研製)では、水素化処理触媒前駆体を粉砕して32−64メッシュで粒径をそろえたものを約100mg採取して反応管に仕込み、反応管を装置に取り付けた。空気雰囲気下400℃で2時間前処理を行って室温まで冷却した後、28℃にて1時間以上安定させた。硫化水素用UV検出器(波長215nm)、水素用TCD検出器が安定していることを確認し、硫化水素/水素ガスに切り替え、28℃で2時間保持した後、400℃まで6℃/minで昇温し、400℃で2時間保持という温度プログラムで行った。測定結果の例を図1に示す。図1は、水素化処理触媒前駆体1についての結果を示す。図1中、硫化水素(HS)は図の下方に消費量が増大し、水素(H)は図の上方に消費量が増大するものとする。図1からも明らかなように、測定結果においては、硫化水素の消費ピークが2つ認められた。低温側のピークが酸素と硫黄の交換によるモリブデンオキシスルフィドおよびニッケルやコバルトが配位した三硫化モリブデン様の化合物の形成によるものであり、高温側のピークがオキシスルフィドから硫化物状態に変化するものである。また、これらのピーク間の温度において水素の消費ピ−クが認められ、これはオキシスルフィドの一部のSが放出されると同時に水素によって水素化されることで硫化水素が生成しているものと考えられる。従って、このピークトップの温度を硫化開始温度として取り扱い、表1に併せて示した。硫化開始温度が低い水素化処理触媒前駆体から得られる水素化処理触媒の脱硫活性、脱窒素活性がより高い傾向にある。
[Analysis of hydrotreating catalyst precursor and hydrotreating catalyst]
The hydrogenation catalyst precursors 1 to 4 were heated at a constant rate in a hydrogen sulfide / hydrogen stream, and consumption amounts of hydrogen sulfide and hydrogen were examined (TPS analysis). In this TPS measurement (manufactured by Okura Riken), about 100 mg of a hydroprocessing catalyst precursor pulverized and having a particle size of 32-64 mesh was collected and charged into a reaction tube, and the reaction tube was attached to the apparatus. After pretreatment at 400 ° C. for 2 hours in an air atmosphere and cooling to room temperature, the mixture was stabilized at 28 ° C. for 1 hour or more. After confirming that the hydrogen sulfide UV detector (wavelength 215 nm) and hydrogen TCD detector are stable, switch to hydrogen sulfide / hydrogen gas, hold at 28 ° C. for 2 hours, and then continue to 6 ° C./min up to 400 ° C. At a temperature program of 2 hours at 400 ° C. An example of the measurement result is shown in FIG. FIG. 1 shows the results for the hydrotreating catalyst precursor 1. In FIG. 1, it is assumed that the consumption of hydrogen sulfide (H 2 S) increases in the lower part of the figure, and the consumption of hydrogen (H 2 ) increases in the upper part of the figure. As is clear from FIG. 1, two consumption peaks of hydrogen sulfide were recognized in the measurement results. The low-temperature peak is due to the formation of molybdenum oxysulfide and molybdenum trisulfide-like compounds coordinated by nickel and cobalt by the exchange of oxygen and sulfur, and the high-temperature peak changes from oxysulfide to the sulfide state It is. In addition, a peak of hydrogen consumption was observed at the temperature between these peaks, which was generated by hydrogen sulfide being generated by hydrogen being hydrogenated at the same time as part of S of oxysulfide was released. it is conceivable that. Therefore, this peak top temperature was treated as the sulfidation start temperature, and is shown in Table 1 together. There exists a tendency for the desulfurization activity and denitrogenation activity of the hydrotreating catalyst obtained from the hydrotreating catalyst precursor having a low sulfidation start temperature to be higher.

水素化処理触媒前駆体1〜4を硫化処理して得られる水素化処理触媒のモリブデン硫化物の形態を測定した。上記のTPS測定を行って硫化された水素化処理触媒を粉砕し、ヘプタン中に入れ超音波洗浄器で数分分散させた。マイクログリッドのメッシュ上に懸濁液の一滴を滴下させ、乾燥後、透過型電子顕微鏡(TEM)による観察を行った。このTEM観察では加速電圧200kV、観察直接倍率30万倍、写真倍率150万倍で行い、異なる4視野の写真より、その視野中に含まれる、モリブデン硫化物について層数および層に平行な方向の長さを測定した。TEM写真の例を図2に示す。この操作を最低100個のMo硫化物について行い、平均層数および平均長さ(La)を求めた。平均層数に層間の距離0.615nmを乗じたものを平均高さ(Lb)として、Mo硫化物のアスペクト比(La/Lb)を算出し、表1に示す The form of molybdenum sulfide of the hydrotreating catalyst obtained by sulfiding the hydrotreating catalyst precursors 1 to 4 was measured. The above-mentioned TPS measurement was carried out to pulverize the sulfurized hydroprocessing catalyst, and it was put in heptane and dispersed for several minutes with an ultrasonic cleaner. One drop of the suspension was dropped on the mesh of the microgrid, dried, and then observed with a transmission electron microscope (TEM). In this TEM observation, the acceleration voltage is 200 kV, the observation direct magnification is 300,000 times, and the photographic magnification is 1.5 million times. The length was measured. An example of a TEM photograph is shown in FIG. This operation was performed on at least 100 Mo sulfides, and the average number of layers and the average length (La) were determined. Table 1 shows the aspect ratio (La / Lb) of Mo sulfide calculated by multiplying the average number of layers by the distance between layers of 0.615 nm as the average height (Lb) .

[参考例2]
〔固定床流通式反応器を用いた軽油留分の水素化処理〕
参考例1で得られた水素化処理触媒前駆体1を使用して、表2に性状を示す中東系直留軽油(軽油留分A)を原料油とした水素化処理実験を行った。固定床流通式反応器に水素化処理触媒前駆体1を10mL充填し、水素圧力5.0MPaで水素を流通させながら2時間で室温から150℃まで昇温した。その後、以下の手順で水素化処理触媒1を硫化処理した。硫化剤(市販軽油に1質量%の二硫化炭素を混合したもの)を水素圧力5.0MPa、水素/オイル比200NL/L、LHSV2.0h−1、150℃の条件下で2時間通油した。その後、温度以外の条件を一定として硫化剤と水素の供給を継続し、20℃/hで230℃まで昇温して、4時間、230℃で一定とした。その後さらに、17.5℃/hで300℃まで昇温して、7時間、300℃で一定とした。この後、この硫化処理された水素化処理触媒を用いて軽油留分の水素化精製反応を行った。水素化精製反応条件は、水素純度:99.9%以上、水素圧力:5.0MPa、液空間速度:4.5h−1、水素/オイル比:200NL/Lとした。反応温度330℃、340℃、350℃、360℃で採取した生成油中の硫黄分および窒素分を分析し、脱硫については原料油硫黄分に対する反応次数を1.5次として、脱窒素については原料油窒素分に対する反応次数を1.0次として、脱硫反応速度定数および脱窒素反応速度定数を求めた。
[Reference Example 2]
[Hydrotreatment of diesel oil fraction using fixed bed flow reactor]
Using the hydrotreating catalyst precursor 1 obtained in Reference Example 1 , a hydrotreating experiment was conducted using a Middle East straight-run gas oil (light oil fraction A) having properties shown in Table 2 as a feedstock. A fixed bed flow reactor was charged with 10 mL of the hydrotreating catalyst precursor 1, and the temperature was raised from room temperature to 150 ° C. in 2 hours while flowing hydrogen at a hydrogen pressure of 5.0 MPa. Thereafter, the hydrotreating catalyst 1 was subjected to sulfurization treatment in the following procedure. A sulfiding agent (commercial light oil mixed with 1% by mass of carbon disulfide) was passed for 2 hours under conditions of hydrogen pressure 5.0 MPa, hydrogen / oil ratio 200 NL / L, LHSV 2.0 h −1 , 150 ° C. . Thereafter, the supply of the sulfiding agent and hydrogen was continued under constant conditions other than temperature, the temperature was raised to 230 ° C. at 20 ° C./h, and the temperature was kept constant at 230 ° C. for 4 hours. Thereafter, the temperature was further increased to 300 ° C. at 17.5 ° C./h, and the temperature was kept constant at 300 ° C. for 7 hours. Then, the hydrorefining reaction of the light oil fraction was performed using this hydrotreated catalyst treated with sulfur. The hydrorefining reaction conditions were as follows: hydrogen purity: 99.9% or more, hydrogen pressure: 5.0 MPa, liquid space velocity: 4.5 h −1 , hydrogen / oil ratio: 200 NL / L. Analyzing sulfur and nitrogen in the product oil sampled at reaction temperatures of 330 ° C, 340 ° C, 350 ° C and 360 ° C, desulfurization is performed with a reaction order of 1.5 for the raw oil sulfur, The desulfurization reaction rate constant and the denitrification reaction rate constant were determined with the reaction order relative to the feedstock nitrogen content being 1.0 order.

[比較例4]
水素化処理触媒前駆体として参考例1で得られた水素化処理触媒前駆体1の代わりに、比較例1〜3で得られた水素化処理触媒前駆体2〜4を用いた以外は、参考例2と同様の方法で水素化処理実験を行って、脱硫反応速度定数および脱窒素反応速度定数をそれぞれ求めた。
[Comparative Example 4]
Instead of hydroprocessing catalyst precursor as obtained in Reference Example 1 hydroprocessing catalyst precursor 1, except for using hydrotreating catalyst precursor 2-4 obtained in Comparative Example 1-3, Reference A hydrotreatment experiment was performed in the same manner as in Example 2 to determine a desulfurization reaction rate constant and a denitrogenation reaction rate constant, respectively.

参考例2および比較例4で得られた脱硫反応速度定数および脱窒素反応速度定数について、水素化処理触媒前駆体4を用いた場合を基準(100)として比較した相対脱硫活性および相対脱窒素活性を表1に併せて示す。モリブデン硫化物のアスペクト比(La/Lb)が小さい水素化処理触媒の脱硫活性および脱窒素活性が、比較例の水素化処理触媒に比べ格段に高いことが明らかである Relative desulfurization activity and relative denitrogenation activity of the desulfurization reaction rate constants and denitrogenation reaction rate constants obtained in Reference Example 2 and Comparative Example 4 were compared using the hydrotreating catalyst precursor 4 as a reference (100). Is also shown in Table 1. The aspect ratio (La / Lb) desulfurization activity and denitrogenation activity have small water hydrogenation treatment catalyst of molybdenum sulfide, it is clear that much higher than in the hydrotreating catalyst of Comparative Example.

[実施例1]
〔気液分離機構を備えた反応装置を用いた軽油留分の水素化処理による低硫黄軽油の製造〕
シリカアルミナを主成分とする担体に、アンモニア水、EDTA、硝酸ニッケル六水和物、メタタングステン酸アンモニウム水溶液を混合して得られた含浸液を含浸させた後、130℃で24時間乾燥してニッケル−タングステン系水素化処理触媒前駆体Aを得た。ニッケル−タングステン系水素化処理触媒前駆体Aの元素分析結果は、Ni:3.06質量%、W:17.4質量%、C:3.06質量%、N:2.76質量%、Si:13.8質量%、Al:12.0質量%であった。また、窒素吸着法で測定した細孔特性は、細孔容積0.117mL/g、比表面積63m/g、中央細孔径6.3nmであった。
[Example 1]
[Production of low-sulfur gas oil by hydrotreating gas oil fractions using a reactor equipped with a gas-liquid separation mechanism]
A carrier mainly composed of silica alumina was impregnated with an impregnating solution obtained by mixing ammonia water, EDTA, nickel nitrate hexahydrate, and ammonium metatungstate aqueous solution, and then dried at 130 ° C. for 24 hours. Nickel-tungsten hydrotreatment catalyst precursor A was obtained. The elemental analysis results of the nickel-tungsten-based hydrotreating catalyst precursor A are as follows: Ni: 3.06 mass%, W: 17.4 mass%, C: 3.06 mass%, N: 2.76 mass%, Si : 13.8% by mass, Al: 12.0% by mass. The pore characteristics measured by the nitrogen adsorption method were a pore volume of 0.117 mL / g, a specific surface area of 63 m 2 / g, and a median pore diameter of 6.3 nm.

用いた反応装置の概略フローを図3に示す。本反応装置は、反応器1および反応器2の2つの反応器を備え、その間に高圧分離槽3とストリッパー4を備え、反応器2は高圧分離槽5、ミスト分離槽6及びストリッパー7に連結されており、それらは配管16〜42で連結されている。反応器1および2に対する水素供給は、各々、配管14および配管29、30から行われる。原料油は、配管13,15を通じて反応器1に送られる。ストリッパー4には配管23から水素ガスを供給して、ストリッパー4内に滞留する液体と気液接触させることができる。高圧分離槽3およびストリッパー4からは、各々、配管21および配管24を通して水素化精製反応で生成した硫化水素やアンモニアを含むガス(オフガス)を反応系外に除去することができる。ストリッパー4から取り出された液体は、配管26〜28,31を通じて反応器2に供給される。反応器2で水素化処理された反応混合物は、高圧分離槽5およびミスト分離槽6で気液分離され、液体成分がストリッパー7に送られてストリッピングされた後に、生成油として取り出される。   A schematic flow of the reactor used is shown in FIG. This reactor comprises two reactors, reactor 1 and reactor 2, with a high pressure separation tank 3 and a stripper 4 between them, and the reactor 2 is connected to a high pressure separation tank 5, a mist separation tank 6 and a stripper 7. They are connected by piping 16-42. Hydrogen supply to the reactors 1 and 2 is performed from the pipe 14 and the pipes 29 and 30, respectively. The raw material oil is sent to the reactor 1 through the pipes 13 and 15. Hydrogen gas can be supplied to the stripper 4 from the pipe 23 and brought into gas-liquid contact with the liquid staying in the stripper 4. From the high-pressure separation tank 3 and the stripper 4, the gas (off-gas) containing hydrogen sulfide and ammonia generated by the hydrorefining reaction can be removed from the reaction system through the pipe 21 and the pipe 24, respectively. The liquid taken out from the stripper 4 is supplied to the reactor 2 through the pipes 26 to 28 and 31. The reaction mixture hydrotreated in the reactor 2 is gas-liquid separated in the high-pressure separation tank 5 and the mist separation tank 6, and the liquid component is sent to the stripper 7 and stripped, and then taken out as product oil.

反応器1に水素化処理触媒前駆体1を50mL、反応器2にニッケル−タングステン系水素化処理触媒前駆体Aを50mL充填し、開閉バルブ8および10を閉じ、開閉バルブ9を開いた状態で、水素圧力5.0MPa、40L/hで水素を流通させながら2時間で室温から120℃まで昇温した。その後、以下の手順で水素化処理触媒前駆体1を硫化処理して、硫化された水素化処理触媒とした。硫化剤(市販軽油に1質量%の二硫化炭素を混合したもの)を水素圧力5.0MPa、水素/オイル比200NL/L、LHSV2.0h−1、120℃の条件下で2時間通油した。その後、温度以外の条件を一定として硫化剤と水素の供給を継続し、27.5℃/hで230℃まで昇温して、4時間、230℃で一定とした。その後さらに、42.5℃/hで300℃まで昇温して、7時間、300℃で一定とした。この後、硫化処理された水素化処理触媒を用いて軽油留分Aの水素化精製反応を行った。開閉バルブ8および10を開き、開閉バルブ9を閉じて、反応器1の水素圧力5.1MPa、反応器2の水素圧力5.0MPa、反応器1および反応器2各々に対する水素/原料油供給比200NL/L、反応器1と反応器2の触媒充填量合計に対するLHSV=1.5h−1およびストリッパー4に対する配管23からの水素供給30L/hとし、反応器1、反応器2、高圧分離槽3およびストリッパー4の温度をいずれも330℃として反応を行った。配管38から得られた生成油の硫黄分は9質量ppmだった。また、開閉バルブ11を閉じ、開閉バルブ12を開いてサンプリングされた中間生成油を窒素ガスでストリッピング処理して中間生成油の硫黄分を分析したところ、硫黄分は369質量ppmだった。他の反応条件や操作は上記と同様とし、反応器1、反応器2、高圧分離槽3およびストリッパー4の温度をいずれも340℃として反応を行った。得られた生成油の硫黄分は4質量ppm、中間生成油の硫黄分は157質量ppmだった。他の反応条件は上記と同様とし、反応器1、反応器2、高圧分離槽3およびストリッパー4の温度をいずれも345℃として反応を行った。得られた生成油の硫黄分は0.4質量ppmであり、中間生成油の硫黄分は121質量ppmだった。なお、生成油の性状は以下の通りである。炭化水素の組成:飽和分85.0%、オレフィン分0.0%、1環芳香族分13.9%、2環芳香族分0.99%、3環以上芳香族分0.10%、多環芳香族分1.09%、全芳香族分15.0%、真発熱量:35400J/cm、密度(15℃):0.8218g/cm The reactor 1 is filled with 50 mL of the hydrotreating catalyst precursor 1, the reactor 2 is filled with 50 mL of the nickel-tungsten hydrotreating catalyst precursor A, the on-off valves 8 and 10 are closed, and the on-off valve 9 is opened. The temperature was raised from room temperature to 120 ° C. in 2 hours while flowing hydrogen at a hydrogen pressure of 5.0 MPa and 40 L / h. Thereafter, the hydrotreating catalyst precursor 1 was subjected to sulfiding treatment in the following procedure to obtain a sulfurized hydrotreating catalyst. Sulfurizing agent (commercial light oil mixed with 1% by mass of carbon disulfide) was passed for 2 hours under the conditions of hydrogen pressure 5.0 MPa, hydrogen / oil ratio 200 NL / L, LHSV 2.0 h −1 , 120 ° C. . Thereafter, the supply of the sulfiding agent and hydrogen was continued under the conditions other than the temperature, the temperature was raised to 230 ° C. at 27.5 ° C./h, and the temperature was kept constant at 230 ° C. for 4 hours. Thereafter, the temperature was further increased to 300 ° C. at 42.5 ° C./h, and the temperature was kept constant at 300 ° C. for 7 hours. Then, hydrorefining reaction of the light oil fraction A was performed using the hydrotreating catalyst subjected to sulfurization treatment. Open / close valves 8 and 10 are opened and open / close valve 9 is closed, hydrogen pressure of reactor 1 is 5.1 MPa, hydrogen pressure of reactor 2 is 5.0 MPa, hydrogen / feed oil supply ratio to each of reactor 1 and reactor 2 200 NL / L, LHSV = 1.5 h −1 with respect to the total catalyst charge of reactor 1 and reactor 2, and hydrogen supply 30 L / h from pipe 23 to stripper 4, reactor 1, reactor 2, high pressure separation tank The reaction was carried out at a temperature of 330 ° C. for both 3 and stripper 4. The sulfur content of the product oil obtained from the pipe 38 was 9 ppm by mass. Further, when the on-off valve 11 was closed and the on-off valve 12 was opened, the sampled intermediate product oil was stripped with nitrogen gas and analyzed for the sulfur content of the intermediate product oil. As a result, the sulfur content was 369 ppm by mass. Other reaction conditions and operations were the same as described above, and the reaction was carried out with the temperature of the reactor 1, the reactor 2, the high-pressure separation tank 3 and the stripper 4 all set to 340 ° C. The resulting product oil had a sulfur content of 4 mass ppm, and the intermediate product oil had a sulfur content of 157 mass ppm. The other reaction conditions were the same as described above, and the reaction was carried out with the reactor 1, the reactor 2, the high-pressure separation tank 3 and the stripper 4 each having a temperature of 345 ° C. The sulfur content of the obtained product oil was 0.4 mass ppm, and the sulfur content of the intermediate product oil was 121 mass ppm. The properties of the product oil are as follows. Hydrocarbon composition: saturated content 85.0%, olefin content 0.0%, 1 ring aromatic content 13.9%, 2 ring aromatic content 0.99%, 3 or more ring aromatic content 0.10%, Polycyclic aromatic content 1.09%, total aromatic content 15.0%, true calorific value: 35400 J / cm 3 , density (15 ° C.): 0.8218 g / cm 3 .

[実施例2]
実施例記載のニッケル−タングステン系水素化処理触媒前駆体Aを500℃で30分焼成して、ニッケル−タングステン系水素化処理触媒前駆体Bを得た。ニッケル−タングステン系水素化処理触媒前駆体Bの元素分析結果は、Ni:3.67質量%、W:20.8質量%、C:0.13質量%、N:0.08質量%、Si:16.4質量%、Al:14.2質量%であった。また、窒素吸着法で測定した細孔特性は、細孔容積0.297mL/g、比表面積238m/g、中央細孔径4.5nmであった。
[Example 2]
The nickel-tungsten hydrotreatment catalyst precursor A described in Example 1 was calcined at 500 ° C. for 30 minutes to obtain a nickel-tungsten hydrotreatment catalyst precursor B. The elemental analysis results of the nickel-tungsten-based hydrotreating catalyst precursor B are as follows: Ni: 3.67% by mass, W: 20.8% by mass, C: 0.13% by mass, N: 0.08% by mass, Si : 16.4% by mass, Al: 14.2% by mass. The pore characteristics measured by the nitrogen adsorption method were a pore volume of 0.297 mL / g, a specific surface area of 238 m 2 / g, and a median pore diameter of 4.5 nm.

実施例で、反応器2にニッケル−タングステン系水素化処理触媒前駆体Aを充填する代わりにニッケル−タングステン系水素化処理触媒前駆体Bを充填すること以外は、実施例1と同様の方法で硫化処理を行った水素化処理触媒を用いて軽油留分Aの水素化精製反応を行った。開閉バルブ8および10を開き、開閉バルブ9を閉じて、反応器1の水素圧力5.1MPa、反応器2の水素圧力5.0MPa、反応器1および反応器2各々に対する水素/原料油供給比200NL/L、反応器1と反応器2の触媒充填量合計に対するLHSV=1.5h−1およびストリッパー4に対する配管23からの水素供給30L/hとし、反応器1、反応器2、高圧分離槽3およびストリッパー4の温度をいずれも340℃として反応を行った。配管38から得られた生成油の硫黄分は7質量ppmだった。また、開閉バルブ11を閉じ、開閉バルブ12を開いてサンプリングされた中間生成油を窒素ガスでストリッピング処理して中間生成油の硫黄分を分析したところ、硫黄分は157質量ppmだった。 The same method as in Example 1 except that in Example 1 , the reactor 2 was charged with the nickel-tungsten hydroprocessing catalyst precursor A instead of being charged with the nickel-tungsten hydroprocessing catalyst precursor A. The hydrorefining reaction of the light oil fraction A was performed using the hydrotreating catalyst that had been subjected to the sulfuration treatment in (1). Open / close valves 8 and 10 are opened and open / close valve 9 is closed, hydrogen pressure of reactor 1 is 5.1 MPa, hydrogen pressure of reactor 2 is 5.0 MPa, hydrogen / feed oil supply ratio to each of reactor 1 and reactor 2 200 NL / L, LHSV = 1.5 h −1 with respect to the total catalyst charge of reactor 1 and reactor 2, and hydrogen supply 30 L / h from pipe 23 to stripper 4, reactor 1, reactor 2, high pressure separation tank The reaction was carried out at a temperature of 340 ° C. for both 3 and stripper 4. The sulfur content of the product oil obtained from the pipe 38 was 7 ppm by mass. Further, when the open / close valve 11 was closed and the open / close valve 12 was opened, the sampled intermediate product oil was stripped with nitrogen gas, and the sulfur content of the intermediate product oil was analyzed. As a result, the sulfur content was 157 ppm by mass.

[比較例5]
反応器1に水素化処理触媒前駆体1を充填する代わりに水素化処理触媒前駆体3を充填すること以外は、実施例と同様の方法で硫化処理を行った水素化処理触媒を用いて軽油留分Aの水素化精製反応を行った。開閉バルブ8および10を開き、開閉バルブ9を閉じて、反応器1の水素圧力5.1MPa、反応器2の水素圧力5.0MPa、反応器1および反応器2各々に対する水素/原料油供給比200NL/L、反応器1と反応器2の触媒充填量合計に対するLHSV=1.5h−1およびストリッパー4に対する配管23からの水素供給30L/hとし、反応器1、反応器2、高圧分離槽3およびストリッパー4の温度をいずれも340℃として反応を行った。配管38から得られた生成油の硫黄分は24質量ppmだった。また、開閉バルブ11を閉じ、開閉バルブ12を開いてサンプリングされた中間生成油を窒素ガスでストリッピング処理して中間生成油の硫黄分を分析したところ、硫黄分は439質量ppmだった。
[Comparative Example 5]
A hydrotreating catalyst that has been subjected to a sulfiding treatment in the same manner as in Example 2 except that the reactor 1 is filled with the hydrotreating catalyst precursor 3 instead of the hydrotreating catalyst precursor 1. The hydrorefining reaction of the light oil fraction A was performed. Open / close valves 8 and 10 are opened and open / close valve 9 is closed, hydrogen pressure of reactor 1 is 5.1 MPa, hydrogen pressure of reactor 2 is 5.0 MPa, hydrogen / feed oil supply ratio to each of reactor 1 and reactor 2 200 NL / L, LHSV = 1.5 h −1 with respect to the total catalyst charge of reactor 1 and reactor 2, and hydrogen supply 30 L / h from pipe 23 to stripper 4, reactor 1, reactor 2, high pressure separation tank The reaction was carried out at a temperature of 340 ° C. for both 3 and stripper 4. The sulfur content of the product oil obtained from the pipe 38 was 24 mass ppm. Further, when the open / close valve 11 was closed and the open / close valve 12 was opened, the sampled intermediate product oil was stripped with nitrogen gas, and the sulfur content of the intermediate product oil was analyzed. As a result, the sulfur content was 439 ppm by mass.

実施例、参考例および比較例での測定法などは、以下の方法を用いた。 The following methods were used as measurement methods in Examples , Reference Examples and Comparative Examples.

〔細孔特性の測定方法〕
窒素ガス吸着法による細孔特性の測定には、Micromeritics社製ASAP2400型測定器を用いた。
[Measurement method of pore characteristics]
For measurement of pore characteristics by the nitrogen gas adsorption method, an ASAP2400 type measuring instrument manufactured by Micromeritics was used.

〔硫黄分の測定方法〕
軽油留分の硫黄分の測定は、理学電機工業株式会社製ZSX101e型蛍光X線分析装置を用いて行った。
[Method for measuring sulfur content]
The sulfur content of the light oil fraction was measured using a ZSX101e type fluorescent X-ray analyzer manufactured by Rigaku Corporation.

本発明の触媒を用いた水素化処理方法によれば、低硫黄軽油を、特に硫黄分が5質量ppm以下、さらには1質量ppm以下の軽油をマイルドな条件で製造し、また効率良く増産することができる。本発明の環境対応軽油は、硫黄分が5質量ppm以下、さらには1質量ppm以下と極めて低く、かつ従来市販されている軽油と同等の単位体積あたりの真発熱量を確保しているので、ディーゼル自動車の環境汚染物質の排出量の削減と二酸化炭素排出量の削減を両方同時に実現することができ、それによって地球環境の保護に貢献することができる。 According to the hydrotreating method using the catalysts of the present invention, a low sulfur diesel fuel, particularly a sulfur content of 5 mass ppm or less, further to produce the following gas oil 1 mass ppm under mild conditions, also efficiently increased production can do. Since the environmentally friendly light oil of the present invention has a sulfur content as low as 5 ppm by mass or less and further as 1 ppm by mass or less, and secures a true calorific value per unit volume equivalent to that of conventionally marketed diesel oil, It is possible to simultaneously reduce emissions of environmental pollutants and reduce carbon dioxide emissions from diesel vehicles, thereby contributing to the protection of the global environment.

水素化処理触媒前駆体1のTPS測定結果を示す図である。It is a figure which shows the TPS measurement result of the hydrotreating catalyst precursor 1. 水素化処理触媒前駆体1硫化処理して得られた水素化処理触媒のTEM写真である。It is a TEM photograph of a hydrotreating catalyst obtained by hydrotreating a hydrotreating catalyst precursor. 本発明の実施例、参考例および比較例に用いた反応器間に気液分離機構を備えた反応装置の概略フローを示す図である。It is a figure which shows the general | schematic flow of the reaction apparatus provided with the gas-liquid separation mechanism between the reactors used for the Example of this invention , the reference example, and the comparative example.

符号の説明Explanation of symbols

1および2:反応器、3:高圧分離槽、4:ストリッパー、5:高圧分離槽、6:ミスト分離槽、7:ストリッパー、8〜12:開閉バルブ、13〜42:配管 1 and 2: reactor, 3: high pressure separation tank, 4: stripper, 5: high pressure separation tank, 6: mist separation tank, 7: stripper, 8-12: open / close valve, 13-42: piping

Claims (3)

0.5質量%以上の硫黄分を含む軽油留分を原料油とする硫黄分10質量ppm以下の低硫黄軽油の製造方法であって、  A method for producing a low sulfur gas oil having a sulfur content of 10 ppm by mass or less using a gas oil fraction containing a sulfur content of 0.5% by mass or more as a feedstock,
無機多孔質酸化物担体にモリブデンを10〜25質量%、コバルトおよびニッケルを合計で2〜8質量%、リンを0.5〜2.0質量%担持してなり、炭素の含有量が1質量%未満で、且つコバルトとニッケルの合計含有量に対するコバルトの含有量が65〜90モル%である水素化処理触媒前駆体を硫化処理することによって形成される水素化処理触媒を水素の存在下で原料油と接触させる水素化処理によって粗精製を行う第1の工程と、  The inorganic porous oxide support carries 10 to 25% by mass of molybdenum, 2 to 8% by mass in total of cobalt and nickel, and 0.5 to 2.0% by mass of phosphorus, and the carbon content is 1 mass. And a hydrotreating catalyst formed by sulfiding a hydrotreating catalyst precursor having a cobalt content of 65 to 90 mol% with respect to the total content of cobalt and nickel in the presence of hydrogen. A first step in which rough purification is performed by hydrotreating with a raw material oil;
第1の工程で得られる反応混合物の気液分離を行う第2の工程と、  A second step of performing gas-liquid separation of the reaction mixture obtained in the first step;
タングステン、ニッケル及びエチレンジアミン四酢酸を含有する水素化処理触媒前駆体を硫化処理した水素化処理触媒を水素の存在下で第2の工程で得られた粗精製油と接触させる水素化処理を行う第3の工程とを含むことを特徴とする低硫黄軽油の製造方法。A hydrotreating treatment is performed in which a hydrotreating catalyst obtained by sulfiding a hydrotreating catalyst precursor containing tungsten, nickel and ethylenediaminetetraacetic acid is brought into contact with the crude oil obtained in the second step in the presence of hydrogen. A process for producing a low sulfur gas oil, comprising:
第1の工程および第3の工程の反応温度は、280〜450℃であり、第1の工程および第3の工程の水素圧力は3〜10MPaであり、かつ第1の工程の全圧は、第3の工程の全圧よりも高い請求項1に記載の低硫黄軽油の製造方法。The reaction temperature in the first step and the third step is 280 to 450 ° C., the hydrogen pressure in the first step and the third step is 3 to 10 MPa, and the total pressure in the first step is The manufacturing method of the low sulfur gas oil of Claim 1 higher than the total pressure of a 3rd process. 請求項1または2に記載の方法で得られた硫黄分が5質量ppm以下、1環芳香族分が5〜18容量%、多環芳香族分が2容量%以下である軽油。  A light oil having a sulfur content of 5 ppm by mass or less obtained by the method according to claim 1 or 2 and a monocyclic aromatic content of 5 to 18% by volume and a polycyclic aromatic content of 2% by volume or less.
JP2004051718A 2004-02-26 2004-02-26 Low sulfur gas oil production method and environmentally friendly gas oil Expired - Lifetime JP4680520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004051718A JP4680520B2 (en) 2004-02-26 2004-02-26 Low sulfur gas oil production method and environmentally friendly gas oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004051718A JP4680520B2 (en) 2004-02-26 2004-02-26 Low sulfur gas oil production method and environmentally friendly gas oil

Publications (2)

Publication Number Publication Date
JP2005238113A JP2005238113A (en) 2005-09-08
JP4680520B2 true JP4680520B2 (en) 2011-05-11

Family

ID=35020412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004051718A Expired - Lifetime JP4680520B2 (en) 2004-02-26 2004-02-26 Low sulfur gas oil production method and environmentally friendly gas oil

Country Status (1)

Country Link
JP (1) JP4680520B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4444690B2 (en) * 2004-02-26 2010-03-31 株式会社ジャパンエナジー Hydrotreating catalyst precursor, method for producing the same, and method for producing refined hydrocarbon oil
CN102166521B (en) * 2010-02-25 2013-03-27 中国石油天然气股份有限公司 Preparation method of hydrofining catalyst
EP2650393A4 (en) 2010-12-08 2015-02-25 Sumitomo Electric Industries Metallic porous body having high corrosion resistance and method for manufacturing same
JP5635382B2 (en) * 2010-12-08 2014-12-03 住友電気工業株式会社 Method for producing porous metal body having high corrosion resistance
JP5735265B2 (en) * 2010-12-08 2015-06-17 住友電気工業株式会社 Method for producing porous metal body having high corrosion resistance
US20220323944A1 (en) * 2020-02-11 2022-10-13 Hindustan Petroleum Corporation Limited A composition for dispersed hydrodesulfurization catalyst and process for preparation of the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000042413A (en) * 1998-07-28 2000-02-15 Japan Energy Corp Catalyst for hydrogenation refining
JP2000079343A (en) * 1998-06-24 2000-03-21 Cosmo Sogo Kenkyusho:Kk Catalyst for hydrogenating light oil and hydrogenation of light oil
JP2001062304A (en) * 1999-08-31 2001-03-13 Cosmo Research Inst Production of hydrodesulfurization catalyst of light oil and hydrogenation treatment method of light oil
WO2001074973A1 (en) * 2000-03-30 2001-10-11 Japan Energy Corporation Process for hydrodesulfurization of light oil fraction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000079343A (en) * 1998-06-24 2000-03-21 Cosmo Sogo Kenkyusho:Kk Catalyst for hydrogenating light oil and hydrogenation of light oil
JP2000042413A (en) * 1998-07-28 2000-02-15 Japan Energy Corp Catalyst for hydrogenation refining
JP2001062304A (en) * 1999-08-31 2001-03-13 Cosmo Research Inst Production of hydrodesulfurization catalyst of light oil and hydrogenation treatment method of light oil
WO2001074973A1 (en) * 2000-03-30 2001-10-11 Japan Energy Corporation Process for hydrodesulfurization of light oil fraction

Also Published As

Publication number Publication date
JP2005238113A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
US10596555B2 (en) Catalyst to attain low sulfur gasoline
JP4472556B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
KR102297213B1 (en) A hydroprocessing catalyst composition containing a heterocyclic polar compound, a method of making such a catalyst, and a process of using such catalyst
RU2715713C2 (en) Catalyst for medium distillate hydrocracking, comprising base extrudate having high volume of nanopores
JP2008030036A (en) Method for hydrodesulfurizing gasoline fraction containing sulfur and olefin in presence of catalyst containing at least one carrier, at least one group viii element and at least one group vib element
CN109196077A (en) Upgrade the system and method for heavy oil
JP2000000470A (en) Hydrogenation catalyst and method for hydrogenating heavy oil
JP5826457B2 (en) Improved hydrocracker aftertreatment catalyst for the production of low sulfur fuel
JP2004230383A (en) Partially caulked catalyst for use in hydrogen treatment of distillation fraction containing sulfur compound and olefin
JP4864106B2 (en) Method for producing hydrocarbon oil hydrotreating catalyst
CA2686745A1 (en) Hydrodesulphurization nanocatalyst, its use and a process for its production
JP4680520B2 (en) Low sulfur gas oil production method and environmentally friendly gas oil
JP2002239385A (en) Method for producing hydrotreatment catalyst for hydrocarbon oil and method for hydrotreating hydrocarbon oil
KR20220165834A (en) Middle distillate hydrocracking catalyst containing highly a stabilized y zeolite with enhanced acid site distribution
JP4576257B2 (en) Production method of oil fraction
RU2468864C1 (en) Catalyst, method of its preparation and method of hydrorefining diesel distillates
JP4658491B2 (en) Production method of environment-friendly diesel oil
JP2011208030A (en) Method for producing hydrogenated har oil
US11795405B2 (en) Process for the hydrodesulfurization of sulfur-containing olefinic gasoline cuts using a regenerated catalyst
Egorova Study of aspects of deep hydrodesulfurization by means of model reactions
JPH03273092A (en) Catalyst for hydrogenation of residual oil
KR20210044226A (en) Heavy base oil and manufacturing method without haze at 0℃
JP2004250554A (en) Method for hydrogenating and desulfurizing light oil fraction
JP4927323B2 (en) Use of catalysts containing beta silicon carbide supports in selective hydrodesulfurization processes
RU2737374C1 (en) Method for use of hydrodemetallization catalyst during hydrogenation processing of oil stock

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20101018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110203

R150 Certificate of patent or registration of utility model

Ref document number: 4680520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250