JPH03273092A - Catalyst for hydrogenation of residual oil - Google Patents

Catalyst for hydrogenation of residual oil

Info

Publication number
JPH03273092A
JPH03273092A JP2069548A JP6954890A JPH03273092A JP H03273092 A JPH03273092 A JP H03273092A JP 2069548 A JP2069548 A JP 2069548A JP 6954890 A JP6954890 A JP 6954890A JP H03273092 A JPH03273092 A JP H03273092A
Authority
JP
Japan
Prior art keywords
catalyst
residual oil
oil
pore diameter
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2069548A
Other languages
Japanese (ja)
Inventor
Yasuyuki Ooishi
庸之 大石
Yasuhiro Kubota
泰宏 久保田
Akira Inoue
章 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Japan Petroleum Energy Center JPEC
Eneos Corp
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC, Nippon Oil Corp filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP2069548A priority Critical patent/JPH03273092A/en
Publication of JPH03273092A publication Critical patent/JPH03273092A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the title catalyst which has a high desulfurization activity and gives a product oil of which heavy fraction has preferable properties by supporting a specific active metal together with phosphorus and boron compounds on an alumina carrier so that the volume of pores having a specific average pore diameter may amount to a specific ratio. CONSTITUTION:The title catalyst is produced by supporting at least one active metal selected from the group consisting of Ni, Co, Mo, V and W in an amount of 1.0-20.0wt.% in terms of the oxide, a boron compound (e.g. orthoboric acid) and a phosphorus compound (e.g. phosphoric acid) each in an amount of 0.5-5.0wt.% in terms of the oxide on an alumina carrier so that the total surface area may be 100m<2>/g or more, the average pore diameter may be 100Angstrom or more, the total pore volume may be 0.4ml/g or more, and the volume wherein pores having an average pore diameter of 100-200Angstrom may account for at least 70% of the total pore volume. When the title catalyst is used in the hydrogenation of a residual oil, the catalyst exhibits a high desulfurization activity and gives a product oil of which heavy fraction has preferable properties.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は残油に含有される硫黄分、窒素骨およびニッケ
ル、バナジウム等の金属分を除去する水素化処理触媒に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a hydrotreating catalyst for removing sulfur content, nitrogen bones, and metal content such as nickel and vanadium contained in residual oil.

[従来の技術] 最近の石油動向として輸入される原油が重質化の傾向に
ある。そのため有用な軽質留分を取り去ったあと、重質
留分、とりわけ残油が多量に副生ずる。従って、この残
油を処理することが重要な問題となっている。この残油
は、硫黄分、窒素骨および金属分が濃縮され、極めて高
濃度となる。
[Prior Art] Recent petroleum trends indicate that imported crude oil is becoming heavier. Therefore, after removing the useful light fraction, a large amount of heavy fraction, especially residual oil, is produced as a by-product. Therefore, processing this residual oil has become an important issue. This residual oil is enriched with sulfur, nitrogen bones, and metals, resulting in an extremely high concentration.

残油を処理して軽質化する方法として、水素化分解、流
動接触分解等があるが、硫黄分、窒素骨および金属分を
高濃度に含んだ残油をそのまま原料として用いると製品
品質の低下あるいは触媒毒の原因となり、さらには硫黄
分および窒素骨は大気汚染の基となる。
Hydrocracking, fluid catalytic cracking, etc. are methods of processing residual oil to make it lighter, but if residual oil containing high concentrations of sulfur, nitrogen bones, and metals is used as a raw material, product quality will deteriorate. Alternatively, it can cause catalyst poisoning, and furthermore, sulfur content and nitrogen bones can be a source of air pollution.

従って、残油を軽質化する前処理として水素化処理する
ことで、硫黄分、窒素骨あるいは金属分を取り除く方法
が重要性を増しつつある。水素化処理とは水素加圧下に
原料油を触媒の存在下で接触的に処理し、原料油中の硫
黄分、窒素骨を硫化水素やアンモニア等に転化して除き
、また金属分を触媒中に堆積させ取り除く方法である。
Therefore, a method of removing sulfur content, nitrogen bones, or metal content by hydrotreating residual oil as a pretreatment to lighten it is becoming increasingly important. Hydrotreating is the process of catalytically treating feedstock oil under hydrogen pressure in the presence of a catalyst, converting the sulfur content and nitrogen bones in the feedstock oil into hydrogen sulfide, ammonia, etc., and removing the metal content in the presence of a catalyst. This is a method to deposit and remove it.

従来、間接脱硫においては減圧軽油の処理が主であり、
原料油中に金属分は少なかった。しかしながら、最近の
世界的な原油の重質化に伴ない、原油に含まれる硫黄や
ニッケル、バナジウム等の金属分は多くなり、またプロ
セス的にも残油を直接脱硫することが盛んに行なわれる
ようになった。
Traditionally, indirect desulfurization mainly involves processing vacuum gas oil.
The metal content in the raw oil was low. However, as crude oil has recently become heavier worldwide, the content of metals such as sulfur, nickel, and vanadium in crude oil has increased, and direct desulfurization of residual oil is becoming increasingly popular. It became so.

ところで、残油に多量に含有される硫黄分は脱硫されに
<<、高い脱硫率を達成しようとすると高い反応温度が
必要となるが、反応温度を高くするとコークの生成が起
こりやすくなることが知られている。また別の課題は触
媒細孔の金属分やコークによる閉塞であり、このため触
媒活性の低下を補償するため反応温度を高くする必要が
生じ、装置の運転に支障をきたす。そこで安定した、運
転を行うためには、原料油に含まれる硫黄や金属分を効
率よく除去でき、活性を長期にわたり維持できる寿命の
長い高活性な触媒の開発が必要である。
By the way, the large amount of sulfur contained in residual oil cannot be desulfurized, so a high reaction temperature is required to achieve a high desulfurization rate, but a higher reaction temperature may increase the likelihood of coke formation. Are known. Another problem is the clogging of catalyst pores by metals and coke, which necessitates raising the reaction temperature to compensate for the decrease in catalyst activity, which hinders the operation of the device. In order to achieve stable operation, it is necessary to develop a long-life, highly active catalyst that can efficiently remove sulfur and metals contained in feedstock oil and maintain its activity over a long period of time.

同時にまた得られた生成油の安定性が良好なことも必要
である。
At the same time, it is also necessary that the resulting product oil has good stability.

[発明が解決しようとする課題] 残油中にはバナジウム、ニッケル等の金属分が多く含有
され、またアスファルテン等の大きな分子が含まれ、こ
れがコーク生成の原因となる。金属分や生成コークによ
り触媒上の活性点が覆われたり、細孔の閉塞が起こるた
め触媒は劣化しやすく寿命が短くなる。
[Problems to be Solved by the Invention] Residual oil contains large amounts of metals such as vanadium and nickel, and also contains large molecules such as asphaltene, which cause coke formation. The active sites on the catalyst are covered and the pores are clogged by metals and coke, which causes the catalyst to deteriorate easily and shorten its lifespan.

そのため脱硫率や分解率向上のため反応温度を高く設定
することが通常行われ、これによって分解率、脱硫率、
脱窒素率、脱メタル率等が向上する。しかしながら、そ
の除害られる製品性状、特に3BO℃以上の沸点を存す
る留分の性状が悪くなることが知られている。つまりこ
の留分はスラッジが生じやすく操作、輸送、あるいは貯
蔵等の際にトラブルの原因となる。スラッジについては
定量化方法として、トルエン不溶分を測定することが行
われる。これが0.05vt%、好ましくはり、03w
t%以下なら問題はないとされる。通常の触媒を用いて
高温で高分解率を得る場合、例えば分解率が50〜60
%の場合、トルエン不溶分は0.lvL%となることも
ある。
Therefore, the reaction temperature is usually set high to improve the desulfurization rate and decomposition rate.
Denitrification rate, demetalization rate, etc. are improved. However, it is known that the properties of the products that are removed, especially those of fractions with a boiling point of 3BO°C or higher, deteriorate. In other words, this fraction tends to form sludge, causing trouble during operation, transportation, storage, etc. As for sludge, the quantification method is to measure the toluene insoluble content. This is 0.05vt%, preferably 03w
If it is below t%, there is no problem. When obtaining a high decomposition rate at high temperature using a normal catalyst, for example, the decomposition rate is 50 to 60%.
%, the toluene insoluble content is 0. It may be lvL%.

該留分の製品性状は主にトルエン不溶分によって良好か
否かが決まり、トルエン不溶分が多いほど製品として好
ましくない。そこで重質油の水素化処理を行うためには
反応温度が低くてすみ、高活性でコーク生成が少なく、
また製品性状の好ましいものを与える触媒の開発が必要
である。
The product properties of the fraction are mainly determined by the toluene-insoluble content, and the greater the toluene-insoluble content, the less desirable the product is. Therefore, in order to hydrotreat heavy oil, the reaction temperature is low, the activity is high, and there is little coke formation.
There is also a need to develop catalysts that provide desirable product properties.

重質油の水素化処理に関しては、これまでにも数多くの
方法が提案されている。ホウ素、リン等の成分を担体に
添加したり、担体の細孔制御をしているものとして、特
開昭61−4588号公報、特開昭81−128198
号公報、特開昭62−74455号公報、特公昭62−
25418号公報等がある。ホウ素やリンを添加すると
水素化活性、脱硫活性の向上に効果があると言われてい
る。一方、細孔制御は、残油に適した反応場を提供する
と同時に閉塞等を防止し寿命の延長に効果がある。しか
しながら、これまでに好ましい添加物およびその添加効
果と好ましい細孔構造を兼ね備えているものはなく、更
に得られる製品性状を考慮したものは見あたらない。
Many methods have been proposed for hydrotreating heavy oil. JP-A No. 61-4588 and JP-A No. 81-128198 disclose methods in which components such as boron and phosphorus are added to the carrier or the pores of the carrier are controlled.
No. 74455, JP-A-62-74455, JP-A-62-74455.
There are publications such as No. 25418. Addition of boron or phosphorus is said to be effective in improving hydrogenation activity and desulfurization activity. On the other hand, pore control is effective in prolonging service life by providing a suitable reaction field for residual oil and at the same time preventing blockages. However, to date, there has been no method that combines preferable additives and the effects of their addition with preferable pore structures, and furthermore, there is no method that takes into account the properties of the resulting product.

[課題を解決するための手段] 本発明者等は前記の課題を解決するために鋭意検討を行
った結果、担体の細孔制御を行い平均細孔径をある程度
以上にすると共に、添加物としてリンおよびホウ素化合
物を加えることで、残油の水素化処理において、高い脱
硫活性と生成油の重質留分の製品性状が好ましい触媒を
見い出した。
[Means for Solving the Problems] As a result of intensive studies to solve the above-mentioned problems, the present inventors controlled the pores of the carrier to make the average pore diameter above a certain level, and added phosphorus as an additive. By adding a boron compound and a boron compound, we have discovered a catalyst that has high desulfurization activity and favorable product properties for the heavy fraction of produced oil in the hydrotreatment of residual oil.

すなわち本発明は、アルミナ担体にニッケル、コバルト
、モリブデン、バナジウム、タングステンから選ばれた
少なくとも1種の活性金属を酸化物として1.0〜20
.0wt%、およびホウ素化合物とリン化合物を酸化物
として各々 0.5〜5.0wt%を担持してなり、全
表面積が1ook、/g以上、平均細孔直径が100Å
以上、全細孔容積が0.4d/g以上であり、平均細孔
直径100〜200人の細孔が占める容積が全細孔容積
の少なくとも70%であることを特徴とする残油の水素
化処理触媒を提供するものである。
That is, the present invention provides an alumina support with at least one active metal selected from nickel, cobalt, molybdenum, vanadium, and tungsten as an oxide of 1.0 to 20%.
.. 0 wt%, and 0.5 to 5.0 wt% of each of a boron compound and a phosphorus compound as oxides, the total surface area is 1ook, /g or more, and the average pore diameter is 100 Å.
Hydrogen in the residual oil, characterized in that the total pore volume is 0.4 d/g or more, and the volume occupied by pores with an average pore diameter of 100 to 200 is at least 70% of the total pore volume. The present invention provides a chemical treatment catalyst.

本発明に使用されるアルミナ担体は公知の調製法により
調製出来る。例えば、硫酸アルミニウム等のアルミニウ
ム塩をアンモニア等のアルカリで中和し、あるいはアル
ミン酸ソーダ等のアルミン酸塩で中和し、生成したアル
ミナ水和物に適当なアルカリを添加しアルミナ水和物ス
リラーのpHを8〜工0の弱アルカリ性に調整し、60
〜150℃で熟成してベーマイトを生成し、該ベーマイ
トを混練して押出成形等で任意の形に成形後、100〜
200℃で乾燥、300〜600℃で焼成することによ
り得られる。但し、熟成が不十分であったりすると本発
明で言うアルミナ担体は得られないこともある。また市
販されているベーマイトの粉末を用い、酸等で解膠し成
形後、乾燥焼成することで得られる。
The alumina carrier used in the present invention can be prepared by a known method. For example, an aluminum salt such as aluminum sulfate is neutralized with an alkali such as ammonia, or an aluminate such as sodium aluminate, and an appropriate alkali is added to the resulting alumina hydrate to create an alumina hydrate thriller. Adjust the pH to a weak alkalinity of 8 to 0, and
Boehmite is produced by aging at ~150°C, and the boehmite is kneaded and molded into any desired shape by extrusion molding, etc.
It is obtained by drying at 200°C and firing at 300 to 600°C. However, if the aging is insufficient, the alumina carrier referred to in the present invention may not be obtained. It can also be obtained by using commercially available boehmite powder, peptizing it with an acid or the like, molding it, and then drying and firing it.

本発明で用いる活性金属成分はNi 、Co 、W。The active metal components used in the present invention are Ni, Co, and W.

Mo、Vから選ばれた少なくとも1種を含めば良く、複
合化する場合、Nl −Mo 、 Co −Mo 。
It is sufficient to contain at least one selected from Mo and V, and in the case of compounding, Nl-Mo, Co-Mo.

Ni −Co −Mo 、Nf−W、Co−W、NIC
o−W、N1−V、Co−V、Co −V−M。
Ni-Co-Mo, Nf-W, Co-W, NIC
o-W, N1-V, Co-V, Co-V-M.

等が考えられる。好ましいものとしてCo −MO。etc. are possible. Co-MO is preferred.

Nl −Mo 、Nl −Co −Mo 、Co−W、
N1−Wが挙げられる。これら以外の活性金属を少量で
あれば含んでもよい。活性金属の担持量は、触媒の全重
量を基準に金属酸化物と計算し、1.0〜30.0νt
%、好ましくは5,0〜20.0wt%の範囲が適当で
ある。また複合の場合、Coが0.5〜10.0wt%
、N1が0.5〜IO,Owt%、Moが2.0〜20
.Owt%、Wが2.0〜20.Owt%、■が2.0
〜20.Owt%の範囲が好ましい。
Nl-Mo, Nl-Co-Mo, Co-W,
N1-W is mentioned. A small amount of active metals other than these may also be included. The amount of active metal supported is calculated as metal oxide based on the total weight of the catalyst, and is 1.0 to 30.0 νt.
%, preferably in the range of 5.0 to 20.0 wt%. In addition, in the case of composite, Co is 0.5 to 10.0 wt%
, N1 is 0.5~IO, Owt%, Mo is 2.0~20
.. Owt%, W is 2.0 to 20. Owt%,■ is 2.0
~20. A range of Owt% is preferred.

本発明で用いるホウ素化合物としては、ホウ素の無機化
合物あるいは有機化合物のどちらでもよく、触媒を焼成
した際に酸化ホウ素に転化しつるものである。例えば、
ホウ素、ホウ酸アンモニウム、オルトホウ酸、四ホウ酸
、重ホウ酸アンモニウム、ジボラン、ホウ酸メチル、ホ
ウ酸ブチル、ホウ酸トリシクロヘキシル等が挙げられる
The boron compound used in the present invention may be either an inorganic compound or an organic compound of boron, which is converted into boron oxide when the catalyst is fired. for example,
Examples include boron, ammonium borate, orthoboric acid, tetraboric acid, ammonium diborate, diborane, methyl borate, butyl borate, tricyclohexyl borate, and the like.

本発明で用いるリン化合物としては、リンの無機化合物
あるいは有機化合物のどちらでもよく、触媒を焼成した
際に酸化リンに転化し得るものである。例えば、リン酸
、リン酸アンモニウム、リン酸アンモニウム等が挙げら
れる。
The phosphorus compound used in the present invention may be either an inorganic compound or an organic compound of phosphorus, which can be converted into phosphorus oxide when the catalyst is fired. Examples include phosphoric acid, ammonium phosphate, ammonium phosphate, and the like.

本発明においてはホウ素化合物およびリン化合物の各々
の添加量は、触媒の全重量を基準に酸化物として計算し
て0.5〜5 、0wt%である。好ましくは1.0〜
5.0wt%の範囲である。ホウ素化合物およびリン化
合物添加量が0 、5wt%未満であると効果がなく、
5.0wt%を超えると得られる触媒の脱硫活性はあま
り変らず、細孔直径が小さくなるという欠点がある。ま
た、本発明の触媒では、ホウ素化合物およびリン化合物
が両方とも酸化物として少なくとも 0.5wt%、好
ましくは少なくとも1.0wt%含まれていなくてはな
らず、片方のみでは高活性が得られない。それぞれの酸
化物の添加割合は好ましくは1:9〜9:l(重量比)
であり、さらに好ましくは1:4〜4〜1(重量比)で
ある。
In the present invention, the amount of each of the boron compound and the phosphorus compound added is 0.5 to 5.0 wt%, calculated as oxide based on the total weight of the catalyst. Preferably 1.0~
It is in the range of 5.0 wt%. If the amount of boron compounds and phosphorus compounds added is less than 0.5 wt%, there will be no effect;
When the amount exceeds 5.0 wt%, the desulfurization activity of the catalyst obtained does not change much, and there is a drawback that the pore diameter becomes small. Further, in the catalyst of the present invention, both the boron compound and the phosphorus compound must be contained as oxides at least 0.5 wt%, preferably at least 1.0 wt%, and high activity cannot be obtained with only one of them. . The addition ratio of each oxide is preferably 1:9 to 9:l (weight ratio)
The ratio is more preferably 1:4 to 4 to 1 (weight ratio).

本発明において、ホウ素化合物、リン化合物および活性
金属成分のアルミナ担体への担持の方法は特に限定しな
い。例えば、各成分を別々に担持しても良いし、同時に
担持しても良い。さらには二つの成分を初めに担持し、
残りの成分を後で担持することでも良い。また担持する
順序は限定されない。
In the present invention, the method of supporting the boron compound, phosphorus compound, and active metal component on the alumina support is not particularly limited. For example, each component may be supported separately or simultaneously. Furthermore, two components are initially supported,
The remaining components may be supported later. Furthermore, the order in which they are supported is not limited.

本発明の触媒は、表面積が少なくとも 100m/g1
好ましくは120〜250ボ/g、平均細孔直径が1.
0 Oへ以上、好ましくは120〜300人、全細孔容
積が0.4d/g以上、好ましくは0.5d/g以上で
あり、平均細孔直径100〜200人の細孔が占める容
積が全細孔容積の少なくとも70%、好ましくは75%
以上の細孔分布を有する。触媒の表面積が1ooTI1
./g未満であると十分な活性が得られない。平均細孔
直径が100A未満であると細孔の閉塞が起こり易く寿
命が短くなる。全細孔容積が0.4d/g未満であると
、原料油中の金属の触媒への蓄積量が少ない。また平均
細孔直径100〜200人の細孔の容積が全細孔容積の
70%より少ない細孔分布であると、残油等の分子の転
化に必要な反応場が少なく有効に活性が発現しない。
The catalyst of the invention has a surface area of at least 100 m/g1
Preferably 120 to 250 pores/g and an average pore diameter of 1.
The total pore volume is 0.4 d/g or more, preferably 0.5 d/g or more, and the average pore diameter is 100-200 pores. at least 70%, preferably 75% of the total pore volume
It has a pore distribution as follows. The surface area of the catalyst is 1ooTI1
.. If it is less than /g, sufficient activity will not be obtained. If the average pore diameter is less than 100A, pores are likely to be clogged and the lifespan will be shortened. When the total pore volume is less than 0.4 d/g, the amount of metal in the feedstock oil accumulated on the catalyst is small. In addition, if the pore distribution has an average pore diameter of 100 to 200 and the volume of pores is less than 70% of the total pore volume, the reaction field required for conversion of molecules such as residual oil is small and the activity is effectively expressed. do not.

本発明の触媒の細孔構造は通常の窒素ガス吸着法や水銀
圧入法等で測定する。本発明においては好ましい細孔構
造が示してあり、これより外れた場合、例えば細孔直径
が小さいと触媒寿命が短くまた製品性状も良好でない。
The pore structure of the catalyst of the present invention is measured by a conventional nitrogen gas adsorption method, mercury intrusion method, or the like. In the present invention, a preferable pore structure is shown, and if the pore structure deviates from this, for example, if the pore diameter is small, the catalyst life will be short and the product properties will not be good.

細孔直径が大きすぎる場合、活性が低く好ましい分解率
や脱硫活性が期待できない。本発明の触媒は球状、錠剤
または円柱状等の所望の形状で用いることが出来る。ま
た、本発明の触媒は固定床、流動床、移動床の形で用い
ることが出来る。
If the pore diameter is too large, the activity will be low and a desirable decomposition rate or desulfurization activity cannot be expected. The catalyst of the present invention can be used in any desired shape, such as spherical, tablet, or cylindrical. Further, the catalyst of the present invention can be used in the form of a fixed bed, fluidized bed, or moving bed.

本発明の触媒は単独でリアクターに充填して用いること
も出来るが、上段に前処理触媒として脱メタル触媒を充
填してもよい。またその割合はl:3〜1:1(重量比
)が好ましい。
Although the catalyst of the present invention can be used alone by being packed in a reactor, a demetalization catalyst may be packed in the upper stage as a pretreatment catalyst. Moreover, the ratio is preferably 1:3 to 1:1 (weight ratio).

本発明で言う残油とは、バナジウム、ニッケル等の重金
属成分が多く、例えば50 ppm以上含有され、また
アスファルテン等の大きな分子が含まれる油であり、例
えば原油の常圧あるいは減圧蒸留によって得られる残油
、オイルサンドあるいはタールサンド抽出原油の常圧あ
るいは減圧蒸留によって得られる残油等、あるいはこれ
らの混合油が挙げられる。本発明では減圧蒸留残油が好
ましく用いられる。
The residual oil referred to in the present invention is an oil that contains a large amount of heavy metal components such as vanadium and nickel, for example, 50 ppm or more, and also contains large molecules such as asphaltenes, and is obtained, for example, by normal pressure or reduced pressure distillation of crude oil. Examples include residual oil, residual oil obtained by normal pressure or vacuum distillation of crude oil extracted from oil sands or tar sands, and mixed oils thereof. In the present invention, vacuum distillation residual oil is preferably used.

本発明の触媒を用いる水素化処理条件は、反応圧力20
〜20ONg/m、好ましくは50〜15ONg/ca
t。
Hydrotreating conditions using the catalyst of the present invention include a reaction pressure of 20
~20ONg/m, preferably 50-15ONg/ca
t.

反応温度300〜500℃、好ましくは350〜450
℃、LHSVO,1〜2.0、好ましくは0.1〜1.
0、水素/原料油比は100〜200ON J / N
 Jである。
Reaction temperature 300-500°C, preferably 350-450°C
°C, LHSVO, 1-2.0, preferably 0.1-1.
0, Hydrogen/raw oil ratio is 100-200ON J/N
It is J.

本発明の触媒を用いて残油を分解することにより、分解
率は50〜60%で、中間留分の収率は13〜20%程
度である。また、360℃以上の沸点を有する留分のト
ルエン不溶分は0.05wt%以下である。
By cracking residual oil using the catalyst of the present invention, the cracking rate is 50 to 60%, and the yield of middle distillate is about 13 to 20%. Further, the toluene insoluble content of the fraction having a boiling point of 360° C. or higher is 0.05 wt% or less.

[発明の効果コ 以上に示したように、本発明の触媒は特に脱硫活性が高
く、この触媒を用いて減圧残油等の水素化処理をするこ
とで、残油中の大きな分子を触媒内部に拡散し転化でき
、また同時に過分解を抑制しナフサやガスの生成を抑え
高い分解率でしかも中間留分を多く得る事が出来ると同
時に、高沸点留分中のトルエン不溶分が少なく、安定性
が良好な製品が得られる。
[Effects of the Invention] As shown above, the catalyst of the present invention has particularly high desulfurization activity, and by using this catalyst to hydrogenate vacuum residual oil, etc., large molecules in the residual oil can be removed inside the catalyst. At the same time, it is possible to suppress over-cracking and suppress the generation of naphtha and gas, making it possible to obtain a high cracking rate and a large amount of middle distillate.At the same time, the toluene insoluble content in the high boiling point fraction is small, making it stable. A product with good properties can be obtained.

[実施例] 次に、実施例によって本発明を更に詳しく述べる。[Example] Next, the present invention will be described in more detail with reference to Examples.

実施例 ベーマイト粉末を蒸留水に分散し、希硝酸を加えてpH
を1.0とした。さらにアンモニア水を加えpHを7〜
8で中和した。得られたアルミナ水和物ゲルをよく蒸留
水で洗浄後濾過し、ニーダで加熱混線により水分量75
%の混線物を得た。これを押し出し成形の後、110℃
で8時間乾燥後550℃で3時間焼成してアルミナ担体
80gを得た。
Example Boehmite powder was dispersed in distilled water and diluted nitric acid was added to adjust the pH.
was set as 1.0. Add ammonia water and adjust the pH to 7~
Neutralized with 8. The obtained alumina hydrate gel was thoroughly washed with distilled water, filtered, and mixed with heat in a kneader to reduce the water content to 75.
% of contaminants were obtained. After extrusion molding, it was heated to 110°C.
After drying for 8 hours at 550° C. for 3 hours, 80 g of an alumina carrier was obtained.

以上のようにして調製したアルミナ担体を、硝酸ニッケ
ル、モリブデン酸アンモニウム、クエン酸、ホウ酸、リ
ン酸を蒸留水に40〜50℃で溶かし込んだ溶液に、そ
の温度を保ったまま 2時間含浸した。その後、該担体
を取り出し、−昼夜室温で放置乾燥しさらに110℃で
3時間乾燥し、550℃で3時間焼成して触媒Aを得た
The alumina support prepared as above was impregnated in a solution of nickel nitrate, ammonium molybdate, citric acid, boric acid, and phosphoric acid dissolved in distilled water at 40 to 50°C for 2 hours while maintaining that temperature. did. Thereafter, the carrier was taken out, left to dry at room temperature day and night, further dried at 110°C for 3 hours, and calcined at 550°C for 3 hours to obtain catalyst A.

比較例 実施例と同様のアルミナ担体を用い、ホウ酸およびリン
酸を加えない点を除いて実施例と全く同様の方法で触媒
Bを得た。
Comparative Example Catalyst B was obtained using the same alumina carrier as in the example and in exactly the same manner as in the example except that boric acid and phosphoric acid were not added.

評価例 得られた触媒A%Bの性状を第1表に示す。それぞれの
触媒を内径20頗φのマイクロリアクターに充填し、硫
化後、第2表の性状を持つ減圧残油で次の条件で水素化
処理した。
Evaluation Example The properties of the catalyst A%B obtained are shown in Table 1. Each catalyst was packed into a microreactor with an inner diameter of 20 mm, and after sulfidation, it was hydrogenated using vacuum residual oil having the properties shown in Table 2 under the following conditions.

温   度     400℃ L HS V     O,2 圧    力      I L5Kt / atr 
G水素/油   70ONJ/NJ 反応結果を第3表にまとめて示す。本発明の触媒Aは、
比較例の触媒Bに比べて脱硫率、脱金属率に優れ、中間
留分の収率も高い。また転化率が高いにも拘らず、高沸
点留分のトルエン不溶分は少なく、製品として好ましい
ものであった。
Temperature 400℃ LHS VO,2 Pressure I L5Kt / atr
G hydrogen/oil 70ONJ/NJ The reaction results are summarized in Table 3. Catalyst A of the present invention is
Compared to Catalyst B of Comparative Example, the desulfurization rate and metal removal rate are excellent, and the yield of middle distillate is also high. In addition, despite the high conversion rate, the high boiling point fraction contained only a small amount of toluene insoluble matter, making it desirable as a product.

第  3  表 $1 :  170℃以下の留分 *2 :  170〜360℃の留分 $3 :  360℃以上の留分Table 3 $1: Distillate below 170℃ *2: Distillate between 170 and 360℃ $3: Distillate above 360℃

Claims (1)

【特許請求の範囲】[Claims] 1、アルミナ担体にニッケル、コバルト、モリブデン、
バナジウム、タングステンから選ばれた少なくとも1種
の活性金属を酸化物として1.0〜20.0wt%、お
よびホウ素化合物とリン化合物を酸化物として各々0.
5〜5.0wt%を担持してなり、全表面積が100m
^2/g以上、平均細孔直径が100Å以上、全細孔容
積が0.4ml/g以上であり、平均細孔直径100〜
200Åの細孔が占める容積が全細孔容積の少なくとも
70%であることを特徴とする残油の水素化処理触媒。
1. Nickel, cobalt, molybdenum on alumina carrier,
1.0 to 20.0 wt% of at least one active metal selected from vanadium and tungsten as an oxide, and 0.0 wt% of each of a boron compound and a phosphorus compound as an oxide.
5 to 5.0 wt%, and the total surface area is 100 m
^2/g or more, the average pore diameter is 100 Å or more, the total pore volume is 0.4 ml/g or more, and the average pore diameter is 100~
A resid hydroprocessing catalyst characterized in that the volume occupied by 200 Å pores is at least 70% of the total pore volume.
JP2069548A 1990-03-22 1990-03-22 Catalyst for hydrogenation of residual oil Pending JPH03273092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2069548A JPH03273092A (en) 1990-03-22 1990-03-22 Catalyst for hydrogenation of residual oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2069548A JPH03273092A (en) 1990-03-22 1990-03-22 Catalyst for hydrogenation of residual oil

Publications (1)

Publication Number Publication Date
JPH03273092A true JPH03273092A (en) 1991-12-04

Family

ID=13405886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2069548A Pending JPH03273092A (en) 1990-03-22 1990-03-22 Catalyst for hydrogenation of residual oil

Country Status (1)

Country Link
JP (1) JPH03273092A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000176288A (en) * 1998-12-10 2000-06-27 Inst Fr Petrole Catalyst for hydrogen treatment of hydrocarbon feedstock in fixed bed reactor
CN1089277C (en) * 1997-04-24 2002-08-21 中国石油化工集团公司 Non-crystalline alloy catalyst containing Ni and B, its prepn. and application
JP2003340281A (en) * 2002-05-24 2003-12-02 Inst Fr Petrole Treatment method for hydro-refining and/or hydro- conversion of hydrocarbon raw material load by using catalyst
JP2005270977A (en) * 2004-03-23 2005-10-06 Inst Fr Petrole Doped spherical carrying catalyst, and method for hydrotreating and hydrogenation converting petroleum fraction containing metal
JP2012197350A (en) * 2011-03-22 2012-10-18 Jx Nippon Oil & Energy Corp Hydrorefining method of heavy oil
CN103861651A (en) * 2012-12-12 2014-06-18 中国石油化工股份有限公司 Heavy oil hydrogenation and asphaltene-removing catalyst, preparation and application thereof
CN104368352A (en) * 2013-08-16 2015-02-25 中国石油化工股份有限公司 Hydrogenation activity protection catalyst, and its preparation method and application
US11318453B2 (en) 2009-04-21 2022-05-03 Albemarle Catalysts Company B.V. Hydrotreating catalyst containing phosphorus and boron

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1089277C (en) * 1997-04-24 2002-08-21 中国石油化工集团公司 Non-crystalline alloy catalyst containing Ni and B, its prepn. and application
JP2000176288A (en) * 1998-12-10 2000-06-27 Inst Fr Petrole Catalyst for hydrogen treatment of hydrocarbon feedstock in fixed bed reactor
JP4501195B2 (en) * 1998-12-10 2010-07-14 イエフペ Hydrotreatment catalyst for hydrocarbon feedstock in a fixed bed reactor
JP2003340281A (en) * 2002-05-24 2003-12-02 Inst Fr Petrole Treatment method for hydro-refining and/or hydro- conversion of hydrocarbon raw material load by using catalyst
JP2005270977A (en) * 2004-03-23 2005-10-06 Inst Fr Petrole Doped spherical carrying catalyst, and method for hydrotreating and hydrogenation converting petroleum fraction containing metal
US11318453B2 (en) 2009-04-21 2022-05-03 Albemarle Catalysts Company B.V. Hydrotreating catalyst containing phosphorus and boron
JP2012197350A (en) * 2011-03-22 2012-10-18 Jx Nippon Oil & Energy Corp Hydrorefining method of heavy oil
CN103861651A (en) * 2012-12-12 2014-06-18 中国石油化工股份有限公司 Heavy oil hydrogenation and asphaltene-removing catalyst, preparation and application thereof
CN103861651B (en) * 2012-12-12 2016-05-25 中国石油化工股份有限公司 A kind of heavy-oil hydrogenation diasphaltene catalyst and preparation and application thereof
CN104368352A (en) * 2013-08-16 2015-02-25 中国石油化工股份有限公司 Hydrogenation activity protection catalyst, and its preparation method and application

Similar Documents

Publication Publication Date Title
US5435908A (en) Hydroconversion process employing catalyst with specified pore size distribution
JP4638610B2 (en) Hydrotreating catalyst and hydrotreating method
CA2228889C (en) Hydroconversion process employing a catalyst with specified pore size distribution and no added silica
US8372267B2 (en) Process for the sequential hydroconversion and hydrodesulfurization of whole crude oil
RU2715713C2 (en) Catalyst for medium distillate hydrocracking, comprising base extrudate having high volume of nanopores
KR102277831B1 (en) Process for preparing a hydrotreating catalyst
JPS63194732A (en) Hydrogenation catalyst for heavy oil
RU2313389C1 (en) Catalyst, method for preparation thereof, method for preparing carrier for this catalyst, and diesel fraction desulfurization process
JPH10310782A (en) High-degree hydrodesulfurization of hydrocarbon feedstock
JP4612229B2 (en) Catalyst for hydrotreating heavy hydrocarbon oil and hydrotreating method
JP2002363576A (en) Method for two step hydrogenating heavy hydrocarbon oil
JP2002363575A (en) Method for two step hydrogenating heavy hydrocarbon oil
JPH03273092A (en) Catalyst for hydrogenation of residual oil
JPH11290687A (en) Hydrogenation decomposition catalyst of hydrocarbon oil and hydrogen decomposition
JP2002239385A (en) Method for producing hydrotreatment catalyst for hydrocarbon oil and method for hydrotreating hydrocarbon oil
JP4578182B2 (en) Method for hydrotreating heavy hydrocarbon oil
CA2292314C (en) A process for producing diesel oils of superior quality and low solidifying point from fraction oils
JPWO2004078886A1 (en) Hydrotreating process for diesel oil fraction
JP4680520B2 (en) Low sulfur gas oil production method and environmentally friendly gas oil
JPH0295443A (en) Catalyst for hydrogenation treatment of residual oil
US20150306582A1 (en) Middle distillate hydrocracking catalyst with a base extrudate having a low particle density
JPH0593190A (en) Hydrogenation of residual oil
CA2306947A1 (en) Hydrotreating catalyst for heavy oil, carrier for the catalyst, and process for the preparation of the catalyst
JP4444690B2 (en) Hydrotreating catalyst precursor, method for producing the same, and method for producing refined hydrocarbon oil
JP2986838B2 (en) Hydrotreatment of residual oil