JPH0593190A - Hydrogenation of residual oil - Google Patents

Hydrogenation of residual oil

Info

Publication number
JPH0593190A
JPH0593190A JP3091202A JP9120291A JPH0593190A JP H0593190 A JPH0593190 A JP H0593190A JP 3091202 A JP3091202 A JP 3091202A JP 9120291 A JP9120291 A JP 9120291A JP H0593190 A JPH0593190 A JP H0593190A
Authority
JP
Japan
Prior art keywords
catalyst
layer
total
residual oil
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3091202A
Other languages
Japanese (ja)
Inventor
Yasuyuki Ooishi
庸之 大石
Yasuhiro Kubota
泰宏 久保田
Chuichi Yamashita
忠一 山下
Kazuo Shimizu
和夫 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Japan Petroleum Energy Center JPEC
Eneos Corp
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC, Nippon Oil Corp filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP3091202A priority Critical patent/JPH0593190A/en
Publication of JPH0593190A publication Critical patent/JPH0593190A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To obtain a high-boiling oil having stable properties, a high degree of desulfurization, a high degree of demetalling and a high yield of a middle fraction. CONSTITUTION:A residual oil is hydrogenated under the conditions of a hydrogen pressure of 90kg/cm<2> or above, a temperature of 300-500 deg.C and an LHSV of 0.1-1 in the presence of a catalyst layer comprising a first layer packed with 10-50%, based on the total amount of the catalyst in the reaction tower, catalyst prepared by impregnating an alumina carrier with 1-7wt.% (in terms of the oxide) at least one metal selected from among Ni, Co, Mo, V and W and 0.5-5wt.% (in terms of the oxide) boron compound having a total surface area of at least 100m<2>/g, a total pore volume of at least 0.5ml/g and a volume occupied by pores of average pore diameters of 120-200Angstrom of at least 70% based on the total pore volume when measured by the nitrogen adsorption method and a second layer packed with 50-90wt.%, based on the whole catalyst layer, hydrogenation catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は硫黄分、窒素分およびニ
ッケル、バナジウム等の金属を多量に含有する残油の水
素化処理方法に関する。特に長時間にわたって脱硫率、
脱金属率および中間留分(170 〜360 ℃の留分)収率を
高く維持することができ、しかも安定した性状(トルエ
ン不溶分の少ない)の高沸点生成油を得ることができる
水素化処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for hydrotreating a residual oil containing a large amount of sulfur, nitrogen and metals such as nickel and vanadium. Desulfurization rate, especially over long periods of time
Hydrotreatment that can maintain high demetallization rate and middle distillate (distillate at 170-360 ° C) yield, and can obtain high boiling point product oil with stable properties (low toluene insoluble content) Regarding the method.

【0002】[0002]

【従来の技術】産出原油は重質化する一方で、軽質留分
の需要は増加し続けている。そのため、有用な軽質留分
を取り去った後の重質留分、とりわけ、残油を処理する
ことが重要な問題となっている。残油には、硫黄、窒素
及び金属分が濃縮されるため、それらはきわめて高濃度
となって存在する。残油を軽質化する場合には、水素化
分解,流動接触分解等の処理手段が採用されるが、硫
黄、窒素及び金属分を高濃度に含んだ残油をそのまま処
理した場合には、高品位の製品を得ることができないば
かりでなく、触媒も硫黄、窒素、金属分等で被毒されて
しまう問題がある。
2. Description of the Related Art While crude oil produced is becoming heavier, the demand for light distillates continues to increase. Therefore, it is an important problem to treat the heavy fraction after removing the useful light fraction, especially the residual oil. Since residual oil is concentrated in sulfur, nitrogen and metals, they are present in extremely high concentrations. When lightening the residual oil, treatment means such as hydrocracking and fluid catalytic cracking are adopted, but when the residual oil containing high concentrations of sulfur, nitrogen and metal is directly treated, Not only is it impossible to obtain a quality product, but there is also the problem that the catalyst is poisoned by sulfur, nitrogen, metal components, and the like.

【0003】従って、残油を軽質化するにあったては、
予め残油に水素化処理を施すことで、硫黄分、窒素分あ
るいは金属分を取り除くことが重要である。水素化処理
とは水素加圧下に原料油を接触的に処理し、原料油中の
硫黄分、窒素分を硫化水素やアンモニアなどに転化させ
て除去したり、金属分を触媒中に堆積させ取り除く方法
である。従来、間接脱硫の対象とされている原料油は主
に減圧軽油であって、原料油中に金属分やアスファルテ
ン分が少ないため、さしたる問題は生じなかった。しか
しながら、残油を直接水素化処理せんとするする場合に
は、次のような問題がある。
Therefore, in lightening the residual oil,
It is important to remove the sulfur content, nitrogen content or metal content by subjecting the residual oil to hydrogenation treatment in advance. What is hydrotreating? The feedstock is catalytically treated under hydrogen pressure, and the sulfur content and nitrogen content in the feedstock are converted into hydrogen sulfide and ammonia for removal, and the metal content is deposited and removed in the catalyst. Is the way. Conventionally, the feedstock that has been the object of indirect desulfurization is mainly vacuum gas oil, and since the feedstock contains a small amount of metals and asphaltene, no significant problems have occurred. However, when the residual oil is directly subjected to hydrotreatment, there are the following problems.

【0004】すなわち、残油中にはバナジウム、ニッケ
ルなどの金属分が多く含まれており、またコーク生成の
原因となるアスファルテン等の分子量の大きい成分も含
まれている。これらの金属分や生成コ−クは、触媒の活
性点を隠蔽し、あるいは触媒細孔を閉塞するため、これ
に原因して触媒の活性が低下し、寿命も短くなる。ちな
みに、触媒活性の低下は脱硫率や分解率の低下を招く
が、これを補償するために、従来は反応温度を高かめる
ことが通常行われている。しかし、装置の運転上、反応
温度の上昇には限界があり、しかも、反応温度の上昇は
コ−クの生成を助長する不都合がある。これに加えて、
高い反応温度の採用は、水素化処理製品、特に360 ℃以
上の沸点を有する留分の性状を悪化させる欠点がある。
当該留分は一般にスラッジを生成しやすいが、性状が悪
化すると一層その傾向が高まって、当該留分の輸送ない
しは貯蔵中に、あるいは当該留分の爾後処理に際して、
トラブルの原因となる。
That is, the residual oil contains a large amount of metal components such as vanadium and nickel, and also contains components having a large molecular weight such as asphaltene, which causes coke formation. These metal components and generated coke mask the active sites of the catalyst or block the catalyst pores, which causes the activity of the catalyst to decrease and the life to shorten. Incidentally, a decrease in catalytic activity leads to a decrease in desulfurization rate and decomposition rate, but in order to compensate for this, conventionally, the reaction temperature is usually increased. However, there is a limit to the increase of the reaction temperature in the operation of the apparatus, and there is a disadvantage that the increase of the reaction temperature promotes the production of coke. In addition to this,
The use of high reaction temperatures has the drawback of degrading the properties of hydrotreated products, especially those with boiling points above 360 ° C.
The fraction generally tends to generate sludge, but if the property deteriorates, the tendency is further increased, and during transportation or storage of the fraction, or after treatment of the fraction,
It causes trouble.

【0005】スラッジの生成しやすさの度合は、360 ℃
以上の沸点を有する留分中のトルエン不溶分量を測定す
ることで評価され、その量が0.05wt%以下、好ましくは
0.03%以下であれば、問題がないとされている。つま
り、当該留分の性状の良否はトルエン不溶分の多寡によ
って決まり、トルエン不溶分が多い程、製品として好ま
しくない。従来の通常の触媒を使用して残油を比較的高
温度で水素化処理した場合、残油の分解率50〜60%程度
で、製品として得られる上記留分のトルエン不溶分が0.
1wt %であることも珍しくない。
The degree of easiness of sludge formation is 360 ° C.
Evaluated by measuring the amount of toluene insoluble in the fraction having a boiling point above, the amount is 0.05 wt% or less, preferably
If it is 0.03% or less, there is no problem. That is, the quality of the fraction is determined by the amount of toluene insoluble matter, and the more toluene insoluble matter is, the less preferable the product is. When the residual oil is hydrotreated at a relatively high temperature using a conventional ordinary catalyst, the toluene insoluble content of the above-mentioned fraction obtained as a product is 0 at a decomposition rate of the residual oil of about 50 to 60%.
It is not unusual for it to be 1 wt%.

【0006】[0006]

【発明が解決しようとする課題】本発明は硫黄分、窒素
分およびニッケル、パナジウム等の金属を多量に含有す
る残油から、スラッジ生成の少ない良好な性状の高沸点
生成油を、安定して得ることを目的とする。また、本発
明は反応条件が温和でも長時間にわたって高い脱硫率、
脱金属率および中間留分収率が得られる水素化処理方法
を確立することを目的とする。
DISCLOSURE OF THE INVENTION The present invention stably produces a high boiling point oil having good properties with less sludge formation from a residual oil containing a large amount of sulfur, nitrogen and metals such as nickel and vanadium. The purpose is to get. Further, the present invention has a high desulfurization rate for a long time even if the reaction conditions are mild,
The purpose of the present invention is to establish a hydrotreating method capable of obtaining a metal removal rate and a middle distillate yield.

【0007】[0007]

【課題を解決するための手段】本発明者らは前記の目的
を達成するために鋭意研究を行った結果、特定の細孔構
造を有し、特定の金属成分を担持せしめた触媒を、通常
の水素化触媒と組合わせて残油の水素化処理に用いるこ
とにより、長時間にわたって高い脱硫率、脱金属率およ
び中間留分収率を維持しつつ、良好な性状の高沸点生成
油が得られることを見出した。
Means for Solving the Problems As a result of intensive studies for achieving the above-mentioned object, the present inventors have found that a catalyst having a specific pore structure and supporting a specific metal component is usually prepared. By using it in the hydrotreatment of residual oil in combination with the above hydrogenation catalyst, a high boiling point product oil with good properties can be obtained while maintaining a high desulfurization rate, demetalization rate and middle distillate yield over a long period of time. I found that I can be.

【0008】しかして、本発明に係る水素化処理方法
は、ニッケル、コバルト、モリブデン、バナジウム、タ
ングステンから選ばれた少なくとも1種類の活性金属が
1〜7wt%(酸化物として)およびホウ素化合物が0.5
〜5wt%(酸化物として)アルミナ担体に担持され、か
つ窒素吸着法で測定した全表面積が少なくとも100 m2
/g、全細孔容積が少なくとも0.5 ml/g、平均細孔直
径120 〜200 オングストロームの細孔が占める容積が全
細孔容積の少なくとも70% である触媒を、反応塔内の全
触媒層の10〜50%充填した第1層と、水素化処理触媒を
該全触媒層の50〜90%充填した第2層からなる触媒層の
存在下、残油を水素圧力90 kg /cm2 以上、温度300 〜
500 ℃、LHSV 0.1 〜1の条件で水素化することを
特徴とする。 本発明に於いて、触媒層の第1層に使用
される触媒のアルミナ担体は、公知の方法で調製するこ
とができる。例えば、硫酸アルミニウム等のアルミニウ
ム塩をアンモニア等のアルカリ、またはアルミン酸ソー
ダ等のアルミン酸塩で中和し、生成したアルミナ水和物
に適当なアルカリを添加してアルミナ水和物スラリーの
pHを8〜10の弱アルカリ性とし、これを60〜150 ℃で1
〜100 時間熟成してベーマイトを生成させ、該ベーマイ
トを混練後押出成型等で任意の形状に成型した後、乾
燥、焼成することにより所望のアルミナ担体を製造する
ことができる。上記の熟成は十分に行うことが好まし
い。別法として、市販されているベーマイトの粉末を酸
などで解膠し、成型、乾燥、焼成する方法を採用するこ
とも可能である。
Therefore, in the hydrotreating method according to the present invention, 1 to 7 wt% (as an oxide) of at least one active metal selected from nickel, cobalt, molybdenum, vanadium and tungsten and 0.5% of a boron compound are used.
~ 5 wt% (as oxide) supported on alumina support and has a total surface area of at least 100 m 2 as measured by nitrogen adsorption method
/ G, the total pore volume is at least 0.5 ml / g, and the volume occupied by pores with an average pore diameter of 120 to 200 angstroms is at least 70% of the total pore volume, and In the presence of a catalyst layer consisting of a first layer filled with 10 to 50% and a second layer filled with 50 to 90% of the total hydrotreating catalyst, the residual oil has a hydrogen pressure of 90 kg / cm 2 or more, Temperature 300 ~
It is characterized in that hydrogenation is carried out under the conditions of 500 ° C. and LHSV 0.1 to 1. In the present invention, the alumina carrier of the catalyst used in the first layer of the catalyst layer can be prepared by a known method. For example, an aluminum salt such as aluminum sulfate is neutralized with an alkali such as ammonia or an aluminate such as sodium aluminate, and an appropriate alkali is added to the produced alumina hydrate to prepare an alumina hydrate slurry.
Adjust the pH to a weak alkaline of 8-10 and set it to 60-150 ° C for 1
The desired alumina carrier can be produced by aging for about 100 hours to form boehmite, kneading the boehmite into a desired shape by extrusion molding or the like, and then drying and firing. It is preferable that the above-mentioned aging is sufficiently performed. Alternatively, it is also possible to adopt a method in which commercially available boehmite powder is peptized with an acid or the like, and molded, dried and fired.

【0009】アルミナ担体に担持させる活性金属は、N
i,Co,W,Mo,Vから選ばれた少なくとも1種類であって、
活性金属を複合させる場合は、Ni-Mo,Co-Mo,Ni-Co-Mo,N
i-W,Co-W,Ni-Co-W,Ni-V,Co-V,Co-V-Mo等の組合せがあ
る。好ましい組合せとしては、Co-Mo,Ni-Mo,Ni-Co-Mo,C
o-W,Ni-Wが挙げられる。上記以外の活性金属も少量であ
れば、担体に含ませてもよい。活性金属の担持量は、金
属酸化物に換算して触媒全重量の1〜7wt%、好ましく
は3〜6.5 wt%の範囲である。活性金属を複合させる場
合、活性金属同志の割合は任意に選ぶことができる。
The active metal supported on the alumina carrier is N
At least one selected from i, Co, W, Mo, V,
When compounding active metals, Ni-Mo, Co-Mo, Ni-Co-Mo, N
There are combinations of iW, Co-W, Ni-Co-W, Ni-V, Co-V, Co-V-Mo, etc. Preferred combinations include Co-Mo, Ni-Mo, Ni-Co-Mo, C
Examples include oW and Ni-W. A small amount of active metals other than the above may be contained in the carrier. The amount of the active metal supported is in the range of 1 to 7 wt%, preferably 3 to 6.5 wt% of the total weight of the catalyst in terms of metal oxide. When the active metals are combined, the ratio of the active metals can be arbitrarily selected.

【0010】アルミナ担体には前記の活性金属に加え
て、ホウ素化合物も担持されるが、その担持量は、酸化
物換算で触媒全重量の0.5 〜5wt%、好ましくは0.6 〜
4.5 wt%の範囲にある。ホウ素化合物の担持量が酸化物
として0.5 Ww%未満であると効果がなく、5wt%を越え
る量で担持させても、触媒の脱硫活性は余り変わらず、
かえって細孔直径が小さくなるという欠点がある。
A boron compound is supported on the alumina carrier in addition to the above-mentioned active metal, and the supported amount thereof is 0.5 to 5 wt% of the total weight of the catalyst in terms of oxide, preferably 0.6 to.
It is in the range of 4.5 wt%. If the supported amount of the boron compound is less than 0.5 Ww% as an oxide, there is no effect, and even if the supported amount exceeds 5 wt%, the desulfurization activity of the catalyst does not change much,
On the contrary, there is a drawback that the pore diameter becomes small.

【0011】本発明で用いるホウ素化合物としては、触
媒を焼成した際に酸化ホウ素に転化し得る化合物であれ
ば、無機化合物あるいは有機化合物のどちらでもよい。
例えば、ホウ酸,ホウ酸アンモニウム,オルトホウ酸,
四ホウ酸,重ホウ酸アンモニウム,ジボラン,ホウ酸メ
チル,ホウ酸ブチル,ホウ酸トリシクロヘクシル等がい
ずれも使用可能である。
The boron compound used in the present invention may be either an inorganic compound or an organic compound as long as it is a compound which can be converted into boron oxide when the catalyst is calcined.
For example, boric acid, ammonium borate, orthoboric acid,
Tetraboric acid, ammonium biborate, diborane, methyl borate, butyl borate, tricyclohexyl borate, etc. can all be used.

【0012】ホウ素化合物および活性金属成分のアルミ
ナ担体への担持の方法は、特に限定されるものではな
く、例えば、含浸法、共沈法等を採用することができ
る。担持順序も任意で、それぞれの成分を個々に、又は
同時に担持することができる。また、それそれの成分を
2度以上に分けて担持しても差し支えない。
The method of supporting the boron compound and the active metal component on the alumina carrier is not particularly limited, and for example, an impregnation method, a coprecipitation method or the like can be adopted. The loading order is also arbitrary, and the respective components can be loaded individually or simultaneously. Further, the components thereof may be carried twice or more.

【0013】本発明に於いて、触媒層の第1層に充填さ
れる触媒の細孔特性について言えば、その触媒は、窒素
吸着法で測定して表面積が少なくとも100 m2 /g、好
ましくは120 〜250 m2 /gの範囲にあり、平均細孔直
径が100 オングストローム以上、好ましくは120 〜300
オングストロームの範囲にあり、全細孔容積が0.5 ml/
g以上、好ましくは0.5 〜1ml/gの範囲にある。そし
て、平均細孔直径120〜200 オングストロームの細孔が
占める容積が、全細孔容積の少なくとも70%以上、好ま
しくは70〜90%の範囲にある。 触媒の表面積が100 m
2 /g未満であると十分な活性が得られない。平均細孔
直径が120 オングストローム未満であると細孔の閉塞が
起こり易く触媒寿命が短くなる。全細孔容積が0.5 ml/
g未満であると、触媒の脱金属活性が不十分である。ま
た平均細孔直径120 〜200 オングストロームの細孔が占
める容積が全細孔容積の70%より少ない細孔分布では、
残油中の分子の転化に寄与する反応の場が少なくので、
満足な触媒活性の発現を期待できない。第1層に充填さ
れる触媒の形状は、任意に選ぶことができ、例えば、球
状、錠剤、円柱状等が適宜選ばれる。
In the present invention, in terms of pore characteristics of the catalyst packed in the first layer of the catalyst layer, the catalyst has a surface area of at least 100 m 2 / g, preferably measured by a nitrogen adsorption method. It is in the range of 120 to 250 m 2 / g, and the average pore diameter is 100 angstroms or more, preferably 120 to 300.
In the Angstrom range with a total pore volume of 0.5 ml /
g or more, preferably 0.5 to 1 ml / g. The volume occupied by pores having an average pore diameter of 120 to 200 angstrom is at least 70% or more, preferably 70 to 90% of the total pore volume. Surface area of catalyst is 100 m
If it is less than 2 / g, sufficient activity cannot be obtained. If the average pore diameter is less than 120 angstrom, the pores are likely to be clogged and the catalyst life is shortened. Total pore volume is 0.5 ml /
If it is less than g, the demetallizing activity of the catalyst is insufficient. Moreover, in the pore distribution in which the volume occupied by pores having an average pore diameter of 120 to 200 angstrom is less than 70% of the total pore volume,
Since there are few reaction sites that contribute to the conversion of molecules in the residual oil,
Satisfactory catalytic activity cannot be expected. The shape of the catalyst to be filled in the first layer can be arbitrarily selected, and for example, a spherical shape, a tablet shape, a cylindrical shape or the like can be appropriately selected.

【0014】触媒層の第2層には、通常の水素化処理触
媒が充填される。ここで言う通常の水素化処理触媒と
は、当業界で残油を水素化処理する際に通常使用される
触媒を意味する。例えば、アルミナ等の酸化物担体に、
モリブデン、タングステン、ニッケル、コバルト、バナ
ジウム等からなる活性金属の1種以上を、1〜10wt%の
範囲で担持させた触媒であって、窒素吸着法で測定した
場合の表面積が少なくとも100 m2 /g、全細孔容積が
0.4 ml/g以上、平均細孔直径が100 オングストロ−ム
以上である触媒が、第2層で使用される触媒に包含され
る。
The second layer of the catalyst layer is filled with a conventional hydrotreating catalyst. As used herein, the conventional hydrotreatment catalyst means a catalyst that is commonly used in the hydrotreating of residual oil in the art. For example, on an oxide carrier such as alumina,
A catalyst supporting one or more kinds of active metals such as molybdenum, tungsten, nickel, cobalt, vanadium, etc. in the range of 1 to 10 wt% and having a surface area of at least 100 m 2 / when measured by a nitrogen adsorption method. g, total pore volume
Included in the catalyst used in the second layer is a catalyst having 0.4 ml / g or more and an average pore diameter of 100 Å or more.

【0015】本発明の方法を実施するに際し、反応塔内
の第1層に於ける触媒の充填割合は、全触媒層容積の10
〜50%、好ましくは20〜40%である。この範囲を外れた
場合には全体として触媒寿命が短くなり、脱硫率および
脱金属率も低下する。また反応塔内の第2層に於ける触
媒の充填割合は、全触媒層容積の50〜90%、好ましくは
60〜80%である。本発明に於いて、第1層とは反応塔の
入口側に意味し、第2層とは反応塔の出口側に充填す
る。第1層の触媒および第2層の触媒は、同一の反応塔
に充填してもよく、別々の反応塔に充填してもよい。別
々の反応塔に充填した場合に於ける全触媒層容積とは、
個々の反応塔の触媒層を合計した容積を言う。第1触媒
層および第2触媒層は、固定床、移動床、流動床のいず
れの反応方式でも操作することができる。但し、第1触
媒層および第2触媒層の触媒は混合しないものとする。
In carrying out the method of the present invention, the catalyst filling ratio in the first layer in the reaction tower is 10% of the total catalyst layer volume.
-50%, preferably 20-40%. When it is out of this range, the catalyst life as a whole becomes short, and the desulfurization rate and demetalization rate also decrease. Further, the catalyst filling ratio in the second layer in the reaction tower is 50 to 90% of the total catalyst layer volume, preferably
60-80%. In the present invention, the first layer means the inlet side of the reaction tower, and the second layer means the outlet side of the reaction tower. The catalyst of the first layer and the catalyst of the second layer may be packed in the same reaction tower or may be packed in different reaction towers. What is the total catalyst bed volume when packed in separate reaction towers?
It refers to the total volume of the catalyst layers of the individual reaction towers. The first catalyst layer and the second catalyst layer can be operated in any reaction system of a fixed bed, a moving bed and a fluidized bed. However, the catalysts of the first catalyst layer and the second catalyst layer are not mixed.

【0016】本発明の水素化処理条件は、反応圧力90kg
/cm2以上、好ましくは110 〜250kg/cm2 、反応温度30
0 〜500 ℃、好ましくは350 〜450 ℃°、LHSV0.1
〜1、好ましくは0.1 〜0.5 、水素/原料油比100 〜20
00 Nl/Nlの範囲にある。反応圧力が90kg/cm2 未満であ
ると脱硫率、脱金属率が低下し、生成油の性状が悪化す
る。反応温度が300 ℃未満であると、十分な脱硫率、脱
金属率が得られず、500 ℃を越えると生成油の性状が低
下すると共に、コークの生成が増加するため、反応塔内
の閉塞が問題になる。LHSVが0.1 未満であると触媒
の劣化が早く、1を越えると充分な脱硫率、脱金属率が
得られない。
The hydrotreating condition of the present invention is a reaction pressure of 90 kg.
/ Cm 2 or more, preferably 110 to 250 kg / cm 2 , reaction temperature 30
0 to 500 ° C, preferably 350 to 450 ° C, LHSV0.1
-1, preferably 0.1-0.5, hydrogen / feed oil ratio 100-20
It is in the range of 00 Nl / Nl. If the reaction pressure is less than 90 kg / cm 2 , the desulfurization rate and demetallization rate will decrease, and the properties of the produced oil will deteriorate. If the reaction temperature is less than 300 ° C, sufficient desulfurization rate and demetallization rate cannot be obtained, and if it exceeds 500 ° C, the properties of the produced oil decrease and the production of coke increases. Is a problem. When LHSV is less than 0.1, the catalyst deteriorates rapidly, and when it exceeds 1, sufficient desulfurization rate and demetalization rate cannot be obtained.

【0017】本発明で水素化処理の対象とされる残油と
は、バナジウム、ニッケル等の重金属成分が多量に含く
まれ、またアスファルテン等の大きな分子が含まれる油
を指し、例えば、原油の常圧あるいは減圧蒸留によって
得られる残油、オイルサンド油あるいはタールサンド抽
出原油の常圧あるいは減圧蒸留残油等が、本発明で処理
される油の典型例である。
The residual oil to be hydrotreated in the present invention refers to an oil containing a large amount of heavy metal components such as vanadium and nickel and also containing a large molecule such as asphaltene. Typical examples of the oil to be treated in the present invention are residual oil obtained by atmospheric distillation or reduced pressure distillation, oil sand oil, and residual oil of tar sand extracted crude oil at atmospheric pressure or reduced pressure.

【0018】本発明の水素化処理方法によれば、50〜60
%の分解率で、中間留分を15〜20%程度の収率で回収す
ることができ、また、360 ℃以上の沸点を有する留分の
トルエン不溶分を0.05wt%以下にすることができる。
According to the hydrotreating method of the present invention, 50 to 60
%, The middle distillate can be recovered in a yield of about 15 to 20%, and the toluene insoluble fraction having a boiling point of 360 ° C or higher can be reduced to 0.05 wt% or less. ..

【0019】[0019]

【発明の効果】本発明の水素化処理方法は反応条件が温
和でも長時間にわたって高い脱硫率、脱金属率および中
間留分(170 〜360 ℃の留分)収率を示す。また、分解
率が高いにもかかわらず、残油から良好な性状(トルエ
ン不溶分の少ない)の高沸点生成油を得ることができ
る。
EFFECTS OF THE INVENTION The hydrotreating method of the present invention exhibits a high desulfurization rate, demetalization rate and intermediate fraction (distillate at 170 to 360 ° C.) yield over a long period of time even under mild reaction conditions. Further, despite the high decomposition rate, it is possible to obtain a high boiling point product oil having good properties (toluene insoluble content is small) from the residual oil.

【0020】[0020]

【実施例】次に、実施例によって本発明を更に詳しく述
べる。 担体の調整 硫酸アルミニウム水溶液とアルミン酸ナトリウム水溶液
とから、水酸化アルミニウムを調製し、それを所定の条
件下で熟成した。得られたゲルを加熱混練して押出成型
後、110 ℃で乾燥し、550 ℃で焼成してアルミナ担体を
得た。この操作で、熟成条件を変化させることにより、
細孔特性がそれぞれ異なる3種のアルミナ担体S-1 〜S-
3 を得た。
EXAMPLES The present invention will be described in more detail by way of examples. Preparation of Carrier Aluminum hydroxide was prepared from an aqueous solution of aluminum sulfate and an aqueous solution of sodium aluminate and aged under predetermined conditions. The gel obtained was kneaded by heating, extrusion-molded, dried at 110 ° C., and calcined at 550 ° C. to obtain an alumina carrier. By changing the aging conditions with this operation,
Three types of alumina supports S-1 to S- with different pore characteristics
Got 3

【0021】触媒調製1 Moを5.0 %、Coを1.2 %、ホウ酸を3.5 %、クエン酸を
10.0%含有する水溶液を、ポアーフィリング法により担
体S-1 に含浸させた。しかる後、その担体を放置乾燥後
110 ℃で乾燥し、550 ℃で焼成した。得られた触媒をDM
-1とする。
Catalyst Preparation 1 5.0% Mo, 1.2% Co, 3.5% boric acid, citric acid
The carrier S-1 was impregnated with an aqueous solution containing 10.0% by the pore filling method. Then, after leaving the carrier to dry
It was dried at 110 ° C and calcined at 550 ° C. DM the obtained catalyst
-1.

【0022】触媒調製2 Moを5.0 %、Coを1.2 %、ホウ酸を3.5 %、クエン酸を
10.0%含有する水溶液を、ポアーフィリング法により担
体S-1 に含浸させた。その担体を放置乾燥後、110 ℃で
乾燥し、550 ℃で焼成した。得られた触媒をDM-2とす
る。
Catalyst Preparation 2 5.0% Mo, 1.2% Co, 3.5% boric acid, citric acid
The carrier S-1 was impregnated with an aqueous solution containing 10.0% by the pore filling method. The carrier was left to dry, then dried at 110 ° C and calcined at 550 ° C. The obtained catalyst is designated as DM-2.

【0023】触媒調製3 Moを5.5 %、Coを1.4 %、クエン酸を10.0%含有する水
溶液を、ポアーフィリング法により担体S-2 に含浸させ
た。その担体を放置乾燥後、110 ℃で乾燥し、550 ℃で
焼成した。得られた触媒をDM-3とする。
Catalyst Preparation 3 A carrier S-2 was impregnated with an aqueous solution containing 5.5% Mo, 1.4% Co and 10.0% citric acid by the pore filling method. The carrier was left to dry, then dried at 110 ° C and calcined at 550 ° C. The obtained catalyst is designated as DM-3.

【0024】触媒調製4 Moを10.7%、Coを2.8 %、クエン酸を15.0%含有する水
溶液を、ポアーフィリング法により担体S-3 に含浸させ
た。その担体を放置乾燥後、110 ℃で乾燥し、550 ℃で
焼成した。得られた触媒を水素化処理触媒をDS-1とす
る。以上のようにして調製した各触媒の性状を表1に示
す。
Catalyst Preparation 4 A carrier S-3 was impregnated with an aqueous solution containing 10.7% Mo, 2.8% Co and 15.0% citric acid by the pore filling method. The carrier was left to dry, then dried at 110 ° C and calcined at 550 ° C. The obtained catalyst is called hydrotreating catalyst DS-1. Table 1 shows the properties of each catalyst prepared as described above.

【0025】実施例1,比較例1,2(評価例) 表1に示す触媒を組合せて、触媒層第1層にDM-1,2,3の
いずれかを、第2層にDS-1をいずれ例とも容積比1:2
で、内径200 mmのマイクロリアクターに充填して硫化
後、表2に示す性状の減圧残油を、反応温度400 ℃、L
HSV 0.2、圧力115kg /cm2 、水素/油700 Nl/Nlの
条件で、水素化処理したところ、表3に示す結果が得ら
れた。
Example 1, Comparative Examples 1 and 2 (Evaluation Example) The catalysts shown in Table 1 were combined, and any one of DM-1, 2, and 3 was used for the first layer of the catalyst layer and DS-1 was used for the second layer. In each case, the volume ratio is 1: 2
Then, after filling in a microreactor with an inner diameter of 200 mm and sulfiding, the vacuum residue with the properties shown in Table 2 was used at a reaction temperature of 400 ° C and L
When the hydrogenation was carried out under the conditions of HSV 0.2, pressure 115 kg / cm 2, hydrogen / oil 700 Nl / Nl, the results shown in Table 3 were obtained.

【0026】表3に示す結果から明らかな通り。本発明
の方法に従う実験No. 1は、比較例の実験No. 2および
3に比べて、脱硫率、脱金属率に優れ、中間留分の収率
も高い。また転化率が高いのにもかかわらず、高沸点留
分のトルエン不溶分は少なく、製品として好ましいもの
であった。
As is clear from the results shown in Table 3. Experiment No. 1 according to the method of the present invention is superior in desulfurization rate and demetallization rate and also has a high yield of middle distillate, as compared with Experiment Nos. 2 and 3 of Comparative Examples. Further, despite the high conversion, the toluene-insoluble content of the high boiling point fraction was small, which was a preferable product.

【0027】また、目標とする脱硫率が約80%に維持さ
れるよう、反応温度だけを変化させて、上と同様な水素
化処理を行い、目標脱硫率を維持するために必要な反応
温度の上昇度合と、運転時間とも関係を図1に示した。
図1に示す限界反応温度とは、良好な製品を得るための
最高温度であって、この温度以上では製品の安定性が悪
化するために運転を続けることができない。図1から
は、本発明の方法によれば、限界反応温度に達するまで
の運転時間が長いために、それだけ長く装置を運転でき
る利点があることが分かる。
Further, only the reaction temperature is changed so that the target desulfurization rate is maintained at about 80%, and the hydrogenation treatment similar to the above is carried out, so that the reaction temperature required for maintaining the target desulfurization rate. Fig. 1 shows the relationship between the degree of increase in the temperature and the operating time.
The critical reaction temperature shown in FIG. 1 is the maximum temperature for obtaining a good product, and above this temperature, the stability of the product deteriorates and the operation cannot be continued. It can be seen from FIG. 1 that the method of the present invention has an advantage that the apparatus can be operated for a longer time because the operation time until the critical reaction temperature is reached is long.

【0028】[0028]

【表1】 触媒の性状 触 媒 DM-1 DM-2 DM-3 DM-4 担 体 S-1 S-2 S-1 S-3 MoO3 wt% 5.0 5.0 5.1 10.1 CoO wt% 1.1 1.0 1.0 2.1 B2 O3 wt% 3.0 3.0 0 0 表面積 m2 /g 175 220 173 175 全細孔容積 ml/g 0.72 0.65 0.72 0.62 特定の細孔 % 74 65 74 70 容積割合 注)表中の容積割合は、細孔直径120 〜200 オングスト
ロームの細孔の容積が全細孔容積に対する割合を示す。
[Table 1] Properties of catalystCatalyst DM-1 DM-2 DM-3 DM-4  Carrier S-1 S-2 S-1 S-3 MoO3 wt% 5.0 5.0 5.1 10.1 CoO wt% 1.1 1.0 1.0 2.1 B2 O3 wt% 3.0 3.0 0 0 Surface area m2/ G 175 220 173 175 Total pore volume ml / g 0.72 0.65 0.72 0.62 Specific pore% 74 65 74 70Volume ratio Note) The volume ratios in the table are for pore diameters of 120 to 200 angstroms.
The volume of the loam pores represents the ratio to the total pore volume.

【0029】[0029]

【表2】 原料油の性状 比 重 1.02 硫 黄 4.3 wt% ニッケル 35 ppm バナジウム 130 ppm 残 炭 15.0 wt % [Table 2] Properties of feedstock 1.02 Sulfur yellow 4.3 wt% Nickel 35 ppm Vanadium 130 ppm Coal residue 15.0 wt%

【0030】[0030]

【表3】 実施例 比較例 1 1 2 実験 No. 1 2 3 触媒第1層 DM-1 DM-2 DM-3 第2層 DS-1 DS-1 DS-1 脱硫率 % 87.0 86.0 80.6 脱Ni率 % 65.5 63.5 63.8 脱V率 % 89.7 84.4 87.5 残炭 % 6.0 6.5 7.3 分解率 wt% 54.0 51.4 52.3 ナフサ等 wt% 4.5 3.5 3.8 中間留分wt% 16.5 14.2 13.1 不溶分 wt% 0.03 0.06 0.05 注)表中の「ナフサ等」は沸点170 ℃以下の留分を、
「中間留分」は沸点170〜360 ℃の留分を、また「不溶
分」は沸点360 ℃の留分のトルエン不溶分を示す。
[Table 3]Example Comparative example  1 1 2 Experiment No. 1 2 3 Catalyst 1st layer DM-1 DM-2 DM-3 2nd layer DS-1 DS-1 DS-1 Desulfurization rate% 87.0 86.0 80.6 Ni removal rate% 65.5 63.5 63.8 DeVation rate % 89.7 84.4 87.5 Residual coal% 6.0 6.5 7.3 Decomposition rate wt% 54.0 51.4 52.3 Naphtha, etc. wt% 4.5 3.5 3.8 Middle distillate wt% 16.5 14.2 13.1Insoluble matter wt% 0.03 0.06 0.05  Note) “Naphtha, etc.” in the table refers to the fraction with a boiling point of 170 ° C or less.
"Intermediate fraction" is a fraction with a boiling point of 170-360 ° C,
“Minute” indicates the toluene insoluble fraction of the fraction with a boiling point of 360 ° C.

【図面の簡単な説明】[Brief description of drawings]

【図1】水素化処理の運転時間と、目標の脱硫率を維持
するために必要な反応温度の上昇度合との関係を示すグ
ラフ。
FIG. 1 is a graph showing the relationship between the operating time of hydrotreating and the degree of increase in reaction temperature required to maintain a target desulfurization rate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 忠一 神奈川県横浜市中区千鳥町8番地 日本石 油株式会社中央技術研究所内 (72)発明者 清水 和夫 神奈川県横浜市中区千鳥町8番地 日本石 油株式会社中央技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Taichi Yamashita 8 Chidori-cho, Naka-ku, Yokohama-shi, Kanagawa Central Research Institute of Nippon Oil Oil Co., Ltd. (72) Kazuo Shimizu 8 Chidori-cho, Naka-ku, Yokohama-shi, Kanagawa Central Research Institute of Nippon Oil Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アルミナ担体にニッケル、コバルト、モ
リブデン、バナジウム、タングステンから選ばれた少な
くとも1種類の活性金属が1〜7wt%(酸化物として)
およびホウ素化合物が0.5 〜5wt%(酸化物として)担
持され、かつ窒素吸着法で測定した全表面積が少なくと
も100 m2 /g、全細孔容積が少なくとも0.5 ml/g、
平均細孔直径120 〜200 オングストロームの細孔が占め
る容積が全細孔容積の少なくとも70%である触媒を、反
応塔内の全触媒層の10〜50%充填した第1層と、水素化
処理触媒を該全触媒層の50〜90%充填した第2層からな
る触媒層の存在下、残油を水素圧力90kg/cm2以上、温
度300 〜500 、LHSV0.1 〜1の条件で水素化するこ
とを特徴とする残油の水素化処理方法。
1. An alumina carrier containing 1 to 7 wt% (as an oxide) of at least one active metal selected from nickel, cobalt, molybdenum, vanadium and tungsten.
And a boron compound supported by 0.5 to 5 wt% (as oxide), and the total surface area measured by nitrogen adsorption method is at least 100 m 2 / g, the total pore volume is at least 0.5 ml / g,
A first layer in which 10 to 50% of the total catalyst layer in the reaction column is filled with a catalyst in which the volume occupied by pores having an average pore diameter of 120 to 200 angstrom is at least 70% of the total pore volume, and a hydrogenation treatment Hydrogenation of residual oil under conditions of hydrogen pressure 90 kg / cm 2 or more, temperature 300 to 500, LHSV 0.1 to 1 in the presence of a catalyst layer consisting of a second layer filled with 50 to 90% of the total catalyst layer. A method for hydrotreating residual oil, comprising:
JP3091202A 1991-03-29 1991-03-29 Hydrogenation of residual oil Pending JPH0593190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3091202A JPH0593190A (en) 1991-03-29 1991-03-29 Hydrogenation of residual oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3091202A JPH0593190A (en) 1991-03-29 1991-03-29 Hydrogenation of residual oil

Publications (1)

Publication Number Publication Date
JPH0593190A true JPH0593190A (en) 1993-04-16

Family

ID=14019850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3091202A Pending JPH0593190A (en) 1991-03-29 1991-03-29 Hydrogenation of residual oil

Country Status (1)

Country Link
JP (1) JPH0593190A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026388A1 (en) * 1994-03-29 1995-10-05 Idemitsu Kosan Co., Ltd. Method of hydrotreating hydrocarbon oil and fuel oil composition
WO1998026866A1 (en) * 1996-12-18 1998-06-25 Petroleum Energy Center Hydrotreating catalyst for heavy hydrocarbon oil, process for producing the catalyst, and hydrotreating method using the same
CN1089031C (en) * 1997-08-27 2002-08-14 中国石油化工集团公司 Macroporous alumina supporter and preparation method therefor
JP2003340281A (en) * 2002-05-24 2003-12-02 Inst Fr Petrole Treatment method for hydro-refining and/or hydro- conversion of hydrocarbon raw material load by using catalyst
JP2006515584A (en) * 2002-12-06 2006-06-01 エービービー ルマス グローバル インコーポレイテッド Mesoporous materials with active metals
KR20220024427A (en) 2019-06-25 2022-03-03 닛키 쇼쿠바이카세이 가부시키가이샤 Hydroprocessing method of heavy oil
CN114574234A (en) * 2022-03-11 2022-06-03 福州大学化肥催化剂国家工程研究中心 Production process of second-generation biodiesel

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026388A1 (en) * 1994-03-29 1995-10-05 Idemitsu Kosan Co., Ltd. Method of hydrotreating hydrocarbon oil and fuel oil composition
US6328880B1 (en) 1994-03-29 2001-12-11 Idemitsu Kosan Co., Ltd. Process for hydrotreating hydrocarbon oil
EP1734099A2 (en) * 1994-03-29 2006-12-20 Idemitsu Kosan Company Limited Method of hydrotreating hydrocarbon oil and fuel oil composition
EP1734099A3 (en) * 1994-03-29 2007-04-18 Idemitsu Kosan Company Limited Method of hydrotreating hydrocarbon oil and fuel oil composition
US6174432B1 (en) 1995-12-18 2001-01-16 Petroeum Energy Center Hydrotreating catalyst for heavy hydrocarbon oil, process for producing the catalyst, and hydrotreating method using the same
WO1998026866A1 (en) * 1996-12-18 1998-06-25 Petroleum Energy Center Hydrotreating catalyst for heavy hydrocarbon oil, process for producing the catalyst, and hydrotreating method using the same
CN1089031C (en) * 1997-08-27 2002-08-14 中国石油化工集团公司 Macroporous alumina supporter and preparation method therefor
JP2003340281A (en) * 2002-05-24 2003-12-02 Inst Fr Petrole Treatment method for hydro-refining and/or hydro- conversion of hydrocarbon raw material load by using catalyst
JP2006515584A (en) * 2002-12-06 2006-06-01 エービービー ルマス グローバル インコーポレイテッド Mesoporous materials with active metals
KR20220024427A (en) 2019-06-25 2022-03-03 닛키 쇼쿠바이카세이 가부시키가이샤 Hydroprocessing method of heavy oil
CN114574234A (en) * 2022-03-11 2022-06-03 福州大学化肥催化剂国家工程研究中心 Production process of second-generation biodiesel
CN114574234B (en) * 2022-03-11 2024-02-27 福州大学化肥催化剂国家工程研究中心 Production process of second-generation biodiesel

Similar Documents

Publication Publication Date Title
US4572778A (en) Hydroprocessing with a large pore catalyst
US4431526A (en) Multiple-stage hydroprocessing of hydrocarbon oil
US3876523A (en) Catalyst for residua demetalation and desulfurization
US4879265A (en) Hydroprocessing catalyst and phosphorous and citric acid containing impregnating solution
EP2794092B1 (en) Process for preparing hydrocracking catalyst
US4460707A (en) Hydroprocessing catalyst and method for preparing it
US5300217A (en) Hydroprocess utilizing a delta alumina-supported nickel and molybdenum catalyst
US5030780A (en) Aromatic saturation process with a silica-alumina and zeolite catalyst
US5384297A (en) Hydrocracking of feedstocks and catalyst therefor
US4455390A (en) Catalyst and method for impregnating at a pH less than one
US5135902A (en) Nickel-tungsten-phosphorus catalyst
US4613425A (en) Process for hydrotreating heavy hydrocarbon oils
RU2651269C2 (en) Method for hydrotreatment of vacuum distillate using sequence of catalysts
EP1418002A2 (en) Activated hydrotreating catalyst: composition, preparation, and use thereof
MXPA05012893A (en) Catalyst for the hydrodesulfurization of residues and heavy crudes.
EP0349223B1 (en) Hydroprocessing catalytic composition and the preparation and use thereof
JPH07185353A (en) Catalyst and method for use and production thereof
US4568450A (en) Hydrocarbon conversion process
JP3662495B2 (en) Hydrocracking catalyst, production method thereof, and hydrocracking method
CN101468317A (en) Hydrocracking catalyst and its preparing process
US4548710A (en) Hydrocarbon processing
US4969990A (en) Hydroprocessing with a catalyst having a narrow pore size distribution
JPH0593190A (en) Hydrogenation of residual oil
JPH0149399B2 (en)
JPH03273092A (en) Catalyst for hydrogenation of residual oil